WO2020135424A1 - 一种列车等效缩模构建方法及列车等效缩小设备 - Google Patents

一种列车等效缩模构建方法及列车等效缩小设备 Download PDF

Info

Publication number
WO2020135424A1
WO2020135424A1 PCT/CN2019/127939 CN2019127939W WO2020135424A1 WO 2020135424 A1 WO2020135424 A1 WO 2020135424A1 CN 2019127939 W CN2019127939 W CN 2019127939W WO 2020135424 A1 WO2020135424 A1 WO 2020135424A1
Authority
WO
WIPO (PCT)
Prior art keywords
train
scale factor
size
car
energy absorption
Prior art date
Application number
PCT/CN2019/127939
Other languages
English (en)
French (fr)
Inventor
姚曙光
闫凯波
陆思思
许平
黄启
Original Assignee
中南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中南大学 filed Critical 中南大学
Publication of WO2020135424A1 publication Critical patent/WO2020135424A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation

Definitions

  • the invention belongs to the technical field of vehicles, and in particular relates to a method for constructing a train equivalent reduction mold and a train equivalent reduction equipment.
  • the reduction body is made of a mass with a strength higher than the energy absorption structure.
  • the reduction ratio energy absorption structure is made of honeycomb aluminum or aluminum foam.
  • the mass body of the reduction ratio is made of a mass with a strength higher than the energy absorption structure, which causes the center of gravity of the train to change and the mass of the reduction body to be too large to meet the reduction ratio criterion; and the mass body is thinner than the original body
  • the wall structure increases the train stiffness, and the internal structure of the car body is significantly different from the actual train. It is impossible to guarantee the similarity of the car body stiffness. It is easy to cause the car body dynamic response to be inconsistent, it is difficult to accurately simulate the dynamic response of the train collision, and it cannot be truly restored.
  • the collision process of the train in addition, the similarity of the appearance of the car body is not taken into consideration.
  • the shrinkage ratio of the car body and the original car body is quite different, and the resulting shrinkage mold needs to be further improved.
  • the object of the present invention is to provide a method for constructing an equivalent train reduction mold and a train equivalent reduction equipment, which divides a train into a head car and an intermediate car, and then divides the head car into a deformation energy absorbing area and a non-deformation area, respectively Make partition design.
  • the equivalent compression ratio of impact force is adopted for the coupler crushing tube and the main energy absorption device of the deformation energy absorption zone, and the equivalent reduction ratio of stiffness is adopted for the bearing characteristics of the non-deformation zone and the intermediate car. Satisfying the similar relationship of dynamic characteristics and structural similarity, it can ensure that the train impact force and the rigidity of the car body are similar, accurately restore the train collision process, and obtain a more reliable reduction of the head car.
  • the energy-absorbing guide provided by the present invention is compressed during the collision of the vehicle body, and the energy-absorbing impact energy is compressed. At the same time, relying on the guide rod can further ensure that the adjacent vehicle body will not separate during the collision process, and is closer to the actual coupler Structure, with good energy absorption characteristics and guidance.
  • a method for constructing an equivalent reduction of a train includes the following steps:
  • the types of scale factors of the dynamic parameters include at least force scale factor, displacement scale factor, size scale factor, stiffness scale factor and mass scale factor;
  • the deformation energy absorption area includes the head vehicle energy absorption device and the driver's cab, the head vehicle energy absorption device includes a coupler buffer, a coupler crush tube, and a main energy absorption device, and the non-deformation area is a manned area of the head vehicle ;
  • the feature size includes length, width, height, thickness
  • the deformation energy absorption characteristic curve is the relationship curve between compression displacement and impact force, and the area surrounded by the curve is the energy absorption;
  • the energy-absorbing guide is connected to two adjacent cars on the equivalent shrink-mold of the train.
  • the energy-absorbing guide includes an energy-absorbing part and a guide rod.
  • a hole is formed in the middle of the energy-absorbing part, and the guide rod penetrates the energy-absorbing part
  • the through hole in the middle of the piece and the two ends of the guide rod are respectively fixed on two adjacent carriages.
  • the invention is divided into a coupler buffer, a coupler crushing tube, a main energy absorption device, and a driver's cab according to the structural characteristics of the train and the changes in the collision process, that is, there are deformable energy absorbing regions and non-deformable regions, intermediate vehicles and deformable energy absorbing regions There are four stages of deformation. Therefore, the present invention divides the train into a head car and an intermediate car, and the head car is divided into a deformation energy absorption zone and a non-deformation zone. For the energy absorption characteristics of the deformation energy absorption zone, the impact force equivalent reduction ratio is adopted. That is, the energy absorption characteristic curve is used to design the relevant dimensions for the coupler crush tube and the main energy absorption device.
  • the impact force equivalent is adopted; the equivalent reduction ratio of stiffness is adopted for the load-bearing characteristics of the non-deformation zone and the middle car, which is based on the main function of the non-deformation zone and the middle car is to carry, which requires high stiffness to achieve no deformation during the collision process Therefore, the rigidity equivalent is adopted.
  • the present invention is designed by the actual needs and applications of each part of the train, and the design of the equivalent reduction mold of the train not only meets the similar relationship of dynamic characteristics, but also meets the structural similarity, which can ensure the impact force of the train and The rigidity of the car body is similar, which accurately restores the train collision process.
  • the present invention designs an energy-absorbing guide member, which includes an energy-absorbing member and a guide bar, based on the vehicle body during the collision, there will be lateral and vertical offset, and the actual train coupler has anti-deflection characteristics
  • the two ends of the guide rod of the present invention are respectively fixed to adjacent cars.
  • the lateral and vertical deviation of the car body can be effectively suppressed.
  • It also has anti-deflection characteristics and is closer to the actual coupler structure of the train , So that the vehicle body moves as much as possible along the length direction during the collision, and plays the same guiding role as the coupler in terms of vehicle body movement.
  • the present invention separately designs the coupler buffer, the coupler crushing tube, the main energy absorption device, and the driver's cab in the deformed energy absorption zone, so that the internal structure of each part of the head car's contraction mold is more fit.
  • the energy absorbing component in the coupling coupler includes a connection buffer and a connection crush tube
  • the energy absorption component in the energy absorption guide includes a connection buffer simulator and a connection crush tube simulator; the connection buffer
  • the impact force is equal to the product of the strength of the element and the cross-sectional area
  • connection buffer simulation piece is a rubber simulation piece
  • connection crush tube simulation piece is a honeycomb aluminum simulation piece
  • connection buffer simulation piece and the connection crush pipe simulation piece are both cylindrical.
  • the cross-sectional size of the connecting crush tube simulation part in the energy-absorbing member is designed based on the equivalent contraction ratio of the impact force to ensure that the impact force is equivalent, wherein the deformation energy absorption characteristic curve of the connecting crush tube is a straight line, that is, the impact force is constant .
  • the cross-sectional area of the connecting crush tube simulation is equal to the cross-sectional area of the cylinder minus the cross-sectional area of the guide rod.
  • the process of constructing the coupler crushing tube and the main energy absorption device in the head car based on the deformation energy absorption characteristic curve of the train equivalent contraction mold and the size scale factor includes:
  • the impact force is equal to the product of the element strength and the cross-sectional area.
  • the process of obtaining the scale factor in S1 is: based on the dynamic balance equation of the thin-walled plate and shell, the similarity theory and the equation analysis method are used to obtain the scale factor of the dynamic parameters of the head car contraction mode;
  • the head train adopts a thin-walled plate and shell structure.
  • the scale factor of the dynamic parameter further includes a time scale factor, a speed scale factor, an acceleration scale factor, and an energy scale factor;
  • ⁇ l
  • ⁇ F ⁇ 2
  • ⁇ t
  • ⁇ m ⁇ 3
  • ⁇ k
  • ⁇ E ⁇ 3
  • is the size scale factor
  • ⁇ F , ⁇ t , ⁇ v , ⁇ a , ⁇ m , ⁇ k , and ⁇ E are the force scale factor, time scale factor, speed scale factor, acceleration scale factor, and mass scale factor, respectively , Stiffness scale factor, energy scale factor.
  • the present invention considers that the train is mainly a thin-walled aluminum alloy structure, so the present invention analyzes the similarity of the dynamic characteristics of the thin-walled plate and shell, so that the resulting train shrinks more closely matches the actual train, and the reliability of the scale factor is obtained. Also higher.
  • the subscripts p and m denote the full-size train head car and the head car mold reduction, respectively.
  • the boundary condition equations of the prototype and the reduced mold are consistent regardless of whether the reduced-mold structure is distorted, and no special consideration is needed.
  • the mode function W(x,y) The scale factor is only related to the size scale factor.
  • equation (5) can be written as:
  • the scale factor of the natural frequency ⁇ ⁇ of the elastic thin plate is 1/ ⁇ , then the time scale factor
  • the train body of the equivalent reduced mold of the train is composed of a square tube spliced, and the square tube is hollow.
  • the car body is composed of several small square pipes.
  • the Gao Guangjun which uses a mass block with a strength higher than the energy absorption structure, the existing technology will cause the mass of the car body to be too large and it is difficult to meet the shrinkage criterion. Can greatly reduce the weight of the car body, easy to meet the equivalent criteria. At the same time, the stiffness problem caused by the mass in the prior art can be avoided.
  • the coupler crushing tube adopts a cylindrical honeycomb aluminum; the main energy absorption device uses a rectangular parallelepiped honeycomb aluminum; and the buffer adopts a rubber analog buffer.
  • the deformable area in the equivalent reduction mold of the train is generated by 3D printing.
  • the body of the train equivalent reduction mold is an aluminum alloy body.
  • a train equivalent reduction device based on the above method includes a head car and an intermediate car, wherein the head car is divided into a deformation energy absorbing area and a non-deformation area, and energy absorbing guides are provided between adjacent cars;
  • the deformed energy absorbing area includes a head car energy absorbing device and a driver's cab.
  • the head car energy absorbing device includes a coupler buffer, a coupler crush tube, and a main energy absorbing device;
  • the coupler buffer is a rubber analog buffer
  • the coupler crush tube is a cylindrical honeycomb aluminum
  • the main energy absorption device is a rectangular parallelepiped honeycomb aluminum
  • the energy absorbing guide is connected to two adjacent cars on the train equivalent reduction equipment.
  • the energy absorbing guide includes an energy absorbing part and a guide bar.
  • the energy absorbing part has a through hole in the middle, and the guide bar penetrates the energy absorbing part
  • the through hole in the middle of the piece and the two ends of the guide rod are respectively fixed on two adjacent carriages.
  • the present invention is divided into a coupler buffer, a coupler crushing tube, a main energy absorption device in the deformation energy absorption zone and the non-deformation zone, the intermediate car and the deformation energy absorption zone.
  • the driver's cab is deformed in four stages. Therefore, the present invention divides the train into a head car and an intermediate car, and the head car is divided into a deformation energy absorption zone and a non-deformation zone. Ratio, that is, the energy absorption characteristic curve is used to design the relevant dimensions for the coupler crushing tube and the main energy absorption device.
  • the present invention designs the partitions based on the actual needs and applications of each part of the train.
  • the established equivalent contraction of the train not only meets the similar relationship of dynamic characteristics, but also meets the structural similarity, which can ensure the impact of the train.
  • the force and the rigidity of the car body are similar, and the train collision process is accurately restored.
  • the present invention designs an energy-absorbing guide, which includes an aluminum honeycomb cylinder and a guide rod.
  • the size of the aluminum honeycomb cylinder is designed based on the equivalent reduction ratio of the impact force, which is simulated by the connection crushing tube of the aluminum honeycomb Parts and rubber connection buffer simulation parts to simulate the energy absorption characteristics of the connecting coupler during the actual collision of the train; on the other hand, based on the car body during the collision, there will be lateral and vertical offsets, and the actual train coupler
  • the two ends of the guide rod of the present invention are fixed to adjacent cars respectively. During the collision of the car body, it can effectively suppress the lateral and vertical offset of the car body. It also has anti-deflection characteristics and is closer to the actual
  • the coupler structure of the train makes the car body move along the length direction as much as possible during the collision, and plays the same guiding role as the coupler in the movement of the car body.
  • the present invention considers that the train is mainly a thin-walled aluminum alloy structure. Therefore, the present invention pushes the scale factor of the dynamic parameters of the thin-walled plate and shell, which is more suitable for the reduction ratio of the high-speed train whose car body is a thin-walled aluminum alloy structure.
  • the invention adopts hollow square tube splicing to form the car body, which greatly reduces the weight of the car body, and is easy to meet the principle of equivalence, especially compared with the use of mass blocks for the car body in the Gaoguang Army program, which solves the reduction of the car body.
  • the problem of excessive mass at the same time, can effectively avoid the increase of train stiffness due to the mass, which leads to the problem that the internal structure of the scaled car body is significantly different from the actual train, and the dynamic response of the car body is inconsistent.
  • the present invention is made by a square tube and The reinforcement ribs are arranged on the car body, so that the equivalent model meets the rigidity equivalent, and the internal structure of the train equivalent contraction mold is closer to the actual train.
  • the similarity of the appearance of the car body is not considered in the Gao Guangjun program, and the appearance of the shrinkage car body and the original car body are quite different.
  • the invention divides the locomotive into a deformable area and a passenger area.
  • the deformable area adopts the 3D printing processing method.
  • the shape of the passenger area is relatively regular.
  • an equivalent model of the passenger area is established.
  • the equivalent model can be welded in the deformable area and the passenger area to complete the small-scale equivalent model of the head train, the shape rule of the intermediate train, and based on the design model of the equivalent model, an equivalent model of the intermediate train is established.
  • the trains are highly similar.
  • FIG. 1 is a flow chart of a method for constructing an equivalent reduced-mold train provided by the present invention
  • FIG. 2 is a schematic diagram of the head car in the equivalent reduction mold of the train provided by the present invention.
  • FIG. 3 is a schematic diagram of an intermediate car in the equivalent contraction of the train provided by the present invention.
  • FIG. 5 is a schematic diagram of two different angles of the energy absorbing guide provided by the present invention.
  • Fig. 6 is a comparison analysis diagram of the simulation result of the full-size head car and the simulation result of the reduced head car equivalent model; wherein, (a) is the impact force-time curve, and (b) is the acceleration-time curve, ( c) The picture shows the compression stroke-time curve of the energy absorption device of the first car;
  • Fig. 7 is a comparison and analysis diagram of the simulation results of the full-scale secondary car and the restored equivalent model of the secondary car; (a) the graph is the impact force-time curve, (b) the acceleration-time curve, ( c) The picture shows the compression stroke-time curve of the connected coupler;
  • Figure 8 Comparative analysis of the energy distribution results of each car body obtained by full-scale train simulation and train small-scale equivalent model simulation.
  • the figure is a full-size train
  • the train is equivalent train shrinkage
  • a method for constructing an equivalent train reduction model provided by the present invention mainly includes the following four aspects:
  • the present invention considers that the train is a thin-walled aluminum alloy structure, so the similarity relationship of the dynamic characteristics of the thin-walled plate and shell is analyzed, that is, the dynamic balance equation based on the thin-walled plate and shell is similar
  • Theoretical and equation analysis methods are used to obtain the scale factor of the dynamic parameters of the head car's contraction mode.
  • the scale factor obtained is shown in Table 1 above. I will not repeat them here.
  • the present invention divides the train into a head train and an intermediate train according to the train structure.
  • Head car zoning design The train impact process is divided into two stages, the first stage is the deformation energy absorption stage, which is compressed by the energy absorption device at the end of the train and the driver's cab to absorb the collision energy; the second stage is the load-bearing stage, the train Carrying in the manned area, the car body does not deform. Therefore, as shown in FIG. 2, the structure of the head train is divided into zones, the deformed energy absorption zone includes the head train energy absorption device and the driver's cab, and the non-deformed zone is a manned zone.
  • the head car energy absorption device includes a coupler buffer, a coupler crushing tube, and a main energy absorption device.
  • the abscissa of the deformation energy absorption characteristic curve is the compression displacement
  • the ordinate is the impact force
  • the area surrounded by the curve is the energy absorption.
  • the curve of the first car describes the compression stage of the energy-absorbing deformation zone when the train collides.
  • the coupler buffer is compressed to play a buffering role, that is, as the compression displacement increases, the impact force increases; then the coupler crushes the tube and the main energy absorption And the driver's cab is sequentially compressed and deformed.
  • the compression stage of the coupler crushing tube and the main energy absorption, according to their corresponding impact forces, remain unchanged at each stage.
  • the dimensions of the coupler buffer, the coupler crushing tube, the main energy absorption device and the cab in the deformation energy absorption area of the head car shrink mold are designed.
  • coupler buffers multiply the characteristic size of the coupler buffer on the full-size head train by the size scale factor to obtain the corresponding characteristic size of the coupler buffer on the front car's reduced mold; multiply the mass of the coupler buffer on the full-size train head car Use the mass scale factor to get the corresponding mass of the coupler buffer on the head car's contraction mold.
  • rubber buffers are often used in actual trains, so rubber analog coupler buffers are used in the contraction of the first train.
  • the coupler crushing tube on the one hand, the cross-sectional area of the coupler crushing tube on the headcar compression mold is designed based on the compression platform force F 1m corresponding to the coupler crushing tube's deformation energy absorption characteristic curve;
  • the cylindrical honeycomb aluminum is used to simulate the coupler crushing tube.
  • the pressure of the honeycomb aluminum is multiplied by the cross-sectional area as the compression platform force.
  • the corresponding coupler crushing tube can be obtained by selecting honeycomb aluminum with different strengths and changing the cross-sectional area of the honeycomb aluminum. Compression platform force F 1m .
  • the cross-sectional area of the main energy absorbing device on the head car compression mold is designed according to the compression platform force F 2m corresponding to the main energy absorbing device's deformation energy absorption characteristic curve.
  • a rectangular parallelepiped aluminum honeycomb is used to simulate the main energy absorption device.
  • the pressure of the honeycomb aluminum is multiplied by the cross-sectional area as the compression platform force.
  • the corresponding coupler crush tube can be obtained by selecting honeycomb aluminum with different strengths and changing the cross-sectional area of the honeycomb aluminum.
  • the compression platform force F 2m is used to simulate the main energy absorption device.
  • the driver's cab multiply the characteristic size of the driver's cab on the full-size train head multiplied by the size scale factor to obtain the corresponding characteristic size (including length, width, height, thickness) of the driver's cab on the head car's reduced mold. Multiply the mass of the driver's cab on the front of the full-size train by the mass scale factor to obtain the corresponding mass of the driver's cab on the contract of the head car.
  • the deformable area which uses 3D printing to generate the energy absorption device of the head car and the driver's cab, so that its appearance is closer to the actual train, especially the driver's cab.
  • the car body material is made of aluminum alloy square tube welded, and the deformable area and the non-deformable area are connected by welding.
  • About size equivalent and mass equivalent Based on the size equivalent reduction ratio, multiply the feature size of the non-deformed area and intermediate car on the full-size train head car by the size scale factor to get the characteristics of the non-deformed area and intermediate car on the head car shrink mold size. Based on the mass equivalent reduction ratio, the masses of the non-deformed area and the middle car on the full-size train head car are multiplied by the mass scale factor to obtain the mass of the non-deformed area and the middle car on the head car shrink mold.
  • the car body of the invention is formed by stitching hollow square tubes, and the car body is preferably made of aluminum alloy. If the square tube is directly welded, the rigidity of the equivalent contraction of the train will be too small, and the car body during the collision It is extremely easy to bend.
  • the present invention has designed reinforcing ribs.
  • the reinforcing ribs are made of aluminum alloy square tubes.
  • the adjacent reinforcing ribs are made of aluminum alloy square tube welding machines, as shown in FIG. 4. After calculating the surface and adding the small-scale equivalent model of the train before the reinforcement structure, the stiffness of the car body after restoration is 133kN/mm, which is far less than the actual stiffness of the train.
  • the small-scale equivalent model of the train is restored
  • the stiffness of the rear car body is 224kN/mm
  • the stiffness of the original car body is 230kN/mm
  • the relative error is 2.6%.
  • the stiffness of the equivalent model is increased. Car body in the middle.
  • the stiffness of the non-deformed area and each intermediate car is multiplied by the stiffness scale factor to obtain the stiffness of the non-deformed area and each intermediate car; and the corresponding stiffness is obtained by arranging the reinforcement ribs.
  • the non-deformed area and the reinforcement ribs on each intermediate car are arranged at equal intervals along the length direction.
  • the present invention designs an energy-absorbing guide as a connecting member between adjacent cars.
  • the energy-absorbing guide member includes an energy-absorbing member and a guide member.
  • the middle part of the energy-absorbing member has a through hole, the guide rod penetrates the middle through-hole of the energy-absorbing member, and the two ends of the guide rod are respectively fixed to two adjacent cars, such as pins fixed.
  • the energy absorbing structure between two adjacent cars is a connecting coupler.
  • the energy absorbing parts in the equivalent reduction mold of the train include connecting buffer simulation parts and connecting crush tube simulation parts; connecting buffer simulation parts and The connecting buffer in the connecting coupler corresponds to the connecting crushing pipe simulation piece and the connecting crushing pipe in the connecting coupler corresponds to.
  • the invention multiplies the characteristic size of the connecting buffer in the full-size train by the size scale factor to obtain the characteristic size of the connecting buffer analog in the train equivalent reduction mold;
  • the impact force is equal to the product of the strength of the connecting crush tube simulation and the cross-sectional area.
  • the relevant tests of the modeling process of the present invention are simulated in software, such as finite element analysis software, so the relevant collision parameters need to be set before implementation, such as setting the loading force of the head car reduction mode to be equal to the full size train head car
  • the loading force is multiplied by the force scale factor
  • the collision speed of the head car shrinkage is equal to the collision speed of the full-size train head car multiplied by the speed scale factor
  • the collision time of the head car reduction mould is equal to the collision time of the full-size train head car times the time Scale Factor. Setting the collision parameters according to the scale factor makes the collision conditions equivalent.
  • the collision force-time curve, acceleration-time curve of the vehicle body and the compression stroke-time curve of the energy absorbing structure in the collision process are in good agreement.
  • the maximum impact force of the vehicle body is 4200kN, and the maximum acceleration of the vehicle body is 2.7g.
  • the maximum compression stroke of the energy structure is 430mm, as shown in Figure 7.
  • the energy distribution mode of each vehicle body after collision is shown in Figure 8, where the vehicle numbers 1-8 correspond to the head car-tail car number.
  • the train equivalent shrinkage collision energy distribution mode is consistent with the full-size train collision energy distribution law. By the end of the train, the energy absorption of each car body decreases in turn, so the equivalent reduction model of the train can truly feedback the dynamic response characteristics of the full-size train collision.
  • Its equivalent model impact force, acceleration, compression stroke of the energy absorbing structure and collision energy distribution The rules are basically consistent with full-size trains.
  • the actual train car body is made of aluminum alloy thin-wall structure welded, and the interior of the vehicle is hollow.
  • the shrinkage car body is made of a mass with a strength higher than the energy-absorbing structure, which increases the train stiffness and reduces the internal structure of the car body.
  • the car body is made of aluminum alloy square tube, which greatly reduces the weight of the car body.
  • the actual train collision mass is 55 tons.
  • the reduced collision mass of the train equivalent reduction mold is 54.3 tons, the relative error is only 1.3%, and the internal structure of the train equivalent reduction mold is the same as the actual train internal structure, which is hollow. structure.
  • the equivalent contraction of the train is consistent with the actual train impact force and acceleration response, and the relative error is less than 0.5%.
  • the relative error of the equivalent model and the actual train energy absorption structure compression stroke is less than 0.8%; the square tube welding meeting is used directly As a result, the equivalent model stiffness is too small, and the car body is prone to bend during the collision.
  • the present invention has designed a reinforcing rib structure to effectively replace the rib structure in the original car body, which increases the equivalent model rigidity and the original car body stiffness.
  • the vehicle body stiffness after reduction of the train equivalent reduction mode is 224kN/mm, and the relative error is 2.6%.
  • the system divides the locomotive into a deformable area and a passenger area.
  • the deformable area uses a 3D printing processing method.
  • the shape of the passenger area is relatively regular. Based on the design model of the equivalent model, the equivalent of the passenger area is established.
  • Model, the deformable area and the passenger area of the equivalent model are finally welded to complete the equivalent model of the first train, the appearance is similar to the height of the original car body; the shape rule of the intermediate train of the train, based on the design model of the equivalent model, establish the equivalent of the intermediate train The model; the actual train vehicles are connected by couplers, which has good energy absorption characteristics and guidance.
  • the existing technology “the method and system for constructing the equivalent model of the train shrinkage ratio for collision experiments” only considers the energy absorption structure The energy characteristics are equivalent, the honeycomb aluminum or foamed aluminum is used for the energy-absorbing structure of the shrinkage ratio, and the guiding function of the energy-absorbing structure is not considered. And orientation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Vibration Dampers (AREA)

Abstract

本发明公开了一种列车等效缩模构建方法及列车等效缩小设备,该方法包括获取列车等效缩模相比于全尺寸列车的各个动力学参数的比例因子;依据列车碰撞过程中的变形吸能特征将列车分为头车和中间车以及将头车划分为变形吸能区和非变形区;基于动力学参数的比例因子对列车等效缩模的头车、中间车分别进行构建;依据全尺寸列车上相邻车厢间的连接车钩的变形吸能特性构建列车等效缩模上相邻车厢间的吸能导向件,将基于尺寸比例因子计算蜂窝铝圆柱体的长度;依据连接车钩的结构尺寸以及变形吸能特性曲线计算所述吸能导向件的截面面积。本发明构建的头车缩模能保证列车撞击力和车体刚度相似,精确还原列车碰撞过程,可靠度更高。

Description

一种列车等效缩模构建方法及列车等效缩小设备 技术领域
本发明属于车辆技术领域,具体涉及一种列车等效缩模构建方法及列车等效缩小设备。
背景技术
列车碰撞事故造成的重大人员伤亡触目惊心。与汽车、船舶等交通工具单体撞击不同,列车由多节车辆编组而成,质量大,运行速度高,冲击动能远远高于汽车碰撞。列车撞击过程中既有单节车的撞击破坏问题,又有各车辆之间的耦合互撞等问题。由于碰撞时车辆间耦合作用,碰撞行为演化过程复杂多变,采用数值计算仿真方法,难以精确模拟列车—线路—运行环境构成的非线性系统所产生的复杂动态响应;采用全尺寸车辆实物碰撞及整列车多体碰撞试验费用巨大,因此,采用列车小尺度等效模型,研究车辆或整列车碰撞力学行为,获取和优化列车碰撞吸能参数方法,是研制耐冲击吸能列车的重要手段。
针对现有的列车小尺度等效模型,中南大学姚曙光等人提出了“一种列车等效缩比模型碰撞试验装置及方法”,该装置包括控制系统、测力墙、列车等效缩比模型、驱动车、驱动车发射系统;试验方法包括将运动等效缩比模型撞击测力墙或静止等效缩比模型,通过开展试验,精确确定影响爬车、跳车、之字形脱轨等成因,降低试验难度,节约试验成本。但是其为给出列车等效缩模的具体构建方法;此外,中南大学高广军等人提出了“用于碰撞实验的列车缩比等效模型构建方法及其系统”,基于缩比模型和实际列车撞击加速度一致性原则,在不考虑阻尼的情况下对动力学方程进行积分换算得到列车质量与撞击力缩比比例因子以及列车速度与时间的缩比比例因子,根据比例因子制定缩比准则,从而构建缩比模型,缩比车体选用强度高于吸能结构的质量块制作,缩比吸能结构选用蜂窝铝或者泡沫铝制作。然而,其缩比车体选用强度高于吸能结构的质量块制作,导致列车重心改变以及导致缩比车体质量过大,难以满足缩比准则;且质量块车体相对于原车体薄壁结构增加了列车刚度,缩比车体内部结构与实际列车有较大差异,无法保证车体刚度相似,易导致车体动力学响应规律不一致,难以精确模拟列车碰撞动力学响应,无法真实还原列车碰撞过程;此外,未考虑车体外观的相似性,缩比车体和原车体外观相差较大,得到的缩模还需要进一步改善。
发明内容
本发明的目的是提供一种列车等效缩模构建方法及列车等效缩小设备,其将列车分为头车和中间车,再将头车分为变形吸能区和非变形区,进而分别进行分区设计。针对变形吸能区的车钩压溃管和主吸能装置采用撞击力等效缩比,针对非变形区和中间车的承载特性采用 刚度等效缩比,建立的列车头车等效缩模既满足动力学特性相似关系,也满足结构相似性,能保证列车撞击力和车体刚度相似,精确还原列车碰撞过程,得到可靠度更高的列车头车缩模。此外,本发明设置的吸能导向件在车体碰撞过程中,吸能件被压缩吸能撞击能量,同时依托导向杆可以进一步保证相邻车体在碰撞过程中不会分离,更接近实际车钩结构,兼备良好的吸能特征和导向性。
一方面,本发明提供的一种列车等效缩模构建方法,包括如下步骤:
S1:获取列车等效缩模相比于全尺寸列车的各个动力学参数的比例因子;
其中,所述动力学参数的比例因子类型至少包括力比例因子、位移比例因子、尺寸比例因子、刚度比例因子和质量比例因子;
S2:依据列车碰撞过程中的变形吸能特征将列车分为头车和中间车以及将头车划分为变形吸能区和非变形区;
其中,变形吸能区包括头车吸能装置和司机室,所述头车吸能装置包括车钩缓冲器、车钩压溃管、主吸能装置,所述非变形区为头车的载人区;
S3:基于动力学参数的比例因子对列车等效缩模的头车、中间车分别进行构建;
a:基于尺寸比例因子和质量比例因子将全尺寸列车中车钩缓冲器、司机室、非变形区以及各个中间车的特征尺寸和质量分别乘以对应的尺寸比例因子、质量比例因子得到列车等效缩模中车钩缓冲器、司机室、非变形区、各个中间车相匹配的特征尺寸和质量;
其中,特征尺寸包括长、宽、高、厚度;
b:将全尺寸列车的变形吸能特性曲线上横、纵坐标分别乘以相匹配的动力学参数的比例因子得到列车等效缩模的变形吸能特性曲线,再基于列车等效缩模的变形吸能特性曲线以及尺寸比例因子构建头车中的车钩压溃管和主吸能装置;
其中,变形吸能特性曲线为压缩位移与撞击力的关系曲线,曲线包围的面积为吸能量;
c:基于刚度比例因子将全尺寸列车中非变形区以及各个中间车的刚度乘以刚度比例因子得到列车等效缩模中相对应非变形区、中间车的刚度;再在列车等效缩的非变形区、各个中间车上排布加强筋直至分别达到对应刚度;
S4:依据全尺寸列车上相邻车厢间的连接车钩的结构尺寸以及变形吸能特性构建列车等效缩模上相邻车厢间的吸能导向件;
所述吸能导向件连接列车等效缩模上相邻的两个车厢,所述吸能导向件包括吸能件以及导向杆,所述吸能件中部开通孔,所述导向杆贯穿吸能件中部通孔且导向杆两端分别固定在相邻的两节车厢上。
本发明根据列车结构特点以及碰撞过程中的变化,即存在变形吸能区和非变形区、中间 车以及变形吸能区中分为车钩缓冲器、车钩压溃管、主吸能装置、司机室四个阶段的变形,因此本发明将列车分为头车和中间车,头车又划分为变形吸能区和非变形区,针对变形吸能区的吸能特性采用撞击力等效缩比,即针对车钩压溃管和主吸能装置采用吸能特性曲线来设计相关尺寸,这是基于变形吸能区的主要功能是通过塑性变形来吸收碰撞能量,要求撞击力平稳以实现有序变形,因此采用撞击力等效;针对非变形区和中间车的承载特性采用刚度等效缩比,这是基于非变形区和中间车主要功能是承载,其要求刚度高以实现碰撞过程中不发生变形,因此采用刚度等效,本发明通过列车各部分的实际需求与应用,分区进行设计,建立的列车等效缩模既满足动力学特性相似关系,也满足结构相似性,能保证列车撞击力和车体刚度相似,精确还原列车碰撞过程。
尤其是,本发明设计了一种吸能导向件,其包括吸能件以及导向杆,基于车体在碰撞过程中,会有横向和垂向的偏移,而实际列车的车钩具有防偏特性,本发明的导向杆两端分别固定在相邻的车厢上,在车体碰撞过程中,能有效抑制车体的横向和垂向偏移,同样具有防偏特性,更接近实际列车的车钩结构,使得在碰撞过程中车体尽量沿着长度方向运动,在车体运动方面上起到了车钩相同的导向作用。
具体的,本发明针对变形吸能区中的车钩缓冲器、车钩压溃管、主吸能装置、司机室分别进行了设计,使头车缩模中各个部分的内部结构与实际列车内部结构更加贴合。
进一步优选,所述连接车钩中吸能部件包括连接缓冲器和连接压溃管,所述吸能导向件中吸能件包括连接缓冲器模拟件、连接压溃管模拟件;所述连接缓冲器模拟件和连接压溃管模拟件的构建过程如下:
将全尺寸列车中连接缓冲器的特征尺寸乘以尺寸比例因子得到列车等效缩模中连接缓冲器模拟件的特征尺寸;
将全尺寸列车中连接压溃管的变形吸能特性曲线的横、纵坐标分别乘以相匹配的动力学参数的比例因子得到吸能导向件中连接压溃管模拟件的变形吸能特性曲线,并获取连接压溃管模拟件的撞击力;再根据连接压溃管模拟件的撞击力计算出连接压溃管模拟件的截面面积;
其中,撞击力等于元件强度与截面面积的乘积;
以及将全尺寸列车中连接压溃管的长度乘以尺寸比例因子得到列车等效缩模中连接压溃管模拟件的长度。
所述连接缓冲器模拟件为橡胶模拟件,所述连接压溃管模拟件为蜂窝铝模拟件,所述连接缓冲器模拟件和连接压溃管模拟件均为圆柱体状。基于撞击力等效缩比来设计吸能件中连接压溃管模拟件的截面尺寸,以保证撞击力等效,其中,连接压溃管的变形吸能特性曲线为一条直线,即撞击力恒定。连接压溃管模拟件的截面面积等于圆柱体截面面积减去导向杆的 截面面积。
进一步优选,所述基于列车等效缩模的变形吸能特性曲线以及尺寸比例因子构建头车中的车钩压溃管和主吸能装置的过程包括:
将全尺寸列车头车中车钩压溃管、主吸能装置的长度分别乘以尺寸比例因子得到列车等效缩模头车中车钩压溃管、主吸能装置的长度;
将头车缩模的变形吸能特性曲线上车钩压溃管对应的撞击力、主吸能装置对应的撞击力分别计算头车缩模上车钩压溃管、主吸能装置的横截面积;
其中,撞击力等于元件强度与截面面积的乘积。
进一步优选,S1中获取比例因子过程为:基于薄壁板壳的动力平衡方程采用相似理论和方程分析法得到头车缩模的动力学参数的比例因子;
其中,列车头车采用薄壁板壳结构。
进一步优选,所述动力学参数的比例因子还包括时间比例因子、速度比例因子、加速度比例因子、能量比例因子;
其中,各类动力学参数的比例因子的关系如下:
λ l=λ、λ F=λ 2、λ t=λ、λ v=1、λ a=λ -1、λ m=λ 3、λ k=λ、λ E=λ 3
式中,λ为尺寸比例因子,λ F、λ t、λ v、λ a、λ m、λ k、λ E分别为力比例因子、时间比例因子、速度比例因子、加速度比例因子、质量比例因子、刚度比例因子、能量比例因子。
本发明考虑到列车主要为薄壁铝合金结构,因此本发明针对薄壁板壳分析其动力学特性的相似关系,使得到的列车缩模与实际列车更加相匹配,得到的比例因子的可靠性也更高。
针对薄壁板壳分析其动力学特性的相似关系。弹性薄板的动力平衡方程为下述公式(1)
Figure PCTCN2019127939-appb-000001
其中,w为弹性薄板的挠度,h为弹性薄板的厚度,ρ为材料的密度,D为弹性薄板的抗弯刚度,E为弹性模量,μ为泊松比,t是时间,x,y分别为坐标方向,其中,弹性薄板的抗弯刚度D如下:
Figure PCTCN2019127939-appb-000002
设表示薄板振动形状的振型函数为W(x,y),薄板挠度表示为如下公式(2)
w=[Acos(ωt)+Bsin(ωt)]W(x,y)     (2)
其中,A,B为待定系数,ω是弹性薄板的固有频率。将式(2)代入式(1)得
Figure PCTCN2019127939-appb-000003
考虑到全尺寸原型和缩模均满足式(3),有
Figure PCTCN2019127939-appb-000004
其中下标p和m分别表示全尺寸列车头车和头车缩模。
令全尺寸原型和缩模具有相同的边界条件,则不论缩模结构是否发生畸变,原型和缩模的边界条件方程一致,可不作特别的考虑,此时振型函数W(x,y)的比例因子仅与尺寸比例因子有关。引入相似关系:D p=λ DD m,W p=λ WW m,x p=λ xx m,y p=λ yy m,ρ p=λ ρρ m,h p=λ hh m,ω p=λ ωω m,其中D p、D m分别为全尺寸列车头车和头车缩模中薄壁结构的抗弯刚度,W p、W m分别为全尺寸列车头车和头车缩模中薄壁结构的振型函数,x p、x m分别为全尺寸列车头车和头车缩模中薄壁结构在x方向上的尺寸,y p、y m分别为全尺寸列车头车和头车缩模中薄壁结构在y方向上的尺寸,ρ p、ρ m分别为全尺寸列车头车和头车缩模中薄壁结构的材料密度,h p、h m分别为全尺寸列车头车和头车缩模中薄壁结构的厚度,ω p、ω m分别为全尺寸列车头车和头车缩模中薄壁结构的固有频率,λ D,λ W,λ x,λ y,λ ρ,λ h,λ ω分别为抗弯刚度比例因子、振型函数比例因子、x方向尺寸比例因子、y方向尺寸比例因子、材料密度比例因子、厚度比例因子、固有频率比例因子。
基于此,由公式(4)得到:
Figure PCTCN2019127939-appb-000005
假设薄板x方向上的几何特征为长度a,y方向上的几何特征为长度b,则式(5)可以写成:
Figure PCTCN2019127939-appb-000006
其中λ a、λ b分别为长度a和长度b的比例因子。由方程分析法可知,式(6)中各项比例 因子对应相等,得
Figure PCTCN2019127939-appb-000007
由于
Figure PCTCN2019127939-appb-000008
在列车头车缩模过程中,尺寸比例因子为λ,材料特性不变,即有λ a=λ b=λ h=λ,λ E=λ μ=λ ρ=1,因此根据公式(7)得到弹性薄板的固有频率λ ω的比例因子为1/λ,则时间比例因子
Figure PCTCN2019127939-appb-000009
在列车碰撞研究中,主要考虑的动力学参数是车体刚度、变形量、撞击速度、加速度、撞击力和吸能量,其余物理参数对列车动力学响应特性的影响很小,可以不作考虑。根据尺寸比例因子和时间比例因子可以获得其他动力学参数的比例因子,如表1所示,其中速度比例因子
Figure PCTCN2019127939-appb-000010
加速度比例因子
Figure PCTCN2019127939-appb-000011
质量比例因子
Figure PCTCN2019127939-appb-000012
力比例因子λ F=λ mλ a=λ 2,刚度比例因子
Figure PCTCN2019127939-appb-000013
能量比例因子λ E=λ Fλ l=λ 3
表1列车等效缩模动力学参数比例因子
Figure PCTCN2019127939-appb-000014
进一步优选,所述列车等效缩模的车体由方管拼接构成,所述方管中空。
车体由若干小方管拼接而成,相较于高广军中选用强度高于吸能结构的质量块制作,现有技术会导致缩比车体质量过大,难以满足缩比准则,而本方案可以大大减轻车体重量,易满足等效准则。同时可以避免了现有技术中因质量块而导致的刚度问题。
进一步优选,所述车钩压溃管采用圆柱形蜂窝铝;所述主吸能装置采用长方体形蜂窝铝,所述缓冲器采用橡胶模拟缓冲器。
进一步优选,所述列车等效缩模中的可变形区采用3D打印方式生成。
由于可变形区的结构复杂,因为为了有效地还原列车外形,选用3D打印。
进一步优选,所述列车等效缩模的车体为铝合金车体。
一种基于上述方法的列车等效缩小设备,包括头车和中间车,其中,头车划分为变形吸能区和非变形区,相邻车厢之间设有吸能导向件;
所述变形吸能区包括头车吸能装置和司机室,所述头车吸能装置包括车钩缓冲器、车钩压溃管、主吸能装置;
其中,所述车钩缓冲器为橡胶模拟缓冲器,所述车钩压溃管为圆柱形蜂窝铝;所述主吸能装置为长方体形蜂窝铝;
所述吸能导向件连接列车等效缩小设备上相邻的两个车厢,所述吸能导向件包括吸能件以及导向杆,所述吸能件中部开通孔,所述导向杆贯穿吸能件中部通孔且导向杆两端分别固定在相邻的两节车厢上。
有益效果
1、本发明根据列车结构特点以及碰撞过程中的变化,即存在变形吸能区和非变形区、中间车以及变形吸能区中分为车钩缓冲器、车钩压溃管、主吸能装置、司机室四个阶段的变形,因此本发明将列车分为头车和中间车,头车又划分为变形吸能区和非变形区,针对变形吸能区的吸能特性采用撞击力等效缩比,即针对车钩压溃管和主吸能装置采用吸能特性曲线来设计相关尺寸,这是基于变形吸能区的主要功能是通过塑性变形来吸收碰撞能量,要求撞击力平稳以实现有序变形,因此采用撞击力等效;针对非变形区和中间车的承载特性采用刚度等效缩比,这是基于非变形区和中间车主要功能是承载,其要求刚度高以实现碰撞过程中不发生变形,因此采用刚度等效,本发明通过列车各部分的实际需求与应用,分区进行设计,建立的列车等效缩模既满足动力学特性相似关系,也满足结构相似性,能保证列车撞击力和车体刚度相似,精确还原列车碰撞过程。
2、本发明设计了一种吸能导向件,其包括蜂窝铝圆柱体以及导向杆,一方面基于撞击力等效缩比来设计蜂窝铝圆柱体的尺寸,用蜂窝铝的连接压溃管模拟件和橡胶的连接缓冲器模拟件来模拟列车实际碰撞过程中连接车钩的吸能特性;另一方面,基于车体在碰撞过程中,会有横向和垂向的偏移,而实际列车的车钩具有防偏特性,本发明的导向杆两端分别固定在相邻的车厢上,在车体碰撞过程中,能有效抑制车体的横向和垂向偏移,同样具有防偏特性,更接近实际列车的车钩结构,使得在碰撞过程中车体尽量沿着长度方向运动,在车体运动方面上起到了车钩相同的导向作用。
3、本发明考虑到列车主要为薄壁铝合金结构,因此,本发明推到了薄壁板壳动力学参数的比例因子,更适用于车体为薄壁铝合金结构的高速列车缩比。
4、本发明采用中空的方管拼接构成车体,其大大减轻了车体重量,易满足等效原则,尤其是相较于高广军方案中选用质量块制作车体,既解决了缩比车体质量过大的问题,同时还能有效地避免因质量块而增加列车刚度,导致缩比车体内部结构与实际列车差异较大,车体动力学响应不一致的问题,本发明通过方管制作以及在车体上布置加强筋,使得等效模型满足刚度等效,列车等效缩模内部结构与实际列车更接近。
5、高广军方案中未考虑车体外观的相似性,缩比车体和原车体外观相差较大。本发明将列车头车分为可变形区和载客区,可变形区采用3D打印的加工方法,载客区形状较为规则,基于等效模型设计准则,建立载客区等效模型,最终将等效模型可变形区和载客区焊接,完成列车头车小尺度等效模型,列车中间车形状规则,基于等效模型设计准则,建立中间车等效模型,列车等效缩模外观与实际列车高度相似。
附图说明
图1是本发明提供的一种列车等效缩模构建方法的流程图;
图2是本发明提供的列车等效缩模中头车的示意图;
图3是本发明提供的列车等效缩模中中间车的示意图;
图4是本发明提供的加强筋的两个示意图;
图5是本发明提供的吸能导向件两个不同角度的示意图;
图6是全尺寸头车仿真结果与还原后的头车等效模型仿真结果对比分析图;其中,(a)图为撞击力-时间曲线图,(b)图为加速度-时间曲线图,(c)图为头车吸能装置压缩行程-时间曲线图;
图7是全尺寸次节车仿真结果与还原后的次节车等效模型仿真结果对比分析图;(a)图为撞击力-时间曲线图,(b)图为加速度-时间曲线图,(c)图为连接车钩压缩行程-时间曲线图;
图8全尺寸列车仿真与列车小尺度等效模型仿真得到的各车体能量分配结果对比分析图,(a)图为全尺寸列车,(b)图为列车等效缩模,(c)图为车体能量分配对比图。
具体实施方式
下面将结合实施例对本发明做进一步的说明。
如图1所示,本发明提供的一种列车等效缩模构建方法主要包括以下四个方面:
一、动力学参数的比例因子推导;
二、列车分区设计;
三、有效性验证。
一、关于动力学参数的比例因子推导:本发明考虑到列车为薄壁铝合金结构,因此针对薄壁板壳分析其动力学特性的相似关系,即基于薄壁板壳的动力平衡方程采用相似理论和方程分析法得到头车缩模的动力学参数的比例因子。得到的比例因子如上表1所示。本处不再赘述。
二、关于列车分区设计,本发明根据列车结构将列车划分为头车和中间车。
头车分区设计:列车撞击过程分为两个阶段,第一阶段是变形吸能阶段,由列车端部的吸能装置和司机室分级压缩,吸收碰撞能量;第二阶段是承载阶段,由列车载人区承载,车体不发生变形。因此,如图2所示,将列车头车结构进行分区,变形吸能区包括头车吸能装置和司机室,非变形区为载人区。头车吸能装置包括车钩缓冲器、车钩压溃管、主吸能装置。
(1)对变形吸能区进行设计:
首先,将全尺寸列车头车的变形吸能特性曲线上横、纵坐标分别乘以相匹配的动力学参数的比例因子得到头车缩模的变形吸能特性曲线。
其中,变形吸能特性曲线的横坐标为压缩位移,纵坐标为撞击力,曲线所包围的面积为吸能量。该头车的曲线描述了列车碰撞时吸能变形区的压缩阶段,首先车钩缓冲器压缩,起到缓冲作用,即随压缩位移的增加,撞击力增大;然后车钩压溃管、主吸能和司机室依次压缩变形,其中,车钩压溃管、主吸能的压缩阶段,视其分别对应的撞击力在各自阶段是保持不变。把全尺寸头车变形吸能特性曲线的纵坐标乘以撞击力比例因子λ F、横坐标乘以位移比例因子λ l,获得头车缩模的变形吸能特性曲线,其中包括车钩压溃管压缩平台力F 1m、主吸能压缩平台力F 2m
然后基于头车缩模的变形吸能特性曲线以及尺寸比例因子设计头车缩模的变形吸能区中车钩缓冲器、车钩压溃管、主吸能装置和司机室的尺寸。
关于车钩缓冲器:将全尺寸列车头车上车钩缓冲器的特征尺寸乘以尺寸比例因子得到头车缩模上车钩缓冲器的对应特征尺寸;将全尺寸列车头车上车钩缓冲器的质量乘以质量比例因子得到头车缩模上车钩缓冲器的对应质量。此外,实际列车常选用橡胶缓冲器,故列车头车缩模中采用橡胶模拟车钩缓冲器。关于车钩压溃管:一方面依据头车缩模的变形吸能特性曲线上车钩压溃管对应的压缩平台力F 1m设计头车缩模上车钩压溃管的横截面积;
其中,采用圆柱形蜂窝铝模拟车钩压溃管,蜂窝铝的压强乘以横截面积为压缩平台力, 通过选用不同强度的蜂窝铝和改变蜂窝铝的横截面积可以获得对应的车钩压溃管压缩平台力F 1m
二方面将全尺寸列车上车钩压溃管的长度乘以尺寸比例因子得到头车缩模上车钩压溃管的设计长度。
关于主吸能装置:一方面,依据头车缩模的变形吸能特性曲线上主吸能装置对应的压缩平台力F 2m设计头车缩模上主吸能装置的横截面积。
其中,采用长方体形蜂窝铝模拟主吸能装置,蜂窝铝的压强乘以横截面积为压缩平台力,通过选用不同强度的蜂窝铝和改变蜂窝铝的横截面积可以获得对应的车钩压溃管的压缩平台力F 2m
二方面,将全尺寸列车上主吸能装置的长度乘以尺寸比例因子得到头车缩模上主吸能装置的设计长度。
关于司机室:将全尺寸列车头车上司机室的特征尺寸乘以尺寸比例因子得到头车缩模上司机室的对应特征尺寸(包括长、宽、高、厚度)。将全尺寸列车头车上司机室质量乘以质量比例因子得到头车缩模上司机室的对应质量。
本实施例中优选采用3D打印的方式生成可变形区,其采用3D打印的方式生成头车吸能装置和司机室,使其外表更接近实际列车,尤其是司机室。其中,车体材料选用铝合金方管焊接而成,且可变形区与非变形区通过焊接方式连接。
(2)对非变形区和中间车进行设计:
关于尺寸等效和质量等效:基于尺寸等效缩比将全尺寸列车头车上非变形区、中间车的特征尺寸乘以尺寸比例因子得到头车缩模上非变形区、中间车的特征尺寸。基于质量等效缩比将全尺寸列车头车上非变形区、中间车的质量乘以质量比例因子得到头车缩模上非变形区、中间车的质量。
关于刚度等效:本发明的车体采用中空的方管拼接而成,且优选车体选用铝合金,若直接采用方管焊接会导致列车等效缩模的刚度过小,碰撞过程中车体极易发生弯折,本发明设计了加强筋,加强筋选用铝合金方管弯折而成,相邻加强筋采用铝合金方管焊机,如图4所述。计算表面,增加加强筋结构前列车小尺度等效模型还原后的车体刚度为133kN/mm,远小于列车实际刚度,车体纵向方向平均分布4个加强筋后,列车小尺度等效模型还原后的车体刚度为224kN/mm,原车体刚度为230kN/mm,相对误差为2.6%,通过这种方法增加了等效模型的刚度,该加强筋用于等效模型头车载客区与中间车车体。
其中,针对非变形区和中间车,其主要是用于载重功能,因此需要保证其刚度要求。本 发明将非变形区、各个中间车的刚度分别乘以刚度比例因子得到非变形区、各个中间车的刚度;再通过排布加强筋使其分别得到相应刚度。本实施例中优选非变形区、各个中间车上的加强筋是沿着长度方向等间距排布。
如图5所示,本发明设计一种吸能导向件来作为相邻车厢之间的连接件。其中,吸能导向件包吸能件以及导向件,吸能件中部开通孔,所述导向杆贯穿吸能件中部通孔且导向杆两端分别固定在相邻的两节车厢上,譬如销固定。
实际列车中,相邻两个车厢之间的吸能结构为连接车钩,其中,列车等效缩模中吸能件包括连接缓冲器模拟件、连接压溃管模拟件;连接缓冲器模拟件与连接车钩中连接缓冲器对应,连接压溃管模拟件与连接车钩中的连接压溃管对应。
本发明将全尺寸列车中连接缓冲器的特征尺寸乘以尺寸比例因子得到列车等效缩模中连接缓冲器模拟件的特征尺寸;
将全尺寸列车中连接压溃管的变形吸能特性曲线的横、纵坐标分别乘以相匹配的动力学参数的比例因子得到吸能导向件中连接压溃管模拟件的变形吸能特性曲线,并获取连接压溃管模拟件的撞击力;再根据连接压溃管模拟件的撞击力计算出连接压溃管模拟件的截面面积;
其中,撞击力等于连接压溃管模拟件强度与截面面积的乘积。
以及将全尺寸列车中连接压溃管的长度乘以尺寸比例因子得到列车等效缩模中连接压溃管模拟件的长度。
需要说明的是,本发明建模过程的相关测试在软件中模拟,譬如有限元分析软件,因此实施之前需要先设定相关碰撞参数,譬如设置头车缩模的加载力等于全尺寸列车头车的加载力乘以力比例因子、头车缩模的碰撞速度等于全尺寸列车头车的碰撞速度乘以速度比例因子、头车缩模的碰撞时间等于全尺寸列车头车的碰撞时间乘以时间比例因子。按照比例因子设置碰撞参数使得碰撞工况等效。
三、有效性验证。
对全尺寸列车碰撞工况及列车等效缩模碰撞工况进行数值仿真,选择撞击力、撞击加速度、吸能结构压缩行程作为主要对比参数,根据等效模型设计准则,分析等效结果相对于真实结果的有效性。结果表明,全尺寸列车碰撞仿真结果与还原后的等效模型仿真结果相似度较高,相对误差均小于1%。碰撞过程中头车车体撞击力-时间曲线,车体加速度-时间曲线及吸能结构压缩行程-时间曲线吻合较好,车体最大撞击力为2800kN,车体最大加速度为2.9g,吸能结构最大压缩行程为1585mm,如图6所示。碰撞过程中次节车车体撞击力-时间曲线,车体加速度-时间曲线及吸能结构压缩行程-时间曲线吻合较好,车体最大撞击力为4200kN,车体最大加速度为2.7g,吸能结构最大压缩行程为430mm,如图7所示。各车体碰撞后的能 量分配模式如图8所示,其中车辆编号1-8对应头车—尾车编号,列车等效缩模碰撞能量分配模式与全尺寸列车碰撞能量分配规律一致,从头车到尾车,各车体吸能量依次减少,故列车等效缩模可真实反馈全尺寸列车碰撞时的动力学响应特性,其等效模型撞击力、加速度、吸能结构压缩行程及碰撞能量分配规律与全尺寸列车基本一致。
综上所述,实际列车车体是铝合金薄壁结构焊接而成,车辆内部是中空的。现有技术“用于碰撞实验的列车缩比等效模型构建方法及其系统”中缩比车体选用强度高于吸能结构的质量块制作,增加了列车刚度,缩比车体内部结构与实际列车有较大差异,车体材料的差异易导致车体动力学响应规律不一致。本发明中车体选用铝合金方管制作,大大减轻了车体重量。实际列车碰撞质量为55吨,本发明中列车等效缩模还原后的碰撞质量为54.3吨,相对误差仅为1.3%,且列车等效缩模内部结构与实际列车内部结构相同,均为中空结构。列车碰撞过程中,列车等效缩模与实际列车撞击力及加速度响应规律一致,相对误差小于0.5%,等效模型与实际列车吸能结构压缩行程相对误差小于0.8%;直接采用方管焊接会导致等效模型刚度过小,碰撞过程中车体极易发生弯折,本发明设计了加强筋结构等效替代原车体中的筋板结构,增加了等效模型的刚度,原车体刚度为230kN/mm,本发明中列车等效缩模还原后的车体刚度为224kN/mm,相对误差为2.6%;相对于现有技术“用于碰撞实验的列车缩比等效模型构建方法及其系统”,本发明将列车头车分为可变形区和载客区,可变形区采用3D打印的加工方法,载客区形状较为规则,基于等效模型设计准则,建立载客区等效模型,最终将等效模型可变形区和载客区焊接,完成列车头车等效模型,外观与原车体高度相似;列车中间车形状规则,基于等效模型设计准则,建立中间车等效模型;实际列车车辆间通过车钩连接,具有较好的吸能特性与导向性,现有技术“用于碰撞实验的列车缩比等效模型构建方法及其系统”仅考虑了吸能结构的吸能特性等效,缩比吸能结构选用蜂窝铝或者泡沫铝,未考虑吸能结构的导向作用,本发明设计了一种铝蜂窝吸能导向结构连接相邻车体,兼备良好的吸能特性与导向性。
需要强调的是,本发明所述的实例是说明性的,而不是限定性的,因此本发明不限于具体实施方式中所述的实例,凡是由本领域技术人员根据本发明的技术方案得出的其他实施方式,不脱离本发明宗旨和范围的,不论是修改还是替换,同样属于本发明的保护范围。

Claims (10)

  1. 一种列车等效缩模构建方法,其特征在于:包括如下步骤:
    S1:获取列车等效缩模相比于全尺寸列车的各个动力学参数的比例因子;
    其中,所述动力学参数的比例因子类型至少包括力比例因子、位移比例因子、尺寸比例因子、刚度比例因子和质量比例因子;
    S2:依据列车碰撞过程中的变形吸能特征将列车分为头车和中间车以及将头车划分为变形吸能区和非变形区;
    其中,变形吸能区包括头车吸能装置和司机室,所述头车吸能装置包括车钩缓冲器、车钩压溃管、主吸能装置,所述非变形区为头车的载人区;
    S3:基于动力学参数的比例因子对列车等效缩模的头车、中间车分别进行构建;
    a:基于尺寸比例因子和质量比例因子将全尺寸列车中车钩缓冲器、司机室、非变形区以及各个中间车的特征尺寸和质量分别乘以对应的尺寸比例因子、质量比例因子得到列车等效缩模中车钩缓冲器、司机室、非变形区、各个中间车相匹配的特征尺寸和质量;
    其中,特征尺寸包括长、宽、高、厚度;
    b:将全尺寸列车的变形吸能特性曲线上横、纵坐标分别乘以相匹配的动力学参数的比例因子得到列车等效缩模的变形吸能特性曲线,再基于列车等效缩模的变形吸能特性曲线以及尺寸比例因子构建头车中的车钩压溃管和主吸能装置;
    其中,变形吸能特性曲线为压缩位移与撞击力的关系曲线,曲线包围的面积为吸能量;
    c:基于刚度比例因子将全尺寸列车中非变形区以及各个中间车的刚度乘以刚度比例因子得到列车等效缩模中相对应非变形区、中间车的刚度;再在列车等效缩的非变形区、各个中间车上排布加强筋直至分别达到对应刚度;
    S4:依据全尺寸列车上相邻车厢间的连接车钩的结构尺寸以及变形吸能特性构建列车等效缩模上相邻车厢间的吸能导向件;
    所述吸能导向件连接列车等效缩模上相邻的两个车厢,所述吸能导向件包括吸能件以及导向杆,所述吸能件中部开通孔,所述导向杆贯穿吸能件中部通孔且导向杆两端分别固定在相邻的两节车厢上。
  2. 根据权利要求1所述的方法,其特征在于:所述连接车钩中吸能部件包括连接缓冲器和连接压溃管,所述吸能导向件中吸能件包括连接缓冲器模拟件、连接压溃管模拟件;所述连接缓冲器模拟件和连接压溃管模拟件的构建过程如下:
    将全尺寸列车中连接缓冲器的特征尺寸乘以尺寸比例因子得到列车等效缩模中连接缓冲器模拟件的特征尺寸;
    将全尺寸列车中连接压溃管的变形吸能特性曲线的横、纵坐标分别乘以相匹配的动力学 参数的比例因子得到吸能导向件中连接压溃管模拟件的变形吸能特性曲线,并获取连接压溃管模拟件的撞击力;再根据连接压溃管模拟件的撞击力计算出连接压溃管模拟件的截面面积;
    其中,撞击力等于元件强度与截面面积的乘积;
    以及将全尺寸列车中连接压溃管的长度乘以尺寸比例因子得到列车等效缩模中连接压溃管模拟件的长度。
  3. 根据权利要求1所述的方法,其特征在于:所述基于列车等效缩模的变形吸能特性曲线以及尺寸比例因子构建头车中的车钩压溃管和主吸能装置的过程包括:
    将全尺寸列车头车中车钩压溃管、主吸能装置的长度分别乘以尺寸比例因子得到列车等效缩模头车中车钩压溃管、主吸能装置的长度;
    将头车缩模的变形吸能特性曲线上车钩压溃管对应的撞击力、主吸能装置对应的撞击力分别计算头车缩模上车钩压溃管、主吸能装置的横截面积;
    其中,撞击力等于元件强度与截面面积的乘积。
  4. 根据权利要求1所述的方法,其特征在于:S1中获取比例因子过程为:基于薄壁板壳的动力平衡方程采用相似理论和方程分析法得到头车缩模的动力学参数的比例因子;
    其中,列车头车采用薄壁板壳结构。
  5. 根据权利要求4所述的方法,其特征在于:所述动力学参数的比例因子还包括时间比例因子、速度比例因子、加速度比例因子、能量比例因子;
    其中,各类动力学参数的比例因子的关系如下:
    λ l=λ、λ F=λ 2、λ t=λ、λ v=1、λ a=λ -1、λ m=λ 3、λ k=λ、λ E=λ 3
    式中,λ为尺寸比例因子,λ F、λ t、λ v、λ a、λ m、λ k、λ E分别为力比例因子、时间比例因子、速度比例因子、加速度比例因子、质量比例因子、刚度比例因子、能量比例因子。
  6. 根据权利要求1所述的方法,其特征在于:所述列车等效缩模的车体由方管拼接构成,所述方管中空。
  7. 根据权利要求1所述的方法,其特征在于:所述车钩压溃管采用圆柱形蜂窝铝;所述主吸能装置采用长方体形蜂窝铝,所述车钩缓冲器采用橡胶模拟缓冲器。
  8. 根据权利要求1所述的方法,其特征在于:所述列车等效缩模中的可变形区采用3D打印方式生成。
  9. 根据权利要求1所述的方法,其特征在于:所述列车等效缩模的车体为铝合金车体。
  10. 一种基于权利要求1-9任一项所述方法的列车等效缩小设备,其特征在于:包括头车和中间车,其中,头车划分为变形吸能区和非变形区,相邻车厢之间设有吸能导向件;
    所述变形吸能区包括头车吸能装置和司机室,所述头车吸能装置包括车钩缓冲器、车钩压溃管、主吸能装置;
    其中,所述车钩缓冲器为橡胶模拟缓冲器,所述车钩压溃管为圆柱形蜂窝铝;所述主吸能装置为长方体形蜂窝铝;
    所述吸能导向件连接列车等效缩小设备上相邻的两个车厢,所述吸能导向件包括吸能件以及导向杆,所述吸能件中部开通孔,所述导向杆贯穿吸能件中部通孔且导向杆两端分别固定在相邻的两节车厢上。
PCT/CN2019/127939 2018-12-25 2019-12-24 一种列车等效缩模构建方法及列车等效缩小设备 WO2020135424A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811591809.0A CN109657377B (zh) 2018-12-25 2018-12-25 一种列车等效缩模构建方法及列车等效缩模
CN201811591809.0 2018-12-25

Publications (1)

Publication Number Publication Date
WO2020135424A1 true WO2020135424A1 (zh) 2020-07-02

Family

ID=66116234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127939 WO2020135424A1 (zh) 2018-12-25 2019-12-24 一种列车等效缩模构建方法及列车等效缩小设备

Country Status (2)

Country Link
CN (1) CN109657377B (zh)
WO (1) WO2020135424A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109670252B (zh) * 2018-12-25 2020-02-07 中南大学 一种基于力和刚度等效的头车缩模构建方法及头车缩模
CN109657377B (zh) * 2018-12-25 2019-12-24 中南大学 一种列车等效缩模构建方法及列车等效缩模
CN111950088B (zh) * 2020-08-18 2021-06-29 北京理工大学 一种构建高速履带车辆相似性模型的方法
CN115371951B (zh) * 2022-10-25 2023-01-24 中南大学 一种动模型列车及其装配方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102117360A (zh) * 2010-12-31 2011-07-06 长城汽车股份有限公司 快速匹配车辆正碰有限元模型的方法
CN106501013A (zh) * 2016-12-28 2017-03-15 中南大学 一种列车等效缩比模型碰撞试验装置及方法
US20180060467A1 (en) * 2016-08-30 2018-03-01 Dspace Digital Signal Processing And Control Engineering Gmbh Method for simulating a collision situation
CN107798171A (zh) * 2017-09-28 2018-03-13 中南大学 用于碰撞实验的列车缩比等效模型构建方法及其系统
CN109657377A (zh) * 2018-12-25 2019-04-19 中南大学 一种列车等效缩模构建方法及列车等效缩模

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102175414B (zh) * 2011-02-18 2013-11-06 肖锋 参考列车单元碰撞模型的组装方法
CN103294860B (zh) * 2013-05-28 2015-10-14 中南大学 一种铁道列车多车辆碰撞仿真的模型简化方法
US11157014B2 (en) * 2016-12-29 2021-10-26 Tesla, Inc. Multi-channel sensor simulation for autonomous control systems
CN107577886B (zh) * 2017-09-16 2018-07-10 北京交通大学 一种列车耐撞性车体设计方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102117360A (zh) * 2010-12-31 2011-07-06 长城汽车股份有限公司 快速匹配车辆正碰有限元模型的方法
US20180060467A1 (en) * 2016-08-30 2018-03-01 Dspace Digital Signal Processing And Control Engineering Gmbh Method for simulating a collision situation
CN106501013A (zh) * 2016-12-28 2017-03-15 中南大学 一种列车等效缩比模型碰撞试验装置及方法
CN107798171A (zh) * 2017-09-28 2018-03-13 中南大学 用于碰撞实验的列车缩比等效模型构建方法及其系统
CN109657377A (zh) * 2018-12-25 2019-04-19 中南大学 一种列车等效缩模构建方法及列车等效缩模

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BAO-JIN WANG ET AL: "Energy Absorption Design of Metro Train based on Multibody Dynamics", JOURNAL OF RAILWAY SCIENCE AND ENGINEERING, vol. 15, no. 4, 30 April 2018 (2018-04-30), pages 1016 - 1022, XP009521652, ISSN: 1672-7029 *

Also Published As

Publication number Publication date
CN109657377A (zh) 2019-04-19
CN109657377B (zh) 2019-12-24

Similar Documents

Publication Publication Date Title
WO2020135424A1 (zh) 一种列车等效缩模构建方法及列车等效缩小设备
WO2020135425A1 (zh) 一种基于力和刚度等效的头车缩模构建方法及头车缩模
Bai et al. Bending collapse of dual rectangle thin-walled tubes for conceptual design
Zhai et al. Energy absorption of pre-folded honeycomb under in-plane dynamic loading
CN107169164B (zh) 考虑碰撞工况的适用于汽车早期设计的简化模型建模方法
CN102306214B (zh) 基于样条曲线的轨道车辆整车碰撞仿真分析方法
CN107798171B (zh) 用于碰撞实验的列车缩比等效模型构建方法及其系统
Nagel Impact and energy absorption of straight and tapered rectangular tubes
Lu et al. A force/stiffness equivalence method for the scaled modelling of a high-speed train head car
CN109002642A (zh) 轨道车辆车体底架前端吸能结构快速设计优化方法
Liang et al. Forming characteristics analysis and springback prediction of bi-directional trapezoidal sandwich panels in the multi-point bend-forming
Shao et al. Improved multibody dynamics for investigating energy dissipation in train collisions based on scaling laws
Boria Lightweight design and crash analysis of composites
Jiang et al. Numerical investigation on water entry of a three-dimensional flexible bag of an air cushion vehicle
Lee et al. The development of a sliding joint for very flexible multibody dynamics using absolute nodal coordinate formulation
CN102521450B (zh) 一种轴对称变形薄壁圆管吸能装置的设计方法
Renno et al. Development and Validation of an Air Spring Multiphysical Model.
Kim et al. Development of a topology optimization program considering density and homogeni-zation methods
Santos Dynamic analysis and design of impact attenuator structures for a Formula Student prototype
Choiron Analysis of multi-cell hexagonal crash box design with foam filled under frontal load model
CN107798193A (zh) 一种偏置碰工况下假人胸部简化模型设计方法
Boreanaz Development of crash box for automotive application
CN106156450B (zh) 一种双层铝合金加筋型材的结构等效方法
Baroutaji Energy absorption through the lateral collapse of thin-walled single and nested tubes
Liu et al. Analysis of structural impact and crashworthiness using experimental, analytical and computational techniques: An overview and recent developments

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904382

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19904382

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21.01.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19904382

Country of ref document: EP

Kind code of ref document: A1