WO2019200845A1 - 光收发组件、光线波长调整方法及装置 - Google Patents

光收发组件、光线波长调整方法及装置 Download PDF

Info

Publication number
WO2019200845A1
WO2019200845A1 PCT/CN2018/108580 CN2018108580W WO2019200845A1 WO 2019200845 A1 WO2019200845 A1 WO 2019200845A1 CN 2018108580 W CN2018108580 W CN 2018108580W WO 2019200845 A1 WO2019200845 A1 WO 2019200845A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
reflected
emitter
optical
etalon
Prior art date
Application number
PCT/CN2018/108580
Other languages
English (en)
French (fr)
Inventor
杨巍
杨波
黄新刚
Original Assignee
南京中兴软件有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京中兴软件有限责任公司 filed Critical 南京中兴软件有限责任公司
Publication of WO2019200845A1 publication Critical patent/WO2019200845A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring

Definitions

  • the present invention relates to the field of communications, and in particular to an optical transceiver component, a method for adjusting a wavelength of light, a device, a wavelength division multiplexing passive optical network, a storage medium, and an electronic device.
  • Wavelength Division Multiplexing Passive Optical Network is a good choice for large capacity and low latency.
  • WDM PON each user can enjoy a single wavelength channel, thus avoiding the delay caused by time division multiplexing. And as the rate of modulation of a single wavelength continues to increase, the bandwidth per user can also increase.
  • 1 is a system block diagram of a WDM PON in the related art.
  • Each ONU and the OLT use a pair of wavelengths ( ⁇ d, ⁇ u) for uplink and downlink, and different uplink and downlink wavelengths are combined by a wavelength division multiplexer (WDM) to enter Inside a trunk fiber.
  • WDM wavelength division multiplexer
  • WDM can be implemented using Arrayed Waveguide Grating (AWG). Normally, the upstream and downstream wavelengths are located at the center of the transmissive window of each port of the AWG, as shown in Figure 2.
  • AWG Arrayed Waveguide Grating
  • each wavelength channel interval is recorded as ⁇ f.
  • the wavelength through which an AWG port can pass is periodic.
  • the period is called the Free Spectral Range (FSR), so the uplink and downlink wavelength intervals are FSR.
  • FSR Free Spectral Range
  • the total occupied band resource is 2n ⁇ f.
  • the wavelength log n of a WDM PON is generally 32 or higher, which causes a problem of excessive wavelength resources occupied in the field of optical communication in which the wavelength resource is so tight.
  • the embodiments of the present invention provide an optical transceiver component, a method for adjusting a wavelength of a light, a device, a wavelength division multiplexing passive optical network, a storage medium, and an electronic device, so as to at least solve the wavelength resources occupied by the uplink and downlink lights existing in the related art. Too many questions.
  • an optical transceiver assembly comprising: a transmitter configured to emit light; a receiver configured to receive light; and an optical etalon between the transmitter and the receiver And arranged to separate the light emitted by the transmitter and the light received by the receiver.
  • a light wavelength adjusting method which is applied to the optical transceiver assembly according to any one of the preceding claims, wherein the light emitted by the emitter is performed by using a transmission window of the optical etalon And transmitting, when the light received by the receiver is transmitted by using a reflective window of the optical etalon, the method includes: acquiring power of the detected first reflected light, wherein the first reflected light is the Light emitted by the transmitter and reflected by the first transflective device; acquiring power of the detected second emitted light, wherein the second reflected light is emitted by the emitter and reflected by the optical etalon Light, or light emitted by the emitter and reflected by the second transflective device; adjusting a wavelength of light emitted by the emitter according to a power of the first reflected light and a power of the second reflected light.
  • the method includes: acquiring the power of the detected third reflected light, wherein the third reflected light is Light emitted by the emitter and reflected by the third transflective device; obtaining the power of the detected reflected light, wherein the reflected light is emitted by the emitter and transmitted through the optical etalon Light, or light emitted by the emitter and reflected by the fourth transflective device; adjusting the wavelength of the light emitted by the emitter according to the power of the third reflected light and the power of the transflective light.
  • a light wavelength adjusting device which is applied to the optical transceiver assembly according to any one of the preceding claims, wherein the light emitted by the emitter is performed by using a transmission window of the optical etalon And transmitting, when the light received by the receiver is transmitted by using a reflective window of the optical etalon, the device includes: a first acquiring module configured to acquire power of the detected first reflected light, wherein The first reflected light is the light emitted by the emitter and reflected by the first transflective device; the second acquiring module is configured to acquire the power of the detected second emitted light, wherein the second reflected light is Light emitted by the emitter and reflected by the optical etalon, or light emitted by the emitter and reflected by the second transflective device; a first adjustment module configured to be according to the first reflected ray The power and the power of the second reflected light adjust the wavelength of the light emitted by the emitter.
  • the device includes: a third acquisition module configured to acquire the power of the detected third reflected light, wherein The third reflected light is light emitted by the emitter and reflected by the third transflective device; and the fourth obtaining module is configured to acquire the power of the detected reflected light, wherein the reflected light is Light emitted by the emitter and transmitted through the optical etalon, or light emitted by the emitter and reflected by the fourth transflective device; and a second adjustment module configured to be according to the third reflected ray The power and the power of the transflective light adjust the wavelength of the light emitted by the emitter.
  • a wavelength division multiplexing passive optical network including an optical fiber line terminal OLT, a wavelength division multiplexer WDM, and a fiber network unit ONU, wherein the OLT includes one or more a first optical module, the first optical module comprising the optical transceiver component according to any one of the preceding claims; the WDM is connected to the OLT; the ONU is connected to the WDM, and the number of the ONUs is one or A plurality of, and each of the ONUs includes one or more second optical modules, and the second optical module includes the optical transceiver assembly of any of the above.
  • a storage medium having stored therein a computer program, wherein the computer program is configured to execute the steps of any one of the method embodiments described above.
  • an electronic device comprising a memory and a processor, wherein the memory stores a computer program, the processor being arranged to run the computer program to perform any of the above The steps in the method embodiments.
  • the separation of the light emitted by the optical etalon and the received light is utilized in the optical transceiver assembly, so that the uplink and downlink off of the wavelength interval can be separated.
  • the optical etalon can reduce the wavelength resources occupied by the uplink and downlink light by at least half. Therefore, the problem of excessive wavelength resources occupied by the uplink and downlink light existing in the related art can be solved. Reduce the effect of wavelength resource occupation.
  • FIG. 1 is a system block diagram of a WDM PON in the related art
  • FIG. 2 is a schematic diagram of the center position of the transmission window of each port of the AWG in the related art
  • FIG. 3 is a block diagram showing the structure of an optical transceiver assembly according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing the working principle of etalon according to an embodiment of the present invention.
  • FIG. 5 is a first schematic diagram 1 showing periodic changes in transmittance and reflectance of etalon according to an embodiment of the present invention
  • FIG. 6 is a second schematic diagram of the periodic variation of transmittance and reflectance of etalon according to an embodiment of the present invention.
  • Figure 7 is a first schematic diagram of a wavelength locking device according to a first embodiment of the present invention.
  • Figure 10 is a diagram 3 showing the correspondence between transmission wavelength and transmittance according to Embodiment 1 of the present invention.
  • Figure 11 is a second schematic diagram of a wavelength locking device according to a first embodiment of the present invention.
  • Figure 12 is a third schematic diagram of a wavelength locking device according to a first embodiment of the present invention.
  • Figure 13 is a first schematic diagram of a spectrum according to a first embodiment of the present invention.
  • Figure 14 is a second schematic diagram of a second embodiment of the present invention.
  • Figure 15 is a block diagram showing the structure of an optical transceiver assembly according to a second embodiment of the present invention.
  • Figure 16 is a first schematic diagram of a wavelength locking device according to a second embodiment of the present invention.
  • 17 is a second schematic diagram of a wavelength locking device according to a second embodiment of the present invention.
  • Figure 18 is a third schematic diagram of a wavelength locking device according to a second embodiment of the present invention.
  • FIG. 19 is a flowchart of a first method for adjusting a wavelength of light according to an embodiment of the present invention.
  • 21 is a block diagram showing the structure of a first light wavelength adjusting device according to an embodiment of the present invention.
  • 22 is a block diagram showing the structure of a second light wavelength adjusting device according to an embodiment of the present invention.
  • FIG. 23 is a schematic diagram of an optical module according to an embodiment of the present invention.
  • FIG. 24 is a schematic diagram of a WDM PON system according to an embodiment of the present invention.
  • FIG. 25 is a schematic diagram of a wavelength range occupied by an uplink and a downlink wavelength and a window corresponding to an AWG according to an embodiment of the present invention.
  • an optical etalon (etalon) is used to separate the uplink and downlink wavelengths, reduce the WDM PON operating wavelength range, and realize wavelength-locked light.
  • an optical transceiver assembly is provided, as shown in FIG. 3 (FIG. 3 is only an example), including: a transmitter (corresponding to Tx in FIG. 3) configured to emit light; a receiver (corresponding to Rx in FIG. 3) configured to receive light; a light etalon (corresponding to etalon in FIG. 3) located between the transmitter and the receiver, configured to be separated from the transmitter Light and light received by the receiver.
  • the optical transceiver component may be a BOSA.
  • the BOSA has a transmitting device Tx, receiving devices Rx and etalon. The etalon is placed at a certain position between Tx and Rx.
  • the transmitter, the receiver and the optical etalon are located at three vertices of a right triangle, wherein the light emitted by the transmitter to the optical etalon is the first straight edge of the right triangle.
  • the light received by the receiver through the optical etalon is the second straight side of the right triangle, and the center line of the optical etalon is the oblique side of the right triangle, and the center line is the center line of the optical etalon along the oblique direction.
  • the inclination angle of the optical etalon is 45°.
  • the inclination of the optical etalon by 45° is only an optional implementation.
  • the inclination angle of the optical etalon may be any angle from 0° to 90°, and the parameters of the corresponding optical etalon need to be adjusted at different inclination angles.
  • the position where the transmitter, the receiver and the optical etalon are located constitutes a right-angled triangle is only an optional form, and the positional relationship of the three can also be other forms (for example, the three constitute a congruent triangle, three The person forms an obtuse triangle, as long as it can separate the emitted light from the received light (ie, the up and down light).
  • the light emitted by the emitter may utilize the transmission window of the optical etalon or the reflection window of the light standard
  • the light received by the receiver may utilize the reflection window of the optical etalon or utilize the light.
  • the transmission window of the etalon By adjusting the parameters of the optical etalon, it is possible to realize the window of the optical etalon used for the emitted light and the received light.
  • the optical transceiver component further includes a first photodetector, a photodetector and a first controller, wherein the first photodetector is located on a transmission path of the first reflected light, and is configured to detect a power of the first reflected light, wherein the first reflected light is emitted by the emitter And the light reflected by the first transflective device; the second photodetector is located on the transmission path of the second reflected light, and is configured to detect the power of the second emitted light, wherein the second reflected light is emitted by the emitter and Light reflected by the optical etalon, or light emitted by the transmitter and reflected by the second transflective device; the first controller is coupled to the first photodetector and the second photodetector, the first controller is configured to The wavelength of the
  • the first controller is configured to adjust the wavelength of the light emitted by the emitter by adjusting the temperature of the emitter.
  • increasing the temperature of the emitter may increase the wavelength of the light emitted by the emitter, and decreasing the temperature of the emitter may correspondingly reduce the wavelength of the light emitted by the emitter.
  • the controller can adjust the temperature of the transmitter in various manners.
  • a semiconductor refrigerator Thermo Electric Cooler, TEC for short
  • the transceiver assembly also includes a first semiconductor cooler TEC, wherein the first TEC is configured to adjust the temperature of the transmitter under control of the first controller.
  • the TEC can be attached to a transmitter (e.g., laser) chip.
  • the positional relationship between the emitter, the optical etalon, the first transflective device, and the second transflective device is various, and the first reflected light may be different under different positional relationships.
  • the second reflected light may also be different. The following describes the different positional relationships and the corresponding first reflected light and second reflected light:
  • Case 1 When the optical etalon is located between the emitter and the first transflective device, the first reflected light is the light emitted by the emitter and refracted by the optical etalon and then reflected by the first transflective device The second reflected light is light emitted by the emitter and reflected by the light etalon; and/or,
  • Case 2 When the first transflective device is located between the emitter and the optical etalon, the first reflected light is the light emitted by the emitter and reflected by the first transflective device, and the second reflected light is emitted by the emitter and Light that is transmitted through the first transflective device and then reflected by the optical etalon; and/or,
  • Case 3 When the first transflective device is located between the emitter and the optical etalon, and the optical etalon is located between the first transflective device and the second transflective device, the first reflected light is emitted by the emitter and passes through The light reflected by the first transflective device, the second reflected light is the light emitted by the emitter and transmitted through the first transflective device, and then refracted by the optical etalon, and then reflected by the second transflective device.
  • the optical transceiver component is a BOSA as an example, and the wavelength locking processing in the above different positional relationships is described:
  • the BOSA internally uses a tilted etalon to separate the emitted and received light, and the emitted light utilizes the transmission window of etalon, which receives the light using the etalon's reflection window.
  • Wavelength lock and ⁇ management is achieved by adding modules and designs.
  • the etalon is a flat plate with excellent parallelism on both sides.
  • Fabry-Perot interference principle the incident light is reflected multiple times inside the etalon, and finally divided into two parts: transmitted light and reflected light.
  • the transmission and reflection wavelength distribution of etalon can be adjusted by appropriately selecting the thickness and refractive index as well as the angle of incidence.
  • the working principle of etalon is shown in Fig. 4. Let the thickness of etalon be l, the refractive index is n, the reflectivity of two parallel planes is R, and the angle of incidence of light is ⁇ . It can be deduced that the transmittance function T is:
  • is the incident wavelength. It can be seen that the transmittance of etalon varies periodically with the wavelength. Therefore, etalon can be regarded as a periodic filter.
  • the schematic diagram is shown in Fig. 5.
  • the horizontal axis is wavelength, vertical.
  • the axis is the transmittance or the reflectance
  • the solid line is the transmittance T
  • the broken line is the reflectance R
  • the transmittance and the reflectance both change periodically with the wavelength, and when T reaches the maximum value, R reaches the minimum value, and R reaches At the maximum value, T reaches the minimum value, and when R reaches the maximum value, the corresponding wavelength is in the middle of the wavelength corresponding to the two T maximum values, and the sum of T and R is always 1.
  • the T and R spacing can be achieved, such as T-peak-to-peak spacing of 100 GHz, R-peak-to-peak spacing of 100 GHz, and peak-to-peak spacing of 50 GHz for T and R. It is good to separate the emitted light and the received light with a frequency interval of 50 GHz.
  • Tx is the transmitting device
  • Rx is the receiving device
  • etalon is placed at a position between Tx and Rx.
  • the tilt angle of etalon can be any one of 0° to 90°. Degrees, but too small a tilt angle will cause the distance between etalon and Tx or Rx to be too large, which is not conducive to miniaturization. Therefore, the tilt is generally 45°, and Tx and Rx are orthogonal to etalon. Other angles can also be selected.
  • the relative positions of Tx, Rx and etalon change, and the transmittance function changes relatively. If the transmittance function is required to be constant, the parameters of etalon need to be changed.
  • the effect of FIG. 6 can be attained by appropriately selecting the parameters of etalon and the position relative to Tx, Rx, wherein, in FIG. 6, the solid line is the transmittance, the broken line is the reflectance, and the emitted light wavelength ⁇ T is at the transmittance.
  • the receiving light wavelength ⁇ R is located at the position with the highest reflectivity, and the transmittance is the smallest at this time. Therefore, most of the received light in Fig. 3 can be reflected into the Rx by etalon, and the light passing through the etalon is rare, and the Tx is not affected. .
  • the wavelength corresponding to each maximum value of the transmittance in FIG. 6 may be the emission wavelength, and the corresponding maximum position of each of the reflectances may be the reception wavelength, and the frequency interval between the emission wavelength and the reception wavelength is ⁇ f/2, two The transmission wavelength or two reception wavelengths, that is, the frequency interval between the two channels is ⁇ f, which is the frequency interval of each port of the AWG.
  • the etalon having the nature of Fig. 6 can be applied to the optical transceiver module corresponding to each channel of the AWG, and the emitted light and the received light can be well separated.
  • WDM PON adopts dense wavelength division multiplexing.
  • the wavelength of each channel needs to be stable within a certain range, and no large drift can occur, otherwise it will interfere with other channels. Therefore, it is necessary to add a wavelength locking function on the transmitting device, so that the laser (corresponding to the above-mentioned transmitter) can be corrected in time when the wavelength drift occurs.
  • the wavelength locking of the BOSA emitted light can be achieved.
  • Figure 7 is a wavelength locking device implemented using the structure of Figure 3, using two photodetectors PD1 (in Embodiment 1, PD1 corresponds to the second photodetector described above) and PD2 (in Embodiment 1, PD2 corresponds to the first photodetector described above), the ratio of the optical power detected by the two photodetectors is used to determine the wavelength drift and adjust the emission wavelength to achieve wavelength locking.
  • the purpose of using two photodetectors is to eliminate the effects of power fluctuations in the laser itself.
  • Three wavelength locking modes, positive slope locking, negative slope locking and extreme value locking (zero slope locking) can be implemented. The following describes various locking methods:
  • the standard transmission wavelength ⁇ T is aligned with the position where the etalon transmittance curve rises, at which time the slope of the transmittance curve is positive.
  • the emitted light is transmitted through the etalon, part of the light is transmitted, and another part of the light is reflected.
  • the reflected light is received by the PD1, and the optical power P1 is measured, and the electrical signal enters the calculation and control module (corresponding to the controller described above).
  • the transmitted light passes through a 95/5 transflective device (other ratios of transflective devices, such as 99/1, 90/10, etc.) can be used to reflect 5% of the transmitted light into the PD2 receiver, 95% of the light. Enter the AWG.
  • the PD2 measures the optical power P2, which enters the calculation and control module.
  • control and calculation module controls the TEC (for example, the first TEC described above) to adjust the laser temperature so that the power ratio returns to Ratio_Ref, and the emitted light wavelength returns to ⁇ T , wherein increasing the temperature of the laser can make the wavelength of the emitted light lengthen.
  • TEC for example, the first TEC described above
  • the control and calculation module controls the TEC to adjust the temperature of the laser so that the ratio returns to Ratio_Ref, and the wavelength of the emitted light returns to ⁇ T , wherein lowering the temperature of the laser can shorten the wavelength of the emitted light.
  • the standard transmission wavelength ⁇ T is aligned with the position where the etalon transmittance curve is lowered, at which time the slope of the transmittance curve is negative.
  • the emitted light transmits etalon, part of the light is transmitted, and another part of the light is reflected.
  • the reflected light is received by PD1, and the optical power P1 is measured, and the electrical signal enters the calculation and control module.
  • the transmitted light passes through a 95/5 transflective device that reflects 5% of the transmitted light into the PD2 for reception and 95% of the light enters the AWG.
  • the PD2 measures the optical power P2, which enters the calculation and control module.
  • the control and calculation module controls the TEC to adjust the laser temperature so that the ratio returns to Ratio_Ref and the wavelength of the emitted light returns to ⁇ T .
  • the standard transmission wavelength ⁇ T is aligned with the position of the apex of the etalon transmittance curve, at which time the slope of the transmittance curve is zero.
  • the transmitted light passes through a 95/5 transflective device that reflects 5% of the transmitted light into the PD2 for reception and 95% of the light enters the AWG.
  • the PD2 measures the optical power P2, which enters the calculation and control module.
  • the control and calculation module needs to control the TEC, adjust the laser temperature, try different temperature adjustment directions, measure the power ratio in real time, and find the minimum value of the power ratio, which is the standard emission wavelength.
  • the following wavelength locking scheme can be changed.
  • the principle is the same as above, and the wavelength is locked by measuring the ratio of two optical powers, but the structure is different. .
  • Figure 11 differs from Figure 7 in that PD2 measures 5% of the light split between the etalon and the laser. If the laser power is constant, the power P2 measured by PD2 does not change. There are still three ways to lock this solution:
  • the standard transmission wavelength ⁇ T is aligned with the position where the etalon transmittance curve rises, at which time the slope of the transmittance curve is positive.
  • the transmitted light passes through a 95/5 transflective device, and 5% of the transmitted light is reflected into the PD2 for reception.
  • the measured optical power is P2, and 95% of the light enters the etalon.
  • the emitted light When the emitted light is transmitted through the etalon, part of the light is transmitted, and another part of the light is reflected, and the reflected light is received through the PD 1, and the optical power P1 is measured.
  • the P1 and P2 electrical signals enter the calculation and control module.
  • the time control and calculation module controls the TEC to adjust the laser temperature such that the power ratio returns to Ratio_Ref and the wavelength of the emitted light returns to ⁇ T .
  • the control and calculation module controls the TEC to adjust the laser temperature so that the ratio returns to Ratio_Ref and the wavelength of the emitted light returns to ⁇ T .
  • the standard transmission wavelength ⁇ T is aligned with the position where the etalon transmittance curve is lowered, at which time the slope of the transmittance curve is negative.
  • the transmitted light passes through a 95/5 transflective device, and 5% of the transmitted light is reflected into the PD2 for reception.
  • the measured optical power is P2, and 95% of the light enters the etalon.
  • the P1 and P2 electrical signals enter the calculation and control module.
  • the control and calculation module controls the TEC to adjust the laser temperature so that the power ratio returns to Ratio_Ref and the wavelength of the emitted light returns to ⁇ T .
  • the wavelength of the emitted light drifts to a long wavelength, such as a drift of ⁇ " T . If the wavelength of the emitted light drifts to a long wavelength, such as a drift of ⁇ " T , then etalon reduces the transmission of the transmitted light, the reflection increases, the corresponding P1 increases, the ratio of the power calculated by the control and calculation module increases, and the control and calculation module controls the TEC adjustment.
  • the laser temperature is such that the ratio returns to Ratio_Ref and the wavelength of the emitted light returns to ⁇ T .
  • the standard transmission wavelength ⁇ T is aligned with the position of the apex of the etalon transmittance curve, at which time the slope of the transmittance curve is zero.
  • the transmitted light passes through a 95/5 transflective device, and 5% of the transmitted light is reflected into the PD2 for reception.
  • the measured optical power is P2, and 95% of the light enters the etalon.
  • the wavelength of the emitted light drifts to a short wavelength, such as a drift of ⁇ ' T , etalon reduces the transmitted light transmission, the reflection increases, and the corresponding P1 increases, so the ratio of the power calculated by the control and calculation module increases; if the emitted light wavelength is long-wavelength Long-distance drift, such as drift ⁇ " T , then etalon transmits or decreases the transmitted light, the reflection still increases, corresponding to the increase of P1, the ratio of the power calculated by the control and calculation module increases. Both wavelength shifts correspond to the increase of the power ratio, so The control and calculation module needs to control the TEC, adjust the laser temperature, try different temperature adjustment directions, measure the power ratio in real time, and find the minimum value of the power ratio, which is the standard emission wavelength.
  • a short wavelength such as a drift of ⁇ ' T
  • Figure 12 differs from Figure 7 in that PD2 measures 5% of the light split between the etalon and the laser. If the laser power is constant, the power measured by PD2 is unchanged, and PD1 measures the emission. 5% of the light split by the beam splitter after light transmission etalon. There are still three ways to lock this solution:
  • the standard transmission wavelength ⁇ T is aligned with the position where the etalon transmittance curve rises, at which time the slope of the transmittance curve is positive.
  • the transmitted light passes through a 95/5 transflective device, and 5% of the transmitted light is reflected into the PD2 for reception.
  • the measured optical power is P2, and 95% of the light enters the etalon.
  • the P1 and P2 electrical signals enter the calculation and control module.
  • the control and calculation module control The TEC adjusts the temperature of the laser so that the power ratio returns to Ratio_Ref and the wavelength of the emitted light returns to ⁇ T .
  • the wavelength of the emitted light drifts to a long wavelength, such as a drift of ⁇ " T , then etalon increases the transmission of the transmitted light, the reflection decreases, corresponding to the increase of P1, the ratio of the power calculated by the control and calculation module increases, and the control and calculation module controls the TEC to adjust the laser.
  • the temperature is such that the ratio returns to Ratio_Ref and the wavelength of the emitted light returns to ⁇ T .
  • the transmittance corresponding to the wavelength ⁇ R of the received light is increased, and the received light has more optical power transmitted through the etalon into the Tx, so it is necessary to add an isolator to the front end of the laser.
  • the standard transmission wavelength ⁇ T is aligned with the position where the etalon transmittance curve is lowered, at which time the slope of the transmittance curve is negative.
  • the transmitted light passes through a 95/5 transflective device, and 5% of the transmitted light is reflected into the PD2 for reception.
  • the measured optical power is P2, and 95% of the light enters the etalon.
  • the P1 and P2 electrical signals enter the calculation and control module.
  • the wavelength of the emitted light drifts to a short wavelength, such as a drift of ⁇ ' T , etalon increases the transmission of the transmitted light, and the reflection decreases, corresponding to an increase in P1. Therefore, the ratio of the power calculated by the control and calculation module increases, and the control and calculation module control The TEC adjusts the temperature of the laser so that the power ratio returns to Ratio_Ref and the wavelength of the emitted light returns to ⁇ T .
  • the wavelength of the emitted light drifts to a long wavelength, such as a drift of ⁇ " T . If the wavelength of the emitted light drifts to a long wavelength, such as a drift of ⁇ " T , then etalon reduces the transmission of the transmitted light, the reflection increases, and the corresponding P1 decreases.
  • the ratio of the power calculated by the control and calculation module decreases, and the control and calculation module control
  • the TEC adjusts the laser temperature so that the ratio returns to Ratio_Ref and the wavelength of the emitted light returns to ⁇ T .
  • the transmittance corresponding to the wavelength ⁇ R of the received light is increased, and the received light has more optical power transmitted through the etalon into the Tx, so it is necessary to add an isolator to the front end of the laser.
  • the standard transmission wavelength ⁇ T is aligned with the position of the apex of the etalon transmittance curve, at which time the slope of the transmittance curve is zero.
  • the transmitted light passes through a 95/5 transflective device, and 5% of the transmitted light is reflected into the PD2 for reception.
  • the measured optical power is P2, and 95% of the light enters the etalon.
  • the wavelength of the emitted light drifts to a short wavelength, such as a drift of ⁇ ' T , etalon reduces the transmitted light transmission, the reflection increases, and the corresponding P1 decreases, so the ratio of the power calculated by the control and calculation module decreases; if the emitted light wavelength reaches a long wavelength Drift, if the drift is ⁇ " T , then etalon makes the transmitted light transmit or decrease, the reflection increases, the corresponding P1 decreases, the ratio of the power calculated by the control and calculation module decreases, and the two wavelength drifts correspond to the power ratio decreases, so the control and calculation The module needs to control the TEC, adjust the laser temperature, try different temperature adjustment directions, measure the power ratio in real time, and find the maximum value of the power ratio, which is the standard emission wavelength.
  • the continuous laser generates a frequency ⁇ after adding the signal modulation.
  • the effect of ⁇ is that the wavelength is blue-shifted when the signal “1” is modulated, and the wavelength is red-shifted when the signal “0” is modulated. Therefore, the periodic optical filter using etalon is used.
  • the function can be used to shape the spectrum and manage the signal light. By using etalon to filter out the long-wavelength component of the signal, the extinction ratio of the signal can be increased, the frequency distribution of the front and back edges of the pulse can be changed, and the anti-dispersion capability of the signal can be enhanced.
  • the spectrum before the modulation of the optical signal is a narrow single peak.
  • two peaks appear, where “1” corresponds to the blue-shifted peak, and “0” corresponds to the red shift. Peak, as can be seen from the spectrum, the power corresponding to "1" is larger than "0", and the ratio of the two is the extinction ratio.
  • the peak corresponding to "0" is suppressed, the whole spectrum is narrowed, which is favorable for long-distance transmission, and the signal "0" power is reduced, so that the extinction ratio of the signal is increased, which is favorable for signal reception.
  • the effect as shown in Fig. 14 can be achieved.
  • the wavelength energy corresponding to the signal "1" is within the transmission window of the etalon, and the wavelength energy corresponding to the "0" is within the reflection window of the etalon.
  • the wavelength energy transmission corresponding to “0” is suppressed, the spectrum of the transmitted light signal is narrowed, the dispersion of long-distance transmission is reduced, and the extinction ratio is increased, which is favorable for reception.
  • the foregoing embodiment is directed to the case where the light emitted by the transmitter is transmitted by using the transmission window of the optical etalon, and the light received by the receiver is transmitted by using the reflection window of the optical etalon, the following The light received by the receiver is transmitted using the transmission window of the optical etalon, and the light emitted by the transmitter is transmitted by using the reflection window of the optical etalon:
  • the optical transceiver assembly when the light received by the receiver is transmitted using the transmission window of the optical etalon and the light emitted by the transmitter is transmitted using the reflective window of the optical etalon, the optical transceiver assembly further includes a third light. a detector, a fourth photodetector, and a second controller, wherein the third photodetector is located on a transmission path of the third reflected light, and is configured to detect a power of the third reflected light, wherein the third reflected light is a light emitted by the emitter and reflected by the third transflective device; the fourth photodetector is located on the transmission path of the transflective light, and is configured to detect the power of the reflected light, wherein the reflected light is emitted by the emitter Light transmitted through the optical etalon, or light emitted by the transmitter and reflected by the fourth transflective device; the second controller is connected to the third photodetector and the fourth photodetector, and the second controller is set
  • the second controller is configured to adjust the wavelength of the light emitted by the emitter by adjusting the temperature of the emitter.
  • the controller can adjust the temperature of the transmitter in various manners.
  • a semiconductor refrigerator Thermo Electric Cooler, TEC for short
  • TEC the temperature of the emitter.
  • the light is used.
  • the transceiver assembly also includes a semiconductor cooler TEC, wherein the TEC is configured to adjust the temperature of the transmitter under control of the second controller.
  • the positional relationship between the emitter, the optical etalon, the third transflector, and the fourth transflective device is various, and the third reflected light may be different under different positional relationships.
  • the transflective rays may also be different. The following describes different positional relationships and corresponding third reflected and transflected rays:
  • Case 4 When the optical etalon is located between the emitter and the third transflective device, the third reflected light is the light emitted by the emitter and reflected by the optical etalon and then reflected by the first transflective device The transflective light is light emitted by the emitter and transmitted through the optical etalon; and/or,
  • Case 5 When the third transflective device is located between the emitter and the optical etalon, the third reflected light is the light emitted by the emitter and reflected by the third transflective device, and the transflective light is emitted by the emitter And after being transmitted through the third transflective device, the light transmitted through the optical etalon; and/or,
  • Case 6 when the first transflective device is located between the emitter and the optical etalon, and the optical etalon is located between the third transflective device and the fourth transflective device, the third reflected light is emitted The light emitted by the device and reflected by the third transflective device is transmitted by the emitter and transmitted through the third transflective device, then reflected by the optical etalon, and then passed through the fourth transflective device. The reflected light.
  • the optical transceiver component is a BOSA as an example, and the wavelength locking processing in the above different positional relationships is described:
  • the BOSA internally uses a tilted etalon to separate the emitted and received light, and the emitted light utilizes the etalon's reflective window to receive light using the etalon's transmission window.
  • Wavelength lock and ⁇ management is achieved by adding modules and designs.
  • Tx is the transmitting device
  • Rx is the receiving device
  • etalon is placed at a position between Tx and Rx.
  • the tilt angle of etalon can be any one of 0° to 90°. Degrees, but too small a tilt angle will cause the distance between etalon and Tx or Rx to be too large, which is not conducive to miniaturization. Therefore, the tilt is generally 45°, and Tx and Rx are orthogonal to etalon. Other angles can also be selected.
  • the relative positions of Tx, Rx and etalon change, and the transmittance function changes relatively. If the transmittance function is required to be constant, the parameters of etalon need to be changed.
  • the effect of FIG. 6 can be achieved by appropriately selecting the parameters of etalon and the relative positions of Tx and Rx, except that at this time, the solid line in FIG. 6 is the reflectance, and the broken line is the transmittance.
  • the wavelength ⁇ T of the emitted light is at the position where the reflectance is maximum, and at this time the transmittance is the smallest, so that most of the emitted light in FIG. 15 can be reflected into the AWG by etalon.
  • the receiving light wavelength ⁇ R is located at the position where the transmittance is the largest, and the reflectance is the smallest at this time. Therefore, most of the received light in FIG. 15 can transmit etalon into Rx, and the light reflected by etalon is rare, and does not affect Tx.
  • the wavelength corresponding to each maximum value of the reflectance in FIG. 6 may be the emission wavelength, and the corresponding maximum position of each transmittance may be the reception wavelength, and the frequency interval between the emission wavelength and the reception wavelength is ⁇ f/2, two The transmission wavelength or two reception wavelengths, that is, the frequency interval between the two channels is ⁇ f, which is the frequency interval of each port of the AWG.
  • the etalon having the nature of Fig. 6 can be applied to the optical transceiver module corresponding to each channel of the AWG, and the emitted light and the received light can be well separated.
  • WDM PON adopts dense wavelength division multiplexing.
  • the wavelength of each channel needs to be stable within a certain range, and no large drift can occur, otherwise it will interfere with other channels. Therefore, it is necessary to add a wavelength locking function on the transmitting device, so that the laser can be corrected in time when the wavelength drifts.
  • the wavelength locking of the BOSA emitted light can be achieved.
  • Figure 16 is a wavelength locking device realized by the structure of Fig. 15, using two photodetectors PD1 (in the second embodiment, PD1 corresponds to the fourth transflective device described above) and PD2 (in Embodiment 2, PD2 corresponds to the above-described third transflective device), the ratio of the optical power detected by the two photodetectors is used to determine the wavelength drift and adjust the emission wavelength to achieve wavelength locking.
  • the purpose of using two photodetectors is to eliminate the effects of power fluctuations in the laser itself. Under this scheme, for the emitted light, the etalon transmittance curve and the reflectance curve in Fig. 8, Fig. 9 and Fig. 10 are interchanged, that is, the solid line is the reflectance curve, and the broken line is the transmittance curve.
  • Three wavelength lock modes are available, positive slope lock, negative slope lock, and extreme lock (zero slope lock).
  • the standard transmission wavelength ⁇ T is aligned with the position where the etalon reflectance curve rises, at which time the slope of the reflectance curve is positive.
  • the emitted light is incident on the etalon, part of the light is transmitted, and another part of the light is reflected.
  • the transmitted light is received by the PD1, and the optical power P1 is measured.
  • the reflected light passes through a 95/5 transflective device, and 5% of the reflected light is reflected into the PD2 for receiving.
  • the measured optical power is P2, and 95% of the light enters the AWG.
  • the P1 and P2 electrical signals enter the calculation and control module.
  • the ratio of the power calculated by the control and calculation module increases.
  • the calculation module controls the TEC to adjust the laser temperature such that the power ratio returns to Ratio_Ref and the wavelength of the emitted light returns to ⁇ T .
  • the control and calculation module control The TEC adjusts the laser temperature so that the ratio returns to Ratio_Ref and the wavelength of the emitted light returns to ⁇ T .
  • the standard transmission wavelength ⁇ T is aligned with the position where the etalon reflectance curve is lowered, at which time the slope of the reflectance curve is negative.
  • the emitted light is incident on the etalon, part of the light is transmitted, and another part of the light is reflected.
  • the transmitted light is received by the PD1, and the optical power P1 is measured.
  • the reflected light passes through a 95/5 transflective device, and 5% of the transmitted light is reflected into the PD2 for receiving.
  • the measured optical power is P2, and 95% of the light enters the AWG.
  • the P1 and P2 electrical signals enter the calculation and control module.
  • the control and calculation module controls the TEC to adjust the laser temperature such that the power ratio returns to Ratio_Ref and the emitted light wavelength returns to ⁇ T .
  • the wavelength of the emitted light drifts to a long wavelength, such as a drift of ⁇ " T . If the wavelength of the emitted light drifts to a long wavelength, such as a drift of ⁇ " T , then etalon reduces the reflection of the emitted light, increases the transmission, decreases P2 corresponding to P1, increases the ratio of the power calculated by the control and calculation module, and controls and calculates the module.
  • the TEC is controlled to adjust the temperature of the laser so that the ratio returns to Ratio_Ref and the wavelength of the emitted light returns to ⁇ T .
  • the standard transmission wavelength ⁇ T is aligned with the position of the apex of the etalon reflectance curve, at which time the slope of the reflectance curve is zero.
  • the emitted light is transmitted through etalon, most of the light is reflected, a very small part of the light is transmitted, and the transmitted light is received by PD1, and the optical power P1 is measured.
  • the reflected light passes through a 95/5 transflective device, and 5% of the transmitted light is transmitted.
  • the reflection enters the PD2 reception, the measured optical power is P2, and 95% of the light enters the AWG.
  • the P1 and P2 electrical signals enter the calculation and control module.
  • the wavelength of the emitted light drifts to a short wavelength, such as a drift of ⁇ ' T , etalon reduces the reflection of the emitted light, and the transmission increases, and P1 decreases corresponding to P1, so the ratio of the power calculated by the control and calculation module increases;
  • the wavelength drifts to a long wavelength. If the drift is ⁇ " T , then etalon makes the reflected light reflect or decrease, and the transmission increases.
  • P2 decreases, the ratio of power calculated by the control and calculation module increases, and both wavelength shifts correspond.
  • the power ratio increases, so the control and calculation module needs to control the TEC, adjust the laser temperature, try different temperature adjustment directions, measure the power ratio in real time, and find the minimum value of the power ratio, which is the standard emission wavelength.
  • Figure 17 differs from Figure 16 in that PD2 measures 5% of the light split between the etalon and the laser, and if the laser power is constant, the power measured by PD2 does not change.
  • the etalon transmittance curve and the reflectance curve in Fig. 8, Fig. 9 and Fig. 10 are interchanged, that is, the red solid line is the reflectance curve, and the blue dotted line is the transmittance curve.
  • the standard transmission wavelength ⁇ T is aligned with the position where the etalon reflectance curve rises, at which time the slope of the reflectance curve is positive.
  • the emitted light first passes 5% of the light through a 95/5 transflective device to receive the PD2, and the measured optical power is P2. If the transmitter power is constant, P2 does not change.
  • the emitted light is then transmitted to etalon, a portion of the light is transmitted, and another portion of the light is reflected.
  • the transmitted light is received through PD1, measuring the optical power P1, and the reflected light enters the AWG.
  • the P1 and P2 electrical signals enter the calculation and control module.
  • the wavelength of the emitted light drifts to a short wavelength, such as a drift of ⁇ ' T , etalon reduces the reflection of the emitted light, and the transmission increases, corresponding to an increase in P1. Therefore, the ratio of the power calculated by the control and calculation module increases, and the control and calculation module control The TEC adjusts the temperature of the laser so that the power ratio returns to Ratio_Ref and the wavelength of the emitted light returns to ⁇ T .
  • the wavelength of the emitted light drifts to a long wavelength, such as a drift of ⁇ " T . If the wavelength of the emitted light drifts to a long wavelength, such as a drift of ⁇ " T , then etalon increases the reflection of the emitted light, the transmission decreases, and the corresponding P1 decreases.
  • the ratio of the power calculated by the control and calculation module decreases, and the control and calculation module controls the TEC adjustment.
  • the laser temperature is such that the ratio returns to Ratio_Ref and the wavelength of the emitted light returns to ⁇ T .
  • the standard transmission wavelength ⁇ T is aligned with the position where the etalon reflectance curve is lowered, at which time the slope of the reflectance curve is negative.
  • the emitted light first passes 5% of the light through a 95/5 transflective device to receive the PD2, and the measured optical power is P2. If the transmitter power is constant, P2 does not change.
  • the emitted light is then transmitted to etalon, a portion of the light is transmitted, and another portion of the light is reflected.
  • the transmitted light is received through PD1, measuring the optical power P1, and the reflected light enters the AWG.
  • the P1 and P2 electrical signals enter the calculation and control module.
  • the ratio of the power calculated by the control and calculation module decreases, and the control and calculation are performed.
  • the module controls the TEC to adjust the laser temperature so that the power ratio returns to Ratio_Ref and the wavelength of the emitted light returns to ⁇ T .
  • the wavelength of the emitted light drifts to a long wavelength, such as a drift of ⁇ " T , then etalon reduces the reflection of the emitted light, increases the transmission, increases the corresponding P1, increases the ratio of the power calculated by the control and calculation module, and controls the TEC adjustment by the control and calculation module.
  • the laser temperature is such that the ratio returns to Ratio_Ref and the wavelength of the emitted light returns to ⁇ T .
  • the standard transmission wavelength ⁇ T is aligned with the position of the apex of the etalon reflectance curve, at which time the slope of the reflectance curve is zero.
  • the emitted light first passes 5% of the light through a 95/5 transflective device to receive the PD2, and the measured optical power is P2. If the transmitter power is constant, P2 does not change. Then, the emitted light is transmitted to etalon, and most of the light is reflected. A very small portion of the light is transmitted, and the transmitted light is received through PD1, and the optical power P1 is measured, and the reflected light enters the AWG.
  • the P1 and P2 electrical signals enter the calculation and control module.
  • the wavelength of the emitted light drifts to a short wavelength, such as a drift of ⁇ ' T , etalon reduces the reflection of the emitted light, increases the transmission, and increases the corresponding P1, so the ratio of the power calculated by the control and calculation module increases; if the wavelength of the emitted light is long-wavelength Long-distance drift, such as drift ⁇ " T , then etalon makes the reflected light reflect or decrease, the transmission increases, corresponding to P1 increases, the ratio of the power calculated by the control and calculation module increases, and the two wavelength shifts correspond to the increase of the power ratio, so the control and The calculation module needs to control the TEC, adjust the laser temperature, try different temperature adjustment directions, measure the power ratio in real time, and find the minimum value of the power ratio, which is the standard emission wavelength.
  • a short wavelength such as a drift of ⁇ ' T
  • Figure 18 differs from Figure 16 in that PD2 measures 5% of the light split between the etalon and the laser. If the laser power is constant, the power measured by PD2 is unchanged, and PD1 measures the emission. 5% of the light split by the spectroscope after the light is reflected by the etalon.
  • the etalon transmittance curve and the reflectance curve in Fig. 8, Fig. 9 and Fig. 10 are interchanged, that is, the solid line is the reflectance curve and the broken line is the transmittance curve.
  • the standard transmission wavelength ⁇ T is aligned with the position where the etalon reflectance curve rises, at which time the slope of the reflectance curve is positive.
  • the emitted light passes through a 95/5 transflective device, which reflects 5% of the incident light into the PD2 for reception.
  • the measured optical power is P2, and 95% of the light enters the etalon.
  • the P1 and P2 electrical signals enter the calculation and control module.
  • the control and calculation module control The TEC adjusts the temperature of the laser so that the power ratio returns to Ratio_Ref and the wavelength of the emitted light returns to ⁇ T .
  • the wavelength of the emitted light drifts to a long wavelength, such as a drift of ⁇ " T , then etalon increases the reflection of the emitted light, the transmission decreases, and the corresponding P1 increases, the ratio of the power calculated by the control and calculation module increases, and the control and calculation module controls the TEC to adjust the laser.
  • the temperature is such that the ratio returns to Ratio_Ref and the wavelength of the emitted light returns to ⁇ T .
  • the standard transmission wavelength ⁇ T is aligned with the position where the etalon reflectance curve is lowered, at which time the slope of the reflectance curve is negative.
  • the emitted light passes through a 95/5 transflective device, which reflects 5% of the incident light into the PD2 for reception.
  • the measured optical power is P2, and 95% of the light enters the etalon.
  • the P1 and P2 electrical signals enter the calculation and control module.
  • the wavelength of the emitted light drifts to a short wavelength, such as a drift of ⁇ ' T , etalon increases the reflection of the emitted light, and the transmission decreases, corresponding to an increase in P1. Therefore, the ratio of the power calculated by the control and calculation module increases, and the control and calculation module control The TEC adjusts the temperature of the laser so that the power ratio returns to Ratio_Ref and the wavelength of the emitted light returns to ⁇ T .
  • the control and calculation module control The TEC adjusts the laser temperature so that the ratio returns to Ratio_Ref and the wavelength of the emitted light returns to ⁇ T .
  • the standard transmission wavelength ⁇ T is aligned with the position of the apex of the etalon reflectance curve, at which time the slope of the reflectance curve is zero.
  • the emitted light passes through a 95/5 transflective device, which reflects 5% of the incident light into the PD2 for reception.
  • the measured optical power is P2, and 95% of the light enters the etalon.
  • P1, P1 and P2 are measured to enter the calculation and control module.
  • the wavelength of the emitted light drifts to a short wavelength, such as a drift of ⁇ ' T , etalon reduces the reflection of the emitted light, increases the transmission, and decreases the corresponding P1, so the ratio of the power calculated by the control and calculation module decreases; if the wavelength of the emitted light is long wavelength Drift, if the drift is ⁇ " T , then etalon makes the reflected light reflect or decrease, the transmission increases, the corresponding P1 decreases, the ratio of the power calculated by the control and calculation module decreases, and the two wavelength drifts correspond to the power ratio decreases, so the control The calculation module needs to control the TEC, adjust the laser temperature, try different temperature adjustment directions, measure the power ratio in real time, and find the maximum value of the power ratio, which is the standard emission wavelength.
  • the structure shown in FIG. 15 can also be managed, but at this time, for FIG. 14, the dense dotted curve corresponds to the transmittance, but the reflectance.
  • the wavelength energy corresponding to the signal "1" is within the reflection window of the etalon
  • the wavelength energy corresponding to "0” is within the transmission window of the etalon.
  • the wavelength energy reflection corresponding to “0” is suppressed, the spectrum of the reflected light signal is narrowed, the dispersion of long-distance transmission is reduced, and the extinction ratio is increased, which is favorable for reception.
  • the optical transceiver assembly further includes an isolator, wherein when there is no transflective device between the transmitter and the optical etalon, the isolator is located between the transmitter and the optical etalon, and is configured to be isolated. The light etalon reaches the light on the emitter; or, when a transflective device is disposed between the emitter and the optical etalon, the isolator is positioned between the emitter and the transflective device and is configured to be isolated from the transflective device to the emitter The light.
  • the parameters of the optical etalon are preset according to at least one of the following information: the type of the window of the optical etalon required for the light transmitted by the transmitter and the light required by the optical receiver The type of window of the optical etalon utilized; the relative positional relationship of the transmitter, the receiver and the optical etalon; the frequency ⁇ produced by the transmitter after signal modulation.
  • the parameters of the optical etalon can be manually adjusted by the user.
  • FIG. 19 is a flowchart of the first method for adjusting the wavelength of the light according to the embodiment of the present invention. As shown in FIG. 19, when the light emitted by the transmitter is transmitted using the transmission window of the optical etalon, and the light received by the receiver is transmitted by using the reflection window of the optical etalon, the flow includes the following steps:
  • Step S1902 Acquire the power of the detected first reflected light, wherein the first reflected light is light emitted by the emitter and reflected by the first transflective device;
  • Step S1904 acquiring the power of the detected second emitted light, wherein the second reflected light is light emitted by the emitter and reflected by the optical etalon, or is emitted by the transmitter and reflected by the second transflective device.
  • Step S1906 adjusting the wavelength of the light emitted by the emitter according to the power of the first reflected light and the power of the second reflected light.
  • the above operation may be performed by the above controller, such as the calculation and control module shown in FIG.
  • the separation of the light emitted by the optical etalon and the received light is utilized in the optical transceiver assembly, thereby realizing the purpose of separating the uplink and the downlink of the wavelength interval, and
  • the optical etalon can reduce the wavelength resources occupied by the uplink and downlink lights by at least half. Therefore, the problem of excessive wavelength resources occupied by the uplink and downlink lights existing in the related art can be solved, and the wavelength resource occupation can be reduced. Effect.
  • the above step S1906 can adjust the wavelength of the light emitted by the transmitter by adjusting the temperature of the transmitter according to the power of the first reflected light and the power of the second reflected light to adjust the transmitter emission.
  • the wavelength of the light can be utilized to adjust the temperature of the emitter.
  • FIG. 20 is a flowchart of a method for adjusting a second wavelength of light according to an embodiment of the present invention. As shown in FIG. 20, when the light received by the receiver is transmitted by using the transmission window of the optical etalon, and the light emitted by the transmitter is transmitted by using the reflection window of the optical etalon, the flow includes the following steps:
  • Step S2002 acquiring the power of the detected third reflected light, wherein the third reflected light is light emitted by the emitter and reflected by the third transflective device;
  • Step S2004 acquiring the power of the detected ray-returning ray, wherein the ray-returning ray is light emitted by the transmitter and transmitted through the optical etalon, or is emitted by the transmitter and reflected by the fourth transflective device.
  • Step S2006 adjusting the wavelength of the light emitted by the emitter according to the power of the third reflected light and the power of the transflective light.
  • the above operation may be performed by the above controller, such as the calculation and control module shown in FIG.
  • the separation of the light emitted by the optical etalon and the received light is utilized in the optical transceiver assembly, thereby realizing the purpose of separating the uplink and the downlink of the wavelength interval, and
  • the optical etalon can reduce the wavelength resources occupied by the uplink and downlink lights by at least half. Therefore, the problem of excessive wavelength resources occupied by the uplink and downlink lights existing in the related art can be solved, and the wavelength resource occupation can be reduced. Effect.
  • the above step S2006 can adjust the wavelength of the light emitted by the transmitter by adjusting the temperature of the transmitter according to the power of the third reflected light and the power of the transflected light to adjust the emission of the transmitter.
  • the wavelength of the light can be utilized to adjust the temperature of the emitter.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • a light ray wavelength adjusting device is further provided, which is used to implement the above-mentioned embodiments and preferred embodiments, and has not been described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 21 is a block diagram showing the structure of a first light wavelength adjusting device according to an embodiment of the present invention.
  • the device can be applied to the optical transceiver assembly shown in Embodiment 1, as shown in FIG. 21, when the light emitted by the transmitter is utilized.
  • the device includes:
  • the first obtaining module 212 is configured to acquire the power of the detected first reflected light, wherein the first reflected light is light emitted by the transmitter and reflected by the first transflective device; and the second obtaining module 214 is configured to Obtaining the power of the detected second emitted light, wherein the second reflected light is light emitted by the emitter and reflected by the light etalon, or light emitted by the emitter and reflected by the second transflective device;
  • An adjustment module 216 is coupled to the first acquisition module 212 and the second acquisition module 214 described above, and is configured to adjust the wavelength of the light emitted by the transmitter according to the power of the first reflected light and the power of the second reflected light.
  • the first adjustment module 216 includes: a first adjustment unit configured to adjust a temperature of the transmitter according to a power of the first reflected light and a power of the second reflected light to adjust the emission of the transmitter. The wavelength of the light.
  • FIG. 22 is a block diagram showing the structure of a second light wavelength adjusting device according to an embodiment of the present invention.
  • the device can be applied to the optical transceiver assembly shown in Embodiment 1, as shown in FIG. 22, when the light received by the receiver is utilized.
  • the device includes:
  • the third obtaining module 222 is configured to acquire the power of the detected third reflected light, wherein the third reflected light is light emitted by the transmitter and reflected by the third transflective device; and the fourth obtaining module 224 is configured to Obtaining the power of the detected ray-returning light, wherein the ray-returning light is light emitted by the emitter and transmitted through the optical etalon, or light emitted by the emitter and reflected by the fourth transflective device;
  • the second adjustment module 226 is connected to the third acquisition module 222 and the fourth acquisition module 224 described above, and is configured to adjust the wavelength of the light emitted by the transmitter according to the power of the third reflected light and the power of the transflective light.
  • the second adjustment module 226 includes: a second adjustment unit configured to adjust the temperature of the transmitter according to the power of the third reflected light and the power of the transflective light to adjust the light emitted by the emitter The wavelength.
  • a wavelength division multiplexing passive optical network including an optical fiber line terminal OLT, a wavelength division multiplexer WDM, and a fiber network unit ONU, where the OLT includes one or more first lights.
  • the first optical module includes the optical transceiver component described in Embodiment 1; the WDM is connected to the OLT; the ONU is connected to the WDM, the number of the ONUs is one or more, and each ONU includes one or more
  • the second optical module includes the optical transceiver component described in Embodiment 1.
  • FIG. 23 it is an optical module that integrates etalon with uplink and downlink light with closely spaced wavelengths and has wavelength locking and ⁇ management functions.
  • the optical module includes the BOSA described in Embodiment 1, and FIG. 23 only shows One of the situations.
  • the calculation and control module can be placed inside the BOSA or outside the BOSA, inside the optical module. The advantage of this optical module is that it can separate up-and-down light with very close wavelengths, and at the same time realize wavelength locking and chirp management without additional filters.
  • FIG. 24 shows a WDM PON system in which the operating wavelength range is reduced by using etalon.
  • the optical modules used by the OLT and the ONU have the structure shown in FIG.
  • the wavelength range occupied by the upstream and downstream wavelengths and the window corresponding to the AWG are as shown in FIG. 25.
  • the upstream and downstream wavelengths of each port of the AWG are within the same transmission window of the same FSR period of the AWG. It is assumed that the uplink and downlink wavelength intervals are ⁇ f/2, which is very close, and it is difficult for the general multiplexer and the splitter to separate them.
  • the optical module of the third embodiment can be well separated.
  • the interval between the upstream channel and the downstream channel corresponding to each port of the AWG is ⁇ f, that is, the channel spacing is ⁇ f.
  • the total occupied band resource is n ⁇ f, which is reduced by half compared to that shown in FIG. 2.
  • the WDM PON system shown in Figure 24 can achieve the function of reducing the operating wavelength range, but this is only an example.
  • Other forms of WDM PON systems can also use the optical module or BOSA shown in Figure 23 to reduce the operating wavelength range. .
  • module shown in Embodiment 3 may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, each of the foregoing Modules are located in different processors in any combination.
  • a storage medium having stored therein a computer program, wherein the computer program is configured to execute the steps in Embodiment 2 above when executed.
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), and a Random Access Memory (RAM).
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • an electronic device comprising a memory and a processor, wherein the memory stores a computer program, the processor being configured to execute the computer program to perform the above-described Embodiment 3 The steps in .
  • the electronic device may further include a transmission device and an input and output device, wherein the transmission device is connected to the processor, and the input and output device is connected to the processor.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the optical transceiver component, the ray wavelength adjustment method, the device, the wavelength division multiplexed passive optical network, the storage medium, and the electronic device provided by the embodiments of the present invention have the following beneficial effects: solving the uplink and downlink existing in the related art
  • the problem that the wavelength needs to occupy too much wavelength resources can achieve the effect of reducing the occupation of wavelength resources.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

本发明实施例中提供了一种光收发组件、光线波长调整方法、装置、波分复用无源光网络、存储介质及电子装置,其中,该光收发组件包括:发射器,设置为发射光线;接收器,设置为接收光线;光标准具,位于所述发射器和所述接收器之间,设置为分离发射器发射的光线和接收器接收的光线。通过本发明,可以解决相关技术中存在的上下行光需要占用的波长资源过多的问题,达到降低波长资源占用的效果。

Description

光收发组件、光线波长调整方法及装置 技术领域
本发明涉及通信领域,具体而言,涉及一种光收发组件、光线波长调整方法、装置、波分复用无源光网络、存储介质及电子装置。
背景技术
随着用户对带宽需求及时延要求的不断提升,以及第五代移动通信技术(the 5th Generation mobile communication technology,简称为5G)承载所带来的对低时延的要求,接入领域需要提升容量和降低时延。波分复用无源光网络(Wavelength Division Multiplexing Passive Optical Network,简称为WDM PON)是大容量低时延的一个好的选择。在WDM PON中,每个用户可以独享一个波长信道,因此避免了时分复用带来的延时。并且随着单个波长调制速率的不断提升,每个用户带宽也可以不断增大。图1是相关技术中的WDM PON的一种系统框图,每个ONU与OLT上下行使用一对波长(λd,λu),不同的上下行波长经过波分复用器(WDM)合波,进入一根主干光纤内。
WDM可以使用阵列波导光栅(Arrayed Waveguide Grating,简称为AWG)实现。通常情况下,上下行波长都位于AWG各个端口透射窗口的中心位置,如图2所示。
假设上下行各有n个波长通道,每个波长通道间隔记为Δf。对于同一对上下行波长,它们通过同一个AWG端口,一个AWG端口能够通过的波长是周期性的,周期称为自由光谱范围(Free Spectral Range,简称为FSR),因此上下行波长间隔为FSR。采用这种方式,总共占用的频带资源为2nΔf。WDM PON的波长对数n一般为32或更高,在波长资源如此紧缺的光通信领域,会导致占用的波长资源过多的问题。
针对相关技术中存在的上述问题,目前尚未提出有效的解决方案。
发明内容
本发明实施例提供了一种光收发组件、光线波长调整方法、装置、波分复用无源光网络、存储介质及电子装置,以至少解决相关技术中存在的上下行光需要占用的波长资源过多的问题。
根据本发明的一个实施例,提供了一种光收发组件,包括:发射器,设置为发射光线;接收器,设置为接收光线;光标准具,位于所述发射器和所述接收器之间,设置为分离所述发射器发射的光线和所述接收器接收的光线。
根据本发明的另一个实施例,提供了一种光线波长调整方法,应用于上述任一项所述的光收发组件中,当所述发射器发射的光线利用所述光标准具的透射窗口进行传输,且所述接收器接收的光线利用所述光标准具的反射窗口进行传输时,所述方法包括:获取探测到的第一反射光线的功率,其中,所述第一反射光线为所述发射器发射的且经过第一透反射装置反射的光线;获取探测到的第二发射光线的功率,其中,所述第二反射光线为所述发射器发射的且经过所述光标准具反射的光线,或者为所述发射器发射的且经过第二透反射装置反射的光线;根据所述第一反射光线的功率和所述第二反射光线的功率调节所述发射器发射的光线的波长。
根据本发明的一个实施例,还提供了另一种光线波长调整方法,应用于上述任一项所述的光收发组件中,当所述接收器接收的光线利用所述光标准具的透射窗口进行传输,且所述发射器发射的光线利用所述光标准具的反射窗口进行传输时,所述方法包括:获取探测到的第三反射光线的功率,其中,所述第三反射光线为所述发射器发射的且经过第三透反射装置反射的光线;获取探测到的透返射光线的功率,其中,所述透返射光线为所述发射器发射的且经过所述光标准具透射的光线,或者为所述发射器发射的且经过第四透反射装置反射的光线;根据所述第三反射光线的功率和所述透反射光线的功率调节所述发射器发射的光线的波长。
根据本发明的一个实施例,还提供了一种光线波长调整装置,应用于 上述任一项所述的光收发组件中,当所述发射器发射的光线利用所述光标准具的透射窗口进行传输,且所述接收器接收的光线利用所述光标准具的反射窗口进行传输时,所述装置包括:第一获取模块,设置为获取探测到的第一反射光线的功率,其中,所述第一反射光线为所述发射器发射的且经过第一透反射装置反射的光线;第二获取模块,设置为获取探测到的第二发射光线的功率,其中,所述第二反射光线为所述发射器发射的且经过所述光标准具反射的光线,或者为所述发射器发射的且经过第二透反射装置反射的光线;第一调节模块,设置为根据所述第一反射光线的功率和所述第二反射光线的功率调节所述发射器发射的光线的波长。
根据本发明的一个实施例,还提供了另一种光线波长调整装置,应用于上述任一项所述的光收发组件中,当所述接收器接收的光线利用所述光标准具的透射窗口进行传输,且所述发射器发射的光线利用所述光标准具的反射窗口进行传输时,所述装置包括:第三获取模块,设置为获取探测到的第三反射光线的功率,其中,所述第三反射光线为所述发射器发射的且经过第三透反射装置反射的光线;第四获取模块,设置为获取探测到的透返射光线的功率,其中,所述透返射光线为所述发射器发射的且经过所述光标准具透射的光线,或者为所述发射器发射的且经过第四透反射装置反射的光线;第二调节模块,设置为根据所述第三反射光线的功率和所述透反射光线的功率调节所述发射器发射的光线的波长。
根据本发明的一个实施例,还提供了一种波分复用无源光网络,包括光纤线路终端OLT、波分复用器WDM、光纤网络单元ONU,其中,所述OLT中包括一个或多个第一光模块,所述第一光模块包括上述任一项所述的光收发组件;所述WDM与所述OLT连接;所述ONU与所述WDM连接,所述ONU的数量为一个或多个,且每个ONU中分别包括一个或多个第二光模块,所述第二光模块包括上述任一项所述的光收发组件。
根据本发明的又一个实施例,还提供了一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本发明的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项方法实施例中的步骤。
通过本发明中的实施例,在光收发组件中利用了光标准具进行发射的光线和接收的光线(即,上下行光)的分离,实现了可以将波长间隔很近的上下行关进行分离的目的,相对于相关技术而言,采用光标准具可以使得上下行光占用的波长资源至少降低一半,因此,可以解决相关技术中存在的上下行光需要占用的波长资源过多的问题,达到降低波长资源占用的效果。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是相关技术中的WDM PON的一种系统框图;
图2是相关技术中的上下行波长都位于AWG各个端口透射窗口的中心位置示意图;
图3是根据本发明实施例的光收发组件的结构框图;
图4是根据本发明实施例etalon工作原理示意图;
图5是根据本发明实施例的etalon的透射率和反射率的周期变化示意图一;
图6是根据本发明实施例的etalon的透射率和反射率的周期变化示意图二;
图7是根据本发明具体实施例1的波长锁定装置示意图一;
图8是根据本发明具体实施例1的透射波长与透射率对应关系图一;
图9是根据本发明具体实施例1的透射波长与透射率对应关系图二;
图10是根据本发明具体实施例1的透射波长与透射率对应关系图三;
图11是根据本发明具体实施例1的波长锁定装置示意图二;
图12是根据本发明具体实施例1的波长锁定装置示意图三;
图13是根据本发明具体实施例1的光谱示意图一;
图14是根据本发明具体实施例1的光谱示意图二;
图15是根据本发明具体实施例2的光收发组件的结构框图;
图16是根据本发明具体实施例2的的波长锁定装置示意图一;
图17是根据本发明具体实施例2的的波长锁定装置示意图二;
图18是根据本发明具体实施例2的的波长锁定装置示意图三;
图19是根据本发明实施例的第一种光线波长调整方法的流程图;
图20是根据本发明实施例的第二种光线波长调整方法的流程图;
图21是根据本发明实施例的第一种光线波长调整装置的结构框图;
图22是根据本发明实施例的第二种光线波长调整装置的结构框图;
图23是根据本发明实施例的光模块示意图;
图24是根据本发明实施例的WDM PON系统示意图;
图25是根据本发明实施例的上下行波长占用的波长范围及对应于AWG的窗口的示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本发明中的实施例可以适用于光接入领域,在本发明实施例中提出了 一种利用光标准具(etalon)分离上下行波长,减小WDM PON工作波长范围,并实现波长锁定的光收发一体组件BOSA、光模块及系统。
下面结合实施例对本发明进行说明:
实施例1
根据本发明的一个实施例,提供了一种光收发组件,如图3所示(图3仅是一种示例),包括:发射器(对应于图3中的Tx),设置为发射光线;接收器(对应于图3中的Rx),设置为接收光线;光标准具(对应于图3中的etalon),位于所述发射器和所述接收器之间,设置为分离发射器发射的光线和接收器接收的光线。在本实施例中,光收发组件可以是BOSA,如图3所示,该BOSA具有发射装置Tx,接收装置Rx和etalon。etalon放置在Tx和Rx之间的某个位置,通过合理地设置etalon的各项参数和调整Tx,Rx和etalon的相对位置,可以达到分离波长距离很近的上下行光的目的。
在一个可选的实施例中,上述发射器、接收器和光标准具所处位置构成直角三角形的三个顶点,其中,该发射器向光标准具发射的光线为直角三角形的第一直边,该接收器通过光标准具接收的光线为直角三角形的第二直边,该光标准具的中心线为直角三角形的斜边,该中心线为光标准具沿倾斜方向的中心线。在本实施例中,当发射器、接收器和光标准具成直角三角形设置时,该光标准具的倾斜角是45°,需要说明的是,光标准具倾斜45°仅是一个可选的实施方式,在实际操作中光标准具的倾斜角可以是0°到90°的任意一个角度,在不同的倾斜角度,对应光标准具的参数需要进行调整的。需要说明的是,发射器、接收器和光标准具所处位置构成直角三角形仅是一种可选的形式,三者的位置关系也可以是其他的形式(例如,三者构成全等三角形,三者构成钝角三角形),只要是能够将发射的光线和接收的光线(即,上下行光)分离开即可。
在一个可选的实施例中,发射器发射的光线可以利用光标准具的透射窗口,也可以利用光标准的反射窗口,接收器接收的光线可以利用光标准 具的反射窗口,也可以利用光标准具的透射窗口。通过调节光标准具的参数可以实现发射的光线和接收的光线所使使用的光标准具的窗口。当发射器发射的光线利用所述光标准具的透射窗口进行传输,且接收器接收的光线利用所述光标准具的反射窗口进行传输时,上述光收发组件还包括第一光探测器,第二光探测器和第一控制器,其中,该第一光探测器位于第一反射光线的传输路径上,设置为探测第一反射光线的功率,其中,该第一反射光线为发射器发射的且经过第一透反射装置反射的光线;该第二光探测器位于第二反射光线的传输路径上,设置为探测第二发射光线的功率,其中,该第二反射光线为发射器发射的且经过光标准具反射的光线,或者为发射器发射的且经过第二透反射装置反射的光线;该第一控制器连接至第一光探测器和第二光探测器,第一控制器设置为根据第一反射光线的功率和第二反射光线的功率调节发射器的发射的光线的波长。在本实施例中,第一透反射装置和第二透反射装置的类型可以有多种,例如,可以利用95/5透反射装置。通过本实施例,可以实现对发射器发射的光线的波长锁定。
在一个可选的实施例中,上述第一控制器设置为通过调节发射器的温度来调节发射器发射的光线的波长。在本实施例中,增高发射器的温度可以对应增大发射器发射的光线的波长,降低发射器的温度可以对应减小发射器发射的光线的波长。需要说明的是,控制器调节发射器的温度的方式可以有多种,例如,可以利用半导体制冷器(Thermo Electric Cooler,简称为TEC)来调节发射器的温度,在本实施例中,上述光收发组件还包括第一半导体制冷器TEC,其中,该第一TEC设置为在第一控制器的控制下调节发射器的温度。在本实施例中,TEC可以贴在发射器(例如激光器)芯片上。
在一个可选的实施例中,发射器、光标准具、第一透反射装置以及第二透反射装置之间的位置关系有多种,在不同的位置关系下,第一反射光线可以是不同的,第二反射光线也可以是不同的,下面对不同的位置关系及对应的第一反射光线和第二反射光线进行说明:
情况1:当上述光标准具位于发射器和第一透反射装置之间时,上述第一反射光线为发射器发射的且先经过光标准具折射后再经过第一透反射装置反射后的光线,第二反射光线为发射器发射的且经过光标准具反射的光线;和/或,
情况2:当第一透反射装置位于发射器和光标准具之间时,第一反射光线为发射器发射的且经过第一透反射装置反射后的光线,第二反射光线为发射器发射的且先经过第一透反射装置透射后,再经过光标准具反射后的光线;和/或,
情况3:当第一透反射装置位于发射器和光标准具之间,且,光标准具位于第一透反射装置和第二透反射装置之间时,第一反射光线为发射器发射的且经过第一透反射装置反射后的光线,第二反射光线为发射器发射的且先经过第一透反射装置透射后,再经过光标准具折射后,再经过第二透反射装置反射后的光线。
下面以光收发组件是BOSA为例,对上述不同的位置关系下的波长锁定处理进行说明:
具体实施例1
BOSA内部使用倾斜etalon分离发射光和接收光,发射光利用etalon的透射窗口,接收光利用etalon的反射窗口。通过加入一些模块和设计实现波长锁定和啁啾管理功能。
etalon是一个两面平行度极好的平板,采用法布里-珀罗干涉原理,入射光在etalon内部多次反射,最终被分为透射光和反射光两个部分。适当地选择厚度和折射率以及入射角,可以调节etalon的透射及反射波长分布。etalon工作原理如图4所示,设etalon厚度为l,折射率为n,两个平行平面反射率为R,光入射夹角为θ,可以推导出透过率函数T为:
Figure PCTCN2018108580-appb-000001
其中:
Figure PCTCN2018108580-appb-000002
λ为入射波长,可以看出,etalon的透射率随着波长呈周期性变化,因此etalon可以看作是一个周期滤波器,示意图如图5所示,在图5中,横轴为波长,纵轴为透射率或反射率,实线为透射率T,虚线为反射率R,透射率和反射率均随着波长呈周期性变化,且当T达到最大值时,R达到最小值,R达到最大值时,T达到最小值,且R达到最大值时对应的波长在两个T最大值对应的波长的中间,T和R之和始终为1。通过合理选择etalon参数和入射角度,可以使得T和R间隔达到使用所需,比如T峰-峰间隔100GHz,R峰-峰间隔100GHz,T和R的峰-峰间隔为50GHz,这样就可以很好地分开频率间隔为50GHz的发射光和接收光了。
如图3所示,在一个BOSA内部,Tx为发射装置,Rx为接收装置,etalon放在Tx和Rx之间的某个位置,理论上etalon的倾斜角可以是0°到90°的任意一个度数,但是倾斜角过小会造成etalon和Tx或Rx距离过大,不利于小型化,因此一般选择倾斜45°,Tx和Rx与etalon呈直角三角形。也可以选择其它角度,这时Tx,Rx和etalon的相对位置发生变化,透过率函数也相对发生变化,如果需要透过率函数不变,则需要改变etalon的参数。总之,通过合适地选择etalon的参数和相对Tx,Rx的位置,可以达到图6的效果,其中,在图6中,实线为透射率,虚线为反射率,发射光波长λ T位于透射率最大的位置,而此时反射率最小,因此图3中发射光绝大部分可以透射etalon进入AWG。接收光波长λ R位于反射率最大的位置,而此时透射率最小,因此图3中的接收光绝大部分可以通过etalon反射进入Rx,透过etalon的光很少,不会对Tx造成影响。
图6中透射率的每个最大值对应的波长都可以是发射波长,相应的每个反射率最大的位置都可以是接收波长,发射波长和接收波长之间的频率间隔为Δf/2,两个发射波长或两个接收波长,即两个通道间的频率间隔为Δf,此即为AWG每个端口的频率间隔。这样具有图6性质的etalon,可以应用于AWG每个通道对应的光收发模块,可以很好地分离发射光和接 收光。
WDM PON采用密集波分复用,每个通道的波长需要稳定在一定范围,不能发生大的漂移,否则会干扰其它通道。因此在发射装置上需要加入波长锁定功能,使激光器(对应于上述的发射器)发生波长漂移时能够及时纠正。将图3的结构增加一定的装置和模块,可以实现BOSA发射光的波长锁定。
图7(对应于上述的情况1)为一种利用图3结构实现的波长锁定装置,使用两个光探测器PD1(在具体实施例1中,PD1对应于上述的第二光探测器)和PD2(在具体实施例1中,PD2对应于上述的第一光探测器),利用两个光探测器探测的光功率的比值来确定波长漂移并调整发射波长来实现波长锁定。使用两个光探测器的目的是消除激光器本身的功率波动带来的影响。可以实现三种波长锁定方式,正斜率锁定,负斜率锁定和极值锁定(零斜率锁定),下面对各种锁定方式进行说明:
正斜率锁定:
如图8所示,标准透射波长λ T对准etalon透射率曲线上升的位置,此时透射率曲线斜率为正值。当发射光透射etalon时,一部分光透射,另一部分光被反射,反射光通过PD1接收,测量光功率P1,该电信号进入计算和控制模块(对应于上述的控制器)。
透射光再经过一个95/5的透反射装置(也可以利用其他比例的透反射装置,例如,99/1,90/10等),将5%的透射光反射进入PD2接收,95%的光进入AWG。PD2测量光功率P2,该电信号进入计算和控制模块。
当发射光为标称波长时,计算和控制模块计算两个功率的比值Ratio_Ref=P1/P2,此为参考值。若发射光波长向短波长处漂移,如漂移为λ’ T,则etalon使发射光在etalon处透射降低,反射增加,对应的两个功率P1增加,P2减小,因此控制与计算模块计算得到的功率比值增加。此时控制与计算模块控制TEC(例如,上述的第一TEC)调节激光器温度,使功率比值回到Ratio_Ref,则发射光波长回到λ T,其中,增高激光器的温 度,可以使得发射光的波长变长。
若发射光波长向长波长处漂移,如漂移为λ” T,则etalon使发射光在etalon处透射增加,反射降低,对应两个功率P1降低,P2增加,控制与计算模块计算得到的功率比值减小,控制与计算模块控制TEC调节激光器温度,使比值回到Ratio_Ref,发射光波长回到λ T,其中,降低激光器温度,可以使得发射光的波长变短。
应当注意的是,使用这种方法时,接收光波长λ R在etalon处对应的透射率增加了,接收光会有更多的光功率通过etalon透射进入Tx,因此需要在激光器前端加入隔离器。
负斜率锁定:
如图9所示,标准透射波长λ T对准etalon透射率曲线下降的位置,此时透射率曲线斜率为负值。当发射光透射etalon时,一部分光透射,另一部分光被反射,反射光通过PD1接收,测量光功率P1,该电信号进入计算和控制模块。
透射光再经过一个95/5的透反射装置,将5%的透射光反射进入PD2接收,95%的光进入AWG。PD2测量光功率P2,该电信号进入计算和控制模块。
当发射光为标称波长时,计算和控制模块计算两个功率的比值Ratio_Ref=P1/P2,此为参考值。若发射光波长向短波长处漂移,如漂移为λ’ T,则etalon使发射光在etalon处透射增加,反射降低,对应的两个功率P1减小,P2增大,因此控制与计算模块计算得到的功率比值减小,此时控制与计算模块控制TEC(对应于上述的第一TEC,在该具体实施例1中,TEC都可以对应于上述的第一TEC)调节激光器温度,使功率比值回到Ratio_Ref,发射光波长回到λ T
若发射光波长向长波长处漂移,如漂移为λ” T,则etalon使发射光在etalon处透射减小,反射增加,对应两个功率P1增加,P2降低,控制与计算模块计算得到的功率比值增加,控制与计算模块控制TEC调节激光 器温度,使比值回到Ratio_Ref,发射光波长回到λ T
应当注意的是,使用这种方法时,接收光波长λ R在etalon处对应的透射率增加了,接收光会有更多的光功率通过etalon透射进入Tx,因此需要在激光器前端加入隔离器。
极值锁定:
如图10所示,标准透射波长λ T对准etalon透射率曲线顶点的位置,此时透射率曲线斜率为零。当发射光透射etalon时,绝大部分光透射,极小部分光被反射,反射光通过PD1接收,测量光功率P1,该电信号进入计算和控制模块。
透射光再经过一个95/5的透反射装置,将5%的透射光反射进入PD2接收,95%的光进入AWG。PD2测量光功率P2,该电信号进入计算和控制模块。
当发射光为标称波长时,计算和控制模块计算两个功率的比值Ratio_Ref=P1/P2,此为参考值,这个值几乎为零。若发射光波长向短波长处漂移,如漂移为λ’ T,则etalon使发射光在etalon处透射降低,反射增加,对应的两个功率P1增大,P2减小,因此控制与计算模块计算得到的功率比值增加。
若发射光波长向长波长处漂移,如漂移为λ” T,则etalon使发射光透射还是减小,反射还是增加,对应两个功率P1增加,P2降低,控制与计算模块计算得到的功率比值增加,两种波长漂移均对应功率比值增加,因此控制与计算模块需要控制TEC,调整激光器温度,尝试不同的温度调整方向,实时测量功率比值,找到功率比值的最小值,即为标准发射波长。
除了图7提供的波长锁定方案之外,根据图3的结构,还可以变化出以下波长锁定方案,原理与上述相同,都是通过测量两个光功率的比值来锁定波长,只是结构有所不同。
图11(对应于上述的情况2)与图7的不同之处在于PD2测量etalon与激光器之间分出来的5%的光,如果激光器功率不变,则PD2测量的功 率P2不变。这种方案仍然有三种锁定方式:
正斜率锁定:
如图8所示,标准透射波长λ T对准etalon透射率曲线上升的位置,此时透射率曲线斜率为正值。透射光先经过一个95/5的透反射装置,将5%的透射光反射进入PD2接收,测量光功率为P2,95%的光进入etalon。
当发射光透射etalon时,一部分光透射,另一部分光被反射,反射光通过PD1接收,测量光功率P1。P1和P2电信号进入计算和控制模块。计算和控制模块计算两个功率的比值Ratio_Ref=P1/P2,此为参考值。若发射光波长向短波长处漂移,如漂移为λ’ T,则etalon使发射光透射降低,反射增加,对应P1增加,由于P2基本不变,因此控制与计算模块计算得到的功率比值增加,此时控制与计算模块控制TEC调节激光器温度,使功率比值回到Ratio_Ref,发射光波长回到λ T
若发射光波长向长波长处漂移,如漂移为λ” T,则etalon使发射光透射增加,反射降低,对应P1降低,P2基本不变,控制与计算模块计算得到的功率比值减小,控制与计算模块控制TEC调节激光器温度,使比值回到Ratio_Ref,发射光波长回到λ T
应当注意的是,使用这种方法时,接收光波长λ R在etalon处对应的透射率增加了,接收光会有更多的光功率通过etalon透射进入Tx,因此需要在激光器前端加入隔离器。
负斜率锁定:
如图9所示,标准透射波长λ T对准etalon透射率曲线下降的位置,此时透射率曲线斜率为负值。透射光先经过一个95/5的透反射装置,将5%的透射光反射进入PD2接收,测量光功率为P2,95%的光进入etalon。
当发射光透射etalon时,一部分光透射,另一部分光被反射,反射光通过PD1接收,测量光功率P1。P1和P2电信号进入计算和控制模块。计算和控制模块计算两个功率的比值Ratio_Ref=P1/P2,此为参考值。
若发射光波长向短波长处漂移,如漂移为λ’ T,则etalon使发射光透 射增加,反射降低,对应P1减小,因此控制与计算模块计算得到的功率比值减小,此时控制与计算模块控制TEC调节激光器温度,使功率比值回到Ratio_Ref,发射光波长回到λ T
若发射光波长向长波长处漂移,如漂移为λ” T,则etalon使发射光透射减小,反射增加,对应P1增加,控制与计算模块计算得到的功率比值增加,控制与计算模块控制TEC调节激光器温度,使比值回到Ratio_Ref,发射光波长回到λ T
应当注意的是,使用这种方法时,接收光波长λ R在etalon处对应的透射率增加了,接收光会有更多的光功率通过etalon透射进入Tx,因此需要在激光器前端加入隔离器。
极值锁定:
如图10所示,标准透射波长λ T对准etalon透射率曲线顶点的位置,此时透射率曲线斜率为零。透射光先经过一个95/5的透反射装置,将5%的透射光反射进入PD2接收,测量光功率为P2,95%的光进入etalon。
当发射光透射etalon时,绝大部分光透射,极小部分光被反射,反射光通过PD1接收,测量光功率P1,P1和P2电信号进入计算和控制模块。计算和控制模块计算两个功率的比值Ratio_Ref=P1/P2,此为参考值,这个值几乎为零。
若发射光波长向短波长处漂移,如漂移为λ’ T,则etalon使发射光透射降低,反射增加,对应P1增大,因此控制与计算模块计算得到的功率比值增加;若发射光波长向长波长处漂移,如漂移为λ” T,则etalon使发射光透射还是减小,反射还是增加,对应P1增加,控制与计算模块计算得到的功率比值增加。两种波长漂移均对应功率比值增加,因此控制与计算模块需要控制TEC,调整激光器温度,尝试不同的温度调整方向,实时测量功率比值,找到功率比值的最小值,即为标准发射波长。
图12(对应于上述的情况3)与图7的不同之处在于PD2测量etalon与激光器之间分出来的5%的光,如果激光器功率不变,则PD2测量的功 率不变,PD1测量发射光透射etalon之后由分光器分出的5%的光。这种方案仍然有三种锁定方式:
正斜率锁定:
如图8所示,标准透射波长λ T对准etalon透射率曲线上升的位置,此时透射率曲线斜率为正值。透射光先经过一个95/5的透反射装置,将5%的透射光反射进入PD2接收,测量光功率为P2,95%的光进入etalon。
当发射光透射etalon时,一部分光透射,另一部分光被反射,透射光分出5%通过PD1接收,测量光功率P1。P1和P2电信号进入计算和控制模块。计算和控制模块计算两个功率的比值Ratio_Ref=P1/P2,此为参考值。
若发射光波长向短波长处漂移,如漂移为λ’ T,则etalon使发射光透射降低,反射增加,对应P1降低,因此控制与计算模块计算得到的功率比值降低,此时控制与计算模块控制TEC调节激光器温度,使功率比值回到Ratio_Ref,发射光波长回到λ T
若发射光波长向长波长处漂移,如漂移为λ” T,则etalon使发射光透射增加,反射降低,对应P1增加,控制与计算模块计算得到的功率比值增加,控制与计算模块控制TEC调节激光器温度,使比值回到Ratio_Ref,发射光波长回到λ T
应当注意的是,使用这种方法时,接收光波长λ R对应的透射率增加了,接收光会有更多的光功率通过etalon透射进入Tx,因此需要在激光器前端加入隔离器。
负斜率锁定:
如图9所示,标准透射波长λ T对准etalon透射率曲线下降的位置,此时透射率曲线斜率为负值。透射光先经过一个95/5的透反射装置,将5%的透射光反射进入PD2接收,测量光功率为P2,95%的光进入etalon。
当发射光透射etalon时,一部分光透射,另一部分光被反射,透射光分出5%通过PD1接收,测量光功率P1。P1和P2电信号进入计算和控制 模块。计算和控制模块计算两个功率的比值Ratio_Ref=P1/P2,此为参考值。
若发射光波长向短波长处漂移,如漂移为λ’ T,则etalon使发射光透射增加,反射降低,对应P1增加,因此控制与计算模块计算得到的功率比值增加,此时控制与计算模块控制TEC调节激光器温度,使功率比值回到Ratio_Ref,发射光波长回到λ T
若发射光波长向长波长处漂移,如漂移为λ” T,则etalon使发射光透射减小,反射增加,对应P1减小,控制与计算模块计算得到的功率比值减小,控制与计算模块控制TEC调节激光器温度,使比值回到Ratio_Ref,发射光波长回到λ T
应当注意的是,使用这种方法时,接收光波长λ R对应的透射率增加了,接收光会有更多的光功率通过etalon透射进入Tx,因此需要在激光器前端加入隔离器。
极值锁定:
如图10所示,标准透射波长λ T对准etalon透射率曲线顶点的位置,此时透射率曲线斜率为零。透射光先经过一个95/5的透反射装置,将5%的透射光反射进入PD2接收,测量光功率为P2,95%的光进入etalon。
当发射光透射etalon时,绝大部分光透射,极小部分光被反射,透射光分出5%通过PD1接收,测量光功率P1,P1和P2电信号进入计算和控制模块。计算和控制模块计算两个功率的比值Ratio_Ref=P1/P2,此为参考值。
若发射光波长向短波长处漂移,如漂移为λ’ T,则etalon使发射光透射降低,反射增加,对应P1降低,因此控制与计算模块计算得到的功率比值降低;若发射光波长向长波长处漂移,如漂移为λ” T,则etalon使发射光透射还是降低,反射增加,对应P1降低,控制与计算模块计算得到的功率比值降低,两种波长漂移均对应功率比值降低,因此控制与计算模块需要控制TEC,调整激光器温度,尝试不同的温度调整方向,实时测量 功率比值,找到功率比值的最大值,即为标准发射波长。
连续激光器在加入信号调制后光会产生频率啁啾,啁啾产生的效果为调制信号“1”时波长蓝移,而调制信号“0”时波长红移,因此,利用etalon的周期光滤波器作用,可以对光谱进行整形,对信号光进行啁啾管理。利用etalon滤除信号的长波长分量,可以提高信号的消光比,改变脉冲前后沿的频率分布,增强信号的抗色散能力。
如图13所示,光信号调制前光谱为一个较窄的单峰,经过调制后由于啁啾光谱展宽,出现两个峰,其中“1”对应蓝移的峰,“0”对应红移的峰,由光谱中可以看出,“1”对应的功率比“0”大,二者的比值为消光比。将信号经过光谱整形后,“0”对应的峰被抑制,整个光谱变窄,有利于长距离传输,且信号“0”功率被降低,使信号的消光比增大,有利于信号接收。
通过合理地选择etalon的参数和入射光夹角,可以达到如图14所示的效果。光信号调制后信号“1”对应的波长能量在etalon的透射窗口内,而“0”对应的波长能量则在etalon的反射窗口内。发射光经过etalon后,“0”对应的波长能量透射被抑制,透射光信号光谱变窄,长距离传输色散减小,消光比增加,有利于接收。
前述的实施例是针对的发射器发射的光线利用所述光标准具的透射窗口进行传输,且接收器接收的光线利用所述光标准具的反射窗口进行传输的情况进行说明的,下面对接收器接收的光线利用光标准具的透射窗口进行传输,且发射器发射的光线利用所述光标准具的反射窗口进行传输的情况进行说明:
在一个可选的实施例中,当接收器接收的光线利用光标准具的透射窗口进行传输,且发射器发射的光线利用光标准具的反射窗口进行传输时,光收发组件还包括第三光探测器,第四光探测器和第二控制器,其中,该第三光探测器位于第三反射光线的传输路径上,设置为探测第三反射光线 的功率,其中,该第三反射光线为发射器发射的且经过第三透反射装置反射的光线;第四光探测器位于透反射光线的传输路径上,设置为探测透返射光线的功率,其中,该透返射光线为发射器发射的且经过光标准具透射的光线,或者为发射器发射的且经过第四透反射装置反射的光线;第二控制器连接至第三光探测器和第四光探测器,第二控制器设置为根据第三反射光线的功率和透反射光线的功率调节发射器的发射的光线的波长。在本实施例中,第三透反射装置和第四透反射装置的类型可以有多种,例如,可以利用95/5透反射装置。通过本实施例,可以实现对发射器发射的光线的波长锁定。
在一个可选的实施例中,上述第二控制器设置为通过调节发射器的温度来调节发射器发射的光线的波长。需要说明的是,控制器调节发射器的温度的方式可以有多种,例如,可以利用半导体制冷器(Thermo Electric Cooler,简称为TEC)来调节发射器的温度,在本实施例中,上述光收发组件还包括半导体制冷器TEC,其中,该TEC设置为在第二控制器的控制下调节发射器的温度。
在一个可选的实施例中,发射器、光标准具、第三透反射装置以及第四透反射装置之间的位置关系有多种,在不同的位置关系下,第三反射光线可以是不同的,透反射光线也可以是不同的,下面对不同的位置关系及对应的第三反射光线和透反射光线进行说明:
情况4:当上述光标准具位于发射器和第三透反射装置之间时,上述第三反射光线为发射器发射的且先经过光标准具反射后再经过第一透反射装置反射后的光线,上述透反射光线为发射器发射的且经过光标准具透射的光线;和/或,
情况5:当上述第三透反射装置位于发射器和光标准具之间时,上述第三反射光线为发射器发射的且经过第三透反射装置反射后的光线,上述透反射光线为发射器发射的且先经过第三透反射装置透射后,再经过光标准具透射后的光线;和/或,
情况6:当上述第一透反射装置位于发射器和光标准具之间,且,该光标准具位于第三透反射装置和所述第四透反射装置之间时,上述第三反射光线为发射器发射的且经过第三透反射装置反射后的光线,上述透反射光线为发射器发射的且先经过第三透反射装置透射后,再经过光标准具反射后,再经过第四透反射装置反射后的光线。
下面以光收发组件是BOSA为例,对上述不同的位置关系下的波长锁定处理进行说明:
具体实施例2
BOSA内部使用倾斜etalon分离发射光和接收光,发射光利用etalon的反射窗口,接收光利用etalon的透射窗口。通过加入一些模块和设计实现波长锁定和啁啾管理功能。
如图15所示,在一个BOSA内部,Tx为发射装置,Rx为接收装置,etalon放在Tx和Rx之间的某个位置,理论上etalon的倾斜角可以是0°到90°的任意一个度数,但是倾斜角过小会造成etalon和Tx或Rx距离过大,不利于小型化,因此一般选择倾斜45°,Tx和Rx与etalon呈直角三角形。也可以选择其它角度,这时Tx,Rx和etalon的相对位置发生变化,透过率函数也相对发生变化,如果需要透过率函数不变,则需要改变etalon的参数。总之,通过合适地选择etalon的参数和相对Tx,Rx的位置,可以达到图6的效果,只是此时,图6中实线为反射率,虚线为透射率。
发射光波长λ T位于反射率最大的位置,而此时透射率最小,因此图15中发射光绝大部分可以经过etalon反射进入AWG。接收光波长λ R位于透射率最大的位置,而此时反射率最小,因此图15中的接收光绝大部分可以透射etalon进入Rx,经过etalon反射的光很少,不会对Tx造成影响。
图6中反射率的每个最大值对应的波长都可以是发射波长,相应的每个透射率最大的位置都可以是接收波长,发射波长和接收波长之间的频率间隔为Δf/2,两个发射波长或两个接收波长,即两个通道间的频率间隔为Δf,此即为AWG每个端口的频率间隔。这样具有图6性质的etalon,可 以应用于AWG每个通道对应的光收发模块,可以很好地分离发射光和接收光。
WDM PON采用密集波分复用,每个通道的波长需要稳定在一定范围,不能发生大的漂移,否则会干扰其它通道。因此在发射装置上需要加入波长锁定功能,使激光器发生波长漂移时能够及时纠正。将图15的结构增加一定的装置和模块,可以实现BOSA发射光的波长锁定。
图16(对应于上述的情况4)为一种利用图15结构实现的波长锁定装置,使用两个光探测器PD1(在具体实施例2中,PD1对应于上述的第四透反射装置)和PD2(在具体实施例2中,PD2对应于上述的第三透反射装置),利用两个光探测器探测的光功率的比值来确定波长漂移并调整发射波长来实现波长锁定。使用两个光探测器的目的是消除激光器本身的功率波动带来的影响。在这种方案下,对于发射光,图8,图9和图10中etalon透射率曲线和反射率曲线互换,即实线为反射率曲线,虚线为透射率曲线。可以实现三种波长锁定方式,正斜率锁定,负斜率锁定和极值锁定(零斜率锁定)。
正斜率锁定:
如图8所示,标准透射波长λ T对准etalon反射率曲线上升的位置,此时反射率曲线斜率为正值。当发射光入射etalon时,一部分光透射,另一部分光被反射,透射光通过PD1接收,测量光功率P1,反射光经过一个95/5的透反射装置,将5%的反射光反射进入PD2接收,测量光功率为P2,95%的光进入AWG。P1和P2电信号进入计算和控制模块。计算和控制模块计算两个功率的比值Ratio_Ref=P1/P2,此为参考值。
若发射光波长向短波长处漂移,如漂移为λ’ T,则etalon使发射光反射降低,透射增加,对应P1增加P2减小,因此控制与计算模块计算得到的功率比值增加,此时控制与计算模块控制TEC调节激光器温度,使功率比值回到Ratio_Ref,发射光波长回到λ T
若发射光波长向长波长处漂移,如漂移为λ” T,则etalon使发射光反 射增加,透射降低,对应P1降低P2增加,控制与计算模块计算得到的功率比值减小,控制与计算模块控制TEC调节激光器温度,使比值回到Ratio_Ref,发射光波长回到λ T
应当注意的是,使用这种方法时,接收光波长λR在etalon处对应的反射率增加了,接收光会有更多的光功率通过etalon反射进入Tx,因此需要在激光器前端加入隔离器。
负斜率锁定:
如图9所示,标准透射波长λ T对准etalon反射率曲线下降的位置,此时反射率曲线斜率为负值。当发射光入射etalon时,一部分光透射,另一部分光被反射,透射光通过PD1接收,测量光功率P1,反射光经过一个95/5的透反射装置,将5%的透射光反射进入PD2接收,测量光功率为P2,95%的光进入AWG。P1和P2电信号进入计算和控制模块。计算和控制模块计算两个功率的比值Ratio_Ref=P1/P2,此为参考值。
若发射光波长向短波长处漂移,如漂移为λ’ T,则etalon使发射光反射增加,透射降低,对应P1减小P2增加,因此控制与计算模块计算得到的功率比值减小,此时控制与计算模块控制TEC调节激光器温度,使功率比值回到Ratio_Ref,发射光波长回到λ T
若发射光波长向长波长处漂移,如漂移为λ” T,则etalon使发射光反射减小,透射增加,对应P1增加P2减小,控制与计算模块计算得到的功率比值增加,控制与计算模块控制TEC调节激光器温度,使比值回到Ratio_Ref,发射光波长回到λ T
应当注意的是,使用这种方法时,接收光波长λ R在etalon处对应的反射率增加了,接收光会有更多的光功率通过etalon反射进入Tx,因此需要在激光器前端加入隔离器。
极值锁定:
如图10所示,标准透射波长λ T对准etalon反射率曲线顶点的位置,此时反射率曲线斜率为零。当发射光透射etalon时,绝大部分光反射,极 小部分光被透射,透射光通过PD1接收,测量光功率P1,反射光先经过一个95/5的透反射装置,将5%的透射光反射进入PD2接收,测量光功率为P2,95%的光进入AWG。P1和P2电信号进入计算和控制模块。计算和控制模块计算两个功率的比值Ratio_Ref=P1/P2,此为参考值,这个值几乎为零。
若发射光波长向短波长处漂移,如漂移为λ’ T,则etalon使发射光反射降低,透射增加,对应P1增大P2减小,因此控制与计算模块计算得到的功率比值增加;若发射光波长向长波长处漂移,如漂移为λ” T,则etalon使发射光反射还是降低,透射还是增加,对应P1增加P2减小,控制与计算模块计算得到的功率比值增加,两种波长漂移均对应功率比值增加,因此控制与计算模块需要控制TEC,调整激光器温度,尝试不同的温度调整方向,实时测量功率比值,找到功率比值的最小值,即为标准发射波长。
图17(对应于上述的情况5)与图16的不同之处在于PD2测量etalon与激光器之间分出来的5%的光,如果激光器功率不变,则PD2测量的功率不变。在这种方案下,对于发射光,图8,图9和图10中etalon透射率曲线和反射率曲线互换,即红色实线为反射率曲线,蓝色虚线为透射率曲线。三种波长锁定方式:
正斜率锁定:
如图8所示,标准透射波长λ T对准etalon反射率曲线上升的位置,此时反射率曲线斜率为正值。发射光先经过一个95/5的透反射装置分出5%的光给PD2接收,测量光功率为P2,若发射机功率不变,则P2不变。
然后发射光透射etalon,一部分光透射,另一部分光被反射,透射光通过PD1接收,测量光功率P1,反射光进入AWG。P1和P2电信号进入计算和控制模块。计算和控制模块计算两个功率的比值Ratio_Ref=P1/P2,此为参考值。
若发射光波长向短波长处漂移,如漂移为λ’ T,则etalon使发射光反射降低,透射增加,对应P1增加,因此控制与计算模块计算得到的功率 比值增加,此时控制与计算模块控制TEC调节激光器温度,使功率比值回到Ratio_Ref,发射光波长回到λ T
若发射光波长向长波长处漂移,如漂移为λ” T,则etalon使发射光反射增加,透射降低,对应P1降低,控制与计算模块计算得到的功率比值减小,控制与计算模块控制TEC调节激光器温度,使比值回到Ratio_Ref,发射光波长回到λ T
应当注意的是,使用这种方法时,接收光波长λ R在etalon处对应的反射率增加了,接收光会有更多的光功率通过etalon反射进入Tx,因此需要在激光器前端加入隔离器。
负斜率锁定:
如图9所示,标准透射波长λ T对准etalon反射率曲线下降的位置,此时反射率曲线斜率为负值。发射光先经过一个95/5的透反射装置分出5%的光给PD2接收,测量光功率为P2,若发射机功率不变,则P2不变。然后发射光透射etalon,一部分光透射,另一部分光被反射,透射光通过PD1接收,测量光功率P1,反射光进入AWG。P1和P2电信号进入计算和控制模块。计算和控制模块计算两个功率的比值Ratio_Ref=P1/P2,此为参考值。
若发射光波长向短波长处漂移,如漂移为λ’ T,则etalon使发射光反射增加,透射降低,对应P1减小,因此控制与计算模块计算得到的功率比值减小,此时控制与计算模块控制TEC调节激光器温度,使功率比值回到Ratio_Ref,发射光波长回到λ T
若发射光波长向长波长处漂移,如漂移为λ” T,则etalon使发射光反射减小,透射增加,对应P1增加,控制与计算模块计算得到的功率比值增加,控制与计算模块控制TEC调节激光器温度,使比值回到Ratio_Ref,发射光波长回到λ T
应当注意的是,使用这种方法时,接收光波长λ R在etalon处对应的反射率增加了,接收光会有更多的光功率通过etalon反射进入Tx,因此需 要在激光器前端加入隔离器。
极值锁定:
如图10所示,标准透射波长λ T对准etalon反射率曲线顶点的位置,此时反射率曲线斜率为零。发射光先经过一个95/5的透反射装置分出5%的光给PD2接收,测量光功率为P2,若发射机功率不变,则P2不变。然后发射光透射etalon,绝大部分光反射,极小部分光被透射,透射光通过PD1接收,测量光功率P1,反射光进入AWG。P1和P2电信号进入计算和控制模块。计算和控制模块计算两个功率的比值Ratio_Ref=P1/P2,此为参考值,这个值几乎为零。
若发射光波长向短波长处漂移,如漂移为λ’ T,则etalon使发射光反射降低,透射增加,对应P1增大,因此控制与计算模块计算得到的功率比值增加;若发射光波长向长波长处漂移,如漂移为λ” T,则etalon使发射光反射还是降低,透射增加,对应P1增加,控制与计算模块计算得到的功率比值增加,两种波长漂移均对应功率比值增加,因此控制与计算模块需要控制TEC,调整激光器温度,尝试不同的温度调整方向,实时测量功率比值,找到功率比值的最小值,即为标准发射波长。
图18(对应于上述的情况6)与图16的不同之处在于PD2测量etalon与激光器之间分出来的5%的光,如果激光器功率不变,则PD2测量的功率不变,PD1测量发射光被etalon反射之后由分光器分出的5%的光。在这种方案下对于发射光,图8,图9和图10中etalon透射率曲线和反射率曲线互换,即实线为反射率曲线,虚线为透射率曲线。三种波长锁定方式:
正斜率锁定:
如图8所示,标准透射波长λ T对准etalon反射率曲线上升的位置,此时反射率曲线斜率为正值。发射光先经过一个95/5的透反射装置,将5%的入射光反射进入PD2接收,测量光功率为P2,95%的光进入etalon。当发射光入射etalon时,一部分光透射,另一部分光被反射,反射光分出5%通过PD1接收,测量光功率P1。P1和P2电信号进入计算和控制模块。 计算和控制模块计算两个功率的比值Ratio_Ref=P1/P2,此为参考值。
若发射光波长向短波长处漂移,如漂移为λ’ T,则etalon使发射光反射降低,透射增加,对应P1降低,因此控制与计算模块计算得到的功率比值降低,此时控制与计算模块控制TEC调节激光器温度,使功率比值回到Ratio_Ref,发射光波长回到λ T
若发射光波长向长波长处漂移,如漂移为λ” T,则etalon使发射光反射增加,透射降低,对应P1增加,控制与计算模块计算得到的功率比值增加,控制与计算模块控制TEC调节激光器温度,使比值回到Ratio_Ref,发射光波长回到λ T
应当注意的是,使用这种方法时,接收光波长λ R在etalon处对应的反射率增加了,接收光会有更多的光功率通过etalon反射进入Tx,因此需要在激光器前端加入隔离器。
负斜率锁定:
如图9所示,标准透射波长λ T对准etalon反射率曲线下降的位置,此时反射率曲线斜率为负值。发射光先经过一个95/5的透反射装置,将5%的入射光反射进入PD2接收,测量光功率为P2,95%的光进入etalon。当发射光透射etalon时,一部分光透射,另一部分光被反射,反射光分出5%通过PD1接收,测量光功率P1。P1和P2电信号进入计算和控制模块。计算和控制模块计算两个功率的比值Ratio_Ref=P1/P2,此为参考值。
若发射光波长向短波长处漂移,如漂移为λ’ T,则etalon使发射光反射增加,透射降低,对应P1增加,因此控制与计算模块计算得到的功率比值增加,此时控制与计算模块控制TEC调节激光器温度,使功率比值回到Ratio_Ref,发射光波长回到λ T
若发射光波长向长波长处漂移,如漂移为λ” T,则etalon使发射光反射减小,透射增加,对应P1减小,控制与计算模块计算得到的功率比值减小,控制与计算模块控制TEC调节激光器温度,使比值回到Ratio_Ref,发射光波长回到λ T
应当注意的是,使用这种方法时,接收光波长λR在etalon处对应的反射率增加了,接收光会有更多的光功率通过etalon反射进入Tx,因此需要在激光器前端加入隔离器。
极值锁定:
如图10所示,标准透射波长λ T对准etalon反射率曲线顶点的位置,此时反射率曲线斜率为零。发射光先经过一个95/5的透反射装置,将5%的入射光反射进入PD2接收,测量光功率为P2,95%的光进入etalon。当发射光透射etalon时,绝大部分光反射,极小部分光被透射,反射光分出5%通过PD1接收,测量光功率P1,P1和P2电信号进入计算和控制模块。计算和控制模块计算两个功率的比值Ratio_Ref=P1/P2,此为参考值。
若发射光波长向短波长处漂移,如漂移为λ’ T,则etalon使发射光反射降低,透射增加,对应P1降低,因此控制与计算模块计算得到的功率比值降低;若发射光波长向长波长处漂移,如漂移为λ” T,则etalon使发射光反射还是降低,透射增加,对应P1降低,控制与计算模块计算得到的功率比值减小,两种波长漂移均对应功率比值减小,因此控制与计算模块需要控制TEC,调整激光器温度,尝试不同的温度调整方向,实时测量功率比值,找到功率比值的最大值,即为标准发射波长。
与图3的结构类似,图15所示的结构也可以进行啁啾管理,但是此时对于图14,密集的虚线曲线对应的不是透射率,而是反射率。光信号调制后信号“1”对应的波长能量在etalon的反射窗口内,而“0”对应的波长能量则在etalon的透射窗口内。发射光经过etalon反射后,“0”对应的波长能量反射被抑制,反射光信号光谱变窄,长距离传输色散减小,消光比增加,有利于接收。
在一个可选的实施例中,上述光收发组件还包括隔离器,其中,当发射器和光标准具之间无透反射装置时,该隔离器位于发射器和光标准具之间,设置为隔离经过光标准具到达发射器上的光线;或者,当发射器和光 标准具之间设置有透反射装置时,隔离器位于发射器和透反射装置之间,设置为隔离经过透反射装置到达发射器上的光线。
在一个可选的实施例中,上述光标准具的参数是根据如下信息至少之一进行预先设定的:发射器发送的光线需要利用的光标准具的窗口的类型和光接收器接收的光线需要利用的所述光标准具的窗口的类型;发射器、接收器和光标准具的相对位置关系;发射器在进行了信号调制后产生的频率啁啾。在本实施例中,光标准具的参数可以是由使用者人为调整的。
实施例2
在本实施例中提供了一种光线波长调整方法,该方法可以应用于上述实施例1中所述的光收发组件中,图19是根据本发明实施例的第一种光线波长调整方法的流程图,如图19所示,当发射器发射的光线利用光标准具的透射窗口进行传输,且接收器接收的光线利用所述光标准具的反射窗口进行传输时,该流程包括如下步骤:
步骤S1902,获取探测到的第一反射光线的功率,其中,该第一反射光线为发射器发射的且经过第一透反射装置反射的光线;
步骤S1904,获取探测到的第二发射光线的功率,其中,该第二反射光线为发射器发射的且经过光标准具反射的光线,或者为发射器发射的且经过第二透反射装置反射的光线;
步骤S1906,根据上述第一反射光线的功率和第二反射光线的功率调节发射器发射的光线的波长。
其中,执行上述操作的可以是上述的控制器,例如图18中所示的计算和控制模块。
通过本发明,在光收发组件中利用了光标准具进行发射的光线和接收的光线(即,上下行光)的分离,实现了可以将波长间隔很近的上下行关进行分离的目的,相对于相关技术而言,采用光标准具可以使得上下行光占用的波长资源至少降低一半,因此,可以解决相关技术中存在的上下行 光需要占用的波长资源过多的问题,达到降低波长资源占用的效果。
在一个可选的实施例中,上述步骤S1906可以通过如下方式调节发射器发射的光线的波长:根据第一反射光线的功率和第二反射光线的功率调节发射器的温度,以调节发射器发射的光线的波长。在本实施例中,可以利用TEC来调节发射器的温度。
在本实施例中提供了一种光线波长调整方法,该方法可以应用于上述实施例1中所述的光收发组件中,图20是根据本发明实施例的第二种光线波长调整方法的流程图,如图20所示,当上述接收器接收的光线利用光标准具的透射窗口进行传输,且发射器发射的光线利用光标准具的反射窗口进行传输时,该流程包括如下步骤:
步骤S2002,获取探测到的第三反射光线的功率,其中,该第三反射光线为发射器发射的且经过第三透反射装置反射的光线;
步骤S2004,获取探测到的透返射光线的功率,其中,该透返射光线为发射器发射的且经过光标准具透射的光线,或者为发射器发射的且经过第四透反射装置反射的光线;
步骤S2006,根据上述第三反射光线的功率和透反射光线的功率调节发射器发射的光线的波长。
其中,执行上述操作的可以是上述的控制器,例如图18中所示的计算和控制模块。
通过本发明,在光收发组件中利用了光标准具进行发射的光线和接收的光线(即,上下行光)的分离,实现了可以将波长间隔很近的上下行关进行分离的目的,相对于相关技术而言,采用光标准具可以使得上下行光占用的波长资源至少降低一半,因此,可以解决相关技术中存在的上下行光需要占用的波长资源过多的问题,达到降低波长资源占用的效果。
在一个可选的实施例中,上述步骤S2006可以通过如下方式调节发射器发射的光线的波长:根据第三反射光线的功率和透反射光线的功率调节 发射器的温度,以调节发射器发射的光线的波长。在本实施例中,可以利用TEC来调节发射器的温度。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
实施例3
在本实施例中还提供了一种光线波长调整装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图21是根据本发明实施例的第一种光线波长调整装置的结构框图,该装置可以应用于实施例1中所示的光收发组件中,如图21所示,当发射器发射的光线利用光标准具的透射窗口进行传输,且接收器接收的光线利用光标准具的反射窗口进行传输时,该装置包括:
第一获取模块212,设置为获取探测到的第一反射光线的功率,其中,该第一反射光线为发射器发射的且经过第一透反射装置反射的光线;第二获取模块214,设置为获取探测到的第二发射光线的功率,其中,该第二反射光线为发射器发射的且经过光标准具反射的光线,或者为发射器发射的且经过第二透反射装置反射的光线;第一调节模块216,连接至上述的第一获取模块212和第二获取模块214,设置为根据第一反射光线的功率 和第二反射光线的功率调节发射器发射的光线的波长。
在一个可选的实施例中,上述第一调节模块216包括:第一调节单元,设置为根据第一反射光线的功率和第二反射光线的功率调节发射器的温度,以调节发射器发射的光线的波长。
图22是根据本发明实施例的第二种光线波长调整装置的结构框图,该装置可以应用于实施例1中所示的光收发组件中,如图22所示,当接收器接收的光线利用光标准具的透射窗口进行传输,且发射器发射的光线利用光标准具的反射窗口进行传输时,该装置包括:
第三获取模块222,设置为获取探测到的第三反射光线的功率,其中,该第三反射光线为发射器发射的且经过第三透反射装置反射的光线;第四获取模块224,设置为获取探测到的透返射光线的功率,其中,该透返射光线为发射器发射的且经过光标准具透射的光线,或者为发射器发射的且经过第四透反射装置反射的光线;第二调节模块226,连接至上述的第三获取模块222和第四获取模块224,设置为根据第三反射光线的功率和透反射光线的功率调节发射器发射的光线的波长。
在一个可选的实施例中,上述第二调节模块226包括:第二调节单元,设置为根据第三反射光线的功率和透反射光线的功率调节发射器的温度,以调节发射器发射的光线的波长。
实施例4
在本实施例中,提供了一种波分复用无源光网络,包括光纤线路终端OLT、波分复用器WDM、光纤网络单元ONU,其中,该OLT中包括一个或多个第一光模块,该第一光模块包括实施例1中所述的光收发组件;WDM与OLT连接;ONU与WDM连接,该ONU的数量为一个或多个,且每个ONU中分别包括一个或多个第二光模块,该第二光模块包括实施例1中所述的光收发组件。
如图23所示,是一种集成etalon具有分离波长间隔很近的上下行光 并具有波长锁定、啁啾管理功能的光模块,该光模块包含实施例一所描述的BOSA,图23只展示了其中的一种情况。计算和控制模块可以放在BOSA内部,也可以放在BOSA外部,光模块内部。这种光模块带来的好处是可以分离波长间隔很近的上下行光,并同时实现波长锁定和啁啾管理的功能,无需额外的滤波器。
图24所示是利用etalon实现工作波长范围减小的WDM PON系统,在图24中,OLT和ONU所使用的光模块都具有图23所示的结构。上下行波长占用的波长范围及对应于AWG的窗口如图25所示。其中,AWG每个端口上下行波长在AWG同一个FSR周期的同一个透射窗口以内,这里假定上下行波长间隔为Δf/2,这个间隔很近,一般的合分波器很难将其分开,使用实施例三的光模块可以很好地将其分开。AWG每个端口对应的上行通道和下行通道间的间隔为Δf,即通道间隔为Δf。如此,总共占用的频带资源为nΔf,比图2所示减少了一半。
图24所示的WDM PON系统可以实现减少工作波长范围的功能,但是这只是一种举例,其它形式的WDM PON系统也可应用图23所示的光模块或BOSA以实现减少工作波长范围的目的。
实施例5
需要说明的是,实施例3中所示的模块可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
根据本发明的又一个实施例,还提供了一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述实施例2中的步骤。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存 储计算机程序的介质。
根据本发明的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述实施例3中的步骤。
可选地,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
如上所述,本发明实施例提供的一种光收发组件、光线波长调整方法、装置、波分复用无源光网络、存储介质及电子装置具有以下有益效果:解决相关技术中存在的上下行光需要占用的波长资源过多的问题,达到降低 波长资源占用的效果。

Claims (23)

  1. 一种光收发组件,包括:
    发射器,设置为发射光线;
    接收器,设置为接收光线;
    光标准具,位于所述发射器和所述接收器之间,设置为分离所述发射器发射的光线和所述接收器接收的光线。
  2. 根据权利要求1所述的光收发组件,其中,所述发射器、所述接收器和所述光标准具所处位置构成直角三角形的三个顶点,其中,所述发射器向所述光标准具发射的光线为所述直角三角形的第一直边,所述接收器通过所述光标准具接收的光线为所述直角三角形的第二直边,所述光标准具的中心线为所述直角三角形的斜边,所述中心线为所述光标准具沿倾斜方向的中心线。
  3. 根据权利要求1所述的光收发组件,其中,当所述发射器发射的光线利用所述光标准具的透射窗口进行传输,且所述接收器接收的光线利用所述光标准具的反射窗口进行传输时,所述光收发组件还包括第一光探测器,第二光探测器和第一控制器,其中,
    所述第一光探测器位于第一反射光线的传输路径上,设置为探测第一反射光线的功率,其中,所述第一反射光线为所述发射器发射的且经过第一透反射装置反射的光线;
    所述第二光探测器位于第二反射光线的传输路径上,设置为探测第二发射光线的功率,其中,所述第二反射光线为所述发射器发射的且经过所述光标准具反射的光线,或者为所述发射器发射的且经过第二透反射装置反射的光线;
    所述第一控制器连接至所述第一光探测器和所述第二光探测器,所述第一控制器设置为根据所述第一反射光线的功率和所述第二反射光线的功率调节所述发射器的发射的光线的波长。
  4. 根据权利要求3所述的光收发组件,其中,所述第一控制器设置为通过调节所述发射器的温度来调节所述发射器发射的光线的波长。
  5. 根据权利要求4所述的光收发组件,其中,所述光收发组件还包括第一半导体制冷器TEC,其中,所述第一TEC设置为在所述第一控制器的控制下调节所述发射器的温度。
  6. 根据权利要求3所述的光收发组件,其中,包括以下至少之一:
    当所述光标准具位于所述发射器和所述第一透反射装置之间时,所述第一反射光线为所述发射器发射的且先经过所述光标准具折射后再经过所述第一透反射装置反射后的光线,所述第二反射光线为所述发射器发射的且经过所述光标准具反射的光线;
    当所述第一透反射装置位于所述发射器和所述光标准具之间时,所述第一反射光线为所述发射器发射的且经过所述第一透反射装置反射后的光线,所述第二反射光线为所述发射器发射的且先经过所述第一透反射装置透射后,再经过所述光标准具反射后的光线;
    当所述第一透反射装置位于所述发射器和所述光标准具之间,且,所述光标准具位于所述第一透反射装置和所述第二透反射装置之间时,所述第一反射光线为所述发射器发射的且经过所述第一透反射装置反射后的光线,所述第二反射光线为所述发射器发射的且先经过所述第一透反射装置透射后,再经过所述光标准具折射后,再经过所述第二透反射装置反射后的光线。
  7. 根据权利要求1所述的光收发组件,其中,当所述接收器接收的光线利用所述光标准具的透射窗口进行传输,且所述发射器发射的光线利用所述光标准具的反射窗口进行传输时,所述光收发组件还包括第三光探测器,第四光探测器和第二控制器,其中,
    所述第三光探测器位于第三反射光线的传输路径上,设置为探测第三反射光线的功率,其中,所述第三反射光线为所述发射器发射的且经过第三透反射装置反射的光线;
    所述第四光探测器位于透反射光线的传输路径上,设置为探测透返射光线的功率,其中,所述透返射光线为所述发射器发射的且经过所述光标准具透射的光线,或者为所述发射器发射的且经过第四透反射装置反射的光线;
    所述第二控制器连接至所述第三光探测器和所述第四光探测器,所述第二控制器设置为根据所述第三反射光线的功率和所述透反射光线的功率调节所述发射器的发射的光线的波长。
  8. 根据权利要求7所述的光收发组件,其中,所述第二控制器设置为通过调节所述发射器的温度来调节所述发射器发射的光线的波长。
  9. 根据权利要求8所述的光收发组件,其中,所述光收发组件还包括第二半导体制冷器TEC,其中,所述第二TEC设置为在所述第二控制器的控制下调节所述发射器的温度。
  10. 根据权利要求7所述的光收发组件,其中,包括以下至少之一:
    当所述光标准具位于所述发射器和所述第三透反射装置之间时,所述第三反射光线为所述发射器发射的且先经过所述光标准具反射后再经过所述第三透反射装置反射后的光线,所述透反射光线为所述发射器发射的且经过所述光标准具透射的光线;
    当所述第三透反射装置位于所述发射器和所述光标准具之间时,所述第三反射光线为所述发射器发射的且经过所述第三透反射装置反射后的光线,所述透反射光线为所述发射器发射的且先经过所述第三 透反射装置透射后,再经过所述光标准具透射后的光线;
    当所述第三透反射装置位于所述发射器和所述光标准具之间,且,所述光标准具位于所述第三透反射装置和所述第四透反射装置之间时,所述第三反射光线为所述发射器发射的且经过所述第三透反射装置反射后的光线,所述透反射光线为所述发射器发射的且先经过所述第三透反射装置透射后,再经过所述光标准具反射后,再经过所述第四透反射装置反射后的光线。
  11. 根据权利要求1所述的光收发组件,其中,所述光收发组件还包括隔离器,其中,
    当所述发射器和所述光标准具之间无透反射装置时,所述隔离器位于所述发射器和所述光标准具之间,设置为隔离经过所述光标准具到达所述发射器上的光线;或者,
    当所述发射器和所述光标准具之间设置有透反射装置时,所述隔离器位于所述发射器和所述透反射装置之间,设置为隔离经过所述透反射装置到达所述发射器上的光线。
  12. 根据权利要求1所述的光收发组件,其中,所述光标准具的参数是根据如下信息至少之一进行预先设定的:
    所述发射器发送的光线需要利用的所述光标准具的窗口的类型和所述接收器接收的光线需要利用的所述光标准具的窗口的类型;
    所述发射器、所述接收器和所述光标准具的相对位置关系;
    所述发射器在进行了信号调制后产生的频率啁啾。
  13. 一种光线波长调整方法,应用于权利要求1至12中任一项所述的光收发组件中,当所述发射器发射的光线利用所述光标准具的透射窗口进行传输,且所述接收器接收的光线利用所述光标准具的反射窗口进行传输时,所述方法包括:
    获取探测到的第一反射光线的功率,其中,所述第一反射光线为所述发射器发射的且经过第一透反射装置反射的光线;
    获取探测到的第二发射光线的功率,其中,所述第二反射光线为所述发射器发射的且经过所述光标准具反射的光线,或者为所述发射器发射的且经过第二透反射装置反射的光线;
    根据所述第一反射光线的功率和所述第二反射光线的功率调节所述发射器发射的光线的波长。
  14. 根据权利要求13所述的方法,其中,根据所述第一反射光线的功率和所述第二反射光线的功率调节所述发射器发射的光线的波长包括:
    根据所述第一反射光线的功率和所述第二反射光线的功率调节所述发射器的温度,以调节所述发射器发射的光线的波长。
  15. 一种光线波长调整方法,应用于权利要求1至12中任一项所述的光收发组件中,当所述接收器接收的光线利用所述光标准具的透射窗口进行传输,且所述发射器发射的光线利用所述光标准具的反射窗口进行传输时,所述方法包括:
    获取探测到的第三反射光线的功率,其中,所述第三反射光线为所述发射器发射的且经过第三透反射装置反射的光线;
    获取探测到的透返射光线的功率,其中,所述透返射光线为所述发射器发射的且经过所述光标准具透射的光线,或者为所述发射器发射的且经过第四透反射装置反射的光线;
    根据所述第三反射光线的功率和所述透反射光线的功率调节所述发射器发射的光线的波长。
  16. 根据权利要求15所述的方法,其中,根据所述第三反射光线的功率和所述透反射光线的功率调节所述发射器发射的光线的波 长包括:
    根据所述第三反射光线的功率和所述透反射光线的功率调节所述发射器的温度,以调节所述发射器发射的光线的波长。
  17. 一种光线波长调整装置,应用于权利要求1至12中任一项所述的光收发组件中,当所述发射器发射的光线利用所述光标准具的透射窗口进行传输,且所述接收器接收的光线利用所述光标准具的反射窗口进行传输时,所述装置包括:
    第一获取模块,设置为获取探测到的第一反射光线的功率,其中,所述第一反射光线为所述发射器发射的且经过第一透反射装置反射的光线;
    第二获取模块,设置为获取探测到的第二发射光线的功率,其中,所述第二反射光线为所述发射器发射的且经过所述光标准具反射的光线,或者为所述发射器发射的且经过第二透反射装置反射的光线;
    第一调节模块,设置为根据所述第一反射光线的功率和所述第二反射光线的功率调节所述发射器发射的光线的波长。
  18. 根据权利要求17所述的装置,其中,所述第一调节模块包括:
    第一调节单元,设置为根据所述第一反射光线的功率和所述第二反射光线的功率调节所述发射器的温度,以调节所述发射器发射的光线的波长。
  19. 一种光线波长调整装置,应用于权利要求1至12中任一项所述的光收发组件中,当所述接收器接收的光线利用所述光标准具的透射窗口进行传输,且所述发射器发射的光线利用所述光标准具的反射窗口进行传输时,所述装置包括:
    第三获取模块,设置为获取探测到的第三反射光线的功率,其中, 所述第三反射光线为所述发射器发射的且经过第三透反射装置反射的光线;
    第四获取模块,设置为获取探测到的透返射光线的功率,其中,所述透返射光线为所述发射器发射的且经过所述光标准具透射的光线,或者为所述发射器发射的且经过第四透反射装置反射的光线;
    第二调节模块,设置为根据所述第三反射光线的功率和所述透反射光线的功率调节所述发射器发射的光线的波长。
  20. 根据权利要求19所述的装置,其中,所述第二调节模块包括:
    第二调节单元,设置为根据所述第三反射光线的功率和所述透反射光线的功率调节所述发射器的温度,以调节所述发射器发射的光线的波长。
  21. 一种波分复用无源光网络,包括光纤线路终端OLT、波分复用器WDM、光纤网络单元ONU,其中,
    所述OLT中包括一个或多个第一光模块,所述第一光模块包括权利要求1至12中任一项所述的光收发组件;
    所述WDM与所述OLT连接;
    所述ONU与所述WDM连接,所述ONU的数量为一个或多个,且每个ONU中分别包括一个或多个第二光模块,所述第二光模块包括权利要求1至12中任一项所述的光收发组件。
  22. 一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求13或14中所述的方法,或者执行所述权利要求15或16中所述的方法。
  23. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权 利要求13或14中所述的方法,或者执行所述权利要求15或16中所述的方法。
PCT/CN2018/108580 2018-04-17 2018-09-29 光收发组件、光线波长调整方法及装置 WO2019200845A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810344446.4 2018-04-17
CN201810344446.4A CN110391844B (zh) 2018-04-17 2018-04-17 光收发组件、光线波长调整方法及装置

Publications (1)

Publication Number Publication Date
WO2019200845A1 true WO2019200845A1 (zh) 2019-10-24

Family

ID=68240425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108580 WO2019200845A1 (zh) 2018-04-17 2018-09-29 光收发组件、光线波长调整方法及装置

Country Status (2)

Country Link
CN (1) CN110391844B (zh)
WO (1) WO2019200845A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101852903A (zh) * 2010-06-07 2010-10-06 苏州旭创科技有限公司 用于sfp+的单纤双向光收发模块光组件
WO2011147380A2 (zh) * 2011-06-08 2011-12-01 华为技术有限公司 光发射机、光探测器和无源光网络系统
CN104378171A (zh) * 2013-08-14 2015-02-25 上海贝尔股份有限公司 光线路终端、光网络单元以及光通信系统
CN106443908A (zh) * 2016-11-08 2017-02-22 佑胜光电股份有限公司 光学收发模块及光纤缆线模块

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030148391A1 (en) * 2002-01-24 2003-08-07 Salafsky Joshua S. Method using a nonlinear optical technique for detection of interactions involving a conformational change
WO2006083349A2 (en) * 2004-11-19 2006-08-10 Science & Engineering Services, Inc. Enhanced portable digital lidar system
CN102511138B (zh) * 2011-12-21 2014-10-08 华为技术有限公司 可调光收发器、无源光网络系统及设备
CN203324603U (zh) * 2013-06-26 2013-12-04 华为技术有限公司 一种光滤波装置、光组件及无源光网络系统
CN106550290B (zh) * 2015-09-21 2020-10-02 南京中兴软件有限责任公司 无源光网络功率均衡的方法、装置、终端、单元及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101852903A (zh) * 2010-06-07 2010-10-06 苏州旭创科技有限公司 用于sfp+的单纤双向光收发模块光组件
WO2011147380A2 (zh) * 2011-06-08 2011-12-01 华为技术有限公司 光发射机、光探测器和无源光网络系统
CN104378171A (zh) * 2013-08-14 2015-02-25 上海贝尔股份有限公司 光线路终端、光网络单元以及光通信系统
CN106443908A (zh) * 2016-11-08 2017-02-22 佑胜光电股份有限公司 光学收发模块及光纤缆线模块

Also Published As

Publication number Publication date
CN110391844B (zh) 2022-04-19
CN110391844A (zh) 2019-10-29

Similar Documents

Publication Publication Date Title
US8559821B2 (en) Wavelength stabilization and locking for colorless dense wavelength division multiplexing transmitters
US7317874B2 (en) Adaptive optical transceiver for fiber access communications
US9628192B2 (en) Optical transmitter, wavelength alignment method, and passive optical network system
US8606107B2 (en) Colorless dense wavelength division multiplexing transmitters
US8000358B2 (en) Power monitoring system for a parallel optical transmitter
US7843629B2 (en) Periodically filtered broadband light source
WO2008022579A1 (fr) Dispositif et procédé d'alignement du mode d'une source lumineuse, ainsi que système de réseau optique passif
CN101779348B (zh) 用于外腔二极管激光器的半导体光学放大器
WO2012119391A1 (zh) 可调激光器、光模块和无源光网络系统
CN103931125A (zh) 波长可选择激光装置以及具有该波长可选择激光装置的设备及系统
US9136972B2 (en) Controlling an optical transmitter that supports multiple modulation formats and baud rates
WO2013097183A1 (zh) 可调激光器波长初始化方法、装置和系统
RU2563801C2 (ru) Способ и устройство для приема оптического входного сигнала и передачи оптического выходного сигнала
US9166691B2 (en) Method for coupling an emitting device to a frequency splitter in an optical passive network
WO2019200845A1 (zh) 光收发组件、光线波长调整方法及装置
CN201608423U (zh) 激光器和光收发机
WO2020135662A1 (zh) 光收发组件,信号光的管理方法及装置,pon系统,电子装置及存储介质
US20230275672A1 (en) Electronic device and method for tuning wavelenth in optical network
WO2020042484A1 (zh) 双载波集成光器件及光电模块
US7133136B2 (en) Wavelength monitor
CN101895795B (zh) 无源光网络中互激励多波长动态调度的光网络单元装置
JP4780694B2 (ja) 波長安定化レーザモジュール及びレーザ光の波長安定化方法
US20040090783A1 (en) Tunable light source module
Jayasinghe et al. Wavelength switchable ONU transmitter using a self-seeded RSOA for reconfigurable optical VPN over WDM PON
US20070091300A1 (en) Light monitoring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915119

Country of ref document: EP

Kind code of ref document: A1