WO2020134561A1 - 一种展示区域绿波协调控制效果的空间时距图的作图方法 - Google Patents

一种展示区域绿波协调控制效果的空间时距图的作图方法 Download PDF

Info

Publication number
WO2020134561A1
WO2020134561A1 PCT/CN2019/114909 CN2019114909W WO2020134561A1 WO 2020134561 A1 WO2020134561 A1 WO 2020134561A1 CN 2019114909 W CN2019114909 W CN 2019114909W WO 2020134561 A1 WO2020134561 A1 WO 2020134561A1
Authority
WO
WIPO (PCT)
Prior art keywords
intersection
time
green
green wave
coordinated
Prior art date
Application number
PCT/CN2019/114909
Other languages
English (en)
French (fr)
Inventor
卢凯
田鑫
江书妍
汪丽
徐建勋
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US17/042,950 priority Critical patent/US11543260B2/en
Publication of WO2020134561A1 publication Critical patent/WO2020134561A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3667Display of a road map
    • G01C21/367Details, e.g. road map scale, orientation, zooming, illumination, level of detail, scrolling of road map or positioning of current position marker
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals
    • G08G1/081Plural intersections under common control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3605Destination input or retrieval
    • G01C21/3614Destination input or retrieval through interaction with a road map, e.g. selecting a POI icon on a road map
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3667Display of a road map
    • G01C21/3676Overview of the route on the road map

Definitions

  • the present invention relates to the technical field of traffic signal control, and more specifically, to a method for drawing a space time-distance map that shows the effect of regional green wave coordinated control.
  • the green wave coordinated control design will try to make the traffic flow in the coordinated direction continuously pass through multiple downstream signalized intersections without stopping, which can effectively reduce the average delay time of the target traffic flow and the number of stops, improve the smoothness of the traffic flow, and reduce the traffic at the intersection
  • the occurrence of an accident is a control method preferred by urban traffic control systems under unsaturated traffic conditions, and related research results have been widely used in many cities in China.
  • time-distance graph time-distance graph
  • the time-distance map is a plan that expresses the relationship between the distance of coordinated intersections and the timing of signals, and reflects the movement of vehicles under coordinated control. It plays an important role in the design of coordinated control of trunk road green waves.
  • the regional traffic signal coordination control technology has attracted more and more attention from designers. It is necessary to establish a performance method that can show the overall advantages and disadvantages of regional traffic signal coordination control.
  • the present invention will provide a method for drawing a spatial time-distance graph showing the effect of regional green wave coordinated control.
  • the spatial time-distance graph By drawing the spatial time-distance graph, the overall green wave coordinated control effect of the regional traffic signal coordinated control scheme is fully displayed.
  • the invention provides a method for drawing a spatial time-distance graph showing the effect of the coordinated control of the regional green wave.
  • the overall green wave coordinated control effect of the regional traffic signal coordinated control scheme is fully displayed to facilitate the observation of the traffic signal coordinated control of the entire area.
  • a method for drawing a spatial time-distance graph showing the effect of regional green wave coordinated control is as follows:
  • S1 Select an intersection in the area as the reference intersection, establish the coordinate system of the space-time map and determine its position in the coordinates of the space-time map;
  • S3 Calculate the green light start time, center time, and end time of each signal phase of the intersection, and combine the prisms surrounded by the cross section of each entrance stop line at the intersection to generate a time prism for each intersection signal timing scheme; the signal configuration
  • the time prism is a carrier that reflects the signal timing scheme.
  • Each face of the prism represents each entrance direction of the intersection.
  • the height of the color block filled in each face represents the phase duration of the coordinate phase of the entrance direction. Drawing the entire space time diagram will play a fundamental role.
  • the reference intersection is used as the origin, the X-axis forward from west to east, the Y-axis forward from north to south, and the Z-axis time are selected to establish a coordinate system of the space-time map.
  • step S3 the green light start time, center time, and end time of each signal phase of the intersection are calculated, where the calculation formula is as follows:
  • i represents the serial number of the planned coordinated route where the intersection is located
  • j represents the intersection number of the planned intersection on the planned coordinated route, defining the direction of the intersection number from small to large as the upstream direction of the coordinated line, and the intersection number from large to small
  • the direction is the downstream direction of the coordinated line
  • Respectively represent the start time, center time and end time of the green light of the intersection phase I (i, j) signal phase k; Green time indicating the phase k of the intersection I (i, j) signal.
  • each section of the entrance parking line at the intersection is enclosed into a prism, and each section of the entrance parking line corresponds to the side of the prism at the intersection signal timing scheme time; on each side of the prism at the intersection signal timing scheme time , Mark the corresponding time period of the coordination phase green light with the specified color block to form a time prism containing the information of the intersection signal timing scheme.
  • step S4 the width of the green wave band in the upstream direction of the coordination line i is determined, and the green wave band is located.
  • S403 Obtain the green band width from the first intersection I (i,1) to the last intersection I (i,n) of the coordinated line i in the upstream direction According to the green wave band at the beginning of the phase U of the intersection I (i, n) signal With the end moment Complete the positioning of the green wave band in the upstream direction.
  • step S5 the width of the green wave band in the downlink direction of the coordination line i is determined, and the green wave band is located.
  • L (i,j+1 ⁇ j) indicates the intersection I (i,j+1) to the intersection I (i,j)
  • v (i,j+1 ⁇ j) represents the travel speed of the intersection I (i,j+1) to the intersection I (i,j) ;
  • B (i,n ⁇ j) represents the coordinated route i Green band width from intersection I (i,n) to intersection I (i,j) ;
  • S503 Obtain the green band width from the first intersection I (i,n) to the last intersection I (i,1) of the coordinated line i in the downstream direction According to the green wave band at the beginning of the phase D of the intersection I (i,1) signal With the end moment Complete the positioning of the green wave band in the downstream direction.
  • the present invention can reflect the movement status of multiple coordinated vehicle flows, and comprehensively demonstrate the overall green wave coordinated control effect of the regional traffic signal coordinated control scheme.
  • the present invention realizes a three-dimensional description of the spatiotemporal relationship between intersections in the road network by establishing a time prism of each intersection signal timing scheme, which is helpful to establish an optimized model of road network coordinated control.
  • the present invention obtains the upward and downward green wave bands of the coordinated line to form the completed coordinated line, so that the overall control effect of the coordinated path chain and the coordinated path set in the display area can be realized, and the visual visualization of the coordinated control effect of the road network traffic signal can be realized .
  • FIG. 1 is a road network structure and intersection location diagram according to an embodiment of the present invention.
  • FIG. 2 is a green time statistic diagram of each intersection phase in this embodiment.
  • FIG. 3 is a statistical diagram of the green light start time and the green light end time of each intersection phase in this embodiment.
  • FIG. 5 is a three-dimensional coordinate of the green light starting point of each intersection phase in this embodiment.
  • FIG. 7 is a time prism of the signal timing scheme of this embodiment.
  • FIG. 8 is a result of calculating the bidirectional green wave bandwidth of each trunk line in this embodiment.
  • FIG. 9 is a three-dimensional coordinate of the starting point of the green wave band at each entrance of each intersection in this embodiment.
  • FIG. 10 is the three-dimensional coordinates of the end points of the green wave bands at the entrances of the intersections of this embodiment.
  • FIG. 11 is a space time diagram showing the effect of regional green wave coordinated control in this embodiment.
  • FIG. 4 a method for drawing a spatial time-distance graph showing the effect of regional green wave coordinated control.
  • the steps of the drawing method are as follows:
  • Step S1 In this embodiment, the intersection I 1 is selected as the regional reference intersection; with the regional reference intersection as the origin, the X axis is positive from west to east, the Y axis is positive from north to south, and the time is Z axis , To establish the coordinate system of the space-time map;
  • Step S2 According to the relative position of each intersection in the area and the reference intersection, determine its specific position coordinates in the coordinate system of the space-time map, as shown in FIG. 1;
  • Step S3 Calculate the green light start time, center time, and end time of each signal phase of the intersection, combined with the prism surrounded by the cross section of each entrance stop line at the intersection to generate a time prism for each intersection signal timing scheme;
  • i represents the serial number of the planned coordinated route where the intersection is located
  • j represents the intersection number of the planned intersection on the planned coordinated route, defining the direction of the intersection number from small to large as the upstream direction of the coordinated line, and the intersection number from large to small
  • the direction is the downstream direction of the coordinated line
  • Respectively represent the start time, center time and end time of the green light of the intersection phase I (i, j) signal phase k; Green time indicating the phase k of the intersection I (i, j) signal.
  • each entrance parking line at the intersection is enclosed into a prism, and each cross section of the entrance parking line corresponds to the side of the time prism of the intersection signal timing scheme; on each side of the time prism of the intersection signal timing scheme , Mark the corresponding time period of the coordination phase green light with the specified color block to form a time prism containing the information of the intersection signal timing scheme.
  • the time prism of each intersection signal timing scheme constructed is shown in FIG. 7.
  • the time prism of the signal timing scheme is a carrier reflecting the signal timing scheme.
  • Each face of the prism represents the entrance direction of the intersection, and the height of the color block filled in each face represents the phase of the coordinate phase of the entrance direction. Duration, which will play a fundamental role in drawing the entire space time map.
  • Step S4 Calculate the width of the green wave band in the upstream direction of the coordination line i to complete the green wave band positioning in the upstream direction.
  • the specific steps are as follows:
  • S403 Obtain the green band width from the first intersection I (i,1) to the last intersection I (i,n) of the coordinated line i in the upstream direction According to the green wave band at the beginning of the phase U of the intersection I (i, n) signal With the end moment Complete the positioning of the green wave band in the upstream direction.
  • Step S5 Calculate the width of the green wave band in the downstream direction of the coordination line i to complete the positioning of the green wave band in the downstream direction.
  • the specific steps are as follows:
  • the start time and end time of phase D The start time and end time of the green light indicating the phase D of the intersection I (i, n) signal
  • L (i,n ⁇ n-1) means the intersection I (i,n) to the intersection I (i,n- 1)
  • the distance; v (i,n ⁇ n-1) represents the travel speed of intersection I (i,n) to intersection I (i,n-1) ;
  • B (i,n ⁇ n-1) represents Coordinate the width of the green wave band from the first intersection I (i,n) to the second intersection I (i,n-1) of line i;
  • S503 Obtain the green band width from the first intersection I (i,n) to the last intersection I (i,1) of the coordinated line i in the downstream direction According to the green wave band at the beginning of the phase D of the intersection I (i,1) signal With the end moment Complete the positioning of the green wave band in the downstream direction.
  • Step S6 Calculate the starting time of the green wave band of the upstream green wave band of the coordination line i at the intersection I (i, j) With the end moment
  • the calculation formula is as follows, where 1 ⁇ j ⁇ n;
  • Step S7 Calculate the starting time of the green wave band of the downstream green wave band of the coordinated line i at the intersection I (i, j) With the end moment
  • the calculation formula is as follows, where 1 ⁇ j ⁇ n;
  • step S4 and step S5 the three-dimensional coordinates of the starting point of the green wave band in each entrance direction of each intersection calculated according to steps S4 and S5 are shown in FIG. 9.
  • step S4 and step S5 the three-dimensional coordinates of the green wave end point of each intersection in each entrance direction are calculated as shown in FIG. 10.
  • this embodiment finally obtains a spatial time-distance graph showing the effect of regional green wave coordinated control, as shown in FIG. 11.
  • This embodiment implements a three-dimensional description of the spatial-temporal relationship between intersections in the road network, which is helpful to establish an optimized model for road network coordinated control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Traffic Control Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Optical Communication System (AREA)

Abstract

一种展示区域绿波协调控制效果的空间时距图的作图方法,其作图方法如下:建立空间时距图坐标系;确定每个交叉口在空间时距图坐标系中的具体位置坐标;生成各个交叉口信号配时方案时间棱柱体;确定各条干道的绿波带宽;生成交叉口之间行驶轨迹线,作出各条干道的绿波带,完成作图。可以反映多股协调车流的运动状况,全面展示区域交通信号协调控制方案的整体绿波协调控制效果,并通过建立各个交叉口信号配时方案时间棱柱体,实现了对路网中交叉口之间时空关系的三维立体描述,有助于建立路网协调控制优化模型。适用于交通信号控制领域。

Description

一种展示区域绿波协调控制效果的空间时距图的作图方法 技术领域
本发明涉及交通信号控制技术领域,更具体的,涉及一种展示区域绿波协调控制效果的空间时距图的作图方法。
背景技术
绿波协调控制设计将尽量使得协调方向的车流能够连续不停车地通过多个下游信号交叉口,从而可以有效减少目标车流的平均延误时间与停车次数,提高车流行驶的平滑性,减少交叉口交通事故发生,是未饱和交通状态下城市交通控制系统优先选用的一种控制手段,相关研究成果已在国内诸多城市得以广泛应用。
目前衡量一套绿波协调控制方案的实施效果主要是利用时间-距离图(简称时距图)来展示各条协调线路的绿波带宽大小。时距图是一个表达协调交叉口距离与信号配时关系,并反映出受协调控制车流运动状况的平面图,在干道绿波协调控制设计中发挥了重要作用。然而随着城市交通系统的发展,区域交通信号协调控制技术方法越来越受到设计人员的关注,需要建立一种能够整体展示区域交通信号协调控制效果优劣的表现方式。
对此,本发明将给出一种展示区域绿波协调控制效果的空间时距图的作图方法,通过绘制空间时距图,全面展示区域交通信号协调控制方案的整体绿波协调控制效果。
发明内容
本发明为了方便能整体展示区域交通信号协调控制效果的优劣,方便对整个区域交通信号协调的观察,提供了一种展示区域绿波协调控制效果的空间时距图的作图方法,其能全面展示区域交通信号协调控制方案的整体绿波协调控制效果,方便观察整个区域的交通信号协调控制。
为实现上述本发明目的,采用的技术方案如下:一种展示区域绿波协调控制效果的空间时距图的作图方法,所述该作图方法步骤如下:
S1:选择区域中一个交叉口作为基准交叉口,建立空间时距图坐标系,并确定其在空间时距图坐标中的位置;
S2:根据区域中每个交叉口与基准交叉口的相对位置,确定区域中每个交叉口在空间时距图坐标系中的具体位置坐标;
S3:计算交叉口各个信号相位的绿灯起点时刻、中心点时刻、终点时刻,结合交叉口各 进口停车线断面围成的棱柱体,生成各个交叉口信号配时方案时间棱柱体;所述信号配时方案时间棱柱体是反映信号配时方案的载体,棱柱体的每一个面分别表示交叉口的各个进口方向,每一个面所填充的色块高度表示该进口方向协调相位的相位时长,这对于绘制整个空间时距图将起到一个基础的作用。
S4:计算协调线路i的第1个交叉口I (i,1)至第n个交叉口I (i,n)的绿波带宽度;完成协调线路i上行方向的绿波带定位;
S5:计算协调线路i的第n个交叉口I (i,n)至第1个交叉口I (i,1)的绿波带宽度;完成协调线路i下行方向的绿波带定位;
S6:计算协调线路i上行绿波带在第j个交叉口I (i,j)的绿波带起点时刻
Figure PCTCN2019114909-appb-000001
与终点时刻
Figure PCTCN2019114909-appb-000002
连接各个交叉口上行绿波带的起点时刻,得到协调线路i上行绿波带起始轨迹线,连接各个交叉口上行绿波带的终点时刻,得到协调线路i上行绿波带终止轨迹线,确定上行绿波带起始轨迹线、上行绿波带终止轨迹线后得到协调线路i的上行绿波带;
S7:计算协调线路i下行绿波带在第j个交叉口I (i,j)的绿波带起点时刻
Figure PCTCN2019114909-appb-000003
与终点时刻
Figure PCTCN2019114909-appb-000004
连接各个交叉口下行绿波带的起点时刻,得到协调线路i下行绿波带起始轨迹线,连接各个交叉口下行绿波带的终点时刻,得到协调线路i下行绿波带终止轨迹线,确定下行绿波带起始轨迹线、下行绿波带终止轨迹线后得到协调线路i的下行绿波带,完成作图。
优选地,步骤S1,以基准交叉口作为原点,选取由西往东为X轴正向、由北往南为Y轴正向、时间为Z轴,建立空间时距图坐标系。
优选地,步骤S3,计算交叉口各个信号相位的绿灯起点时刻、中心点时刻、终点时刻,其中计算公式如下:
Figure PCTCN2019114909-appb-000005
Figure PCTCN2019114909-appb-000006
其中:i表示交叉口所在的拟协调线路序号;j表示交叉口在拟协调线路的交叉口编号,定义交叉口编号由小到大的方向为协调线路上行方向,交叉口编号由大到小的方向为协调线路下行方向;
Figure PCTCN2019114909-appb-000007
分别表示交叉口I (i,j)信号相位k的绿灯起点时刻、中心点时刻、终点时刻;
Figure PCTCN2019114909-appb-000008
表示交叉口I (i,j)信号相位k的绿灯时间。
进一步地,将交叉口各进口停车线断面围成一个棱柱体,各进口停车线断面对应为交叉口信号配时方案时间棱柱体的侧面;在交叉口信号配时方案时间棱柱体的各个侧面上,将所对应的协调相位绿灯时间段用指定色块标出,形成一个包含交叉口信号配时方案信息的时间棱柱体。
优选地,步骤S4,确定协调线路i上行方向的绿波带宽度,对绿波带进行定位,具体步骤如下:
S401:计算协调线路i上行方向的第1个交叉口I (i,1)至第2个交叉口I (i,2)的绿波带宽度;其计算公式如下:
Figure PCTCN2019114909-appb-000009
Figure PCTCN2019114909-appb-000010
Figure PCTCN2019114909-appb-000011
其中:
Figure PCTCN2019114909-appb-000012
Figure PCTCN2019114909-appb-000013
分别表示在协调线路i上行方向上第1个交叉口I (i,1)至第2个交叉口I (i,2)的绿波带在交叉口I (i,2)信号相位U的起点时刻与终点时刻;
Figure PCTCN2019114909-appb-000014
表示交叉口I (i,1)信号相位U的绿灯起点时刻、终点时刻;
Figure PCTCN2019114909-appb-000015
表示交叉口I (i,2)信号相位U的绿灯起点时刻、终点时刻;L (i,1→2)表示交叉口I (i,1)至交叉口I (i,2)的距离;v (i,1→2)表示交叉口I (i,1)至交叉口I (i,2)的行驶速度;B (i,1→2)表示协调线路i的第1个交叉口I (i,1)至第2个交叉口I (i,2)的绿波带宽度;
S402:计算协调线路i上行方向的第1个交叉口I (i,1)至第j个交叉口I (i,j)的绿波带宽度; 其计算公式如下:
Figure PCTCN2019114909-appb-000016
Figure PCTCN2019114909-appb-000017
Figure PCTCN2019114909-appb-000018
其中:
Figure PCTCN2019114909-appb-000019
分别表示在协调线路i上行方向上第1个交叉口I (i,1)至第j个交叉口I (i,j)的绿波带在交叉口I (i,j)信号相位U的起点时刻与终点时刻;
Figure PCTCN2019114909-appb-000020
表示交叉口I (i,j)信号相位U的绿灯起点时刻、终点时刻;L (i,j-1→j)表示交叉口I (i,j-1)至交叉口I (i,j)的距离;v (i,j-1→j)表示交叉口I (i,j-1)至交叉口I (i,j)的行驶速度;B (i,1→j)表示协调线路i的第1个交叉口I (i,1)至第j个交叉口I (i,j)的绿波带宽度;
S403:得到协调线路i上行方向的第1个交叉口I (i,1)至最后一个交叉口I (i,n)的绿波带宽度
Figure PCTCN2019114909-appb-000021
根据绿波带在交叉口I (i,n)信号相位U的起点时刻
Figure PCTCN2019114909-appb-000022
与终点时刻
Figure PCTCN2019114909-appb-000023
完成上行方向绿波带的定位。
优选地,步骤S5,确定协调线路i下行方向的绿波带宽度,对绿波带进行定位,具体步骤如下:
S501:计算协调线路i下行方向的第1个交叉口I (i,n)至第2个交叉口I (i,n-1)的绿波带宽度;其计算公式如下:
Figure PCTCN2019114909-appb-000024
Figure PCTCN2019114909-appb-000025
Figure PCTCN2019114909-appb-000026
其中:
Figure PCTCN2019114909-appb-000027
Figure PCTCN2019114909-appb-000028
分别表示在协调线路i下行方向上第1个交叉口I (i,n)至第2个交 叉口I (i,n-1)的绿波带在交叉口I (i,n-1)信号相位D的起点时刻与终点时刻;
Figure PCTCN2019114909-appb-000029
表示交叉口I (i,n)信号相位D的绿灯起点时刻、终点时刻;
Figure PCTCN2019114909-appb-000030
表示交叉口I (i,n-1)信号相位D的绿灯起点时刻、终点时刻;L (i,n→n-1)表示交叉口I (i,n)至交叉口I (i,n-1)的距离;v (i,n→n-1)表示交叉口I (i,n)至交叉口I (i,n-1)的行驶速度;B (i,n→n-1)表示协调线路i的第1个交叉口I (i,n)至第2个交叉口I (i,n-1)的绿波带宽度;
S502:计算协调线路i下行方向的交叉口I (i,n)至交叉口I (i,j)的绿波带宽度;其计算公式如下:
Figure PCTCN2019114909-appb-000031
Figure PCTCN2019114909-appb-000032
Figure PCTCN2019114909-appb-000033
其中:
Figure PCTCN2019114909-appb-000034
分别表示在协调线路i下行方向上交叉口I (i,n)至交叉口I (i,j)的绿波带在交叉口I (i,j)信号相位D的起点时刻与终点时刻;
Figure PCTCN2019114909-appb-000035
表示交叉口I (i,j)信号相位D的绿灯起点时刻、终点时刻;L (i,j+1→j)表示交叉口I (i,j+1)至交叉口I (i,j)的距离;v (i,j+1→j)表示交叉口I (i,j+1)至交叉口I (i,j)的行驶速度;B (i,n→j)表示协调线路i的交叉口I (i,n)至交叉口I (i,j)的绿波带宽度;
S503:得到协调线路i下行方向的第1个交叉口I (i,n)至最后一个交叉口I (i,1)的绿波带宽度
Figure PCTCN2019114909-appb-000036
根据绿波带在交叉口I (i,1)信号相位D的起点时刻
Figure PCTCN2019114909-appb-000037
与终点时刻
Figure PCTCN2019114909-appb-000038
完成下行方向绿波带的定位。
进一步地,计算协调线路i上行绿波带在交叉口I (i,j)的绿波带起点时刻
Figure PCTCN2019114909-appb-000039
与终点时刻
Figure PCTCN2019114909-appb-000040
的计算公式如下:
Figure PCTCN2019114909-appb-000041
Figure PCTCN2019114909-appb-000042
其中:1≤j<n;
Figure PCTCN2019114909-appb-000043
x表示交叉口序号变量。
进一步地,计算协调线路i下行绿波带在交叉口I (i,j)的绿波带起点时刻
Figure PCTCN2019114909-appb-000044
与终点时刻
Figure PCTCN2019114909-appb-000045
的计算公式如下:
Figure PCTCN2019114909-appb-000046
Figure PCTCN2019114909-appb-000047
其中,1<j≤n;
Figure PCTCN2019114909-appb-000048
x表示交叉口序号变量。
本发明的有益效果如下:
1)本发明可以反映多股协调车流的运动状况,全面展示区域交通信号协调控制方案的整体绿波协调控制效果。
2)本发明通过建立各个交叉口信号配时方案时间棱柱体,实现了对路网中交叉口之间时空关系的三维立体描述,有助于建立路网协调控制优化模型。
3)本发明得到协调线路的上行、下行绿波带,构成完成的协调线路,从而可以实现展示区域内协调路径链与协调路径集的整体控制效果,实现路网交通信号协调控制效果的直观可视化。
附图说明
图1是本发明实施例的路网结构与交叉口位置图。
图2是本实施例的各交叉口相位的绿灯时间统计图。
图3是本实施例的各交叉口相位的绿灯起点时刻和绿灯终点时刻统计图。
图4是本发明的步骤流程图。
图5是本实施例的各交叉口相位的绿灯起点三维坐标。
图6是本实施例的各交叉口相位的绿灯终点三维坐标。
图7是本实施例的信号配时方案时间棱柱体。
图8是本实施例计算得到各条干线的双向绿波带宽结果。
图9是本实施例各交叉口在各个进口方向上的绿波带起点三维坐标。
图10是本实施例各交叉口在各个进口方向上的绿波带终点三维坐标。
图11是本实施例的展示区域绿波协调控制效果的空间时距图。
具体实施方式
下面结合附图和具体实施方式对本发明做详细描述。
实施例1
已知某个区域路网结构与交叉口位置如图1所示,公共信号周期为90s,各交叉口均采用进口单独放行方式,各交叉口相位的绿灯时间如图2所示,各交叉口相位的绿灯起点时刻和绿灯终点时刻如图3所示,各路段的绿波设计行驶速度均为14m/s。
如图4所示,一种展示区域绿波协调控制效果的空间时距图的作图方法,所述该作图方法步骤如下:
步骤S1:本实施例选取交叉口I 1作为区域基准交叉口;以区域基准交叉口作为原点,选取由西往东为X轴正向、由北往南为Y轴正向、时间为Z轴,建立空间时距图坐标系;
步骤S2:根据区域中每个交叉口与基准交叉口的相对位置,确定其在空间时距图坐标系中的具体位置坐标,如图1所示;
步骤S3:计算交叉口各个信号相位的绿灯起点时刻、中心点时刻、终点时刻,结合交叉口各进口停车线断面围成的棱柱体,生成各个交叉口信号配时方案时间棱柱体;
其中交叉口各个信号相位的绿灯起点时刻、中心点时刻、终点时刻的计算公式如下:
Figure PCTCN2019114909-appb-000049
Figure PCTCN2019114909-appb-000050
其中:i表示交叉口所在的拟协调线路序号;j表示交叉口在拟协调线路的交叉口编号,定义交叉口编号由小到大的方向为协调线路上行方向,交叉口编号由大到小的方向为协调线路下行方向;
Figure PCTCN2019114909-appb-000051
分别表示交叉口I (i,j)信号相位k的绿灯起点时刻、中心点时刻、终点时刻;
Figure PCTCN2019114909-appb-000052
表示交叉口I (i,j)信号相位k的绿灯时间。
对于区域内各交叉口按照其所在协调线路和所处位置编号需进行进一步定义,例如,对 于南北向协调线路R 1上的交叉口I 1、I 4、I 7,可再定义为交叉口I (1,1)、I (1,2)、I (1,3),对于南北向协调线路R 2上的交叉口I 2、I 5、I 8,可再定义为交叉口I (2,1)、I (2,2)、I (2,3),对于南北向协调线路R 3上的交叉口I 3、I 6、I 9,可再定义为交叉口I (3,1)、I (3,2)、I (3,3),对于东西向协调线路R 4上的交叉口I 1、I 2、I 3,可再定义为交叉口I (4,1)、I (4,2)、I (4,3),对于东西向协调线路R 5上的交叉口I 4、I 5、I 6,可再定义为交叉口I (5,1)、I (5,2)、I (5,3),对于东西向协调线路R 6上的交叉口I 7、I 8、I 9,可再定义为交叉口I (6,1)、I (6,2)、I (6,3)
本实施例将交叉口各进口停车线断面围成一个棱柱体,各进口停车线断面对应为交叉口信号配时方案时间棱柱体的侧面;在交叉口信号配时方案时间棱柱体的各个侧面上,将所对应的协调相位绿灯时间段用指定色块标出,形成一个包含交叉口信号配时方案信息的时间棱柱体。
根据各交叉口在空间时距图坐标系中的具体位置坐标和图3所示的各交叉口相位绿灯起点时刻和绿灯终点时刻,确定各交叉口的相位绿灯起点和终点三维坐标,分别如图5、图6所示。根据步骤S3,构建的各个交叉口信号配时方案时间棱柱体,如图7所示。所述信号配时方案时间棱柱体是反映信号配时方案的载体,棱柱体的每一个面分别表示交叉口的各个进口方向,每一个面所填充的色块高度表示该进口方向协调相位的相位时长,这对于绘制整个空间时距图将起到一个基础的作用。
步骤S4:计算协调线路i上行方向的绿波带宽度,完成上行方向的绿波带定位,具体步骤如下:
首先计算第1个交叉口至第2个交叉口的绿波带宽及其起点和终点,是为后续计算第1个交叉口至第3个交叉口、第1个交叉口至第4个交叉口、直至第1个交叉口至第n个交叉口的整条干道绿波带宽做准备。
S401:计算协调线路i上行方向的第1个交叉口I (i,1)至第2个交叉口I (i,2)的绿波带宽度;其计算公式如下:
Figure PCTCN2019114909-appb-000053
Figure PCTCN2019114909-appb-000054
Figure PCTCN2019114909-appb-000055
其中:
Figure PCTCN2019114909-appb-000056
Figure PCTCN2019114909-appb-000057
分别表示在协调线路i上行方向上第1个交叉口I (i,1)至第2个交叉口I (i,2)的绿波带在交叉口I (i,2)信号相位U的起点时刻与终点时刻;
Figure PCTCN2019114909-appb-000058
表示交叉口I (i,1)信号相位U的绿灯起点时刻、终点时刻;
Figure PCTCN2019114909-appb-000059
表示交叉口I (i,2)信号相位U的绿灯起点时刻、终点时刻;L (i,1→2)表示交叉口I (i,1)至交叉口I (i,2)的距离;v (i,1→2)表示交叉口I (i,1)至交叉口I (i,2)的行驶速度;B (i,1→2)表示协调线路i的第1个交叉口I (i,1)至第2个交叉口I (i,2)的绿波带宽度;
S402:计算协调线路i上行方向的第1个交叉口I (i,1)至第j个交叉口I (i,j)的绿波带宽度;其计算公式如下:
Figure PCTCN2019114909-appb-000060
Figure PCTCN2019114909-appb-000061
Figure PCTCN2019114909-appb-000062
其中:
Figure PCTCN2019114909-appb-000063
分别表示在协调线路i上行方向上第1个交叉口I (i,1)至第j个交叉口I (i,j)的绿波带在交叉口I (i,j)信号相位U的起点时刻与终点时刻;
Figure PCTCN2019114909-appb-000064
表示交叉口I (i,j)信号相位U的绿灯起点时刻、终点时刻;L (i,j-1→j)表示交叉口I (i,j-1)至交叉口I (i,j)的距离;v (i,j-1→j)表示交叉口I (i,j-1)至交叉口I (i,j)的行驶速度;B (i,1→j)表示协调线路i的第1个交叉口I (i,1)至第j个交叉口I (i,j)的绿波带宽度;
S403:得到协调线路i上行方向的第1个交叉口I (i,1)至最后一个交叉口I (i,n)的绿波带宽度
Figure PCTCN2019114909-appb-000065
根据绿波带在交叉口I (i,n)信号相位U的起点时刻
Figure PCTCN2019114909-appb-000066
与终点时刻
Figure PCTCN2019114909-appb-000067
完成上行方向绿波带的定位。
步骤S5:计算协调线路i下行方向的绿波带宽度,完成下行方向的绿波带定位,具体步骤如下:
S501:计算协调线路i下行方向的第1个交叉口I (i,n)至第2个交叉口I (i,n-1)的绿波带宽 度;其计算公式如下:
Figure PCTCN2019114909-appb-000068
Figure PCTCN2019114909-appb-000069
Figure PCTCN2019114909-appb-000070
其中:
Figure PCTCN2019114909-appb-000071
分别表示在协调线路i下行方向上第1个交叉口I (i,n)至第2个交叉口I (i,n-1)的绿波带在交叉口I (i,n-1)信号相位D的起点时刻与终点时刻;
Figure PCTCN2019114909-appb-000072
表示交叉口I (i,n)信号相位D的绿灯起点时刻、终点时刻;
Figure PCTCN2019114909-appb-000073
表示交叉口I (i,n-1)信号相位D的绿灯起点时刻、终点时刻;L (i,n→n-1)表示交叉口I (i,n)至交叉口I (i,n-1)的距离;v (i,n→n-1)表示交叉口I (i,n)至交叉口I (i,n-1)的行驶速度;B (i,n→n-1)表示协调线路i的第1个交叉口I (i,n)至第2个交叉口I (i,n-1)的绿波带宽度;
S502:计算协调线路i下行方向的交叉口I (i,n)至交叉口I (i,j)的绿波带宽度;其计算公式如下:
Figure PCTCN2019114909-appb-000074
Figure PCTCN2019114909-appb-000075
Figure PCTCN2019114909-appb-000076
其中:
Figure PCTCN2019114909-appb-000077
Figure PCTCN2019114909-appb-000078
分别表示在协调线路i下行方向上交叉口I (i,n)至交叉口I (i,j)的绿波带在交叉口I (i,j)信号相位D的起点时刻与终点时刻;
Figure PCTCN2019114909-appb-000079
表示交叉口I (i,j)信号相位D的绿灯起点时刻、终点时刻;L (i,j+1→j)表示交叉口I (i,j+1)至交叉口I (i,j)的距离;v (i,j+1→j)表示交叉口I (i,j+1)至交叉口I (i,j)的行驶速度;B (i,n→j)表示协调线路i的交叉口I (i,n)至交叉口I (i,j)的绿波带宽度;
S503:得到协调线路i下行方向的第1个交叉口I (i,n)至最后一个交叉口I (i,1)的绿波带宽度
Figure PCTCN2019114909-appb-000080
根据绿波带在交叉口I (i,1)信号相位D的起点时刻
Figure PCTCN2019114909-appb-000081
与终点时刻
Figure PCTCN2019114909-appb-000082
完成下行方向绿波带的定位。
本实施例根据步骤S4、步骤S5计算得到各条干道的绿波带宽结果如图8所示。
步骤S6:计算协调线路i上行绿波带在交叉口I (i,j)的绿波带起点时刻
Figure PCTCN2019114909-appb-000083
与终点时刻
Figure PCTCN2019114909-appb-000084
其计算公式如下,其中,1≤j<n;
Figure PCTCN2019114909-appb-000085
Figure PCTCN2019114909-appb-000086
Figure PCTCN2019114909-appb-000087
连接各个交叉口上行绿波带的起点时刻,得到协调线路i上行绿波带起始轨迹线,连接各个交叉口上行绿波带的终点时刻,得到协调线路i上行绿波带终止轨迹线,确定上行绿波带起始轨迹线、上行绿波带终止轨迹线后得到协调线路i的上行绿波带。
步骤S7:计算协调线路i下行绿波带在交叉口I (i,j)的绿波带起点时刻
Figure PCTCN2019114909-appb-000088
与终点时刻
Figure PCTCN2019114909-appb-000089
其计算公式如下,其中,1<j≤n;
Figure PCTCN2019114909-appb-000090
Figure PCTCN2019114909-appb-000091
Figure PCTCN2019114909-appb-000092
连接各个交叉口下行绿波带的起点时刻,得到协调线路i下行绿波带起始轨迹线,连接各个交叉口下行绿波带的终点时刻,得到协调线路i下行绿波带终止轨迹线,确定下行绿波带起始轨迹线、下行绿波带终止轨迹线后得到协调线路i的下行绿波带。
其中,根据步骤S4、步骤S5计算得到各交叉口在各个进口方向上的绿波带起点三维坐标如图9所示。根据步骤S4、步骤S5计算得到各交叉口在各个进口方向上的绿波带终点三维坐标如图10所示。
根据以上的方法步骤,本实施例最终得到展示区域绿波协调控制效果的空间时距图,如 图11所示。本实施例实现了对路网中交叉口之间时空关系的三维立体描述,有助于建立路网协调控制优化模型。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (8)

  1. 一种展示区域绿波协调控制效果的空间时距图的作图方法,其特征在于:所述该作图方法步骤如下:
    S1:选择区域中一个交叉口作为基准交叉口,建立空间时距图坐标系,并确定其在空间时距图坐标中的位置;
    S2:根据区域中每个交叉口与基准交叉口的相对位置,确定区域中每个交叉口在空间时距图坐标系中的具体位置坐标;
    S3:计算交叉口各个信号相位的绿灯起点时刻、中心点时刻、终点时刻,结合交叉口各进口停车线断面围成的棱柱体,生成各个交叉口信号配时方案时间棱柱体;
    S4:计算协调线路i的第1个交叉口I (i,1)至第n个交叉口I (i,n)的绿波带宽度;完成协调线路i上行方向的绿波带定位;
    S5:计算协调线路i的第n个交叉口I (i,n)至第1个交叉口I (i,1)的绿波带宽度;完成协调线路i下行方向的绿波带定位;
    S6:计算协调线路i上行绿波带在第j个交叉口I (i,j)的绿波带起点时刻
    Figure PCTCN2019114909-appb-100001
    与终点时刻
    Figure PCTCN2019114909-appb-100002
    连接各个交叉口上行绿波带的起点时刻,得到协调线路i上行绿波带起始轨迹线,连接各个交叉口上行绿波带的终点时刻,得到协调线路i上行绿波带终止轨迹线,确定上行绿波带起始轨迹线、上行绿波带终止轨迹线后得到协调线路i的上行绿波带;
    S7:计算协调线路i下行绿波带在第j个交叉口I (i,j)的绿波带起点时刻
    Figure PCTCN2019114909-appb-100003
    与终点时刻
    Figure PCTCN2019114909-appb-100004
    连接各个交叉口下行绿波带的起点时刻,得到协调线路i下行绿波带起始轨迹线,连接各个交叉口下行绿波带的终点时刻,得到协调线路i下行绿波带终止轨迹线,确定下行绿波带起始轨迹线、下行绿波带终止轨迹线后得到协调线路i的下行绿波带,完成作图。
  2. 根据权利要求1所述的展示区域绿波协调控制效果的空间时距图的作图方法,其特征在于:步骤S1,以基准交叉口作为原点,选取由西往东为X轴正向、由北往南为Y轴正向、 时间为Z轴,建立空间时距图坐标系。
  3. 根据权利要求1所述的展示区域绿波协调控制效果的空间时距图的作图方法,其特征在于:步骤S3,计算交叉口各个信号相位的绿灯起点时刻、中心点时刻、终点时刻,其计算公式如下:
    Figure PCTCN2019114909-appb-100005
    Figure PCTCN2019114909-appb-100006
    其中:i表示交叉口所在的拟协调线路序号;j表示交叉口在拟协调线路的交叉口编号,定义交叉口编号由小到大的方向为协调线路上行方向,交叉口编号由大到小的方向为协调线路下行方向;
    Figure PCTCN2019114909-appb-100007
    分别表示交叉口I (i,j)信号相位k的绿灯起点时刻、中心点时刻、终点时刻;
    Figure PCTCN2019114909-appb-100008
    表示交叉口I (i,j)信号相位k的绿灯时间。
  4. 根据权利要求3所述的展示区域绿波协调控制效果的空间时距图的作图方法,其特征在于:将交叉口各进口停车线断面围成一个棱柱体,各进口停车线断面对应为交叉口信号配时方案时间棱柱体的侧面;在交叉口信号配时方案时间棱柱体的各个侧面上,将所对应的协调相位绿灯时间段用指定色块标出,形成一个包含交叉口信号配时方案信息的时间棱柱体。
  5. 根据权利要求1所述的展示区域绿波协调控制效果的空间时距图的作图方法,其特征在于:步骤S4,计算协调线路i上行方向的绿波带宽度,对绿波带进行定位,具体步骤如下:
    S401:计算协调线路i上行方向的第1个交叉口I (i,1)至第2个交叉口I (i,2)的绿波带宽度;其计算公式如下:
    Figure PCTCN2019114909-appb-100009
    Figure PCTCN2019114909-appb-100010
    Figure PCTCN2019114909-appb-100011
    其中:
    Figure PCTCN2019114909-appb-100012
    Figure PCTCN2019114909-appb-100013
    分别表示在协调线路i上行方向上第1个交叉口I (i,1)至第2个交叉口I (i,2)的绿波带在交叉口I (i,2)信号相位U的起点时刻与终点时刻;
    Figure PCTCN2019114909-appb-100014
    表示交叉口I (i,1)信号相位U的绿灯起点时刻、终点时刻;
    Figure PCTCN2019114909-appb-100015
    表示交叉口I (i,2)信号相位U的绿灯起点时刻、终点时刻;L (i,1→2)表示交叉口I (i,1)至交叉口I (i,2)的距离;v (i,1→2)表示交叉口I (i,1)至交叉口I (i,2)的行驶速度;B (i,1→2)表示协调线路i的第1个交叉口I (i,1)至第2个交叉口I (i,2)的绿波带宽度;
    S402:计算协调线路i上行方向的第1个交叉口I (i,1)至第j个交叉口I (i,j)的绿波带宽度;其计算公式如下:
    Figure PCTCN2019114909-appb-100016
    Figure PCTCN2019114909-appb-100017
    Figure PCTCN2019114909-appb-100018
    其中:
    Figure PCTCN2019114909-appb-100019
    Figure PCTCN2019114909-appb-100020
    分别表示在协调线路i上行方向上第1个交叉口I (i,1)至第j个交叉口I (i,j)的绿波带在交叉口I (i,j)信号相位U的起点时刻与终点时刻;
    Figure PCTCN2019114909-appb-100021
    表示交叉口I (i,j)信号相位U的绿灯起点时刻、终点时刻;L (i,j-1→j)表示交叉口I (i,j-1)至交叉口I (i,j)的距离;v (i,j-1→j)表示交叉口I (i,j-1)至交叉口I (i,j)的行驶速度;B (i,1→j)表示协调线路i的第1个交叉口I (i,1)至第j个交叉口I (i,j)的绿波带宽度;
    S403:得到协调线路i上行方向的第1个交叉口I (i,1)至最后一个交叉口I (i,n)的绿波带宽度
    Figure PCTCN2019114909-appb-100022
    根据绿波带在交叉口I (i,n)信号相位U的起点时刻
    Figure PCTCN2019114909-appb-100023
    与终点时刻
    Figure PCTCN2019114909-appb-100024
    完成上行方向绿波带的定位。
  6. 根据权利要求1所述的展示区域绿波协调控制效果的空间时距图的作图方法,其特征在于:步骤S5,计算协调线路i下行方向的绿波带宽度,对绿波带进行定位,具体步骤如下:
    S501:计算协调线路i下行方向的第1个交叉口I (i,n)至第2个交叉口I (i,n-1)的绿波带宽度;其计算公式如下:
    Figure PCTCN2019114909-appb-100025
    Figure PCTCN2019114909-appb-100026
    Figure PCTCN2019114909-appb-100027
    其中:
    Figure PCTCN2019114909-appb-100028
    Figure PCTCN2019114909-appb-100029
    分别表示在协调线路i下行方向上第1个交叉口I (i,n)至第2个交叉口I (i,n-1)的绿波带在交叉口I (i,n-1)信号相位D的起点时刻与终点时刻;
    Figure PCTCN2019114909-appb-100030
    表示交叉口I (i,n)信号相位D的绿灯起点时刻、终点时刻;
    Figure PCTCN2019114909-appb-100031
    表示交叉口I (i,n-1)信号相位D的绿灯起点时刻、终点时刻;L (i,n→n-1)表示交叉口I (i,n)至交叉口I (i,n-1)的距离;v (i,n→n-1)表示交叉口I (i,n)至交叉口I (i,n-1)的行驶速度;B (i,n→n-1)表示协调线路i的第1个交叉口I (i,n)至第2个交叉口I (i,n-1)的绿波带宽度;
    S502:计算协调线路i下行方向的交叉口I (i,n)至交叉口I (i,j)的绿波带宽度;其计算公式如下:
    Figure PCTCN2019114909-appb-100032
    Figure PCTCN2019114909-appb-100033
    Figure PCTCN2019114909-appb-100034
    其中:
    Figure PCTCN2019114909-appb-100035
    Figure PCTCN2019114909-appb-100036
    分别表示在协调线路i下行方向上交叉口I (i,n)至交叉口I (i,j)的绿波带在交叉口I (i,j)信号相位D的起点时刻与终点时刻;
    Figure PCTCN2019114909-appb-100037
    表示交叉口I (i,j)信号相位D的绿灯起点时刻、终点时刻;L (i,j+1→j)表示交叉口I (i,j+1)至交叉口I (i,j)的距离;v (i,j+1→j)表示交叉口I (i,j+1)至交叉口I (i,j)的行驶速度;B (i,n→j)表示协调线路i的交叉口I (i,n)至交叉口I (i,j)的绿波带宽度;
    S503:得到协调线路i下行方向的第1个交叉口I (i,n)至最后一个交叉口I (i,1)的绿波带宽 度
    Figure PCTCN2019114909-appb-100038
    根据绿波带在交叉口I (i,1)信号相位D的起点时刻
    Figure PCTCN2019114909-appb-100039
    与终点时刻
    Figure PCTCN2019114909-appb-100040
    完成下行方向绿波带的定位。
  7. 根据权利要求5所述的展示区域绿波协调控制效果的空间时距图的作图方法,其特征在于:步骤S6,计算协调线路i上行绿波带在交叉口I (i,j)的绿波带起点时刻
    Figure PCTCN2019114909-appb-100041
    与终点时刻
    Figure PCTCN2019114909-appb-100042
    的计算公式如下:
    Figure PCTCN2019114909-appb-100043
    Figure PCTCN2019114909-appb-100044
    其中:1≤j<n;
    Figure PCTCN2019114909-appb-100045
    x表示交叉口序号变量。
  8. 根据权利要求6所述的展示区域绿波协调控制效果的空间时距图的作图方法,其特征在于:步骤S7,计算协调线路i下行绿波带在交叉口I (i,j)的绿波带起点时刻
    Figure PCTCN2019114909-appb-100046
    与终点时刻
    Figure PCTCN2019114909-appb-100047
    的计算公式如下:
    Figure PCTCN2019114909-appb-100048
    Figure PCTCN2019114909-appb-100049
    其中,1<j≤n;
    Figure PCTCN2019114909-appb-100050
    x表示交叉口序号变量。
PCT/CN2019/114909 2018-12-25 2019-10-31 一种展示区域绿波协调控制效果的空间时距图的作图方法 WO2020134561A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/042,950 US11543260B2 (en) 2018-12-25 2019-10-31 Plotting method for three-dimensional time-space diagram showing regional green-wave coordinated control effect

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811593233.1 2018-12-25
CN201811593233.1A CN109493621B (zh) 2018-12-25 2018-12-25 一种展示区域绿波协调控制效果的空间时距图的作图方法

Publications (1)

Publication Number Publication Date
WO2020134561A1 true WO2020134561A1 (zh) 2020-07-02

Family

ID=65711895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114909 WO2020134561A1 (zh) 2018-12-25 2019-10-31 一种展示区域绿波协调控制效果的空间时距图的作图方法

Country Status (3)

Country Link
US (1) US11543260B2 (zh)
CN (1) CN109493621B (zh)
WO (1) WO2020134561A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114093177A (zh) * 2021-10-26 2022-02-25 华南理工大学 一种基于绿波轨迹特征的干道双向绿波协调设计方法
CN114677847A (zh) * 2022-04-13 2022-06-28 华南理工大学 一种基于迭代优化的区域绿波协调方案求解方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109493621B (zh) * 2018-12-25 2020-03-27 华南理工大学 一种展示区域绿波协调控制效果的空间时距图的作图方法
CN110634311A (zh) * 2019-09-17 2019-12-31 孟卫平 交通信号线型混合波模式控制方法
CN111081038A (zh) * 2019-12-11 2020-04-28 胡又宏 平面十字路口四向绿波和具有四向绿波效果的区域协调控制及实现方法
CN111739316B (zh) * 2020-06-16 2021-07-20 华南理工大学 一种对称放行方式下的干道双向绿波协调作图设计方法
CN112419757B (zh) * 2020-11-04 2022-05-20 清华大学 一种基于车辆轨迹数据的路网交通信号控制方法和装置
CN113053109B (zh) * 2020-12-23 2022-05-10 沈阳世纪高通科技有限公司 一种用于绿波评价的轨迹生成方法
CN113643554A (zh) * 2021-08-17 2021-11-12 阿波罗智联(北京)科技有限公司 绿波协调控制方法、装置、电子设备和存储介质
CN114202939B (zh) * 2021-11-30 2023-03-07 浙江亚太机电股份有限公司 模仿绿波带的车辆通行速度控制系统
CN115240443A (zh) * 2022-05-12 2022-10-25 浙江大华技术股份有限公司 一种双向绿波协调控制方法、装置、电子设备和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050197767A1 (en) * 2004-02-05 2005-09-08 Nortrup Edward H. Smart answering machine
US7565155B2 (en) * 2002-04-10 2009-07-21 Networks In Motion Method and system for dynamic estimation and predictive route generation
CN102831776A (zh) * 2012-09-14 2012-12-19 南京莱斯信息技术股份有限公司 以时距图的方法配置路口交通信号配时的方法
CN103544840A (zh) * 2013-10-15 2014-01-29 华南理工大学 一种城市信号交叉口协调控制图解方法
CN106097736A (zh) * 2016-08-19 2016-11-09 华南理工大学 一种面向拥堵交叉口的双向红绿波协调控制方法
CN109493621A (zh) * 2018-12-25 2019-03-19 华南理工大学 一种展示区域绿波协调控制效果的空间时距图的作图方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101447131B (zh) * 2008-12-19 2010-11-24 华南理工大学 一种进口单独放行方式下的干道双向绿波协调控制方法
CN102682613A (zh) * 2012-05-14 2012-09-19 邓湘 一种子路段绿波诱导分流协调控制方法
CN103021193B (zh) * 2012-11-21 2015-06-03 华南理工大学 一种面向行驶速度区间的干道绿波协调控制方法
CN103559797B (zh) * 2013-10-21 2016-04-13 华南理工大学 一种相位通用型干道双向绿波协调控制方法
CN103794064B (zh) * 2014-01-16 2015-11-25 同济大学 直观的主干道若干十字路口双向绿波带的实现方法
RU2612726C2 (ru) * 2015-08-17 2017-03-13 Андрей Владимирович ТУЛУПОВ Устройство для морской электроразведки нефтегазовых месторождений и способ ее осуществления
CN106504527B (zh) * 2016-10-19 2018-12-28 东南大学 一种信号交叉口直左冲突及其影响分析方法
CN106297333B (zh) * 2016-10-28 2018-09-18 东南大学 一种基于交叉口过车记录的干线绿波评估方法
CN108428348B (zh) * 2017-02-15 2022-03-18 阿里巴巴集团控股有限公司 一种道路交通优化方法、装置以及电子设备
CN108205904B (zh) * 2017-12-28 2020-04-03 浙江大学 一种基于非机动车和公交车的绿波控制方法
CN108447263B (zh) * 2018-04-18 2020-11-10 北京交通大学 基于浮动车的干线协调控制交叉口的信号控制评价方法
CN109035773B (zh) * 2018-08-14 2021-04-30 江苏智通交通科技有限公司 路口实际通行需求关联可视化分析方法和系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7565155B2 (en) * 2002-04-10 2009-07-21 Networks In Motion Method and system for dynamic estimation and predictive route generation
US20050197767A1 (en) * 2004-02-05 2005-09-08 Nortrup Edward H. Smart answering machine
CN102831776A (zh) * 2012-09-14 2012-12-19 南京莱斯信息技术股份有限公司 以时距图的方法配置路口交通信号配时的方法
CN103544840A (zh) * 2013-10-15 2014-01-29 华南理工大学 一种城市信号交叉口协调控制图解方法
CN106097736A (zh) * 2016-08-19 2016-11-09 华南理工大学 一种面向拥堵交叉口的双向红绿波协调控制方法
CN109493621A (zh) * 2018-12-25 2019-03-19 华南理工大学 一种展示区域绿波协调控制效果的空间时距图的作图方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114093177A (zh) * 2021-10-26 2022-02-25 华南理工大学 一种基于绿波轨迹特征的干道双向绿波协调设计方法
CN114093177B (zh) * 2021-10-26 2022-10-18 华南理工大学 一种基于绿波轨迹特征的干道双向绿波协调设计方法
CN114677847A (zh) * 2022-04-13 2022-06-28 华南理工大学 一种基于迭代优化的区域绿波协调方案求解方法

Also Published As

Publication number Publication date
CN109493621B (zh) 2020-03-27
CN109493621A (zh) 2019-03-19
US20210033418A1 (en) 2021-02-04
US11543260B2 (en) 2023-01-03

Similar Documents

Publication Publication Date Title
WO2020134561A1 (zh) 一种展示区域绿波协调控制效果的空间时距图的作图方法
CN106652458B (zh) 基于虚拟车辆轨迹重构的在线城市道路路径行程时间估计方法
CN112907986B (zh) 一种基于数字孪生场景和边缘云的动态时间窗路口调度方法
WO2020108207A1 (zh) 一种高精度地图的构建方法及装置
WO2018171464A1 (zh) 一种根据导航路径规划车速的方法、装置及系统
EP3719449A1 (en) Driving condition specific sensor quality index
CN104464314B (zh) 一种公交车专用道交叉口的公交优先通行方法
CN104778274B (zh) 基于稀疏出租车gps数据的大范围城市路网旅行时间估计方法
WO2019109561A1 (zh) 车联网下基于mfd的过饱和路网多层控制边界动态划分方法
US20060155427A1 (en) Road traffic control method and traffic facilities
CN110349409B (zh) 一种利用单车轨迹确定交叉口转向溢出的方法
CN106875709A (zh) 一种基于红绿灯的车速诱导方法、系统及车辆
CN103208193B (zh) 一种利用视频检测数据的城市相邻交叉口信号协调控制方法
CN106996783A (zh) 一种行驶轨迹与路网底图的智能匹配方法及装置
CN110491158A (zh) 一种基于多元数据融合的公交车到站时间预测方法及系统
Yang et al. Evaluation of the pre-detective signal priority for bus rapid transit: coordinating the primary and secondary intersections
Zhao et al. CityDrive: A map-generating and speed-optimizing driving system
CN111091724A (zh) 交叉口直行车使用对向左转道的动态车道设计及信控方法
CN108629971A (zh) 一种交通灯控制方法及最佳车速确定方法
CN109523808A (zh) 一种移位左转交叉口的渠化优化方法
CN111931317A (zh) 基于车载gps数据的区域拥堵路网边界控制方法
CN109035818A (zh) 一种基于交叉口双站台的brt车辆优先控制方法
CN103500511A (zh) 一种基于车联网的交叉口信号灯绿信比调节方法
CN109859503B (zh) 一种全网绿波协调线路自动识别方法、装置及系统
CN115909769A (zh) 一种信号灯控制方法、装置、电子设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20.10.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19903648

Country of ref document: EP

Kind code of ref document: A1