WO2020134578A1 - Système et procédé de positionnement et de centrage pour barre de compression de hopkinson triaxiale vraie - Google Patents

Système et procédé de positionnement et de centrage pour barre de compression de hopkinson triaxiale vraie Download PDF

Info

Publication number
WO2020134578A1
WO2020134578A1 PCT/CN2019/115479 CN2019115479W WO2020134578A1 WO 2020134578 A1 WO2020134578 A1 WO 2020134578A1 CN 2019115479 W CN2019115479 W CN 2019115479W WO 2020134578 A1 WO2020134578 A1 WO 2020134578A1
Authority
WO
WIPO (PCT)
Prior art keywords
box
positioning
cube
centering
positioning guide
Prior art date
Application number
PCT/CN2019/115479
Other languages
English (en)
Chinese (zh)
Inventor
朱建波
谢和平
李玉龙
汤忠斌
索涛
赵坚
周韬
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2020134578A1 publication Critical patent/WO2020134578A1/fr
Priority to US17/359,126 priority Critical patent/US11988645B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/30Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • G01N2203/0256Triaxial, i.e. the forces being applied along three normal axes of the specimen

Definitions

  • the present invention relates to the field of dynamic mechanical property testing of materials such as rock and concrete, and particularly relates to an accurate positioning centering device and method for a true three-axis dynamic and static combined loading Hopkinson rod.
  • the Hopkinson impact loading experimental device based on true triaxial static load can reflect the true triaxial stress state in engineering practice.
  • accurate positioning alignment is the core of the test system.
  • the positioning center bracket in the utility model Hopkinson rod system with the patent number 201620574575.9 cannot achieve the test effect of accurate positioning alignment, which not only makes the sample installation process cumbersome, but also is not conducive to guarantee Test accuracy and repeatability of results;
  • due to the inaccurate and reliable alignment of the true triaxial compression bar it is easy to cause eccentricity in the alignment of the compression bar and the test specimen, which is likely to cause compression during high-amplitude dynamic impact loading The eccentric moment between the rod and the test specimen damages the compression rod and results in unreliable test results.
  • the purpose of this patent invention is to introduce a precise positioning centering device to ensure that the sample can be accurately and quickly positioned and installed, so that the test results are more accurate and reliable.
  • the present invention provides a true three-axis Hopkinson pressure bar positioning centering system
  • the positioning guide centering box is a cube
  • the positioning guide centering box is reserved for six sides Square hole, the size of the hole above the six faces is the same as the size of the Hopkinson bar square bar; the size of the inner cavity of the positioning guide centering box Consistent with the size of the cubic sample, the positioning guide centering box is designed as a symmetrical four part.
  • the six sides of the positioning guide centering box are reserved with round holes, the size of the round hole is consistent with the size of the screw, and the four parts are connected by a screw and a nut to
  • the split positioning guide centering box is combined into a whole structure and used to quickly and accurately place the positioning guide centering box at the center position of the square box of the central cube.
  • a positioning method for a true three-axis Hopkinson pressure bar positioning system includes the following steps:
  • Step 1 Assemble the positioning guide centering box, first connect the lower two parts of the positioning guide centering box, and then install the third part, then connect the lower two parts with the upper third part, and then install Into the cube sample, and then install the last part, fixed connection, forming a complete positioning centering device
  • Step 2 Install the positioning guide alignment box cushion block, first place the removable cushion block in the center of the bottom surface of the center cube box, and then fix the cushion block in the center cube box with bolts through the cushion block bolt positioning holes The center of the bottom surface, so as to provide an auxiliary platform for quickly and accurately positioning the positioning centering box at the center of the square box of the central cube;
  • Step 3 After the step 2 is installed, the positioning guide centering box of step 1 is placed at the center of the upper surface of the block of the step 2, and then the positioning holes of the centering box bolts are positioned by bolts through the positioning guide
  • the positioning guide centering box is fixed at the center of the upper surface of the block, so that the positioning guide centering box is quickly and accurately placed at the center of the center cube box, and is used for installation with each side of the center cube box
  • the square holes of the square rod are completely centered and aligned, and then the square rods are placed along the X, Y, and Z direction square holes of the central cube square box and the centering box, respectively.
  • the step of rapid and accurate positioning is completed;
  • Step 4 After the installation in step 3 is completed, the infrared laser measuring instrument is used to assist in achieving fast and accurate alignment of the three-axis six-direction pressing rod.
  • the working principle and specific implementation take the X direction as an example, accurate alignment before, X -Place the square rod on the edge of the center cube box, place the infrared laser measuring instrument at A, and emit the infrared laser from A.
  • the infrared laser reaches the B and can measure the distance between AB; after accurate alignment, the X-direction square
  • the rod is in contact with the cube sample, and the position of the infrared laser measuring instrument is fixed during the alignment process.
  • the infrared laser measuring instrument is at A, and the infrared laser reaches B, where the distance between A and can be measured.
  • the difference between the two measurement distances is the distance between CDs; EF line is the center line of the cube sample and the center cube box, EG is half the side length of the center cube box, HI is half the length of the cube sample side, if the CD spacing And center cube
  • the structural design of the cushion, positioning guide centering box and central cube square box can ensure the rapid and accurate positioning and centering installation of test specimens such as rock and concrete during the true triaxial Hopkinson pressure bar test.
  • the infrared laser measuring instrument auxiliary installation system ensures the quick alignment of the three-axis six-direction pressing rod.
  • the device and method of the present invention help to ensure the rapid centering and alignment of the three-axis six-direction pressure bar, ensure that the alignment of the pressure bar and the test sample does not occur eccentricity, thereby ensuring high amplitude dynamics During the impact loading process, there will be no damage to the compression rod due to the effect of eccentric moment between the compression rod and the test sample, and to ensure that the test results are reliable
  • FIG. 1 is a cubic sample
  • FIG. 2a is a schematic view of the installation of the positioning guide device box of FIG. 2b;
  • FIG. 3a is a three-dimensional view of a precise positioning centering device
  • FIG. 3b is a three-dimensional view of a cross-section of an accurate positioning centering device
  • FIG. 4a is a front view of the accurate centering front X-direction true three-axis dynamic and static combined loading Hopkinson rod;
  • FIG. 4b is a front view of the Hopkinson rod loaded with X-direction true three-axis dynamic and static combination after accurate centering;
  • FIG. 4c is a front view of the center cube square box, positioning guide centering box and cube sample combination.
  • 1-positioning guide alignment box first part 2-positioning guide alignment box second part, 3-positioning guide alignment box third part, 4-positioning guide alignment box fourth part, 5-bolt connection Hole, 6-positioning guide centering box, 7-center cube box, 8-X + direction boss, 9-X + direction square bar, lO-X direction boss, l lX direction square bar, 12-Y + Boss, 13-Y + square bar, UY boss, 15-Y _ square bar, 16-Z + boss, 17-Z + square bar, 182 _ boss, 19-Z
  • Square rod 20-cubic specimen, 21-block, 22-block bolt positioning hole, 23-positioning guide alignment box Bolt positioning holes.
  • the precise positioning centering device of the true three-axis dynamic and static combined loading Hopkinson pressure bar is the core of the three-axis six-way synchronous coordinated control electromagnetic loading Hopkinson bar system.
  • the precise positioning centering device includes positioning guide centering box and infrared laser alignment system.
  • the side of the positioning guide alignment box is reserved with round holes and square holes.
  • the size of the holes above the six faces is the same as the size of the square rod.
  • the square rod passes through the square hole and contacts the cubic sample; the size of the round hole is consistent with the size of the screw. It is used to combine the detachable positioning guide centering box into a whole structure and to quickly and accurately place the positioning guide centering box in the center of the square box of the central cube;
  • FIG. 1 is the cube sample 20, and the edge of the cube sample 20 will have 0.5 Chamfering.
  • the purpose is to leave room for deformation of the specimen and to prevent the test specimen from being crushed and deformed to cause the square rods to collide with each other and be damaged.
  • the positioning guide centering box is designed as a symmetrical four parts.
  • the infrared laser measuring instrument is then used to assist in achieving fast and accurate alignment of the three-axis six-direction pressure bar.
  • the working principle and specific implementation take the X direction as an example.
  • Figure 4a shows the precise centering front X + square rod 9 is placed on the edge of the central cube square box 7. Place the infrared laser measuring instrument at A and emit infrared laser from A. Infrared When the laser reaches B, the distance between AB can be measured.
  • Figure 4b shows that after accurate centering, the square rod in the X _ direction contacts the cube sample 20. The position of the infrared laser measuring instrument is fixed during the alignment process.
  • the infrared The laser measuring instrument is at A, When the infrared laser reaches B, the distance between A and B can be measured. The difference between the two measured distances is the distance between CD.
  • the EF line is the center line of the cubic sample 20 and the central cubic box 7
  • EG is Half of the 7 sides of the center cube box
  • FIG. 3a is a three-dimensional view of a precise positioning centering device
  • FIG. 3b is a three-dimensional view of a cross section of the precise positioning centering device.
  • the positioning guide centering box 6 with the cube sample 20 installed is placed in the center cube square box 7 (located on the cushion block 21), and the side of the center cube square box is reserved with square holes, observation holes and Round hole, positioning guide alignment box 6 and center cube box 7 X side square hole side X + square rod 9, the other side X _ square bar 11, Y side square hole side Y + Place the square rod 13 on the other side, place the Y square rod 15 on the other side, and place the Z + square rod 17 on the side of the square hole in the Z direction, Z _
  • the positioning guide centering box 6 has a cushion block 21 below.
  • the cushion block is divided into two parts and is detachable.
  • the cushion block is provided with a cushion bolt positioning hole 22 and a positioning guide centering box bolt positioning hole 23
  • the cushion block positioning hole 22 can be used to fix the cushion block in the center of the bottom surface of the center cube box, so as to provide an auxiliary platform for quickly and accurately positioning the positioning centering box at the center of the center cube box;
  • the positioning guide alignment box bolt positioning hole 23 can fix the positioning guide alignment box at the center of the upper surface of the block to ensure that the positioning guide alignment box is quickly and accurately placed in the center of the center cubic box Position, and be completely centered and aligned with the square holes on the sides of the central cube box for installing square rods.
  • FIG. 4a is a front view of the X-direction true three-axis dynamic and static combination loading Hopkinson rod for precise centering
  • FIG. 4b is a front view of the X-direction true three-axis dynamic and static combination loading Hopkinson rod for precise centering
  • FIG. 4c is The central view of the central cube square box 7, the positioning guide centering box 6, the cushion block 21 and the cube sample 20 are combined.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

L'invention concerne un système et un procédé de positionnement et de centrage pour une barre de compression de Hopkinson triaxiale vraie. Une boîte de centrage de guide de positionnement (6) est formée d'un cube. Des trous carrés sont laissés sur les six surfaces de la boîte de centrage de guide de positionnement (6). La taille des trous carrés sur les six surfaces est la même que la taille des barres carrées (9, 11, 13, 15, 17, 19) d'une barre de Hopkinson. La taille de la cavité interne de la boîte de centrage de guide de positionnement (6) est la même que la taille d'un échantillon cubique (20). La boîte de centrage de guide de positionnement (6) est conçue sous la forme de quatre parties symétriques (1, 2, 3, 4). Le procédé de centrage comprend : étape 1 : assembler une boîte de centrage de guide de positionnement (6) ; étape 2 : placer la boîte de centrage de guide de positionnement (6) au niveau de la position centrale d'une boîte cubique centrale (7) ; et étape 3 : utiliser un instrument de mesure laser infrarouge pour aider à obtenir un alignement rapide et précis d'une barre de compression à six directions et à trois axes. La conception structurale de la boîte de centrage de guide de positionnement (6) et de la boîte cubique (7) peut assurer un positionnement et un centrage rapides et précis pour l'installation d'essai de matériaux tels que la roche et le béton. Le système d'installation auxiliaire par instrument de mesure laser infrarouge assure un alignement rapide de la barre de compression à six directions et à trois axes.
PCT/CN2019/115479 2018-12-26 2019-11-05 Système et procédé de positionnement et de centrage pour barre de compression de hopkinson triaxiale vraie WO2020134578A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/359,126 US11988645B2 (en) 2018-12-26 2021-06-25 Dynamic true triaxial electromagnetic Hopkinson bar system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811601168.2A CN109668775B (zh) 2018-12-26 2018-12-26 真三轴霍普金森压杆的定位对中系统及方法
CN201811601168.2 2018-12-26

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115480 Continuation WO2020134579A1 (fr) 2018-12-26 2019-11-05 Système de servocommande synchrone à charge dynamique et statique pour barre de hopkinson à trois axes et six directions

Related Child Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/115480 Continuation WO2020134579A1 (fr) 2018-12-26 2019-11-05 Système de servocommande synchrone à charge dynamique et statique pour barre de hopkinson à trois axes et six directions
US17/359,126 Continuation US11988645B2 (en) 2018-12-26 2021-06-25 Dynamic true triaxial electromagnetic Hopkinson bar system

Publications (1)

Publication Number Publication Date
WO2020134578A1 true WO2020134578A1 (fr) 2020-07-02

Family

ID=66146222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115479 WO2020134578A1 (fr) 2018-12-26 2019-11-05 Système et procédé de positionnement et de centrage pour barre de compression de hopkinson triaxiale vraie

Country Status (2)

Country Link
CN (1) CN109668775B (fr)
WO (1) WO2020134578A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109668775B (zh) * 2018-12-26 2021-03-23 深圳大学 真三轴霍普金森压杆的定位对中系统及方法
US11988645B2 (en) 2018-12-26 2024-05-21 Shenzhen University Dynamic true triaxial electromagnetic Hopkinson bar system
CN110376053B (zh) * 2019-08-05 2021-02-12 中国矿业大学(北京) 用于真三轴实验三向加载对中的卡座、设备及方法
CN112577813B (zh) * 2020-12-04 2022-04-12 西南交通大学 一种用于分离式霍普金森压杆试件定位装置
CN114966114B (zh) * 2022-04-19 2023-05-05 北京理工大学 多分量冲击校准装置及连续多次加载同步校准方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202101910U (zh) * 2011-06-10 2012-01-04 中国矿业大学 三轴冲击动静载组合试验机
CN104535409A (zh) * 2015-01-08 2015-04-22 中国矿业大学 一种真三轴多场多相耦合动力学试验系统及方法
CN204405454U (zh) * 2015-02-03 2015-06-17 山东科技大学 冲击地压真三轴模拟试验装置
GB2534679A (en) * 2014-12-22 2016-08-03 Rolls Royce Plc An output member
CN205719826U (zh) * 2016-06-13 2016-11-23 中国科学技术大学 一种基于真三轴静载的岩石霍普金森冲击加载实验装置
CN108152155A (zh) * 2017-11-27 2018-06-12 中国石油天然气股份有限公司 一种页岩冲击致裂模拟系统及其使用方法
CN109406313A (zh) * 2018-12-26 2019-03-01 深圳大学 霍普金森束杆动态测试系统
CN109406311A (zh) * 2018-12-26 2019-03-01 深圳大学 真三轴动静组合加载霍普金森压杆的温度控制系统及方法
CN109668775A (zh) * 2018-12-26 2019-04-23 深圳大学 真三轴霍普金森压杆的定位对中系统及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636382B (zh) * 2012-03-31 2014-07-09 中国矿业大学(北京) 模拟冲击型岩爆实验设备
CN105043850B (zh) * 2015-07-15 2017-10-17 兰州理工大学 一种可调节横向霍普金森入射压杆束导向装置
CN106198264A (zh) * 2016-06-30 2016-12-07 安徽理工大学 一种真三轴岩石加卸载扰动实验装置及其使用方法
CN107014690B (zh) * 2017-03-24 2021-05-28 东北大学 一种低频扰动与高速冲击型高压真三轴试验装置及方法
CN108548942B (zh) * 2018-05-09 2021-01-05 西北工业大学 具有真三轴动态加载及测试功能的Hopkinson压杆系统及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202101910U (zh) * 2011-06-10 2012-01-04 中国矿业大学 三轴冲击动静载组合试验机
GB2534679A (en) * 2014-12-22 2016-08-03 Rolls Royce Plc An output member
CN104535409A (zh) * 2015-01-08 2015-04-22 中国矿业大学 一种真三轴多场多相耦合动力学试验系统及方法
CN204405454U (zh) * 2015-02-03 2015-06-17 山东科技大学 冲击地压真三轴模拟试验装置
CN205719826U (zh) * 2016-06-13 2016-11-23 中国科学技术大学 一种基于真三轴静载的岩石霍普金森冲击加载实验装置
CN108152155A (zh) * 2017-11-27 2018-06-12 中国石油天然气股份有限公司 一种页岩冲击致裂模拟系统及其使用方法
CN109406313A (zh) * 2018-12-26 2019-03-01 深圳大学 霍普金森束杆动态测试系统
CN109406311A (zh) * 2018-12-26 2019-03-01 深圳大学 真三轴动静组合加载霍普金森压杆的温度控制系统及方法
CN109668775A (zh) * 2018-12-26 2019-04-23 深圳大学 真三轴霍普金森压杆的定位对中系统及方法

Also Published As

Publication number Publication date
CN109668775B (zh) 2021-03-23
CN109668775A (zh) 2019-04-23

Similar Documents

Publication Publication Date Title
WO2020134578A1 (fr) Système et procédé de positionnement et de centrage pour barre de compression de hopkinson triaxiale vraie
CN105277441A (zh) 一种大尺寸长方体煤岩试样长期承载试验监测装置
CN106153458B (zh) 一种拉压型残余应力标定用装置
CN107607247B (zh) 一种炸药爆炸冲量和风动压联合测试方法
CN103940679B (zh) 一种三点外伸弯曲蠕变参数测量装置及其工作方法
CN105466775A (zh) 一种钎焊金属蜂窝结构侧向压缩性能测试方法
CN103991556B (zh) 一种载荷测量方法
CN109030242B (zh) 一种电磁动力岩石直剪仪及操作方法
CN107870124A (zh) 用于复合材料板材压缩性能试验的夹具
CN106969693B (zh) 一种膨胀充填体试块膨胀率测定装置
CN207689276U (zh) 一种用于混凝土圆柱体试样应变测试的标距装置
CN203414340U (zh) 拉伸试样断后标距测量用辅助工装
CN215572777U (zh) 一种飞机蒙皮曲面法向孔位置度检测工装
CN107389452B (zh) 一种测试异质界面层裂的拉伸装置及层裂测试方法与应用
CN205825842U (zh) 一种特殊异型零件装配孔位置度专用检测工装
CN108548508A (zh) 一种混凝土楼板厚度非破损精准检测方法
CN103630445A (zh) 一种混凝土芯样抗折试验装置
CN207586019U (zh) 一种用于复合材料板材压缩性能试验的夹具
CN201917492U (zh) 一种用于引伸计夹持的位移传递装置
CN102175522B (zh) 一种用于引伸计夹持的位移传递装置
CN202710404U (zh) 混凝土圆柱体劈裂抗拉试验夹具
CN206002077U (zh) 一种长方体试样侧向位移测量装置
CN205968750U (zh) 测量定位夹具
CN205505957U (zh) 杆组件垂直度检测夹具
CN220670779U (zh) 一种应力检测夹具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/10/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19905721

Country of ref document: EP

Kind code of ref document: A1