WO2020135003A1 - 一种太阳能电池互联结构、设有导线的聚合物膜及设有导线的聚合物膜的制造方法 - Google Patents

一种太阳能电池互联结构、设有导线的聚合物膜及设有导线的聚合物膜的制造方法 Download PDF

Info

Publication number
WO2020135003A1
WO2020135003A1 PCT/CN2019/124064 CN2019124064W WO2020135003A1 WO 2020135003 A1 WO2020135003 A1 WO 2020135003A1 CN 2019124064 W CN2019124064 W CN 2019124064W WO 2020135003 A1 WO2020135003 A1 WO 2020135003A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
polymer film
wire
wires
interconnection structure
Prior art date
Application number
PCT/CN2019/124064
Other languages
English (en)
French (fr)
Inventor
童洪波
李华
靳玉鹏
Original Assignee
泰州隆基乐叶光伏科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811628460.3A external-priority patent/CN111403498A/zh
Priority claimed from CN201811626072.1A external-priority patent/CN111403525A/zh
Priority claimed from CN201811628455.2A external-priority patent/CN111403526A/zh
Application filed by 泰州隆基乐叶光伏科技有限公司 filed Critical 泰州隆基乐叶光伏科技有限公司
Publication of WO2020135003A1 publication Critical patent/WO2020135003A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present application generally relates to the field of photovoltaic power generation, in particular to the field of solar cells, and in particular to a solar cell interconnection structure, a polymer film provided with wires, and a manufacturing method thereof.
  • Solar cells are devices that convert the sun's light energy into electrical energy. Solar cells use photovoltaic principles to generate carriers, and then use the electrodes to extract the carriers, which is beneficial to the efficient use of electrical energy.
  • Solar cell interconnection is an important part of photovoltaic solar power generation, and its technical solutions have an important impact on the performance of photovoltaic power generation.
  • Laminated battery interconnection technology is a better solution to achieve efficient battery interconnection. In the lamination interconnection structure, the cells are overlapped and connected to each other, which greatly reduces the gap in the traditional arrangement interconnection structure of the cells, more solar cells can be installed per unit area, and the effective utilization rate of sunlight is improved.
  • the internal resistance of the interconnection structure of the laminated solar cell is too large, which affects the overall electrical energy output, and due to the limitation of the larger transmission resistance of the interconnection structure itself, a smaller transmission distance between solar cells is required.
  • the whole solar cell sheet is cut into smaller size solar cell sheets, which leads to a decrease in yield and increases the risk of solar cell cracking.
  • the solar cell interconnection structure of the present application includes at least two solar cells.
  • the front side of the solar cell is fixedly connected with a front electrode grid and a wire.
  • An electrode grid is electrically connected to at least one lead.
  • the solar cell The sheet is provided with a first long side and a second long side, and the wires are arranged radially from the second long side to the first long side.
  • the polymer film provided with a wire of the present application includes a polymer film body and a wire, the polymer film body is fixedly connected to the wire, the polymer film body is provided with a starting shaft, and the starting shaft and the polymer film Any one of the long sides of the body is parallel, and the wires are arranged radially from the starting axis to at least one long side of the polymer film body.
  • the method for manufacturing a polymer film provided with wires of the present application includes the following steps:
  • the cutting area is set with a starting axis, and the starting axis is parallel to any long side of the cutting area. At least one long side is arranged radially;
  • the electrode grid line on the front surface of the solar cell sheet located below is electrically connected by a wire
  • the lead wire is electrically connected to the back electrode of the solar cell sheet located above, thereby connecting adjacent solar cell sheets, and ,
  • the front electrode grid line and the back electrode grid line are connected by a wire to connect two adjacent solar cells.
  • the position of the wire is fixed by embedding the wire in the polymer film body, which facilitates the arrangement and positioning of the wire.
  • At least one long side of the cutting area of the wire from the starting axis is The radial arrangement is convenient for connecting two adjacent solar cells, which can reduce the length of the wire, reduce the resistance, and reduce the transmission distance. It can solve the problems of the existing connection structure that the wire resistance is large, the transmission distance is long, and it is not easy to locate.
  • FIG. 1 is a schematic structural diagram of a solar cell interconnection structure according to an embodiment of this application.
  • FIG. 2 is a schematic structural diagram of a solar cell interconnection structure according to an embodiment of this application.
  • FIG. 3 is a schematic structural diagram of a solar cell interconnection structure according to an embodiment of this application.
  • FIG. 4 is a schematic structural diagram of a solar cell interconnection structure according to an embodiment of this application.
  • FIG. 5 is a schematic structural diagram of a solar cell interconnection structure according to an embodiment of this application.
  • FIG. 6 is a schematic structural diagram of a solar cell interconnection structure according to an embodiment of this application.
  • FIG. 7 is a schematic structural diagram of a solar cell sheet of a solar cell interconnection structure according to an embodiment of this application.
  • FIG. 8 is a schematic structural diagram of a solar cell sheet of a solar cell interconnection structure according to an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of a solar cell sheet of a solar cell interconnection structure according to an embodiment of this application.
  • FIG. 10 is a schematic structural diagram of a solar cell sheet of a solar cell interconnection structure according to an embodiment of this application;
  • FIG. 11 is a schematic structural diagram of a solar cell sheet of a solar cell interconnection structure according to an embodiment of this application;
  • FIG. 12 is a schematic structural diagram of a solar cell sheet of a solar cell interconnection structure according to an embodiment of this application;
  • FIG. 13 is a schematic structural diagram of a solar cell interconnection structure according to an embodiment of this application.
  • FIG. 14 is a schematic structural diagram of a solar cell interconnection structure according to an embodiment of the present application.
  • 15 is a schematic structural diagram of a polymer film provided with wires according to an embodiment of the present application.
  • 16 is a schematic structural view of a polymer film provided with wires according to an embodiment of the present application.
  • 17 is a schematic structural diagram of a polymer film provided with wires according to an embodiment of the present application.
  • FIG. 18 is a schematic structural view of a polymer film provided with wires according to an embodiment of the present application.
  • 19 is a schematic structural diagram of a polymer film provided with wires according to an embodiment of the present application.
  • 20 is a schematic structural diagram of a polymer film provided with wires according to an embodiment of the present application.
  • 21 is a schematic structural view of a polymer film provided with wires according to an embodiment of the present application.
  • 22 is a schematic structural diagram of a polymer film provided with wires according to an embodiment of the present application.
  • FIG. 23 is a schematic structural view of a polymer film provided with wires according to an embodiment of the present application.
  • FIG. 24 is a schematic structural diagram of a polymer film provided with wires according to an embodiment of the present application.
  • the solar cell interconnection structure of the present application includes at least two solar cells 10, and the front electrode grid 11 and the lead 12 are fixedly connected to the front of the solar cell 10 , An electrode grid line 11 is electrically connected to at least one lead 12, the solar cell 10 is provided with a first long side 13 and a second long side 14, and the leads 12 are arranged radially from the second long side 14 to the first long side 13 cloth.
  • the adjacent solar cells are partially overlapped to form an overlapping area
  • the lead 12 of the solar cell 10 below is electrically connected to the back electrode of the solar cell 10 above
  • the solar cell 10 above The first long side 13 is located in the overlapping region
  • the second long side 14 of the solar cell sheet 10 located below is located in the overlapping region.
  • an electrode grid line is fixedly connected to the front surface of the solar cell sheet, and the electrode grid line can lead the photo-generated current in the solar cell sheet to the outside of the battery.
  • Connecting the electrode grid lines through wires eliminates the need to provide other devices such as busbars on the front of the solar cell to connect the electrodes, which can reduce the use of precious metals such as silver and reduce costs.
  • the cross section of the wire is a relatively optimized interface, which can achieve the maximum effect of current transmission, and the number of wires can be designed according to different production requirements.
  • both solar cells are electrically connected to multiple wires, which can effectively reduce the resistance of the interconnection structure, thereby reducing the loss caused by the resistance of the interconnection structure.
  • the electrode grid line can be directed from one wide side of the solar cell sheet to the other wide side.
  • One electrode grid line is electrically connected to at least one wire.
  • the electrode grid line can be a long line segment.
  • the electrode grid line can be connected to all the wires
  • the electrode grid line can also be electrically connected to a wire.
  • the electrode grid line is disconnected at the place of the wire, which can reduce the length of the electrode grid line, reduce the shielding of the electrode grid line to the solar cell, and improve the solar cell light.
  • the wire can reflect the sunlight incident on the wire to the surface of the solar cell again, improve the utilization rate of the solar cell light, and reduce the influence caused by the shading of the electrode.
  • the diameter of the wire is 50-200 microns, and the diameter of the wire can be but not only 50, 100, 150, 200 microns.
  • the distance between adjacent wires near the second long side is less than the distance between adjacent wires away from the second long side, that is, the closer to the second long side, the smaller the distance between adjacent wires. That is, the closer to the second long side, the more compact the wire will be. Setting the wire radially will optimize the current transmission direction, reduce the transmission path and internal damage, and thus improve the photoelectric conversion efficiency of the solar cell.
  • the first long side is located above the adjacent solar cell
  • the second long side is located below the adjacent solar cell. It enables the use of larger width solar cells for lamination, which can reduce the number of cutting of the entire solar panel, thereby reducing the number of process connections and reducing the mechanical damage caused by cutting the entire solar panel And fragmentation rate.
  • the solar cell sheet is cut from a whole solar panel.
  • the whole solar panel can be cut along the direction parallel to the wide side.
  • the solar cell sheet can be one-half, one-third of the whole solar panel , One quarter, one fifth, or one sixth.
  • the side of the lead 12 near the second long side 14 is electrically connected to the electrode connection pad 21, the electrode connection pad 21 is disposed between the lead 12 and the solar cell 10 below, the electrode connection pad 21 is fixedly connected with a conductive connector 22 which is electrically connected to the back electrode of the solar cell sheet 10 located above.
  • the electrode connection pad leads the wire
  • the conductive connection wire is used to electrically connect and fix the electrode connection pad to the electrode on the back of another solar cell sheet, which is convenient for electrical connection with other solar cell sheets, and reduces the solar cell
  • the difficulty in processing the sheet reduces the manufacturing cost of the solar cell sheet.
  • the conductive connecting member 22 is disposed between the wire 12 and the second long side 14.
  • the conductive connection member is disposed between the conductive wire and the second long side, and the conductive connection member is disposed at the overlapping portion of the two solar cells to prevent the conductive connection member from covering the solar cells that leak out, Ensure the power generation efficiency of solar cells.
  • the conductive connection 22 is any one or a combination of solder paste, conductive resin, indium, antimony, tin, bismuth, lead, silver, cadmium, or zinc.
  • the melting point of the conductive connecting member 22 is less than 240°C.
  • the wire 12 is fixed to the polymer film 30, and the polymer film 30 is fixedly connected to the solar cell sheet 10.
  • the wire is fixed to the polymer film
  • the polymer film is fixedly connected to the solar cell sheet
  • the wire and the electrode grid are electrically connected.
  • the material of the polymer film may be cellulose acetate, fluorine resin, polysulfone resin, polyester resin, polyamide resin, polyurethane resin or polyolefin resin.
  • the polymer film is a transparent film, and the polymer film is a polyvinyl fluoride film.
  • the polymer film and the wire may be hot-pressed on the polymer film to fuse the polymer film and the wire, and the wire may be exposed from one side or both sides of the polymer film.
  • the polymer film may be a single-layer polymer film or a multi-layer polymer film.
  • the polymer film 30 is bonded to the solar cell sheet 10.
  • the polymer film is bonded to the solar cell sheet, and the side of the polymer film where the wire is fixed is provided with an adhesive layer, which is convenient for fixing the polymer film and the solar cell sheet when processing the wire , Thereby fixing the wire, improving the accuracy of processing, and reducing the difficulty of processing.
  • the polymer film 30 to which the wire 12 is fixed and the electrode grid line 11 are hot pressed to form the wire 12 and the electrode grid line 11 to be electrically connected.
  • the polymer film with the fixed wire and the electrode grid are hot-pressed to form an electrical connection between the wire and the electrode grid, but not only the wire is first embedded on the polymer film, and the wire will be exposed to polymer Initially fix the position of the wire on the surface of the object film, and then hot press the polymer film and the electrode grid, so that the electrode grid and the wire are electrically connected, which can make the laying and alignment of the wire more convenient and precise during the preparation process. Reduce the process complexity, and even reduce the process steps.
  • the contact between the solar cell located above and the solar cell located below becomes a flexible contact, reducing the fragmentation rate of the solar cell , It also reduces the occurrence of bad holes in the subsequent process of this interconnect structure.
  • the polymer film 30 is provided with through holes 31, which are provided between the wires 12 and/or between the wires 12 and the broad side of the solar cell sheet 10.
  • the polymer film is provided with a through hole, and the through hole is provided between the wire and/or between the wire and the wide side of the solar cell sheet, the through hole can increase the transmittance of sunlight and improve the solar cell
  • the power generation efficiency of the chip can also reduce the use of polymer films and reduce production costs.
  • a conductive layer 15 is partially or completely coated on the outer portion of the wire 12.
  • the melting point of the conductive layer 15 is less than 240°C.
  • a conductive layer with a low melting point is coated on the wire, which can greatly reduce the process steps when the wire and the electrode grid line are connected, reduce the step of coating the conductive connecting agent on the surface of the battery, and reduce the Defects caused by the application of conductive connection agents improve the yield of solar cells.
  • the conductive layer 15 is any one or a combination of conductive resin, indium, antimony, tin, bismuth, lead, silver, cadmium or zinc.
  • the conductive resin includes a polymer matrix and conductive particles
  • the polymer matrix of the conductive resin includes thermosetting resin or thermoplastic resin
  • the thermosetting resin or thermoplastic resin is epoxy resin, silicone resin, polyimide resin , Phenolic resin, polyurethane, acrylic resin, polyolefin, polyamide, polyphenylene ether, fluororesin, polymethyl methacrylate, polysulfone, or any combination of one or more of polyester.
  • the conductive particles of the conductive resin include any one or a combination of gold, silver, copper, aluminum, zinc, nickel, and graphite. The shape of the conductive particles is granular or flake.
  • the material of the wire 12 is any one of copper, aluminum, silver, gold, copper-clad aluminum, copper-nickel alloy, or copper-zinc alloy.
  • the material of the wire is any one of copper, aluminum, silver, gold, copper-clad aluminum, copper-nickel alloy, or copper-zinc alloy.
  • the wire material may also be copper, which has the advantages of high electrical conductivity and low cost.
  • the side of the wire 12 near the second long side is a flat wire.
  • the wire between the two solar cells is flattened, so that the wire becomes a flat wire, which improves the contact area between the wire and the solar cell, and facilitates the formation of a comparative Good contact, at the same time, also reduces the gap between the two solar cells, reduces the pressure of the solar cells below, and reduces the fragmentation rate.
  • the number of wires 12 is 3-100.
  • the number of wires can be set according to actual conditions.
  • the electrode grid line 11 is parallel to the first long side 13 or the second long side 14.
  • the electrode grid lines are parallel to the first long side or the second long side, and the distance between the electrode grid lines is equal, which is convenient for processing and manufacturing.
  • the electrode grid line 11 is perpendicular to the conductive wire 12.
  • the electrode grid lines are perpendicular to the wires, and the electrode grid lines are fan-shaped, increasing the total length of the electrode grid lines, and improving the reliability of the solar cell.
  • electrode grid lines 11 are provided between the wires 12 and/or between the wires 12 and the wide side of the solar cell sheet 10.
  • electrode grid lines are provided between the wires and/or between the wires and the broad side of the solar cell, that is, the electrode grid lines are distributed at intervals, and each segment of the electrode grid lines is electrically connected to the wires. It is easy to export the electric energy generated inside the battery.
  • the electrode grid lines distributed at intervals can save more electrode materials, further reduce shading, and increase the effective light absorption area of the solar cell sheet, thereby improving the photoelectric conversion efficiency and the power generation amount.
  • the wire 12 is a straight wire.
  • the wire is a straight wire, which can reduce the transmission path and internal loss, and improve the photoelectric conversion efficiency of the solar cell.
  • the conductive connecting wire is electrically connected to the wire 12.
  • the conductive connecting wire can connect the wires, which can reduce the poor contact area of the electrode and the power transmission performance caused by the poor connection between the solar cells, and improve the yield.
  • the wire diameter of the conductive connecting wire may be the same as the wire, or it may be different.
  • Multiple conductive connection wires can also be provided, and the conductive connection wires can be appropriately set at intervals, comprehensively considered to ensure the transmission of current, and try to ensure less shading.
  • the width of the overlapping area is 0.1-3 mm.
  • the overlapping area cannot be too wide or too narrow. Too wide will cause the shielding range to be too large, which reduces the power generation efficiency of the solar cell module. Too narrow will result in insufficient connection strength of the solar cell sheet, and the solar cell module is easy to Damaged, the width of the overlapping area is 0.1-3 mm, which not only ensures the connection strength of the solar cell module, but also ensures the power generation efficiency.
  • the solar cell interconnection structure of the present application includes at least two solar cell sheets 10, the front surface of the solar cell sheet 10 is fixedly connected with the front electrode grid line 11 and the lead wire 12, an electrode grid line 11 is at least A wire 12 is electrically connected, and the solar cell 10 is provided with a first long side 13 and a second long side 14.
  • the wires 12 are arranged radially from the second long side 14 to the first long side 13.
  • the back electrode grid is fixedly connected to the back of the solar cell sheet
  • the other end of the lead 12 is electrically connected to the back electrode grid of another solar cell sheet
  • the other end of the lead 12 The first long side of the other solar cell sheet 10 is radially arranged away from the second long side of the other solar cell sheet 10.
  • a front electrode grid line is fixedly connected to the sun-facing side of the solar cell sheet, and the front electrode grid line can lead the photogenerated current in the solar cell sheet to the outside of the battery.
  • the front electrode grid line and the back electrode grid line are connected by wires, and there is no need to provide other main grid and other electrode connection devices on the front and back sides of the solar cell, which can reduce the use of precious metals such as silver and reduce costs.
  • the cross section of the wire is a relatively optimized interface, which can achieve the maximum effect of current transmission, and the number of wires can be designed according to different production requirements.
  • both solar cells are electrically connected to multiple wires, which can effectively reduce the resistance of the interconnection structure, thereby reducing the loss caused by the resistance of the interconnection structure.
  • the front electrode grid line and the back electrode grid line can be directed from one wide side of the solar cell sheet to the other wide side.
  • a front electrode grid line is electrically connected to at least one wire
  • a back electrode grid line is electrically connected to at least one wire Connection
  • the front electrode grid line and the back electrode grid line can be a long line segment
  • the front electrode grid line and the back electrode grid line can be electrically connected with all the wires
  • the front electrode grid line and the back electrode grid line can be connected with a
  • the root wires are electrically connected, and the front electrode grid line and the back electrode grid line can be disconnected at the place of the wire, which can reduce the length of the front electrode grid line and the back electrode grid line, reduce the shielding of the front electrode grid line to the solar cell sheet, and improve the solar energy.
  • the wire can reflect the sunlight incident on the wire to the surface of the solar cell again, improve the utilization rate of the solar cell light, and reduce the influence caused by the shading of the electrode.
  • the diameter of the wire is 50-200 microns, and the diameter of the wire can be but not only 50, 100, 150, 200 microns.
  • the wires are arranged radially from the side of any solar cell close to the other solar cell to the side away from the other solar cell, that is, the closer to the adjacent two solar cells, the The smaller the distance, that is, the closer it is between two adjacent solar cells, the more compact the wires will be.
  • Set the wires to be radial which can optimize the current transmission direction, reduce the transmission path and internal damage, thereby improving the solar cells.
  • Photoelectric conversion efficiency It enables the use of larger width solar cells for lamination, which can reduce the number of cutting of the entire solar panel, thereby reducing the number of process connections and reducing the mechanical damage caused by cutting the entire solar panel And fragmentation rate.
  • the polymer film is bonded to the solar cell sheet, and the side of the polymer film to which the wire is fixed is provided with an adhesive layer, which is convenient for fixing the polymer film and the solar cell sheet when processing the wire. Therefore, the wire is fixed, the accuracy of processing is improved, and the processing difficulty is reduced.
  • the polymer film 30 to which the wire 12 is fixed and the front electrode grid line 11 are hot-pressed to form the wire 12 electrically connected to the front electrode grid line 11, and/or,
  • the polymer film 30 to which the lead 12 is fixed and the back electrode grid are hot-pressed to form the lead 12 and the back electrode grid are electrically connected.
  • the polymer film with the fixed wire and the front electrode grid are hot-pressed to form an electrical connection between the wire and the electrode grid, but not only the wire is first embedded in the polymer film, and the wire will be exposed to polymer Initially fix the position of the wire on the surface of the object film, and then hot press the polymer film and the front electrode grid to make the front electrode grid and the wire electrically connected, which can make the laying and alignment of the wire more convenient and precise during the preparation process. , Can reduce the complexity of the process, or even reduce the number of process steps.
  • the contact between two adjacent solar cells becomes a flexible contact, which reduces the fragmentation rate of the solar cell and reduces this. The generation of undesirable holes in the interconnection structure in the subsequent process.
  • the polymer film with the fixed wire and the back electrode grid line are hot pressed to form an electrical connection between the wire and the electrode grid line, but not only the wire is first embedded on the polymer film, and the wire will be exposed on the surface of the polymer film, and the wire is initially fixed Position, and then hot press the polymer film and the back electrode grid to make the back electrode grid electrically connected to the wire, which can make the laying and alignment of the wire more convenient and precise during the preparation process, and can reduce the process complexity, Even the process steps are reduced.
  • the contact between two adjacent solar cells becomes a flexible contact, which reduces the breakage rate of the solar cells and reduces the interconnection structure in the subsequent process. The generation of bad holes.
  • the front electrode grid line 11 is perpendicular to the conductive wire 12
  • the back electrode grid line is perpendicular to the conductive wire 12.
  • the front electrode grid lines are perpendicular to the wires, and the back electrode grid lines are perpendicular to the wires.
  • the electrode grid lines are fan-shaped, increasing the total length of the electrode grid lines and improving the reliability of the solar cell.
  • front electrode grid line 11 is parallel to the long side of the solar cell sheet 10
  • back electrode grid line is parallel to the long side of the solar cell sheet 10.
  • the front electrode grid line is parallel to the long side of the solar cell sheet
  • the back electrode grid line is parallel to the long side of the solar cell sheet.
  • the distance between each electrode grid line is equal, which is convenient for processing and manufacturing.
  • a front electrode grid line 11 is provided between the wires 12 and/or between the wire 12 and the wide side of the solar cell sheet 10
  • a back side is provided between the wire 12 and/or between the wire 12 and the wide side of the solar cell sheet 10 Electrode grid.
  • front electrode grid lines are provided between the wires and/or between the wires and the broad side of the solar cell, that is, the front electrode grid lines are distributed at intervals, and each section of the front electrode grid lines is electrically connected to the wires Connected to facilitate the export of the electrical energy generated inside the battery.
  • the spaced-apart front electrode grid lines can save more electrode materials, further reduce shading, and increase the effective light absorption area of the solar cell, thereby improving photoelectric conversion efficiency and power generation.
  • the back electrode grid lines are arranged between the wires and/or between the wires and the broad side of the solar cell, that is, the back electrode grid lines are distributed at intervals, and each section of the back electrode grid lines is electrically connected to the wires to facilitate the internal generation of the battery Export of electrical energy.
  • the spaced back electrode grid lines can save more electrode materials.
  • two adjacent solar cells are close to each other, and there is no overlapping area between the two adjacent solar cells.
  • two adjacent solar cells can also be placed next to each other, which can further increase the utilization rate of the solar cells, reduce the loss caused by shading, and also save the use of solar cells. Saved costs.
  • the polymer film provided with a wire of the present application includes a polymer film body 30 and a wire 12, the polymer film body 30 is fixedly connected to the wire 12, the polymer The film body 30 is provided with a starting axis which is parallel to any long side of the polymer film body 30, and the wires 12 are arranged radially from the starting axis to at least one long side of the polymer film body 30.
  • the electrode grid lines of two adjacent solar cells are connected by wires, and there is no need to provide other main grid and other electrode connection devices on the front of the battery body, which can reduce the use of precious metals such as silver Volume and reduce costs.
  • the cross section of the wire is a relatively optimized interface, which can achieve the maximum effect of current transmission, and the number of wires can be designed according to different production requirements.
  • both solar cells are electrically connected to multiple wires, which can effectively reduce the resistance of the interconnection structure, thereby reducing the loss caused by the resistance of the interconnection structure.
  • the wire can reflect the sunlight incident on the wire to the surface of the battery body again, improving the utilization rate of the solar cell light and reducing the influence caused by the shading of the electrode.
  • the wire diameter is 50-200 ⁇ m, wherein the wire diameter can be but not only 50, 100, 150, 200 ⁇ m.
  • the wires are arranged radially from the starting axis to at least one long side of the polymer film body, that is, the closer the wire is to the starting axis, the smaller the distance between adjacent wires and the more compact the wire.
  • Set the wire to Radial can optimize the current transmission direction, reduce the transmission path and internal damage, thereby improving the photoelectric conversion efficiency of the solar cell. It enables the use of larger width solar cells for lamination, which can reduce the number of cutting of the entire solar panel, thereby reducing the number of process connections and reducing the mechanical damage caused by cutting the entire solar panel And fragmentation rate.
  • the battery body is made by cutting a whole solar panel.
  • the whole solar panel can be cut along the direction parallel to the wide side.
  • the battery body can be one-half, one-third, four of the whole solar panel One fifth, one fifth, or one sixth.
  • the polymer film body can effectively reduce the rigid contact during the use of solar cells, reduce the occurrence of fragments and cracks, and also help to fill the voids everywhere and reduce the occurrence of voids.
  • the polymer film body may be a single-layer polymer film or a multi-layer polymer film.
  • the starting axis is any long side of the polymer film body 30.
  • the starting axis is any long side of the polymer film body, that is, the wires are arranged radially from one long side to the other long side of the polymer film body, which is suitable for connection
  • the single-sided electrode grid line can optimize the current transmission direction, reduce the transmission path and internal damage, and thus improve the photoelectric conversion efficiency of the solar cell.
  • the starting axis is the axis of symmetry of the polymer film body 30.
  • the starting axis is the symmetry axis of the polymer film body, that is, the wires are arranged radially from the starting axis to the two long sides of the polymer film body, which is applicable to both sides
  • the solar panels to be connected are of the same specification for on-site installation and maintenance, which can optimize the current transmission direction, reduce the transmission path and internal damage, and thus improve the photoelectric conversion efficiency of the solar cells.
  • the lead 12 at least partially exposes at least one side of the polymer film body 30.
  • the wires are at least partially exposed on at least one side of the polymer film body, which facilitates the contact between the wires and the electrode grid, so that the wires can lead out the electrical energy converted inside the solar cell, and the conductive properties of the wires are ensured.
  • an adhesive layer is provided on the side of the polymer film body 30 where the wire 12 is exposed.
  • an adhesive layer is provided on the side of the polymer film body where the wire is fixed, which is convenient for fixing the wire and the polymer film body when processing the wire, and when fixing the wire and the solar cell , It is easy to fix the polymer film body and the solar cell, thereby fixing the wire, improving the accuracy of processing, and reducing the difficulty of processing.
  • the polymer film body 30 is provided with a through hole 11, and the through hole 11 is provided between the wire 12 and/or between the wire 12 and the wide side of the polymer film body 30.
  • the polymer film body is provided with a through hole, and the through hole is provided between the wire and/or between the wire and the wide side of the polymer film body.
  • the through hole can increase the transmittance of sunlight and improve
  • the power generation efficiency of solar cells can also reduce the use of polymer film bodies and reduce production costs.
  • the thickness of the polymer film body 30 is 5-200 ⁇ m.
  • the thickness of the polymer film body is 5-200 ⁇ m, and the thickness of the polymer film body can be reasonably designed to ensure the strength of the polymer film body, that is, to ensure that the polymer film body can fix the wire, and at the same time, It can reduce manufacturing costs and facilitate manufacturing and later maintenance.
  • the cross section of the wire 12 is circular, and the diameter of the wire 12 is 50-500 ⁇ m.
  • the cross-section of the wire is circular, which is a relatively optimized interface relative to the conventional electrode, and can achieve the maximum effect of current transmission.
  • the reasonable setting of the diameter of the wire can ensure the conductive performance of the wire while reducing the manufacturing cost.
  • the cross-section of the wire can be fully selected.
  • the circular cross-section is larger and the shading is smaller, which is extremely suitable for the industrial application of solar cells.
  • the conductive layer 21 is partially or completely coated on the outer part of the wire 12.
  • the melting point of the conductive layer 21 is less than 240°C.
  • a conductive layer with a low melting point is coated on the wire, and the conductive layer serves as a connecting agent for subsequent connection with the solar cell sheet, thereby facilitating connection in the subsequent process and greatly reducing the wire and the electrode grid
  • the process steps during connection reduce the steps of applying conductive connecting agent on the surface of the battery, and also reduce the defects caused by applying the conductive connecting agent, thereby improving the yield of solar cell sheets.
  • the conductive layer is any one or a combination of conductive resin, indium, antimony, tin, bismuth, lead, silver, cadmium or zinc.
  • the conductive resin includes a polymer matrix and conductive particles.
  • the polymer matrix of the conductive resin includes a thermosetting resin or a thermoplastic resin.
  • the thermosetting resin or thermoplastic resin includes: epoxy resin, silicone resin, polyimide resin, phenolic resin, polyurethane, acrylic A combination of any one or more of resin, polyolefin, polyamide, polyphenylene ether, fluororesin, polymethyl methacrylate, polysulfone, or polyester.
  • the conductive particles of the conductive resin include any one or a combination of gold, silver, copper, aluminum, zinc, nickel, and graphite. The shape of the conductive particles is granular or flake.
  • the material of the wire is copper, aluminum, silver, gold, copper-clad aluminum, copper-nickel alloy or copper-zinc alloy.
  • the material of the polymer membrane body is cellulose acetate, fluorine resin, polysulfone resin, polyester resin, polyamide resin, polyurethane resin or polyolefin resin.
  • Another embodiment of the present application is a method for manufacturing a polymer film provided with wires, including the following steps:
  • Conductors 12 are arranged on the polymer film body 30, and a cutting area is divided on the polymer film body 30, the cutting area is provided with a starting axis, and the starting axis is parallel to any long side of the cutting area, and the wire is from the starting axis At least one long side of the cropped area is arranged radially;
  • the polymer film body 30 is cut according to the cut area.
  • the wires are first arranged on the polymer film body, and then the wires are embedded in the polymer film body, and then the polymer film body is cut according to the cutting area, thereby processing the polymerization provided with the wire ⁇ Object film.
  • the electrode grid lines of two adjacent solar cells are connected by wires, and there is no need to provide other main grid and other electrode connection devices on the front of the battery body, which can reduce the use of precious metals such as silver and reduce costs.
  • the cross section of the wire is a relatively optimized interface, which can achieve the maximum effect of current transmission, and the number of wires can be designed according to different production requirements.
  • both solar cells are electrically connected to multiple wires, which can effectively reduce the resistance of the interconnection structure, thereby reducing the loss caused by the resistance of the interconnection structure.
  • the wire can reflect the sunlight incident on the wire to the surface of the battery body again, improving the utilization rate of the solar cell light and reducing the influence caused by the shading of the electrode.
  • the wire diameter is 50-200 ⁇ m, where the wire diameter can be but not only 50, 100, 150, 200 ⁇ m.
  • the wires are arranged radially from at least one long side of the starting axis of the polymer film body, that is, the closer the wires are to the starting axis, the smaller the distance between adjacent wires and the more compact the wires will be. , Can optimize the current transmission direction, reduce the transmission path and internal damage, thereby improving the photoelectric conversion efficiency of the solar cell. It enables the use of larger width solar cells for lamination, which can reduce the number of cutting of the entire solar panel, thereby reducing the number of process connections and reducing the mechanical damage caused by cutting the entire solar panel And fragmentation rate.
  • the battery body is made by cutting a whole solar panel.
  • the whole solar panel can be cut along the direction parallel to the wide side.
  • the battery body can be one-half, one-third, four of the whole solar panel One fifth, one fifth, or one sixth.
  • the polymer film body can effectively reduce the rigid contact during the use of solar cells, reduce the occurrence of fragments and cracks, and also help to fill the voids everywhere and reduce the occurrence of voids.
  • the polymer film body may be a single-layer polymer film body or a multi-layer polymer film body.
  • embedding the wire 12 in the polymer film body 30 includes hot pressing the wire 12 into the polymer film body 30.
  • the polymer film body when the wire is hot pressed into the polymer film body, the polymer film body will melt and adhere to the wire, and when the polymer film body cools, the polymer film body and the wire are fixed.
  • the polymer film body is welded to the wire, the operation is simple, and it is convenient for production and manufacturing.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种太阳电池互联结构、设有导线的聚合物膜及其制造方法,包括至少两块太阳能电池片(10),太阳能电池片(10)的正面固定连接有正面电极栅线(11)和导线(12),一根电极栅线(11)至少与一根导线(12)电连接,太阳能电池片(10)设置第一长边(13)和第二长边(14),导线(12)从第二长边(14)向第一长边(13)呈放射状排布。上述结构能够减小导线(12)长度,减小电阻,降低传输距离,使得能够使用较大尺寸的太阳能电池片(10)进行叠片。

Description

一种太阳能电池互联结构、设有导线的聚合物膜及设有导线的聚合物膜的制造方法
本申请要求在2018年12月28日提交中国专利局、申请号为201811626072.1、发明名称为“太阳电池互联结构”;申请号为201811628460.3、发明名称为“双面太阳电池互联结构”;申请号为201811628455.2、发明名称为“设有导线的聚合物膜及设有导线的聚合物膜的制造方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请一般涉及光伏发电领域,具体涉及太阳能电池领域,尤其涉及一种太阳电池互联结构、设有导线的聚合物膜及其制造方法。
背景技术
目前,随着化石能源的逐渐耗尽,太阳电池作为新的能源替代方案,使用越来越广泛。太阳电池是将太阳的光能转换为电能的装置。太阳电池利用光生伏特原理产生载流子,然后使用电极将载流子引出,从而利于将电能有效利用。太阳电池互联作为光伏太阳发电的重要一环,其技术方案对于光伏发电性能有着重要的影响。叠片电池互联技术是一种较好的实现电池高效互联的方案。叠片互联结构中,电池片首尾相互交叠连接,大幅度减少了电池片传统排列互联结构中的间隙,在单位面积上可以设置更多的太阳电池单元,提高了有效的太阳光利用率。
现有技术中,叠片太阳电池互联结构的内部电阻过大,影响了整体电能输出,并且由于自身互联结构传输电阻较大的限制,太阳能电池片之间需要更小的传输距离,因此,需要将整块太阳能电池片切割成尺寸较小的太阳能电池片,从而带来成品率的下降,增加了太阳能电池隐裂的风险。
发明内容
鉴于现有技术中的上述缺陷或不足,期望提供一种能够降低传输电阻的太阳电池互联结构。
第一方面,本申请的太阳电池互联结构,包括至少两块太阳能电池片,太阳能电池片的正面固定连接有正面电极栅线和导线,一根电极栅线至少与一根导线电连接,太阳能电池片设置第一长边和第二长边,导线从第二长边向第一长边呈放射状排布。
第二方面,本申请的设有导线的聚合物膜,包括聚合物膜本体和导线,聚合物膜本体与导线固定连接,聚合物膜本体上设置有起始轴,起始轴与聚合物膜本体的任一条长边平行,导线从起始轴向聚合物膜本体的至少一条长边呈放射状排布。
第三方面,本申请的设有导线的聚合物膜的制造方法,包括以下步骤:
在聚合物膜本体上排布导线,在聚合物膜本体上划分裁剪区域,裁剪区域设置有起始轴,起始轴与裁剪区域的任一条长边平行,导线从起始轴向裁剪区域的至少一条长边呈放射状排布;
将导线嵌于聚合物膜本体中;
按照裁剪区域对聚合物膜本体进行裁剪。
根据本申请实施例提供的技术方案,通过导线电连接位于下方的太阳能电池片正面的电极栅线,将导线与位于上方的太阳能电池片背面电极电连接,从而连接相邻的太阳能电池片,并且,位于下方的太阳能电池片上的导线越靠近重叠区域,相邻导线之间的距离越小,能够减小导线长度,减小电阻,降低传输距离,使得能够使用较大尺寸的太阳能电池片进行叠片,能够解决现有的互联结构传输电阻较大的问题。
根据本申请实施例提供的技术方案,通过导线来连接正面电极栅线以及背面电极栅线,从而连接两块相邻的太阳能电池片,导线越靠近两块太阳能电池片之间,导线之间的距离越小,能够减小导线长度,减小电阻,降低传输距离,使得能够使用较大尺寸的太阳能电池片进行叠片,能够解决现有的互联结构传输电阻较大的问题。
根据本申请实施例提供的技术方案,通过将导线嵌于聚合物膜本体中,来固定导线的位置,便于对导线进行排布以及定位,导线从起始轴向裁剪区域的至少一条长边呈放射状排布,便于连接相邻的两块太阳能电池片,能够减小导线长度,减小电阻,降低传输距离,能够解决现有 的连接结构导线电阻大、传输距离长、不容易定位的问题。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请的实施例的太阳电池互联结构的结构示意图;
图2为本申请的实施例的太阳电池互联结构的结构示意图;
图3为本申请的实施例的太阳电池互联结构的结构示意图;
图4为本申请的实施例的太阳电池互联结构的结构示意图;
图5为本申请的实施例的太阳电池互联结构的结构示意图;
图6为本申请的实施例的太阳电池互联结构的结构示意图;
图7为本申请的实施例的太阳电池互联结构的太阳能电池片的结构示意图;
图8为本申请的实施例的太阳电池互联结构的太阳能电池片的结构示意图;
图9为本申请的实施例的太阳电池互联结构的太阳能电池片的结构示意图;
图10为本申请的实施例的太阳电池互联结构的太阳能电池片的结构示意图;
图11为本申请的实施例的太阳电池互联结构的太阳能电池片的结构示意图;
图12为本申请的实施例的太阳电池互联结构的太阳能电池片的结构示意图;
图13为本申请的实施例的太阳电池互联结构的结构示意图;
图14为本申请的实施例的太阳电池互联结构的结构示意图;
图15为本申请的实施例的设有导线的聚合物膜的结构示意图;
图16为本申请的实施例的设有导线的聚合物膜的结构示意图;
图17为本申请的实施例的设有导线的聚合物膜的结构示意图;
图18为本申请的实施例的设有导线的聚合物膜的结构示意图;
图19为本申请的实施例的设有导线的聚合物膜的结构示意图;
图20为本申请的实施例的设有导线的聚合物膜的结构示意图;
图21为本申请的实施例的设有导线的聚合物膜的结构示意图;
图22为本申请的实施例的设有导线的聚合物膜的结构示意图;
图23为本申请的实施例的设有导线的聚合物膜的结构示意图;
图24为本申请的实施例的设有导线的聚合物膜的结构示意图。
具体实施例
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例一
本申请的其中一个实施例为,请参考图1-12,本申请的太阳电池互联结构,包括至少两块太阳能电池片10,太阳能电池片10的正面固定连接有正面电极栅线11和导线12,一根电极栅线11至少与一根导线12电连接,太阳能电池片10设置第一长边13和第二长边14,导线12从第二长边14向第一长边13呈放射状排布。
本申请中,相邻的所述太阳能电池片部分重叠形成重叠区域,位于下方的太阳能电池片10的导线12与位于上方的太阳能电池片10的背面电极电连接,位于上方的太阳能电池片10的第一长边13位于重叠区域,位于下方的太阳能电池片10的第二长边14位于重叠区域。
在本申请的实施例中,太阳能电池片的正面固定连接有电极栅线,电极栅线能够把太阳能电池片内的光生电流引到电池外部。通过导线来连接各电极栅线,不需要在太阳能电池片的正面设置其他主栅等连接电极的装置,能够降低诸如银等贵金属的使用量,降低了成本。导线的横 截面相对于常规电极来说,是相对较为优化的界面,可以做到电流传输的最大效果,并且导线的数量可以根据不同的生产要求进行设计。在将两块太阳能电池片相连时,两块太阳能电池片均与多根导线电连接,可以有效地降低互联结构的电阻,从而减小互联结构的电阻造成的损耗。
电极栅线可以从太阳能电池片的一条宽边指向另一条宽边,一根电极栅线至少与一根导线电连接,电极栅线可以是一条长的线段,电极栅线可以与所有的导线均电连接,也可以将电极栅线与一根导线电连接,电极栅线在导线的地方断开,能够减少电极栅线的长度,减少电极栅线对太阳能电池片的遮挡,提高太阳能电池片光的使用率。导线能够将入射到导线的太阳光再次反射到太阳能电池片表面,提高太阳能电池片光的使用率,降低了电极遮光造成的影响。导线直径为50-200微米,其中导线直径可以但不仅仅为50、100、150、200微米。
靠近第二长边的相邻导线之间的距离小于远离第二长边的相邻导线之间的距离,也就是越靠近第二长边,相邻导线之间的距离就会越小,也就是越靠近第二长边,导线会越紧凑,将导线设置为放射状,能够优化电流传输方向,减少传输路径以及内部损坏,从而提高太阳能电池片的光电转换效率。通常情况,第一长边位于相邻太阳能电池片之上,第二长边位于相邻太阳能电池片之下。使得能够使用较大宽度的太阳能电池片进行叠片,也就能够减少了整片太阳能电池板的切割次数,从而减少了工艺连接的次数,降低了切割整片太阳能电池板所带来的机械损害和破片率。
太阳能电池片为整片太阳能电池板切割而成,可以将整片太阳能电池板沿着与宽边平行的方向切割,太阳能电池片可以是整片太阳能电池板的二分之一、三分之一、四分之一、五分之一或六分之一。
参考图4-6,进一步的,导线12靠近第二长边14的一侧电连接有电极连接盘21,电极连接盘21设置在导线12与位于下方的太阳能电池片10之间,电极连接盘21固定连接有导电连接件22,导电连接件22与位于上方的太阳能电池片10的背面电极电连接。
在本申请的实施例中,电极连接盘将导线引出,导电连接线用来电连接并且固定电极连接盘与另一个太阳能电池片背面的电极,便于与其它太阳能电池片进行电连接,降低了太阳能电池片的加工难度,降低了太阳能电池片的制造成本。
进一步的,导电连接件22设置在导线12与第二长边14之间。
在本申请的实施例中,导电连接件设置在导线与第二长边之间,导电连接件设置在两个太阳能电池片的重叠部,避免导电连接件遮挡住漏在外面的太阳能电池片,保证了太阳能电池片的发电效率。
进一步的,导电连接件22为焊膏、导电树脂、铟、锑、锡、铋、铅、银、镉或锌中的任意一种或多种的组合。
进一步的,导电连接件22的熔点小于240℃。
进一步的,包括聚合物膜30,导线12与聚合物膜30固定,聚合物膜30与太阳能电池片10固定连接。
在本申请的实施例中,包括聚合物膜,导线与聚合物膜固定,聚合物膜与太阳能电池片固定连接,导线和电极栅线是电连接的。聚合物膜的材料可以为醋酸纤维素、氟树脂、聚砜树脂、聚酯树脂、聚酰胺树脂、聚氨酯树脂或聚烯烃类树脂。聚合物膜为透明薄膜,聚合物膜为聚氟乙烯膜。聚合物膜与导线可以是通过对聚合物膜进行热压,使得聚合物膜与导线熔接,导线可以是从聚合物膜的一侧或者两侧露出。聚合物膜可以是单层聚合物膜或者多层聚合物膜。
进一步的,聚合物膜30与太阳能电池片10粘接。
在本申请的实施例中,聚合物膜与太阳能电池片粘接,聚合物膜固定有导线的一侧设置有粘接层,在对导线进行加工时,便于将聚合物膜与太阳能电池片固定,从而固定导线,提高了加工的准确性,降低了加工难度。
进一步的,将固定有导线12的聚合物膜30与电极栅线11热压形成导线12与电极栅线11电连接。
在本申请的实施例中,将固定有导线的聚合物膜与电极栅线热压形成导线与电极栅线电连接,可以但不仅仅为导线先镶嵌在聚合物膜上,并且导线会露出聚合物膜表面,初步固定导线的位置,然后将聚合物膜与电极栅线进行热压,使得电极栅线与导线电连接,可以使得制备过程中导线的铺设和对位更为方便和精确,可以降低工艺复杂度,甚至减少工艺步骤,另外由于聚合物膜的存在,使得位于上方的太阳能电池片和位于下方的太阳能电池片的导线的接触变为柔性的接触,降低了太阳能电池片的破片率,也减少了此互联结构在后续过程中的不良孔洞的产生。
参考图19,进一步的,聚合物膜30设置有通孔31,通孔31设置在 导线12之间和/或导线12与太阳能电池片10宽边之间。
在本申请的实施例中,聚合物膜设置有通孔,通孔设置在导线之间和/或导线与太阳能电池片宽边之间,通孔能够增加太阳光的透过率,提高太阳能电池片的发电效率,同时,也能够减少聚合物膜的使用,降低生产成本。
进一步的,导线12外部部分或全部涂覆有导电层15。
进一步的,导电层15的熔点小于240℃。
在本申请的实施例中,导线上涂覆有低熔点的导电层,可以大大减少导线和电极栅线连接时的工艺步骤,减少了电池表面涂布导电连接剂的步骤,也减少了因涂布导电连接剂而产生的不良,提高了太阳能电池片的良品率。
进一步的,导电层15为导电树脂、铟、锑、锡、铋、铅、银、镉或锌中的任意一种或多种的组合。
在本申请的实施例中,导电树脂包括聚合物基体和导电粒子,导电树脂的聚合物基体包括热固性树脂或热塑性树脂,热固性树脂或热塑性树脂为环氧树脂、有机硅树脂、聚酰亚胺树脂、酚醛树脂、聚氨酯、丙烯酸树脂、聚烯烃、聚酰胺、聚苯醚、氟树脂、聚甲基丙烯酸甲酯、聚砜、或聚酯中的任意一种或多种的组合。导电树脂的导电粒子包括:金、银、铜、铝、锌、镍和石墨的任意一种或多种的组合,导电粒子形状为颗粒状或片状。
进一步的,导线12的材料为铜、铝、银、金、铜包铝、铜镍合金或铜锌合金中任意一种。
在本申请的实施例中,导线的材料为铜、铝、银、金、铜包铝、铜镍合金或铜锌合金中任意一种。也可以导线的材料为铜,铜具有电导率高,并且成本较低的优点。
进一步的,导线12靠近第二长边的一侧为扁平导线。
在本申请的实施例中,位于两片太阳能电池片之间的导线经过扁平化处理,使得导线变成扁平导线,提高了导线与太阳能电池片之间的接触面积,便于导线与太阳能电池形成较好的接触,同时,也减小了两块太阳能电池片之间的间隙,减少了位于下方的太阳能电池片的压强,降低了破片率。
进一步的,导线12的数量为3-100根。
在本申请的实施例中,可以根据实际情况来设置导线的数量。
进一步的,电极栅线11与第一长边13或者第二长边14平行。
在本申请的实施例中,电极栅线与第一长边或者第二长边平行,各电极栅线之间的距离相等,便于加工和制造。
参考图11和12,进一步的,电极栅线11与导线12垂直。
在本申请的实施例中,电极栅线与导线垂直,电极栅线呈扇形,增长了电极栅线的总长度,提高了太阳能电池片的可靠性。
参考图9、10、12,进一步的,导线12之间和/或导线12与太阳能电池片10宽边之间设置有电极栅线11。
在本申请的实施例中,导线之间和/或导线与太阳能电池片宽边之间设置有电极栅线,也就是电极栅线是间隔地分布,每段电极栅线均与导线电连接,便于将电池内部产生的电能导出。间隔分布的电极栅线可以更加节省电极材料,并且进一步减少遮光,增加太阳能电池片的有效光吸收面积,从而提高光电转换效率以及发电量。
进一步的,导线12为直导线。
在本申请的实施例中,导线为直导线,能够减少传输路径和内部损耗,提高了太阳能电池片的光电转换效率。
进一步的,包括导电连接线,导电连接线与导线12电连接。
在本申请的实施例中,导电连接线能够连接各导线,可以减少电极接触不良区域,以及太阳电池片之间连接不良导致的电能传输性能,提高良品率。导电连接线的线径可以和导线相同,也可以不同。也可以设置多根导电连接线,并且导电连接线可以适当设置间隔,综合考虑保证电流的传输,以及尽量保证较少的遮光。
进一步的,重叠区域的宽度为0.1-3毫米。
在本申请的实施例中,重叠区域不能过宽或者过窄,过宽会导致遮挡范围过大,降低了太阳能电池组件的发电效率,过窄会导致太阳能电池片连接强度不够,太阳能电池组件容易损坏,重叠区域的宽度为0.1-3毫米,既保证了太阳能电池组件的连接强度,又保证了发电效率。
实施例二
请参考图13-14,本申请的太阳电池互联结构,包括至少两块太阳能电池片10,太阳能电池片10的正面固定连接有正面电极栅线11和导线12,一根电极栅线11至少与一根导线12电连接,太阳能电池片10设置 第一长边13和第二长边14,导线12从第二长边14向第一长边13呈放射状排布。
本申请中,所述太阳能电池片的背面固定连接有背面电极栅线,所述导线12的另一端与另一个所述太阳能电池片的背面电极栅线电连接,且所述导线12的另一端从另一个所述太阳能电池片10的所述第一长边向远离另一个所述太阳能电池片10的所述第二长边的方向呈放射状排布。
在发明的实施例中,太阳能电池片朝阳的一面固定连接有正面电极栅线,正面电极栅线能够把太阳能电池片内的光生电流引到电池外部。通过导线来连接正面电极栅线以及背面电极栅线,不需要在太阳能电池片的正面以及背面设置其他主栅等连接电极的装置,能够降低诸如银等贵金属的使用量,降低了成本。导线的横截面相对于常规电极来说,是相对较为优化的界面,可以做到电流传输的最大效果,并且导线的数量可以根据不同的生产要求进行设计。在将两块太阳能电池片相连时,两块太阳能电池片均与多根导线电连接,可以有效地降低互联结构的电阻,从而减小互联结构的电阻造成的损耗。
正面电极栅线和背面电极栅线可以从太阳能电池片的一条宽边指向另一条宽边,一根正面电极栅线至少与一根导线电连接,一根背面电极栅线至少与一根导线电连接,正面电极栅线和背面电极栅线可以是一条长的线段,正面电极栅线和背面电极栅线可以与所有的导线均电连接,也可以将正面电极栅线和背面电极栅线与一根导线电连接,正面电极栅线和背面电极栅线可以在导线的地方断开,能够减少正面电极栅线和背面电极栅线的长度,减少正面电极栅线对太阳能电池片的遮挡,提高太阳能电池片光的使用率。导线能够将入射到导线的太阳光再次反射到太阳能电池片表面,提高太阳能电池片光的使用率,降低了电极遮光造成的影响。导线直径为50-200微米,其中导线直径可以但不仅仅为50、100、150、200微米。
导线从任一太阳能电池片靠近另一太阳能电池片的一侧向远离另一太阳能电池片的一侧呈放射状排布,也就是越靠近相邻两块太阳能电池片之间,相邻导线之间的距离就会越小,也就是越靠近相邻两块太阳能电池片之间,导线会越紧凑,将导线设置为放射状,能够优化电流传输方向,减少传输路径以及内部损坏,从而提高太阳能电池片的光电转换 效率。使得能够使用较大宽度的太阳能电池片进行叠片,也就能够减少了整片太阳能电池板的切割次数,从而减少了工艺连接的次数,降低了切割整片太阳能电池板所带来的机械损害和破片率。
在发明的实施例中,聚合物膜与太阳能电池片粘接,聚合物膜固定有导线的一侧设置有粘接层,在对导线进行加工时,便于将聚合物膜与太阳能电池片固定,从而固定导线,提高了加工的准确性,降低了加工难度。
进一步的,将固定有导线12的聚合物膜30与正面电极栅线11热压形成导线12与正面电极栅线11电连接,和/或,
将固定有导线12的聚合物膜30与背面电极栅线热压形成导线12与背面电极栅线电连接。
在发明的实施例中,将固定有导线的聚合物膜与正面电极栅线热压形成导线与电极栅线电连接,可以但不仅仅为导线先镶嵌在聚合物膜上,并且导线会露出聚合物膜表面,初步固定导线的位置,然后将聚合物膜与正面电极栅线进行热压,使得正面电极栅线与导线电连接,可以使得制备过程中导线的铺设和对位更为方便和精确,可以降低工艺复杂度,甚至减少工艺步骤,另外由于聚合物膜的存在,使得相邻的两块太阳能电池片的接触变为柔性的接触,降低了太阳能电池片的破片率,也减少了此互联结构在后续过程中的不良孔洞的产生。
将固定有导线的聚合物膜与背面电极栅线热压形成导线与电极栅线电连接,可以但不仅仅为导线先镶嵌在聚合物膜上,并且导线会露出聚合物膜表面,初步固定导线的位置,然后将聚合物膜与背面电极栅线进行热压,使得背面电极栅线与导线电连接,可以使得制备过程中导线的铺设和对位更为方便和精确,可以降低工艺复杂度,甚至减少工艺步骤,另外由于聚合物膜的存在,使得相邻的两块太阳能电池片的接触变为柔性的接触,降低了太阳能电池片的破片率,也减少了此互联结构在后续过程中的不良孔洞的产生。
进一步的,正面电极栅线11与导线12垂直,背面电极栅线与导线12垂直。
在发明的实施例中,正面电极栅线与导线垂直,背面电极栅线与导线垂直,电极栅线呈扇形,增长了电极栅线的总长度,提高了太阳能电池片的可靠性。
进一步的,正面电极栅线11与太阳能电池片10长边平行,背面电极栅线与太阳能电池片10长边平行。
在发明的实施例中,正面电极栅线与太阳能电池片长边平行,背面电极栅线与太阳能电池片长边平行,各电极栅线之间的距离相等,便于加工和制造。
进一步的,导线12之间和/或导线12与太阳能电池片10宽边之间设置有正面电极栅线11,导线12之间和/或导线12与太阳能电池片10宽边之间设置有背面电极栅线。
在发明的实施例中,导线之间和/或导线与太阳能电池片宽边之间设置有正面电极栅线,也就是正面电极栅线是间隔地分布,每段正面电极栅线均与导线电连接,便于将电池内部产生的电能导出。间隔分布的正面电极栅线可以更加节省电极材料,并且进一步减少遮光,增加太阳能电池片的有效光吸收面积,从而提高光电转换效率以及发电量。
导线之间和/或导线与太阳能电池片宽边之间设置有背面电极栅线,也就是背面电极栅线是间隔地分布,每段背面电极栅线均与导线电连接,便于将电池内部产生的电能导出。间隔分布的背面电极栅线可以更加节省电极材料。
进一步的,两块相邻的太阳能电池片相互紧挨,两块相邻的太阳能电池片无重叠区域。
本申请的其他部分参照实施例一,在此不再赘述。
在本申请的实施例中,也可以将两块相邻的太阳能电池片相互紧挨,可以进一步增加太阳能电池片的利用率,减少遮光带来的损失,也节约了太阳能电池片的使用量,节省了成本。
实施例三
本申请的其中一个实施例为,请参考图15至24,本申请的设有导线的聚合物膜,包括聚合物膜本体30和导线12,聚合物膜本体30与导线12固定连接,聚合物膜本体30上设置有起始轴,起始轴与聚合物膜本体30的任一条长边平行,导线12从起始轴向聚合物膜本体30的至少一条长边呈放射状排布。
在本申请的实施例中,通过导线来连接相邻的两个太阳能电池片的电极栅线,不需要在电池本体的正面设置其他主栅等连接电极的装置,能够降低诸如银等贵金属的使用量,降低了成本。导线的横截面相对于 常规电极来说,是相对较为优化的界面,可以做到电流传输的最大效果,并且导线的数量可以根据不同的生产要求进行设计。在将两块太阳能电池片相连时,两块太阳能电池片均与多根导线电连接,可以有效地降低互联结构的电阻,从而减小互联结构的电阻造成的损耗。
导线能够将入射到导线的太阳光再次反射到电池本体表面,提高太阳能电池片光的使用率,降低了电极遮光造成的影响。导线直径为50-200μm,其中导线直径可以但不仅仅为50、100、150、200μm。
导线从起始轴分别向聚合物膜本体的至少一条长边呈放射状排布,也就是导线越靠近起始轴,相邻导线之间的距离会越小,导线会越紧凑,将导线设置为放射状,能够优化电流传输方向,减少传输路径以及内部损坏,从而提高太阳能电池片的光电转换效率。使得能够使用较大宽度的太阳能电池片进行叠片,也就能够减少了整片太阳能电池板的切割次数,从而减少了工艺连接的次数,降低了切割整片太阳能电池板所带来的机械损害和破片率。
电池本体为整片太阳能电池板切割而成,可以将整片太阳能电池板沿着与宽边平行的方向切割,电池本体可以是整片太阳能电池板的二分之一、三分之一、四分之一、五分之一或六分之一。
聚合物膜本体可以有效降低在太阳能电池片使用过程中的刚性接触,减少破片和裂纹的产生,也有利于填充各处空隙,减少空洞不良的产生。聚合物膜本体可以是单层聚合物膜或者多层聚合物膜。
参考图15-17,进一步的,起始轴为聚合物膜本体30的任一条长边。
在本申请的实施例中,起始轴为聚合物膜本体的任一条长边,也就是导线从聚合物膜本体的一条长边向另一条长边呈放射状排布,此种情况适用于连接单面电极栅线,能够优化电流传输方向,减少传输路径以及内部损坏,从而提高太阳能电池片的光电转换效率。
参考图19和21,进一步的,起始轴为聚合物膜本体30的对称轴。
在本申请的实施例中,起始轴为聚合物膜本体的对称轴,也就是导线从起始轴向聚合物膜本体的两条长边分别呈放射状排布,此种情况适用于双面电极栅线的互联,通常,需要连接的太阳能电池板为同一种规格,以便现场安装以及维护,能够优化电流传输方向,减少传输路径以及内部损坏,从而提高太阳能电池片的光电转换效率。
参考图22-24,进一步的,导线12至少部分露出聚合物膜本体30的 至少一个侧面。
在本申请的实施例中,导线至少部分露出聚合物膜本体的至少一个侧面,便于导线与电极栅线进行接触,使得导线能够引出太阳能电池片内部转化的电能,保证了导线的导电性能。
进一步的,聚合物膜本体30暴露有导线12的一侧设置有粘接层。
在本申请的实施例中,聚合物膜本体固定有导线的一侧设置有粘接层,在对导线进行加工时,便于将导线与聚合物膜本体固定,在将导线与太阳能电池片固定时,便于将聚合物膜本体与太阳能电池片固定,从而固定导线,提高了加工的准确性,降低了加工难度。
参考图18和20,进一步的,聚合物膜本体30设置有通孔11,通孔11设置在导线12之间和/或导线12与聚合物膜本体30宽边之间。
在本申请的实施例中,聚合物膜本体设置有通孔,通孔设置在导线之间和/或导线与聚合物膜本体宽边之间,通孔能够增加太阳光的透过率,提高太阳能电池片的发电效率,同时,也能够减少聚合物膜本体的使用,降低生产成本。
进一步的,聚合物膜本体30的厚度为5-200μm。
在本申请的实施例中,聚合物膜本体的厚度为5-200μm,合理设计聚合物膜本体的厚度能够保证聚合物膜本体的强度,也就是保证聚合物膜本体能够固定导线,同时,也能够降低生产制造成本,便于生产制造以及后期维护。
进一步的,导线12的横截面为圆形,导线12的直径为50-500μm。
在本申请的实施例中,导线的横截面为圆形,相对于常规电极来说,是相对较为优化的界面,可以做到电流传输的最大效果。合理的设置导线的直径,在保证导线的导电性能的同时能够兼顾降低生产制造成本。根据不同的导电传输需求,导线的截面可以充分选择,更为优选的方案中的圆形的截面较大,遮光较小,极为适用于太阳能电池片的工业化应用。
进一步的,导线12外部部分或全部涂覆有导电层21。
进一步的,导电层21的熔点小于240℃。
在本申请的实施例中,导线上涂覆有低熔点的导电层,导电层作为后续和太阳能电池片连接时的连接剂,从而更方便后续过程中的连接,可以大大减少导线和电极栅线连接时的工艺步骤,减少了电池表面涂布 导电连接剂的步骤,也减少了因涂布导电连接剂而产生的不良,提高了太阳能电池片的良品率。
导电层为导电树脂、铟、锑、锡、铋、铅、银、镉或锌中的任意一种或多种的组合。导电树脂包括聚合物基体和导电粒子,导电树脂的聚合物基体包括热固性树脂或热塑性树脂,热固性树脂或热塑性树脂包括:环氧树脂、有机硅树脂、聚酰亚胺树脂、酚醛树脂、聚氨酯、丙烯酸树脂、聚烯烃、聚酰胺、聚苯醚、氟树脂、聚甲基丙烯酸甲酯、聚砜、或聚酯中的任意一种或多种的组合。导电树脂的导电粒子包括:金、银、铜、铝、锌、镍和石墨的任意一种或多种的组合,导电粒子形状为颗粒状或片状。
导线的材料为铜、铝、银、金、铜包铝、铜镍合金或铜锌合金。聚合物膜本体的材料为醋酸纤维素、氟树脂、聚砜树脂、聚酯树脂、聚酰胺树脂、聚氨酯树脂或聚烯烃类树脂。
本申请的另一个实施例为,设有导线的聚合物膜的制造方法,包括以下步骤:
在聚合物膜本体30上排布导线12,在聚合物膜本体30上划分裁剪区域,裁剪区域设置有起始轴,起始轴与裁剪区域的任一条长边平行,导线从起始轴向裁剪区域的至少一条长边呈放射状排布;
将导线12嵌于聚合物膜本体30中;
按照裁剪区域对聚合物膜本体30进行裁剪。
在本申请的实施例中,先在聚合物膜本体上排布导线,然后将导线嵌于聚合物膜本体中,再按照裁剪区域对聚合物膜本体进行裁剪,从而加工出设有导线的聚合物膜。
通过导线来连接相邻的两个太阳能电池片的电极栅线,不需要在电池本体的正面设置其他主栅等连接电极的装置,能够降低诸如银等贵金属的使用量,降低了成本。导线的横截面相对于常规电极来说,是相对较为优化的界面,可以做到电流传输的最大效果,并且导线的数量可以根据不同的生产要求进行设计。在将两块太阳能电池片相连时,两块太阳能电池片均与多根导线电连接,可以有效地降低互联结构的电阻,从而减小互联结构的电阻造成的损耗。
导线能够将入射到导线的太阳光再次反射到电池本体表面,提高太阳能电池片光的使用率,降低了电极遮光造成的影响。导线直径为50-200 μm,其中导线直径可以但不仅仅为50、100、150、200μm。
导线从起始轴向聚合物膜本体的至少一条长边呈放射状排布,也就是导线越靠近起始轴,相邻导线之间的距离会越小,导线会越紧凑,将导线设置为放射状,能够优化电流传输方向,减少传输路径以及内部损坏,从而提高太阳能电池片的光电转换效率。使得能够使用较大宽度的太阳能电池片进行叠片,也就能够减少了整片太阳能电池板的切割次数,从而减少了工艺连接的次数,降低了切割整片太阳能电池板所带来的机械损害和破片率。
电池本体为整片太阳能电池板切割而成,可以将整片太阳能电池板沿着与宽边平行的方向切割,电池本体可以是整片太阳能电池板的二分之一、三分之一、四分之一、五分之一或六分之一。
聚合物膜本体可以有效降低在太阳能电池片使用过程中的刚性接触,减少破片和裂纹的产生,也有利于填充各处空隙,减少空洞不良的产生。聚合物膜本体可以是单层聚合物膜本体或者多层聚合物膜本体。
进一步的,将导线12嵌于聚合物膜本体30中,包括,将导线12热压入聚合物膜本体30中。
在本申请的实施例中,在将导线热压入聚合物膜本体时,聚合物膜本体会融化与导线粘接,当聚合物膜本体冷却后,聚合物膜本体与导线固定。将聚合物膜本体与导线熔接,操作简单,便于生产和制造。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (43)

  1. 一种太阳电池互联结构,其特征在于,包括至少两块太阳能电池片,所述太阳能电池片的正面固定连接有正面电极栅线和导线,一根所述正面电极栅线至少与一根所述导线电连接,所述太阳能电池片设置第一长边和第二长边,所述导线从所述第二长边向所述第一长边呈放射状排布。
  2. 根据权利要求1所述的太阳电池互联结构,其特征在于,相邻的所述太阳能电池片部分重叠形成重叠区域,位于下方的所述太阳能电池片的所述导线与位于上方的所述太阳能电池片的背面电极电连接,位于上方的所述太阳能电池片的所述第一长边位于所述重叠区域,位于下方的所述太阳能电池片的所述第二长边位于所述重叠区域。
  3. 根据权利要求2所述的太阳电池互联结构,其特征在于,所述导线靠近所述第二长边的一侧电连接有电极连接盘,所述电极连接盘设置在所述导线与位于下方的所述太阳能电池片之间,所述电极连接盘固定连接有导电连接件,所述导电连接件与位于上方的所述太阳能电池片的背面电极电连接。
  4. 根据权利要求3所述的太阳电池互联结构,其特征在于,所述导电连接件设置在所述导线与所述第二长边之间。
  5. 根据权利要求3所述的太阳电池互联结构,其特征在于,所述导电连接件为焊膏。
  6. 根据权利要求3所述的太阳电池互联结构,其特征在于,所述导电连接件为导电树脂。
  7. 根据权利要求3所述的太阳电池互联结构,其特征在于,所述导电连接件为铟、锑、锡、铋、铅、银、镉和锌中的任意一种或者多种的组合。
  8. 根据权利要求2所述的太阳电池互联结构,其特征在于,所述电极栅线与所述导线垂直。
  9. 根据权利要求2所述的太阳电池互联结构,其特征在于,所述导线之间和/或所述导线与所述太阳能电池片宽边之间设置有所述正面电极栅线。
  10. 根据权利要求2所述的太阳电池互联结构,其特征在于,所述 重叠区域的宽度为0.1-3毫米。
  11. 根据权利要求1所述的太阳电池互联结构,其特征在于,所述太阳能电池片的背面固定连接有背面电极栅线,所述导线的另一端与另一个所述太阳能电池片的背面电极栅线电连接,且所述导线的另一端从另一个所述太阳能电池片的所述第一长边向远离另一个所述太阳能电池片的所述第二长边的方向呈放射状排布。
  12. 根据权利要求11所述的太阳电池互联结构,其特征在于,将所述固定有所述导线的所述聚合物膜与所述正面电极栅线热压形成所述导线与所述正面电极栅线电连接,和/或,
    将所述固定有所述导线的所述聚合物膜与所述背面电极栅线热压形成所述导线与所述背面电极栅线电连接。
  13. 根据权利要求11所述的太阳电池互联结构,其特征在于,所述正面电极栅线与所述导线垂直,所述背面电极栅线与所述导线垂直。
  14. 根据权利要求11所述的太阳电池互联结构,其特征在于,所述正面电极栅线与所述太阳能电池片长边平行,所述背面电极栅线与所述太阳能电池片长边平行。
  15. 根据权利要求11所述的太阳电池互联结构,其特征在于,所述导线之间和/或所述导线与所述太阳能电池片宽边之间设置有所述正面电极栅线,所述导线之间和/或所述导线与所述太阳能电池片宽边之间设置有所述背面电极栅线。
  16. 根据权利要求11所述的太阳电池互联结构,其特征在于,两块相邻的所述太阳能电池片部分重叠形成重叠区域。
  17. 根据权利要求11所述的太阳电池互联结构,其特征在于,两块相邻的所述太阳能电池片相互紧挨,两块相邻的所述太阳能电池片无重叠区域。
  18. 根据权利要求2或11所述的太阳电池互联结构,其特征在于,包括聚合物膜,所述导线与所述聚合物膜固定,所述聚合物膜与所述太阳能电池片固定连接。
  19. 根据权利要求18所述的太阳电池互联结构,其特征在于,所述聚合物膜与所述太阳能电池片粘接。
  20. 根据权利要求19所述的太阳电池互联结构,其特征在于,将所述固定有所述导线的所述聚合物膜与所述电极栅线热压形成所述导线与 所述电极栅线电连接。
  21. 根据权利要求2或11所述的太阳电池互联结构,其特征在于,所述导线外部部分或全部涂覆有导电层。
  22. 根据权利要求21所述的太阳电池互联结构,其特征在于,所述导电层的材料为导电树脂。
  23. 根据权利要求22所述的太阳电池互联结构,其特征在于,所述导电树脂包括聚合物基体和导电粒子。
  24. 根据权利要求23所述的太阳电池互联结构,其特征在于,所述聚合物基体为环氧树脂、有机硅树脂、聚酰亚胺树脂、酚醛树脂、聚氨酯、丙烯酸树脂、聚烯烃、聚酰胺、聚苯醚、氟树脂、聚甲基丙烯酸甲酯、聚砜和聚酯中的任意一种或多种的组合。
  25. 根据权利要求23所述的太阳电池互联结构,其特征在于,所述导电粒子为金、银、铜、铝、锌、镍和石墨中的任意一种或多种的组合,所述导电粒子形状为颗粒状或片状。
  26. 根据权利要求2或11所述的太阳电池互联结构,其特征在于,所述导线靠近所述第二长边的一侧为扁平导线。
  27. 根据权利要求2或11所述的太阳电池互联结构,其特征在于,所述导线的数量为3-100根。
  28. 根据权利要求2或11所述的太阳电池互联结构,其特征在于,所述电极栅线与所述第一长边或者所述第二长边平行。
  29. 一种设有导线的聚合物膜,其特征在于,包括聚合物膜本体和导线,所述聚合物膜本体与所述导线固定连接,所述聚合物膜本体上设置有起始轴,所述起始轴与所述聚合物膜本体的任一条长边平行,所述导线从所述起始轴向所述聚合物膜本体的至少一条长边呈放射状排布。
  30. 根据权利要求29所述的设有导线的聚合物膜,其特征在于,所述起始轴为所述聚合物膜本体的任一条长边。
  31. 根据权利要求29所述的设有导线的聚合物膜,其特征在于,所述起始轴为所述聚合物膜本体的对称轴。
  32. 根据权利要求29所述的设有导线的聚合物膜,其特征在于,所述导线至少部分露出所述聚合物膜本体的至少一个侧面。
  33. 根据权利要求32所述的设有导线的聚合物膜,其特征在于,所述聚合物膜本体暴露有所述导线的一侧设置有粘接层。
  34. 根据权利要求29所述的设有导线的聚合物膜,其特征在于,所述聚合物膜本体设置有通孔,所述通孔设置在所述导线之间和/或所述导线与所述聚合物膜本体宽边之间。
  35. 根据权利要求29所述的设有导线的聚合物膜,其特征在于,所述聚合物膜本体的厚度为5-200μm。
  36. 根据权利要求29所述的设有导线的聚合物膜,其特征在于,所述导线的横截面为圆形,所述导线的直径为50-500μm。
  37. 根据权利要求29所述的设有导线的聚合物膜,其特征在于,所述导线外部部分或全部涂覆有导电层。
  38. 根据权利要求37所述的设有导线的聚合物膜,其特征在于,所述导电层的材料为金属或者合金,所述导电层的熔点小于240℃。
  39. 根据权利要求37所述的设有导线的聚合物膜,其特征在于,所述导电层的材料为铟、锑、锡、铋、锌、镉和铅中的任意一种或多种的组合。
  40. 根据权利要求29所述的设有导线的聚合物膜,其特征在于,所述导线的材料为铜、铝、银、铜包铝、铜镍合金或铜锌合金。
  41. 根据权利要求29所述的设有导线的聚合物膜,其特征在于,所述聚合物膜本体的材料为醋酸纤维素、氟树脂、聚砜树脂、聚酯树脂、聚酰胺树脂、聚氨酯树脂或聚烯烃类树脂。
  42. 一种设有导线的聚合物膜的制造方法,其特征在于,包括以下步骤:
    在聚合物膜本体上排布导线,在所述聚合物膜本体上划分裁剪区域,所述裁剪区域设置有起始轴,所述起始轴与所述裁剪区域的任一条长边平行,所述导线从所述起始轴向所述裁剪区域的至少一条长边呈放射状排布;
    将所述导线嵌于所述聚合物膜本体中;
    按照所述裁剪区域对所述聚合物膜本体进行裁剪。
  43. 根据权利要求42所述的设有导线的聚合物膜的制造方法,其特征在于,将所述导线嵌于所述聚合物膜本体中,包括,将所述导线热压入所述聚合物膜本体中。
PCT/CN2019/124064 2018-12-28 2019-12-09 一种太阳能电池互联结构、设有导线的聚合物膜及设有导线的聚合物膜的制造方法 WO2020135003A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201811628460.3 2018-12-28
CN201811628460.3A CN111403498A (zh) 2018-12-28 2018-12-28 双面太阳电池互联结构
CN201811628455.2 2018-12-28
CN201811626072.1 2018-12-28
CN201811626072.1A CN111403525A (zh) 2018-12-28 2018-12-28 太阳电池互联结构
CN201811628455.2A CN111403526A (zh) 2018-12-28 2018-12-28 设有导线的聚合物膜及设有导线的聚合物膜的制造方法

Publications (1)

Publication Number Publication Date
WO2020135003A1 true WO2020135003A1 (zh) 2020-07-02

Family

ID=71126814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124064 WO2020135003A1 (zh) 2018-12-28 2019-12-09 一种太阳能电池互联结构、设有导线的聚合物膜及设有导线的聚合物膜的制造方法

Country Status (1)

Country Link
WO (1) WO2020135003A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103887358A (zh) * 2014-03-13 2014-06-25 中国科学院电工研究所 一种光伏电池柵线的排布方式
CN205621744U (zh) * 2015-12-09 2016-10-05 天津英利伟业光伏电站技术发展有限公司 一种太阳能电池组件
CN206806350U (zh) * 2017-06-27 2017-12-26 苏州腾晖光伏技术有限公司 一种太阳能光伏组件
CN206992129U (zh) * 2017-08-07 2018-02-09 阿特斯阳光电力集团有限公司 太阳能电池片
CN208271927U (zh) * 2018-06-06 2018-12-21 君泰创新(北京)科技有限公司 带导电线的薄膜、双面发电太阳能电池串及电池组件
CN209418512U (zh) * 2018-12-28 2019-09-20 泰州隆基乐叶光伏科技有限公司 双面太阳电池互联结构
CN209526101U (zh) * 2018-12-28 2019-10-22 泰州隆基乐叶光伏科技有限公司 太阳电池互联结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103887358A (zh) * 2014-03-13 2014-06-25 中国科学院电工研究所 一种光伏电池柵线的排布方式
CN205621744U (zh) * 2015-12-09 2016-10-05 天津英利伟业光伏电站技术发展有限公司 一种太阳能电池组件
CN206806350U (zh) * 2017-06-27 2017-12-26 苏州腾晖光伏技术有限公司 一种太阳能光伏组件
CN206992129U (zh) * 2017-08-07 2018-02-09 阿特斯阳光电力集团有限公司 太阳能电池片
CN208271927U (zh) * 2018-06-06 2018-12-21 君泰创新(北京)科技有限公司 带导电线的薄膜、双面发电太阳能电池串及电池组件
CN209418512U (zh) * 2018-12-28 2019-09-20 泰州隆基乐叶光伏科技有限公司 双面太阳电池互联结构
CN209526101U (zh) * 2018-12-28 2019-10-22 泰州隆基乐叶光伏科技有限公司 太阳电池互联结构

Similar Documents

Publication Publication Date Title
JP3352252B2 (ja) 太陽電池素子群並びに太陽電池モジュール及びその製造方法
JP2008135654A (ja) 太陽電池モジュール
JP3164183B2 (ja) 光起電力素子及びモジュール
JP2010041012A (ja) 太陽電池モジュール
CN111403490B (zh) 太阳能电池互联结构制备方法
CN207818590U (zh) 一种双面发电太阳能电池和光伏组件
JP2013225712A (ja) 薄膜太陽電池の製造方法
CN113851550A (zh) 一种太阳能电池串及其制备方法和应用
CN113851549A (zh) 一种太阳能电池串及其制备方法和应用
CN209526101U (zh) 太阳电池互联结构
CN111403526A (zh) 设有导线的聚合物膜及设有导线的聚合物膜的制造方法
CN110246911A (zh) 背接触叠片太阳电池串及制造方法、叠片太阳电池组件
WO2023103260A1 (zh) 光伏电池组件及其制造方法
CN106449796B (zh) 一种用于太阳电池的电极
CN215418200U (zh) 一种太阳能电池串以及包含太阳能电池串的光伏组件
CN209418512U (zh) 双面太阳电池互联结构
CN111403498A (zh) 双面太阳电池互联结构
CN108365027A (zh) 一种p型晶硅双面太阳能电池及电池制造方法
WO2020135003A1 (zh) 一种太阳能电池互联结构、设有导线的聚合物膜及设有导线的聚合物膜的制造方法
CN109904261A (zh) 太阳电池组件
CN215418199U (zh) 一种太阳能电池串以及包含太阳能电池串的光伏组件
CN212934635U (zh) 叠瓦组件的导电互联件及叠瓦组件
CN209675306U (zh) 太阳电池组件
CN209675307U (zh) 太阳电池组件
CN204189812U (zh) 一种电池片互联结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903855

Country of ref document: EP

Kind code of ref document: A1