WO2020135070A1 - 一种太阳能电池互联结构 - Google Patents

一种太阳能电池互联结构 Download PDF

Info

Publication number
WO2020135070A1
WO2020135070A1 PCT/CN2019/124852 CN2019124852W WO2020135070A1 WO 2020135070 A1 WO2020135070 A1 WO 2020135070A1 CN 2019124852 W CN2019124852 W CN 2019124852W WO 2020135070 A1 WO2020135070 A1 WO 2020135070A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
cell panel
interconnection structure
wire
resin
Prior art date
Application number
PCT/CN2019/124852
Other languages
English (en)
French (fr)
Inventor
李华
靳玉鹏
Original Assignee
泰州隆基乐叶光伏科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811626048.8A external-priority patent/CN111403496A/zh
Priority claimed from CN201811628461.8A external-priority patent/CN111384191A/zh
Priority claimed from CN201811626060.9A external-priority patent/CN111403524A/zh
Priority claimed from CN201811626386.1A external-priority patent/CN111403497A/zh
Application filed by 泰州隆基乐叶光伏科技有限公司 filed Critical 泰州隆基乐叶光伏科技有限公司
Publication of WO2020135070A1 publication Critical patent/WO2020135070A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to the technical field of single crystal silicon, in particular to a solar cell interconnection structure.
  • Solar photovoltaic cells are devices that convert the sun's light energy into electrical energy. Solar photovoltaic cells use photovoltaic principles to generate carriers, and then use the electrodes to extract the carriers to obtain usable electrical energy.
  • the interconnection of solar photovoltaic cells is an important part of photovoltaic solar power generation, and its technical solutions have an important impact on the performance of photovoltaic power generation.
  • the shingled structure is a better solution for interconnecting solar photovoltaic cells.
  • the solar photovoltaic cells are overlapped and connected to each other (also called overlap), which greatly reduces the gap in the interconnection structure of the solar photovoltaic cells according to the traditional arrangement, and more solar photovoltaics can be set per unit area
  • the battery unit improves the effective utilization of sunlight.
  • the current solar photovoltaic cell interconnection scheme using shingled structure has some shortcomings, for example: the internal resistance of the existing solar photovoltaic cell interconnection scheme of shingled structure is too large, which affects the overall power output; due to its own interconnection structure transmission resistance Larger restrictions, each solar panel (also called solar cell) requires a smaller transmission distance (that is, the solar panel needs to be narrower), so if you use a solar panel with a cutting process, you need to The entire solar cell panel is sliced and processed by silicon rods. After multiple cuttings, multiple solar panels with narrow widths are obtained. Increasing the number of cuttings will reduce the yield and increase the cracking of solar panels. risks of.
  • the grid electrode is generally formed by screen printing silver paste in a solar cell panel. In this way, the cost is relatively high. The printed grid electrode has a problem of shading, which has an adverse effect on the photoelectric conversion efficiency.
  • the invention provides a solar cell interconnection structure, which aims to solve the existing interconnection structure with large internal resistance, high solar cell panel breakage rate and high risk of cracking, using screen printing silver paste to form grid electrode has high cost, and has a high photoelectric conversion efficiency There are problems with adverse effects.
  • An embodiment of the present invention provides a solar cell interconnection structure, which includes at least two solar cell panels arranged in a shingled structure or arranged in a direction, and a plurality of grid lines are arranged side by side on the front of each solar cell panel , A plurality of wires are also arranged side by side on the front of each solar cell panel, and the wires intersect the grid and are electrically connected;
  • the wires on the solar cell panel below are electrically connected to the electrodes on the back of the solar cell panel above;
  • an electrode disc is provided on the solar cell panel below, the electrode disc is electrically connected to the electrode on the back of the solar cell panel above, and the electrode disc The wire is electrically connected;
  • the front side of the solar cell panel below is provided with a first electrode disc
  • the rear side of the solar cell panel above is provided with a second electrode disc
  • the first electrode disc Electrically connected to the second electrode disk
  • the first electrode disk is electrically connected to the wire on the front of the solar cell panel
  • the second electrode disk is electrically connected to the wire on the back of the solar cell panel;
  • the lead has an extension that extends out of the solar cell panel where it is located; in two adjacent solar cells, one of the extensions of the lead on one solar cell panel is electrically connected to the grid line on the back of the other solar cell panel .
  • the front side of the solar cell panel is connected to each grid line through a wire, it is directly or indirectly electrically connected to the electrode on the back side of the adjacent solar cell panel through the wire.
  • the cross-sectional area of the wire is larger than the cross-sectional area of the conventional screen-printed silver-containing grid electrode, which is a relatively optimized cross-section, so the maximum effect of current transmission can be achieved.
  • the internal resistance of the interconnect structure is reduced, so that the loss caused by the resistance of the interconnect structure can be greatly reduced.
  • the use of wires can usually reflect the sunlight incident on the wires to the surface of the solar cell panel again, which improves the light utilization rate of the solar cell panel and reduces the adverse effects caused by the shading of the traditional grid electrode.
  • FIG. 1 is a perspective view of a solar cell interconnection structure provided by an embodiment of the present invention.
  • FIG. 2 is a perspective view of an overlapping place in a solar cell interconnection structure provided by an embodiment of the present invention
  • FIG. 3 is a partially enlarged view I of FIG. 1;
  • FIG. 4 is a schematic structural diagram of the back of a solar panel provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the combination of a wire and a polymer film provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing a hollowed-out pattern provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram illustrating one of the gate line structures provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram illustrating another gate line structure provided by an embodiment of the present invention.
  • FIG. 9 is a front perspective view of a double-sided solar cell interconnection structure provided by an embodiment of the present invention.
  • FIG. 10 is a partially enlarged view I of FIG. 9;
  • FIG. 11 is a partial perspective view of a back view of a double-sided solar cell interconnection structure provided by an embodiment of the present invention.
  • FIG. 12 is a schematic diagram illustrating one of the gate line structures provided by an embodiment of the present invention.
  • FIG. 13 is a rear view of FIG. 12;
  • FIG. 14 is a rear view of FIG. 8;
  • FIG. 15 is a partially enlarged view I of FIG. 9;
  • 16 is a schematic diagram illustrating one of the gate line structures provided by an embodiment of the present invention.
  • FIG. 17 is a schematic diagram showing another gate line structure provided by an embodiment of the present invention.
  • FIG. 18 is a perspective view of a double-sided solar cell interconnection structure provided by an embodiment of the present invention.
  • FIG. 19 is a right side view of a double-sided solar cell interconnection structure provided by an embodiment of the present invention.
  • FIG. 20 is a partially enlarged view I of FIG. 18;
  • 21 is a perspective view of a double-sided solar cell interconnection structure provided by another embodiment of the present invention.
  • FIG. 22 is a partially enlarged view H of FIG. 21.
  • the solar cell interconnection structure provided by the present invention includes at least two solar cell panels 1 arranged in a shingled structure, wherein three solar cell panels 1 are shown in FIG. 1, each solar cell A plurality of grid lines 3 are arranged side by side on the front surface of the panel 1, and the plurality of grid lines 3 are, for example but not limited to, arranged in parallel at uniform intervals, and a plurality of wires 2 are also arranged side by side on the front surface of each solar panel 1, such as but not limited to , The wires 2 are arranged in parallel at regular intervals, and the wires 2 intersect with the grid line 3 and are electrically connected; the overlapping place 4 of the adjacent two solar cell panels 1 is provided with an electrode disc 9 on the solar cell panel 1 located below. 9 is electrically connected to the electrode 11 on the back of the solar cell panel 1 located above, and the electrode disk is electrically connected to the wire 2.
  • the side-by-side setting mentioned in this article can be a parallel setting or a non-parallel setting.
  • the plurality of wires arranged side by side may be arranged in a flat shape, or may be arranged in a radial shape.
  • the front side refers to the side facing the sun when the solar panel 1 is in operation, and the back side is the side opposite to the front side.
  • the wire 2 referred to herein does not only refer to a wire with a perfect circular cross section, but may also be an ellipse or the like.
  • the cross section of the wire 2 is the same under the same width
  • the area is larger than the cross-sectional area of the conventional screen-printed silver-containing grid electrode, which is a relatively optimized cross-section, so the maximum effect of current transmission can be achieved.
  • the internal resistance of the interconnect structure is reduced, so that the loss caused by the resistance of the interconnect structure can be greatly reduced.
  • the solar cell panel 1 can use a larger unit, but at most the entire silicon wafer can be made into a solar cell panel 1.
  • the use of the wire 2 can usually reflect the sunlight incident on the wire 2 to the surface of the solar cell panel 1 again, which improves the light utilization rate of the solar cell panel 1 and reduces the adverse effects caused by the shading of the traditional grid electrode.
  • the electrode discs 9 can be arranged in a whole along the edge of the solar cell panel, or a plurality of electrode discs 9 can be arranged along the edge of the solar cell panel, for example, the number of electrode discs 9 is the same as the number of wires 2,
  • the electrode discs 9 are connected to the wires 2 in one-to-one correspondence.
  • one end of the wire 2 may be electrically connected to the electrode disk 9.
  • the solar panel is a whole panel or cut by half, one third, one quarter, one fifth or one sixth along the direction parallel to the grid line 3 The sub-panel.
  • the whole solar panel mentioned in this article is a whole solar panel made from the whole silicon wafer sliced by silicon rods.
  • the wire 2 is provided on the solar panel 1, the internal resistance of the solar panel 1 can be reduced.
  • the largest solar panel 1 can be a whole panel, of course, one half, three of the whole panel can also be used.
  • One-quarter, one-quarter, one-fifth or one-sixth and other sizes, with the interconnection structure can use a larger area of solar panels 1, in the same area of the interconnection structure, the use of solar cells
  • the number of panels 1 is reduced, thereby reducing the number of process connections.
  • the number of cuttings of the entire solar panel can be reduced, thereby reducing the machinery caused by cutting Risk of damage, fragmentation rate and cracking.
  • each solar cell panel 1 is covered with a light-transmitting polymer film, and each wire 2 is fixedly connected to the polymer film.
  • the wire 2 may be fixed to the light-transmitting polymer film by hot pressing or the like.
  • the wire 2 can fully contact with the grid line 3, then part of the arc surface of the wire 2 can protrude from the surface of the polymer film.
  • the polymer film with the fixed wire is laid on the front surface of the solar cell panel 1, and a part of the arc surface of the wire 2 protruding from the polymer film faces the grid line, and the polymer film is hot pressed to stick it to the solar cell
  • the front side of the board 1 is used to fix each wire 2 and ensure that each wire 2 is electrically connected to the grid wire 3. In this way, the laying and alignment of the wire 2 during the manufacturing process is more convenient and precise, and the process complexity is reduced, and the process steps are even reduced, and the wire 2 and the gate line 3 can be sufficiently electrically connected.
  • the polymer film includes a base layer 7 and an adhesive layer 6 disposed on the base layer 7.
  • the adhesive layer 6 is attached to the front surface of the solar cell panel 1.
  • the polymer film adopts a composite layer structure of an adhesive layer 6 and a base layer 7.
  • the adhesive layer 6 is attached to the front surface of the solar cell panel 1, which functions as an adhesive layer.
  • the adhesive layer 6 also The contact between the wire 2 and the solar cell panel 1 is changed into a flexible contact, which reduces the fragmentation rate.
  • the base layer 7 is cured after hot pressing, has a certain strength, and can play a role in protecting the structure covered by it.
  • the material of the base layer and/or the bonding layer is at least cellulose acetate, polyolefin, polyamide, polyphenylene ether, fluororesin, polymethyl methacrylate, polysulfone, polyester, epoxy resin, silicone At least any one of resin, polyimide resin, phenol resin, polyurethane and acrylic resin.
  • the material of the adhesive layer 6 may be at least any one of polyolefin, polyamide, polyphenylene ether, fluororesin, polymethyl methacrylate, polysulfone, and polyester.
  • the material of the base layer 7 may be at least any one of epoxy resin, silicone resin, polyimide resin, phenol resin, polyurethane and acrylic resin.
  • each wire 2 is located in the adhesive layer 6 to ensure that the wire 2 is pressed to the front surface of the solar cell panel 1 and contacts the grid line 3 during the hot pressing process to achieve a good electrical connection.
  • a hollow pattern 8 is provided on the polymer film, and the hollow pattern 8 is located between two adjacent conductive wires 2.
  • the hollow pattern 8 may have any shape, such as a rectangle, a circle, an ellipse, and so on.
  • the hollow pattern 8 is provided so that the light directly irradiates the hollow panel 8 to the front of the solar cell panel, so that the light transmittance is guaranteed, and the use amount of the polymer film is reduced and the cost is reduced.
  • a conductive layer 5 is provided on the outer peripheral surface of the wire 2.
  • the conductive layer 5 functions as an adhesive or solder during the hot pressing process, which facilitates the better electrical connection between the wire 2 and the grid line 3 and improves the reliability of the connection.
  • the material of the conductive layer 5 is a metal or alloy with a melting point between 70-180 degrees; or,
  • the material of the conductive layer 5 is a conductive resin with a softening temperature between 90-120 degrees. With the conductive layer 5 at the above temperature, a lower hot pressing temperature can be used, which reduces the thermal stress during hot pressing and prevents the problem of cracking or breaking of the solar cell panel 1.
  • the material of the conductive layer 5 includes any element or alloy of any one of Ag, Bi, Cd, Ga, In, Pb, Sn, Ti, and Zn. If the melting point of the element is higher than this temperature range, you can choose The corresponding alloy in this temperature range; or, the material of the conductive layer 5 includes a conductive resin, the softening temperature of the conductive resin is between 90-120 degrees, the conductive resin includes a resin substrate and the conductive provided in the resin substrate Particles, the resin substrate includes any of cellulose acetate, fluororesin, polysulfone resin, polyester resin, polyamide resin, polyurethane resin and polyolefin resin, and the conductive particles include gold, silver, copper, aluminum, zinc , Nickel, and graphite. The shape of the conductive particles may be granular and/or flake.
  • the width of the overlap 4 between two adjacent solar cell panels 1 is 0.1-3 mm. Adopting this width can not only ensure the contact performance of the connection between two adjacent solar panels, but also avoid unnecessary losses of the solar panels due to the overlapping shielding effect.
  • the width of the overlap is set to 0.5mm, 1.5mm, 2mm, 3mm, etc.
  • wire 2 is perpendicular to the gate line 3. Make the current transmission line the shortest, reducing losses.
  • each solar cell panel is provided with an interconnecting connecting wire (not shown in the figure), and the interconnecting connecting lead is electrically connected to each lead 2 on the solar cell panel 1 where it is located.
  • the interconnection connection wire is perpendicular to the wire 2.
  • the wire diameter of the interconnecting connection wire may be the same as that of the wire 2, or may be different.
  • the interconnecting connection wire can be set up one or more at appropriate intervals, the amount of which should be comprehensively considered to ensure the transmission of current, and try to ensure less shading.
  • the thickness of the polymer film may be between 5 micrometers and 150 micrometers, to ensure that the polymer film has sufficient stability under hot pressing, and the surface shrinkage of the polymer film after cooling is small and the surface is flat.
  • the number of wires 2 provided on the front of each solar cell panel 1 is 3-100. Multiple wires 2 can be arranged at even intervals.
  • the number of settings can be comprehensively considered to ensure the transmission of current, and try to ensure less shading.
  • a section of grid lines or a plurality of sections of grid lines are provided at intervals.
  • a grid line 3 is provided on the solar cell panel 1 in a straight line, and a plurality of electrode disks 9 are evenly arranged at the edge of the solar cell panel 1.
  • the solar cell panel 1 is provided with a plurality of grid lines 3 at intervals on a straight line.
  • Each section of the grid line 3 is connected with a wire.
  • the use of a multi-segment grid line 3 can save the material processed by the grid line 3, further reduce shading, increase the effective light absorption area of the solar cell panel, and thus improve the photoelectric conversion efficiency.
  • a plurality of electrode disks 9 are evenly arranged at the edge of the solar cell panel 1.
  • the material of the wire 2 may be at least any one of copper, aluminum, silver, gold, copper-nickel alloy, and copper-zinc alloy.
  • the wire 2 can also be a wire with a composite layer structure such as copper clad aluminum wire.
  • the wire 2 is a copper wire, which has a higher electrical conductivity, and has the advantage of lower cost compared with the use of precious metals such as gold and silver.
  • the conductive layer 5 is formed on the outer surface of the wire 2 by, for example but not limited to, coating or other processes.
  • the wire diameter of the wire 2 is, for example but not limited to, 50um, 100um, 150um, etc.
  • the electrode disk 9 and the electrode on the back of the solar cell panel 1 located above can be electrically connected by a connecting agent 10 provided therebetween.
  • the connecting agent 10 can be, but is not limited to, solder paste and a softening temperature of 90- 120-degree conductive resin, metal or alloy with a melting point of 70-180 degrees.
  • the double-sided solar cell interconnection structure provided by the present invention includes at least two solar cell panels 1 arranged in a shingled structure, in which three solar cell panels 1 are shown in FIG. 9, each A plurality of grid lines 3 are arranged side by side on the front and back sides of the solar panel 1, and the plurality of grid lines 3 are, for example but not limited to, arranged in parallel at even intervals, and each of the front and back sides of each solar panel 1 is also arranged side by side
  • the wires 2, such as but not limited to, the wires 2 are arranged in parallel at regular intervals, and the wires 2 intersect and electrically connect with the corresponding grid lines 3, and the corresponding grid lines 3 mentioned here refer to, for the same solar panel 1, the front The wire 2 is electrically connected to the grid line 3 on the front side, and the wire 2 on the back side is electrically connected to the grid line 3 on the back side;
  • the electrode disk 9 is provided with a second electrode disk 11 on the back of the solar cell panel 1 above, the first electrode disk 9
  • the side-by-side setting mentioned in this article can be a parallel setting or a non-parallel setting.
  • the plurality of wires arranged side by side may be arranged in a flat shape, or may be arranged in a radial shape.
  • the front side refers to the side facing the sun when the solar panel 1 is in operation, and the back side is the side opposite to the front side.
  • the wire 2 referred to herein does not only refer to a wire with a perfect circular cross section, but may also be an ellipse or the like.
  • the cross-sectional area of the wire 2 is larger than the cross-sectional area of the conventional screen-printed silver-containing grid electrode, which is a relatively optimized cross-section, so the maximum effect of current transmission can be achieved.
  • the internal resistance of the interconnect structure is reduced, so that the loss caused by the resistance of the interconnect structure can be greatly reduced.
  • the solar cell panel 1 can use a larger unit, but at most the entire silicon wafer can be made into one solar cell panel 1.
  • the use of the wire 2 can usually reflect the sunlight incident on the wire 2 to the surface of the solar cell panel 1 again, which improves the light utilization rate of the solar cell panel 1 and reduces the adverse effects caused by the shading of the traditional grid electrode.
  • the first electrode disk 9 and the second electrode disk 11 may be provided as a whole along the edge of the solar cell panel 1, or a plurality of first electrode disks 9, Two electrode disks 11, for example, the number of the first electrode disks 9 and the second electrode disks 11 are the same as the number of wires 2 on their respective surfaces, and the first electrode disks 9, the second electrode disks 11 and the corresponding wires 2 are one by one Corresponding connection. In order to save material, one end of the wire 2 may be electrically connected to the first electrode disk 9 and the second electrode disk 11.
  • a section of grid lines or a plurality of sections of grid lines are provided at intervals.
  • the solar cell panel 1 is provided with a grid line 3 on a straight line, and a plurality of first electrode discs 9 and second electrode discs 11 are evenly arranged at the edge of the solar cell panel 1 .
  • the solar cell panel 1 is provided with a plurality of grid lines 3 at intervals on a straight line.
  • Each section of the grid line 3 is connected with a wire.
  • the use of a multi-segment grid line 3 can save the material processed by the grid line 3, further reduce shading, increase the effective light absorption area of the solar cell panel, and thus improve the photoelectric conversion efficiency.
  • a plurality of first electrode disks 9 and second electrode disks 11 are evenly arranged at the edge of the solar cell panel 1.
  • the material of the wire 2 may be at least any one of copper, aluminum, silver, gold, copper-nickel alloy, and copper-zinc alloy.
  • the wire 2 can also be a wire with a composite layer structure such as copper clad aluminum wire.
  • the wire 2 is a copper wire, which has a higher electrical conductivity, and has the advantage of lower cost compared with the use of precious metals such as gold and silver.
  • the conductive layer 5 is formed on the outer surface of the wire 2 by, for example but not limited to, coating or other processes.
  • the wire diameter of the wire 2 is, for example but not limited to, 50um, 100um, 150um, etc.
  • first electrode disk 9 and the second electrode disk 11 may be electrically connected by a connecting agent 10 provided between the two, and the connecting agent 10 may be, but not limited to, solder paste and a softening temperature of 90-120 degrees Conductive resin, metal or alloy with a melting point of 70-180 degrees.
  • the solar cell interconnection structure provided by the present invention includes at least two solar cell panels 1 arranged in a shingled structure, wherein three solar cell panels 1 are shown in FIG. 9, and each solar cell A plurality of grid lines 3 are arranged side by side on the front surface of the panel 1, and the plurality of grid lines 3 are, for example but not limited to, arranged in parallel at uniform intervals, and a plurality of wires 2 are also arranged side by side on the front surface of each solar panel 1, such as but not limited to , The wires 2 are arranged in parallel at regular intervals, and the wires 2 intersect with the grid line 3 and are conductively connected; the overlapping point 4 of two adjacent solar panels 1, the lead 2 on the solar panel 1 below, and the The electrodes on the back of the solar panel 1 are electrically connected.
  • the side-by-side setting mentioned in this article can be a parallel setting or a non-parallel setting.
  • the plurality of wires arranged side by side may be arranged in a flat shape, or may be arranged in a radial shape.
  • the front side refers to the side facing the sun when the solar panel 1 is in operation, and the back side is the side opposite to the front side.
  • the wire 2 referred to herein does not only refer to a wire with a perfect circular cross section, but may also be an ellipse or the like.
  • the cross-sectional area of the wire 2 is more conventional under the same width
  • the screen-printed silver-containing grid electrode has a large cross-sectional area, which is a relatively optimized cross-section, so it can achieve the maximum effect of current transmission.
  • the internal resistance of the interconnect structure is reduced, so that the loss caused by the resistance of the interconnect structure can be greatly reduced.
  • the solar panel 1 can use a larger unit, but the largest piece of silicon can be made into a solar panel 1, in addition, the use of wire 2 can usually make the sunlight incident on the wire 2 Re-reflecting to the surface of the solar cell panel 1 improves the light utilization rate of the solar cell panel 1 and reduces the adverse effects caused by the shading of the traditional grid electrode.
  • a section of grid lines or a plurality of sections of grid lines are provided at intervals.
  • a section of the gate line 3 is provided on a straight line.
  • a plurality of gate lines 3 are arranged at intervals on a straight line.
  • Each section of the grid line 3 is connected with a wire.
  • the use of a multi-segment grid line 3 can save the material processed by the grid line 3, further reduce shading, increase the effective light absorption area of the solar cell panel, and thus improve the photoelectric conversion efficiency.
  • the material of the wire 2 may be at least any one of copper, aluminum, silver, gold, copper-nickel alloy, and copper-zinc alloy.
  • the wire 2 can also be a wire with a composite layer structure such as copper clad aluminum wire.
  • the wire 2 is a copper wire, which has a higher electrical conductivity, and has the advantage of lower cost compared with the use of precious metals such as gold and silver.
  • the conductive layer 5 is formed on the outer surface of the wire 2 by, for example but not limited to, coating or other processes.
  • the wire diameter of the wire 2 is, for example but not limited to, 50um, 100um, 150um, etc.
  • the double-sided solar cell interconnection structure provided by the present invention includes at least two solar cell panels 1 arranged in one direction, wherein three solar cell panels 1 are shown in FIG. 18, each A plurality of grid lines 3 are arranged side by side on the front and back sides of the solar panel 1.
  • the plurality of grid lines 3 are, for example but not limited to, arranged in parallel at uniform intervals.
  • the front side of each solar panel 1 is also provided with a plurality of wires 2 side by side.
  • the conductive wires 2 are arranged in parallel at regular intervals, the conductive wires 2 intersect the grid lines 3 and are electrically connected, and the conductive wires have an extension 9 that extends out of the solar panel 1 where they are located; in two adjacent solar panels 1, where The extension 9 of the wire 2 on one solar panel 1 is electrically connected to the grid line on the back of the other solar panel 1.
  • the side-by-side setting mentioned in this article can be a parallel setting or a non-parallel setting.
  • the plurality of wires arranged side by side may be arranged in a flat shape, or may be arranged in a radial shape.
  • the front side refers to the side facing the sun when the solar panel 1 is in operation, and the back side is the side opposite to the front side.
  • the wire 2 referred to herein does not only refer to a wire with a perfect circular cross section, but may also be an ellipse or the like.
  • the front and back structures of the solar cell panel 1 may be the same.
  • the front side of the solar cell panel 1 is connected to the grid lines 3 through the wires 2 and then electrically connected to the grid lines on the back side of the adjacent solar cell panel 1.
  • the screen-printed silver-containing grid electrode has a large cross-sectional area, which is a relatively optimized cross-section, so it can achieve the maximum effect of current transmission.
  • the internal resistance of the interconnect structure is reduced, so that the loss caused by the resistance of the interconnect structure can be greatly reduced.
  • the solar cell panel 1 can use a larger unit, but at most the entire silicon wafer can be made into one solar cell panel 1.
  • the use of the wire 2 can usually reflect the sunlight incident on the wire 2 to the surface of the solar cell panel 1 again, which improves the light utilization rate of the solar cell panel 1 and reduces the adverse effects caused by the shading of the traditional grid electrode.
  • a section of grid lines or a plurality of sections of grid lines are provided at intervals.
  • a section of the gate line 3 is provided on a straight line.
  • a plurality of gate lines 3 are arranged at intervals on a straight line.
  • Each section of the grid line 3 is connected with a wire.
  • the use of a multi-segment grid line 3 can save the material processed by the grid line 3, further reduce shading, increase the effective light absorption area of the solar cell panel, and thus improve the photoelectric conversion efficiency.
  • the material of the wire 2 may be at least any one of copper, aluminum, silver, gold, copper-nickel alloy, and copper-zinc alloy.
  • the wire 2 can also be a wire with a composite layer structure such as copper clad aluminum wire.
  • the wire 2 is a copper wire, which has a higher electrical conductivity, and has the advantage of lower cost compared with the use of precious metals such as gold and silver.
  • the conductive layer 5 is formed on the outer surface of the wire 2 by, for example but not limited to, coating or other processes.
  • the wire diameter of the wire 2 is, for example but not limited to, 50um, 100um, 150um, etc.
  • the device embodiments described above are only schematics, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located One place, or it can be distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of this embodiment. Those of ordinary skill in the art can understand and implement without paying creative labor.
  • any reference signs between parentheses should not be constructed as limitations on the claims.
  • the word “comprising” does not exclude the presence of elements or steps not listed in the claims.
  • the word “a” or “one” before an element does not exclude the presence of multiple such elements.
  • the invention can be realized by means of hardware including several different elements and by means of a suitably programmed computer. In the unit claims enumerating several devices, several of these devices may be embodied by the same hardware item.
  • the use of the words first, second, and third does not indicate any order. These words can be interpreted as names.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本申请公开了一种太阳能电池互联结构,包括以叠瓦结构设置的至少两片太阳能电池板,各太阳能电池板的正面均并排设置有多条栅线,各太阳能电池板的正面还并排设置有多条导线,导线与栅线相交且导电连接;相邻的两太阳能电池板的交叠处,位于下方的太阳能电池板上设置有电极盘,电极盘与位于上方的太阳能电池板背面的电极电连接,且电极盘与导线电连接。上述方案,通过设置多根导线,降低了互联结构的内阻,使得互联结构的电阻造成的损耗可以大幅降低。另外,采用导线通常可以将入射到导线的太阳光再次反射到太阳能电池板表面,提高了太阳能电池板的光的使用率,降低了传统栅线电极遮光造成的不利影响。

Description

一种太阳能电池互联结构
本申请要求在2018年12月28日提交中国专利局、申请号为201811626386.1、发明名称为“太阳能电池互联结构”,以及2018年12月28日提交中国专利局、申请号为201811628461.8、发明名称为“双面太阳能电池互联结构”,以及2018年12月28日提交中国专利局、申请号为201811626048.8、发明名称为“太阳能电池互联结构”,以及2018年12月28日提交中国专利局、申请号为201811626060.9、发明名称为“双面太阳能电池互联结构”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及单晶硅技术领域,特别是涉及一种太阳能电池互联结构。
背景技术
目前,随着化石能源的逐渐耗尽,太阳能光伏电池作为新的能源替代方案,使用越来越广泛。太阳能光伏电池是将太阳的光能转换为电能的装置。太阳能光伏电池利用光生伏特原理产生载流子,然后使用电极将载流子引出,从而获得可以利用的电能。
太阳能光伏电池的互联是光伏太阳发电的重要一环,其技术方案对于光伏发电性能有着重要的影响。叠瓦结构是一种较好的实现太阳能光伏电池互联的方案。叠瓦结构结构中,太阳能光伏电池首尾相互交叠连接(也可称为搭接),大幅度减少了太阳能光伏电池按传统排列互联结构中的间隙,在单位面积上可以设置更多的太阳能光伏电池单元,提高了有效的太阳光利用率。
然而,目前采用叠瓦结构的太阳能光伏电池互联方案,存在一些不足,例如:现有叠瓦结构的太阳能光伏电池互联方案的内部电阻过大,影响了整体电能输出;由于其自身互联结构传输电阻较大的限制,各太阳能电池板(亦可称为太阳能电池片)需要更小的传输距离(也即太阳能电池板需要做的较窄),因此若使用切割工艺的太阳能电池板,则需将由硅棒切片并加工而成的整片电池板,经多次切割,获得多片宽度较窄的太阳能电池板,切割次数的增加会带来成品率的下降,且增大了太阳能电池板隐裂的风险。此外,目前太阳能电池板的一般通过丝网印刷银浆的方式形成栅线电极,采用此种方式,成本相对高昂,印制的栅极电极存在遮光的问题,对光电转换效率有不利影响。
发明内容
本发明提供一种太阳能电池互联结构,旨在解决现有互联结构内阻大、太阳能电池板破片率及隐裂的风险高,采用丝网印刷银浆形成栅线电极成本高,对光电转换效率有不利影响的问题。
本发明实施例提供了一种太阳能电池互联结构,包括以叠瓦结构设置或沿一方向排布设置的至少两片太阳能电池板,各所述太阳能电池板的正面均并排设置有多条栅线,各所述太阳能电池板的正面还并排设置有多条导线,所述导线与所述栅线相交且导电连接;
相邻的两所述太阳能电池板的交叠处,位于下方的太阳能电池板上的导线,与位于上方的太阳能电池板背面的电极电连接;
或,
相邻的两所述太阳能电池板的交叠处,位于下方的太阳能电池板上设置有电极盘,所述电极盘与位于上方的太阳能电池板背面的电极电连接,且所述电极盘与所述导线电连接;
或,
相邻的两所述太阳能电池板的交叠处,位于下方的太阳能电池板的正面设置有第一电极盘,位于上方的太阳能电池板的背面设置有第二电极盘,所述第一电极盘与所述第二电极盘电连接,所述第一电极盘与太阳能电池板正面的所述导线电连接,所述第二电极盘与太阳能电池板的背面所述导线电连接;
或,
所述导线具有延伸出其所在太阳能电池板的延伸段;相邻的两所述太阳能电池板中,其中一太阳能电池板上的导线的延伸段,与另一太阳能电池板背面的栅线电连接。
根据本申请实施例提供的技术方案,太阳能电池板的正面通过导线将各栅线连接后,再通过导线直接或间接与相邻太阳能电池板的背面的电极电连接,由于在同等宽度情况下,导线的横截面积较常规丝网印刷的含银栅线电极的横截面积大,其是相对较为优化的截面,因此可以做到电流传输的最大效果。此外,通过设置多根导线,降低了互联结构的内阻,使得互联结构的电阻造成的损耗可以大幅降低。另外,采用导线通常可以将入射到导线的太阳光再次反射到太阳能电池板表面,提高了太阳能电池板的光的使用率,降低了传统栅线电极遮光造成的不利影响。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的太阳能电池互联结构的立体图;
图2为本发明实施例提供的太阳能电池互联结构中交叠处的立体图;
图3为图1的局部放大图I;
图4为本发明实施例提供的太阳能电池板背面的结构示意图;
图5为本发明实施例提供的导线与聚合物膜结合的示意图;
图6为本发明实施例提供的示出镂空图形的示意图;
图7为本发明实施例提供的示出其中一种栅线结构的示意图;
图8为本发明实施例提供的示出另外一种栅线结构的示意图;
图9为本发明实施例提供的双面太阳能电池互联结构的正面视角的立体图;
图10为图9的局部放大图I;
图11为本发明实施例提供的双面太阳能电池互联结构的背面视角的局部立体图;
图12为本发明实施例提供的示出其中一种栅线结构的示意图;
图13为图12的后视图;
图14为图8的后视图;
图15为图9的局部放大图I;
图16为本发明实施例提供的示出其中一种栅线结构的示意图;
图17为本发明实施例提供的示出另外一种栅线结构的示意图;
图18为本发明实施例提供的双面太阳能电池互联结构的立体图;
图19为本发明实施例提供的双面太阳能电池互联结构的右视图;
图20为图18的局部放大图I;
图21为本发明另一实施例提供的双面太阳能电池互联结构的立体图;
图22为图21的局部放大图H。
具体实施例
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
如图1-图4所示,本发明提供的太阳能电池互联结构,包括以叠瓦结构设置的至少两片太阳能电池板1,其中图1中示出了3片太阳能电池板1,各太阳能电池板1的正面均并排设置有多条栅线3,多条栅线3例如但不限于为均匀间隔平行排布,各太阳能电池板1的正面还并排设置有多条导线2,例如但不限于,导线2均匀间隔平行排布,导线2与栅线3相交且导电连接;相邻的两太阳能电池板1的交叠处4,位于下方的太阳能电池板1上设置有电极盘9,电极盘9与位于上方的太阳能电池板1背面的电极11电连接,且电极盘与导线2电连接。
本文所说的并排设置,可以是平行的设置,也可以是非平行的设置。例如但不限于,多条并排设置的导线可以是呈平形状排布,也可以呈放射状排布。
上述正面是指太阳能电池板1工作时,朝向太阳的一面,背面是与正面相背的一面。
相邻的两太阳能电池板1的交叠处4,也即相邻的两太阳能电池板的搭接处。
本文所说的导线2并不单单指截面为正圆的导线,也可以是椭圆等。
上述方案,太阳能电池板1的正面通过导线2将各栅线3连接后,再通过电极盘与相邻太阳能电池板1的背面的电极电连接,由于在同等宽度情况下,导线2的横截面积较常规丝网印刷的含银栅线电极的横截面积大,其是相对较为优化的截面,因此可以做到电流传输的最大效果。此外,通过设置多根导线2,降低了互联结构的内阻,使得互联结构的电阻造成的损耗可以大幅降低。此外,由于互联结构内阻的降低,太阳能电池板1可以采用较大的单元,最大可是整片硅片制作为一个太阳能电 池板1。另外,采用导线2通常可以将入射到导线2的太阳光再次反射到太阳能电池板1的表面,提高了太阳能电池板1的光的使用率,降低了传统栅线电极遮光造成的不利影响。
其中,电极盘9可以沿着太阳能电池板的边缘处设置为一整条,也可以沿着太阳能电池板的边缘处设置多个电极盘9,例如电极盘9的数量与导线2的数量一致,电极盘9与导线2一一对应连接。为了节省材料,可以是导线2的一端与电极盘9电连接。
进一步地,太阳能电池板为整片电池板或由整片电池板沿平行于栅线3方向进行二分之一、三分之一,四分之一,五分之一或六分之一切割而成的子电池板。
本文所说的整片电池板由硅棒切片后的整片硅片制作的一整片太阳能电池板。
由于在太阳能电池板1上设置了导线2后可以降低太阳能电池板1的内阻,最大的太阳能电池板1可以为整片电池板,当然还可以采用整片电池板的二分之一,三分之一,四分之一,五分之一或六分之一等大小,随着该互联结构可以使用更大的面积的太阳能电池板1,在同样面积的互联结构中,采用的太阳能电池板1的数量减少,因此减少了工艺连接的次数,同时,由于可以采用更大面积的太阳能电池板1,则可以减少对整片太阳能电池板的切割次数,进而降低了因切割带来的机械损害、破片率及隐裂的风险。
进一步地,各太阳能电池板1的正面均铺设有透光的聚合物膜,各导线2与聚合物膜固定连接。
在制作时,可以先将导线2通过热压等方式固定在透光的聚合物膜。为了下一步制作时,导线2能与栅线3充分接触,则导线2的一部分弧面可以凸出聚合物膜的表面。之后,将固定有导线的聚合物膜铺设在太阳能电池板1的正面,且使导线2凸出聚合物膜的一部分弧面朝向栅线,对聚合物膜进行热压,使其粘在太阳能电池板1的正面,以固定各导线2,并保证各导线2与栅线3电连接。采用此种方式,制作过程中导线2的铺设和对位更为方便和精确,且降低了工艺复杂度,甚至减少了工艺步骤,还能保证导线2与栅线3充分的电连接。
进一步地,另参见图5,聚合物膜包括基层7及设置于基层7上的粘结层6,粘结层6贴合于太阳能电池板1的正面。
聚合物膜采用粘结层6及基层7的复合层结构,在加工时,粘结层6贴合于太阳能电池板1的正面,其起到粘合层的作用,此外,粘结层6还使得导线2与太阳能电池板1的接触变为柔性接触,降低了破片率。基层7在热压之后固化,具有一定的强度,可以起到保护其所覆盖的结构的作用。
进一步地,基层和/或粘结层的材料至少为醋酸纤维素、聚烯烃、聚酰胺、聚苯醚、氟树脂、聚甲基丙烯酸甲酯、聚砜、聚酯、环氧树脂、有机硅树脂、聚酰亚胺树脂、酚醛树脂、聚氨酯和丙烯酸树脂中的至少任一种。
作为优选方式,粘结层6的材质可以为聚烯烃、聚酰胺、聚苯醚、氟树脂、聚甲基丙烯酸甲酯、聚砜和聚酯中的至少任一种。
作为优选方式,基层7的材质可以为环氧树脂、有机硅树脂、聚酰 亚胺树脂、酚醛树脂、聚氨酯和丙烯酸树脂中的至少任一种。
进一步地,各导线2的至少部分位于粘结层6,可以确保在热压的过程中,导线2被压至太阳能电池板1正面并与栅线3接触,实现良好的电连接。
进一步地,如图6所示,聚合物膜上设置有镂空图案8,镂空图案8位于相邻的两导线2之间。镂空图案8可以为任何形状,例如矩形、圆形、椭圆形等。设置镂空图案8是为了使光线直接穿过镂空图案8照射到太阳能电池板正面,使得透光率得以保障,并且降低了聚合物膜的使用量,降低了成本。
进一步地,导线2外周面设置有导电层5。导电层5在热压过程中起到粘合剂或焊料的作用,利于实现导线2与栅线3较好的电连接,提高了连接的可靠性。
进一步地,导电层5的材料为熔点在70-180度之间的金属或合金;或者,
导电层5的材料为软化温度在90-120度之间的导电树脂。采用上述温度的导电层5,可以使用较低的热压温度,降低了热压时的热应力,防止出现太阳能电池板1隐裂或破碎的问题。
进一步地,导电层5的材料包括Ag、Bi、Cd、Ga、In、Pb、Sn、Ti、Zn中的任一种材质的单质或合金,若单质的熔点高于此温度范围,则可以选择其对应的位于此温度范围的合金;或者,导电层5的材料包括导电树脂,该导电树脂的软化温度在90-120度之间,导电树脂包括树脂基材及设置于树脂基材内的导电粒子,树脂基材包括醋酸纤维素、氟树脂、聚砜树脂、聚酯树脂、聚酰胺树脂、聚氨酯树脂和聚烯烃类树脂中的任一种,导电粒子包括金、银、铜、铝、锌、镍和石墨中的至少任一种。导电粒子的形状可以为颗粒状和/或片状。
进一步地,相邻的两太阳能电池板1的交叠处4宽度为0.1-3mm。采用此宽度既能保证相邻两太阳能电池板连接的接触性能,又不会应交叠的遮挡作用造成太阳能电池板不必要的损耗。例如交叠处的宽度设置为0.5mm、1.5mm、2mm、3mm等。
进一步地,导线2与栅线3垂直。使得电流传输线路最短,降低了损耗。
进一步地,各太阳能电池板上均设置有互通连接导线(图中未示出),互通连接导线与其所在的太阳能电池板1上的各导线2电连接。作为一种优选方式,互通连接导线与导线2垂直。
通过在导线2之间设置互通连接导线,可以使得电极接触不良区域,以及太阳能电池板之间连接不良导致的电能传输性能得到保证,提高良品率。互通连接导线的线径可以和导线2相同,也可以不同。互通连接导线可以设置一根,也可以适当间隔设置多根,其设置量要综合考虑保证电流的传输,以及尽量保证较少遮光。
进一步地,聚合物膜的厚度可以在5微米至150微米之间,用以保证在热压下聚合物膜具有足够的稳定性,且在冷却后聚合物膜表面收缩小,表面平坦。
进一步地,各太阳能电池板1的正面设置的导线2的数量为3-100根。多根导线2可以均匀的间隔排布。
设置的数量可以综合考虑保证电流的传输,以及尽量保证较少遮光来定。
进一步地,于一直线上,设置有一段栅线或间隔设置有多段栅线。
如图7所示,太阳能电池板1上是在一直线上设置了一段栅线3,在阳能电池板1边缘处均匀设置了多个电极盘9。
如图8所示,太阳能电池板1上是在一直线上间隔设置了多段栅线3。其中每段栅线3都连接的有导线。采用多段式的栅线3,可以节省栅线3加工的材料,并且进一步减少遮光,增加太阳能电池板的有效光吸收面积,从而提高光电转换效率。在阳能电池板1边缘处均匀设置了多个电极盘9。
进一步地,导线2的材质可以选用铜、铝、银、金、铜镍合金和铜锌合金中的至少任一种。导线2亦可采用铜包铝线等复合层结构的线材。作为一种优选方式,导线2采用铜线,采用铜线既具有较高的电导率,且其相对于采用金银等贵金属,又具有成本低的优点。
导电层5例如但不限于采用涂覆等工艺形成于导线2的外表面。导线2的线径例如但不限于为50um、100um、150um等。
进一步地,电极盘9与位于上方的太阳能电池板1背面的电极可以通过设置在其二者之间的连接剂10进行电连接,连接剂10可以但不限于为焊膏、软化温度在90-120度的导电树脂、熔点在70-180度的金属或合金等。
实施例二
如图9-图11所示,本发明提供的双面太阳能电池互联结构,包括以叠瓦结构设置的至少两片太阳能电池板1,其中图9中示出了3片太阳能电池板1,各太阳能电池板1的正面及背面均并排设置有多条栅线3,多条栅线3例如但不限于为均匀间隔平行排布,各太阳能电池板1的正面及背面还均并排设置有多条导线2,例如但不限于,导线2均匀间隔平行排布,导线2与对应的栅线3相交且导电连接,这里所说的对应的栅线3是指,对于同一太阳能电池板1,正面的导线2与正面的栅线3电连接,背面的导线2与背面的栅线3电连接;相邻的两太阳能电池板1的交叠处4,位于下方的太阳能电池板1的正面设置第一电极盘9,位于上方的太阳能电池板1背面的设置有第二电极盘11,第一电极盘9与第二电极盘11电连接,第一电极盘9与太阳能电池板1正面的导线2电连接,第二电极盘11与太阳能电池板1背面的导线2电连接。
本文所说的并排设置,可以是平行的设置,也可以是非平行的设置。例如但不限于,多条并排设置的导线可以是呈平形状排布,也可以呈放射状排布。
上述正面是指太阳能电池板1工作时,朝向太阳的一面,背面是与正面相背的一面。
相邻的两太阳能电池板1的交叠处4,也即相邻的两太阳能电池板的搭接处。
本文所说的导线2并不单单指截面为正圆的导线,也可以是椭圆等。
上述方案,太阳能电池板1的正面通过导线2将各栅线3连接后, 再通过第一电极盘9与相邻太阳能电池板1的背面的第二电极盘11电连接,由于在同等宽度情况下,导线2的横截面积较常规丝网印刷的含银栅线电极的横截面积大,其是相对较为优化的截面,因此可以做到电流传输的最大效果。此外,通过设置多根导线2,降低了互联结构的内阻,使得互联结构的电阻造成的损耗可以大幅降低。此外,由于互联结构内阻的降低,太阳能电池板1可以采用较大的单元,最大可是整片硅片制作为一个太阳能电池板1。另外,采用导线2通常可以将入射到导线2的太阳光再次反射到太阳能电池板1的表面,提高了太阳能电池板1的光的使用率,降低了传统栅线电极遮光造成的不利影响。
其中,第一电极盘9、第二电极盘11可以沿着太阳能电池板1的边缘处设置为一整条,也可以沿着太阳能电池板1的边缘处设置多个第一电极盘9、第二电极盘11,例如第一电极盘9、第二电极盘11的数量与分别与其所在面的导线2的数量一致,第一电极盘9、第二电极盘11与对应面的导线2一一对应连接。为了节省材料,可以是导线2的一端与第一电极盘9、第二电极盘11电连接。
进一步地,于一直线上,设置有一段栅线或间隔设置有多段栅线。
如图12、图13所示,太阳能电池板1上是在一直线上设置了一段栅线3,在阳能电池板1边缘处均匀设置了多个第一电极盘9、第二电极盘11。
如图8、图14所示,太阳能电池板1上是在一直线上间隔设置了多段栅线3。其中每段栅线3都连接的有导线。采用多段式的栅线3,可以节省栅线3加工的材料,并且进一步减少遮光,增加太阳能电池板的有效光吸收面积,从而提高光电转换效率。在阳能电池板1边缘处均匀设置了多个第一电极盘9、第二电极盘11。
进一步地,导线2的材质可以选用铜、铝、银、金、铜镍合金和铜锌合金中的至少任一种。导线2亦可采用铜包铝线等复合层结构的线材。作为一种优选方式,导线2采用铜线,采用铜线既具有较高的电导率,且其相对于采用金银等贵金属,又具有成本低的优点。
导电层5例如但不限于采用涂覆等工艺形成于导线2的外表面。导线2的线径例如但不限于为50um、100um、150um等。
进一步地,第一电极盘9与第二电极盘11可以通过设置在其二者之间的连接剂10进行电连接,连接剂10可以但不限于为焊膏、软化温度在90-120度的导电树脂、熔点在70-180度的金属或合金等。
以上仅对本实施例与实施例一不同的地方进行重点描述;本实施例与上一实施例相同的部分,请参照实施例一理解,在此不再赘述。
实施例三
如图9、图15所示,本发明提供的太阳能电池互联结构,包括以叠瓦结构设置的至少两片太阳能电池板1,其中图9中示出了3片太阳能电池板1,各太阳能电池板1的正面均并排设置有多条栅线3,多条栅线3例如但不限于为均匀间隔平行排布,各太阳能电池板1的正面还并排设置有多条导线2,例如但不限于,导线2均匀间隔平行排布,导线2与栅线3相交且导电连接;相邻的两太阳能电池板1的交叠处4,位于下方的太阳能电池板1上的导线2,与位于上方的太阳能电池板1背面的电极电 连接。
本文所说的并排设置,可以是平行的设置,也可以是非平行的设置。例如但不限于,多条并排设置的导线可以是呈平形状排布,也可以呈放射状排布。
上述正面是指太阳能电池板1工作时,朝向太阳的一面,背面是与正面相背的一面。
相邻的两太阳能电池板1的交叠处4,也即相邻的两太阳能电池板的搭接处。
本文所说的导线2并不单单指截面为正圆的导线,也可以是椭圆等。
上述方案,太阳能电池板1的正面通过导线2将各栅线3连接后,再与相邻太阳能电池板1的背面的电极电连接,由于在同等宽度情况下,导线2的横截面积较常规丝网印刷的含银栅线电极的横截面积大,其是相对较为优化的截面,因此可以做到电流传输的最大效果。此外,通过设置多根导线2,降低了互联结构的内阻,使得互联结构的电阻造成的损耗可以大幅降低。此外,由于互联结构内阻的降低,太阳能电池板1可以采用较大的单元,最大可是整片硅片制作为一个太阳能电池板1,另外,采用导线2通常可以将入射到导线2的太阳光再次反射到太阳能电池板1的表面,提高了太阳能电池板1的光的使用率,降低了传统栅线电极遮光造成的不利影响。
进一步地,于一直线上,设置有一段栅线或间隔设置有多段栅线。
如图16所示,是在一直线上设置了一段栅线3。
如图17所示,是在一直线上间隔设置了多段栅线3。其中每段栅线3都连接的有导线。采用多段式的栅线3,可以节省栅线3加工的材料,并且进一步减少遮光,增加太阳能电池板的有效光吸收面积,从而提高光电转换效率。
进一步地,导线2的材质可以选用铜、铝、银、金、铜镍合金和铜锌合金中的至少任一种。导线2亦可采用铜包铝线等复合层结构的线材。作为一种优选方式,导线2采用铜线,采用铜线既具有较高的电导率,且其相对于采用金银等贵金属,又具有成本低的优点。
导电层5例如但不限于采用涂覆等工艺形成于导线2的外表面。导线2的线径例如但不限于为50um、100um、150um等。
以上仅对本实施例与实施例一不同的地方进行重点描述;本实施例与上一实施例相同的部分,请参照实施例一理解,在此不再赘述。
实施例四
如图18-图20所示,本发明提供的双面太阳能电池互联结构,包括沿一方向排布的至少两片太阳能电池板1,其中图18中示出了3片太阳能电池板1,各太阳能电池板1的正面及背面均并排设置有多条栅线3,多条栅线3例如但不限于为均匀间隔平行排布,各太阳能电池板1的正面还并排设置有多条导线2,例如但不限于,导线2均匀间隔平行排布,导线2与栅线3相交且导电连接,导线具有延伸出其所在太阳能电池板1的延伸段9;相邻的两太阳能电池板1中,其中一太阳能电池板1上的导线2的延伸段9,与另一太阳能电池板1背面的栅线电连接。
本文所说的并排设置,可以是平行的设置,也可以是非平行的设置。 例如但不限于,多条并排设置的导线可以是呈平形状排布,也可以呈放射状排布。
上述正面是指太阳能电池板1工作时,朝向太阳的一面,背面是与正面相背的一面。
本文所说的导线2并不单单指截面为正圆的导线,也可以是椭圆等。
例如但不限于,太阳能电池板1的正面与背面结构可以相同。
上述方案,太阳能电池板1的正面通过导线2将各栅线3连接后,再与相邻太阳能电池板1的背面的栅线电连接,由于在同等宽度情况下,导线2的横截面积较常规丝网印刷的含银栅线电极的横截面积大,其是相对较为优化的截面,因此可以做到电流传输的最大效果。此外,通过设置多根导线2,降低了互联结构的内阻,使得互联结构的电阻造成的损耗可以大幅降低。此外,由于互联结构内阻的降低,太阳能电池板1可以采用较大的单元,最大可是整片硅片制作为一个太阳能电池板1。另外,采用导线2通常可以将入射到导线2的太阳光再次反射到太阳能电池板1的表面,提高了太阳能电池板1的光的使用率,降低了传统栅线电极遮光造成的不利影响。
进一步地,于一直线上,设置有一段栅线或间隔设置有多段栅线。
如图16所示,是在一直线上设置了一段栅线3。
如图17所示,是在一直线上间隔设置了多段栅线3。其中每段栅线3都连接的有导线。采用多段式的栅线3,可以节省栅线3加工的材料,并且进一步减少遮光,增加太阳能电池板的有效光吸收面积,从而提高光电转换效率。
进一步地,导线2的材质可以选用铜、铝、银、金、铜镍合金和铜锌合金中的至少任一种。导线2亦可采用铜包铝线等复合层结构的线材。作为一种优选方式,导线2采用铜线,采用铜线既具有较高的电导率,且其相对于采用金银等贵金属,又具有成本低的优点。
导电层5例如但不限于采用涂覆等工艺形成于导线2的外表面。导线2的线径例如但不限于为50um、100um、150um等。
以上仅对本实施例与实施例一不同的地方进行重点描述;本实施例与上一实施例相同的部分,请参照实施例一理解,在此不再赘述。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味 着,结合实施例描述的特定特征、结构或者特性包括在本发明的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (20)

  1. 一种太阳能电池互联结构,包括以叠瓦结构设置或沿一方向排布设置的至少两片太阳能电池板,各所述太阳能电池板的正面均并排设置有多条栅线,其特征在于,各所述太阳能电池板的正面还并排设置有多条导线,所述导线与所述栅线相交且导电连接;
    相邻的两所述太阳能电池板的交叠处,位于下方的太阳能电池板上的导线,与位于上方的太阳能电池板背面的电极电连接;
    或,
    相邻的两所述太阳能电池板的交叠处,位于下方的太阳能电池板上设置有电极盘,所述电极盘与位于上方的太阳能电池板背面的电极电连接,且所述电极盘与所述导线电连接;
    或,
    相邻的两所述太阳能电池板的交叠处,位于下方的太阳能电池板的正面设置有第一电极盘,位于上方的太阳能电池板的背面设置有第二电极盘,所述第一电极盘与所述第二电极盘电连接,所述第一电极盘与太阳能电池板正面的所述导线电连接,所述第二电极盘与太阳能电池板的背面所述导线电连接;
    或,
    所述导线具有延伸出其所在太阳能电池板的延伸段;相邻的两所述太阳能电池板中,其中一太阳能电池板上的导线的延伸段,与另一太阳能电池板背面的栅线电连接。
  2. 根据权利要求1所述的太阳能电池互联结构,其特征在于,所述太阳能电池板为整片电池板或由整片电池板沿平行于所述栅线方向进行二分之一、三分之一,四分之一,五分之一或六分之一切割而成的子电池板。
  3. 根据权利要求1所述的太阳能电池互联结构,其特征在于,各所述太阳能电池板的正面均铺设有透光的聚合物膜,各所述导线与所述聚合物膜固定连接。
  4. 根据权利要求3所述的太阳能电池互联结构,其特征在于,所述聚合物膜包括基层及设置于所述基层上的粘结层,所述粘结层贴合于所述太阳能电池板的正面。
  5. 根据权利要求4所述的太阳能电池互联结构,其特征在于,所述基层和/或粘结层的材料至少为醋酸纤维素、聚烯烃、聚酰胺、聚苯醚、氟树脂、聚甲基丙烯酸甲酯、聚砜、聚酯、环氧树脂、有机硅树脂、聚酰亚胺树脂、酚醛树脂、聚氨酯和丙烯酸树脂中的至少任一种。
  6. 根据权利要求4所述的太阳能电池互联结构,其特征在于,各所述导线的至少部分位于所述粘结层。
  7. 根据权利要求6所述的太阳能电池互联结构,其特征在于,所述聚合物膜上设置有镂空图案,所述镂空图案位于相邻的两所述导线之间。
  8. 根据权利要求1-7任一项所述的太阳能电池互联结构,其特征在于,所述导线外周面设置有导电层。
  9. 根据权利要求8所述的太阳能电池互联结构,其特征在于,所述导电层的材料为熔点在70-180度之间的金属或合金;或者,
    所述导电层的材料为软化温度在90-120度之间的导电树脂。
  10. 根据权利要求8所述的太阳能电池互联结构,其特征在于,所述导电层的材料包括Ag、Bi、Cd、Ga、In、Pb、Sn、Ti、Zn中的任一种材质的单质或合金;或者,
    所述导电层的材料包括导电树脂,所述导电树脂包括树脂基材及设置于所述树脂基材内的导电粒子,所述树脂基材包括醋酸纤维素、氟树脂、聚砜树脂、聚酯树脂、聚酰胺树脂、聚氨酯树脂和聚烯烃类树脂中的任一种,所述导电粒子包括金、银、铜、铝、锌、镍和石墨中的至少任一种。
  11. 根据权利要求1-7任一项所述的太阳能电池互联结构,其特征在于,相邻的两所述太阳能电池板的交叠处宽度为0.1-3mm。
  12. 根据权利要求1-7任一项所述的太阳能电池互联结构,其特征在于,所述导线与所述栅线垂直。
  13. 根据权利要求1-7任一项所述的太阳能电池互联结构,其特征在于,所述聚合物膜的厚度在5微米至150微米之间。
  14. 根据权利要求1-7任一项所述的太阳能电池互联结构,其特征在于,各所述太阳能电池板的正面设置的所述导线的数量为3-100根。
  15. 根据权利要求1-7任一项所述的太阳能电池互联结构,其特征在于,于一直线上,设置有一段所述栅线或间隔设置有多段所述栅线。
  16. 根据权利要求1-7任一项所述的太阳能电池互联结构,其特征在于,所述导线的材料包括铜、铝、银、金、铜镍合金和铜锌合金中的至少任一种;
    或所述导线为铜包铝线。
  17. 根据权利要求1-7任一项所述的太阳能电池互联结构,其特征在于,所述电极盘与所述电极之间电连接有连接剂,所述连接剂为焊膏、软化温度在90-120度的导电树脂或者熔点在70-180度的金属或合金。
  18. 根据权利要求1所述的太阳能电池互联结构,其特征在于,所述导线至少与所述电极电连接的部分为扁平结构。
  19. 根据权利要求1所述的太阳能电池互联结构,其特征在于,相邻的两所述太阳能电池板的相邻边交叠设置或平齐设置。
  20. 根据权利要求1所述的太阳能电池互联结构,其特征在于,于相邻的两所述太阳能电池板的交界处,所述导线为扁平结构。
PCT/CN2019/124852 2018-12-28 2019-12-12 一种太阳能电池互联结构 WO2020135070A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201811626048.8A CN111403496A (zh) 2018-12-28 2018-12-28 太阳能电池互联结构
CN201811628461.8A CN111384191A (zh) 2018-12-28 2018-12-28 双面太阳能电池互联结构
CN201811626048.8 2018-12-28
CN201811628461.8 2018-12-28
CN201811626386.1 2018-12-28
CN201811626060.9 2018-12-28
CN201811626060.9A CN111403524A (zh) 2018-12-28 2018-12-28 双面太阳能电池互联结构
CN201811626386.1A CN111403497A (zh) 2018-12-28 2018-12-28 太阳能电池互联结构

Publications (1)

Publication Number Publication Date
WO2020135070A1 true WO2020135070A1 (zh) 2020-07-02

Family

ID=71129137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124852 WO2020135070A1 (zh) 2018-12-28 2019-12-12 一种太阳能电池互联结构

Country Status (1)

Country Link
WO (1) WO2020135070A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102945873A (zh) * 2012-11-19 2013-02-27 深圳市创益科技发展有限公司 一种多维折叠的柔性太阳能电池组件及其制造方法
CN107611198A (zh) * 2017-09-18 2018-01-19 苏州英鹏新能源有限公司 叠瓦组件以及太阳能电池板
CN209526100U (zh) * 2018-12-28 2019-10-22 泰州隆基乐叶光伏科技有限公司 双面太阳能电池互联结构
CN209526093U (zh) * 2018-12-28 2019-10-22 泰州隆基乐叶光伏科技有限公司 太阳能电池互联结构
CN209526092U (zh) * 2018-12-28 2019-10-22 泰州隆基乐叶光伏科技有限公司 太阳能电池互联结构
CN209526102U (zh) * 2018-12-28 2019-10-22 泰州隆基乐叶光伏科技有限公司 双面太阳能电池互联结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102945873A (zh) * 2012-11-19 2013-02-27 深圳市创益科技发展有限公司 一种多维折叠的柔性太阳能电池组件及其制造方法
CN107611198A (zh) * 2017-09-18 2018-01-19 苏州英鹏新能源有限公司 叠瓦组件以及太阳能电池板
CN209526100U (zh) * 2018-12-28 2019-10-22 泰州隆基乐叶光伏科技有限公司 双面太阳能电池互联结构
CN209526093U (zh) * 2018-12-28 2019-10-22 泰州隆基乐叶光伏科技有限公司 太阳能电池互联结构
CN209526092U (zh) * 2018-12-28 2019-10-22 泰州隆基乐叶光伏科技有限公司 太阳能电池互联结构
CN209526102U (zh) * 2018-12-28 2019-10-22 泰州隆基乐叶光伏科技有限公司 双面太阳能电池互联结构

Similar Documents

Publication Publication Date Title
CN111403490B (zh) 太阳能电池互联结构制备方法
JP2008159895A (ja) 太陽電池セル及び太陽電池モジュール
JP2008135654A (ja) 太陽電池モジュール
WO2018176527A1 (zh) 采用中心汇聚栅线电极的太阳能叠片组件
US10388811B2 (en) Process for preparing a photovoltaic cell
KR20110117656A (ko) 태양 전지 및 태양 전지 모듈
JP2007103473A (ja) 太陽電池装置および太陽電池モジュール
CN103824894B (zh) 具有反光器的太阳能电池
CN203812889U (zh) 具有反光器的太阳能电池
JP2009088152A (ja) 太陽電池モジュール
CN204857754U (zh) 一种太阳能电池组件
JP5676944B2 (ja) 太陽電池モジュール、太陽電池モジュールの製造方法
AU2020465021A1 (en) Manufacturing method and manufacturing apparatus for interconnection member
CN110246911A (zh) 背接触叠片太阳电池串及制造方法、叠片太阳电池组件
CN209981250U (zh) 背接触叠片太阳电池串及叠片太阳电池组件
CN104716213B (zh) 光伏电池模块及其制作方法
CN106449796B (zh) 一种用于太阳电池的电极
CN111403526A (zh) 设有导线的聚合物膜及设有导线的聚合物膜的制造方法
CN104576779A (zh) 丝网阵列导电膜、太阳能电池及其制备方法
US20230327035A1 (en) Interconnection piece and solar cell assembly
CN209526092U (zh) 太阳能电池互联结构
CN111403498A (zh) 双面太阳电池互联结构
WO2020135070A1 (zh) 一种太阳能电池互联结构
CN110190145A (zh) 背接触叠片太阳电池串及制造方法、叠片太阳电池组件
CN109904261A (zh) 太阳电池组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904339

Country of ref document: EP

Kind code of ref document: A1