WO2020134559A1 - 一种数据传输方法、装置、终端设备及存储介质 - Google Patents

一种数据传输方法、装置、终端设备及存储介质 Download PDF

Info

Publication number
WO2020134559A1
WO2020134559A1 PCT/CN2019/114887 CN2019114887W WO2020134559A1 WO 2020134559 A1 WO2020134559 A1 WO 2020134559A1 CN 2019114887 W CN2019114887 W CN 2019114887W WO 2020134559 A1 WO2020134559 A1 WO 2020134559A1
Authority
WO
WIPO (PCT)
Prior art keywords
data packet
packet
way delay
mth
delay
Prior art date
Application number
PCT/CN2019/114887
Other languages
English (en)
French (fr)
Inventor
钟书城
周超
耿玉峰
Original Assignee
北京达佳互联信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京达佳互联信息技术有限公司 filed Critical 北京达佳互联信息技术有限公司
Publication of WO2020134559A1 publication Critical patent/WO2020134559A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/25Flow control; Congestion control with rate being modified by the source upon detecting a change of network conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0823Errors, e.g. transmission errors
    • H04L43/0829Packet loss
    • H04L43/0835One way packet loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • H04L43/0858One way delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/16Threshold monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/26Flow control; Congestion control using explicit feedback to the source, e.g. choke packets
    • H04L47/263Rate modification at the source after receiving feedback

Definitions

  • This application relates to the field of network transmission technology, in particular to a data transmission method, device, terminal equipment and storage medium.
  • data is transmitted between the server and the client through data packets.
  • data packets may be lost, that is, packet loss occurs.
  • the types of packet loss can be divided into congestion packet loss and random packet loss.
  • congestion and packet loss refers to the packet loss caused by the router's cache queue accumulation and exceeding a certain threshold due to insufficient network bandwidth.
  • Packet loss in this case means that the network has been congested, that is, the network bandwidth Insufficient to meet the data transmission speed of the sending end;
  • random packet loss refers to random packet loss due to wireless LAN Wi-Fi signal interference, link layer transmission errors, etc. Packet loss in this case does not mean Insufficient network bandwidth.
  • the purpose of the embodiments of the present application is to provide a data transmission method, device, terminal device, and storage medium to adopt different data transmission strategies for different types of packet loss, thereby improving bandwidth utilization.
  • An embodiment of the present application provides a data transmission method, which is applied to a server and includes:
  • the Mth data packet is the Mth received data packet sent by the client, so The M-1th data packet is the M-1th received data packet sent by the client, and the M is a positive integer greater than 1;
  • the data transmission speed of the client is reduced; if the number of packet losses is less than or equal to the congestion packet loss threshold, the data transmission speed of the client is maintained change.
  • An embodiment of the present application also provides a data transmission device, including:
  • the obtaining unit is configured to obtain the one-way delay of the Mth data packet and the one-way delay of the M-1th data packet; wherein, the Mth data packet is the Mth received by the client In the sent data packet, the M-1th data packet is the M-1th received data packet sent by the client, and the M is a positive integer greater than 1;
  • a packet loss quantity determination unit configured to determine the number of packet losses between the Mth data packet and the M-1th data packet
  • the calculation unit is configured to calculate a congestion packet loss threshold according to the one-way delay of the Mth data packet and the one-way delay of the M-1th data packet;
  • the judging unit is configured to judge whether the number of packet losses is greater than the congestion packet loss threshold
  • the transmission speed determining unit is configured to reduce the data transmission speed of the client when the number of packet losses is greater than the congestion packet loss threshold; when the number of packet losses is not greater than the congestion packet loss threshold Next, keep the data sending speed of the client unchanged.
  • An embodiment of the present application also provides a data transmission terminal device, including:
  • a memory for storing executable instructions of the processor
  • the processor is configured to:
  • the Mth data packet is the Mth received data packet sent by the client
  • the M-1th data packet is the M-1th received data packet sent by the client
  • the M is a positive integer greater than 1;
  • the data transmission speed of the client is reduced; if the number of packet losses is less than or equal to the congestion packet loss threshold, the data transmission speed of the client is maintained change.
  • An embodiment of the present application also provides a non-transitory computer-readable storage medium, and when the instructions in the storage medium are executed by the processor of the mobile terminal device, the mobile terminal device can execute the above-mentioned embodiments of the present application. Data transmission method.
  • the difference can be determined according to the one-way delay of the Mth data packet, the one-way delay of the M-1th data packet, and the number of dropped packets between the Mth and M-1th data packets
  • the data transmission speed of the client in other words, the data transmission speed of the client can be determined according to different types of packet loss, and different data transmission strategies are adopted, so that the network bandwidth can be fully utilized.
  • Fig. 1 is a flow chart showing a data transmission method according to an exemplary embodiment
  • Fig. 2 is a cumulative distribution diagram of continuous packet loss lengths according to an exemplary embodiment
  • Fig. 3 is a schematic diagram illustrating a congestion packet loss threshold monotonously decreasing as the relative delay of the Mth data packet increases according to an exemplary embodiment
  • Fig. 4 is a block diagram of a data transmission device according to an exemplary embodiment
  • Fig. 5 is a block diagram of a terminal device according to an exemplary embodiment.
  • data is transmitted between the server and the client through data packets.
  • data packets may be lost, that is, packet loss occurs.
  • the types of packet loss can be divided into congestion packet loss and random packet loss.
  • congestion and packet loss refers to the packet loss caused by the router's cache queue accumulation and exceeding a certain threshold due to insufficient network bandwidth.
  • Packet loss in this case means that the network has been congested, that is, the network bandwidth Insufficient to meet the data transmission speed of the sending end; random packet loss is caused by random packet loss due to Wi-Fi signal interference, link layer transmission errors, etc. Packet loss in this case does not mean network bandwidth insufficient.
  • the embodiments of the present application provide a data transmission method and apparatus.
  • the method and apparatus may be applied to a server, and the server may be servers, computers, base stations, routers, and other devices.
  • Fig. 1 is a flowchart of a data transmission method according to an exemplary embodiment. As shown in Fig. 1, the data transmission method is used for a server and includes the following steps.
  • the Mth data packet is the Mth received data packet sent by the client
  • the M-1th data packet is the M-1 received data packet sent by the client
  • M is greater than 1. Positive integer.
  • the unidirectional delay of the data packet may be directly calculated. For example, you can first receive the Mth data packet and the M-1th data packet, where each data packet carries the sending time of the data packet, and then record the receipt of the Mth data packet and the M-th data packet The reception time of one data packet, and then, calculate the difference between the transmission time and the reception time of the Mth data packet as the one-way delay of the Mth data packet; calculate the transmission time and reception of the M-1th data packet The difference in time serves as the one-way delay for the M-1th data packet.
  • the precision of the one-way delay can be set to milliseconds, or it can be set to be more accurate.
  • the precision can be determined according to the network status or actual application, and the specific is not limited.
  • the number of dropped packets between the Mth data packet and the M-1th data packet is determined.
  • the number of lost packets between the Mth data packet and the M-1th data packet can be determined according to the identification information of the data packet, for example, the packet sequence number of the data packet.
  • the packet sequence number may be information carried on the data packet.
  • the number of packets lost between the Mth data packet and the M-1th data packet can be determined according to the lack of video frames during video playback.
  • the congestion packet loss threshold is calculated according to the one-way delay of the Mth data packet and the one-way delay of the M-1th data packet.
  • the congestion packet loss threshold Before calculating the congestion packet loss threshold, you can first determine whether the number of packet losses is greater than the preset threshold, and if the number of packet losses is greater than the preset threshold, then perform the one-way delay according to the Mth packet and M-1 The unidirectional delay of each data packet, the step of calculating the congestion packet loss threshold. In this way, when no packet loss occurs or the number of packet losses is small, subsequent calculation and adjustment steps may not be performed, thereby saving resource occupancy.
  • the way to calculate the congestion packet loss threshold can be:
  • the first step is to obtain the maximum one-way delay and the minimum one-way delay.
  • the maximum one-way delay and the minimum one-way delay can be preset empirical values according to different network bandwidths; or the maximum one-way delay and the minimum one-way delay can be determined according to the one-way delay of each data packet Delay, whenever a new data packet is received, the maximum one-way delay and the minimum one-way delay can be updated, so that the maximum one-way delay and the minimum one-way delay are more in line with the current network status.
  • the second step is to calculate the relative delay of the Mth packet based on the one-way delay of the Mth packet, the one-way delay of the M-1th packet, the maximum one-way delay, and the minimum one-way delay Time.
  • ORTTavg (ORTT(M-1)+ORTT(M))/2
  • ORTT(M-1) represents the one-way delay of the M-1th data packet
  • ORTT(M) represents the one-way delay of the Mth data packet
  • ORTTavg represents the intermediate value
  • ORTTmin represents the minimum one-way delay
  • ORTTmax represents the maximum one-way delay
  • max represents the function of taking the maximum value
  • a represents the lower bound empirical value
  • alpha represents the relative delay of the Mth data packet.
  • alpha is a variable with a value range of [0,1].
  • the smaller the alpha the closer the one-way delay of the Mth data packet is to the minimum one-way delay, indicating that the network is smooth.
  • the larger the alpha the The closer the one-way delay of M data packets to the maximum one-way delay, the more congested the network.
  • the lower bound empirical value is to prevent the maximum one-way delay and the minimum one-way delay from being too close, and the value can be 50, or it can be adjusted according to the situation, which is not specifically limited.
  • the third step is to calculate the congestion packet loss threshold based on the relative delay of the Mth data packet.
  • the following formula can be used to calculate the congestion packet loss threshold:
  • threshold max(1,ceil(b-b*aphla))
  • alpha represents the relative delay of the Mth data packet
  • max represents the function of taking the maximum value
  • ceil(bb*aphla) represents the smallest integer not less than bb*aphla
  • b represents the empirical value of the packet loss length
  • threshold represents the congestion and packet loss Threshold.
  • the empirical value of the packet loss length can be obtained through statistical analysis of the data. For example, as shown in Figure 2, it is the cumulative distribution diagram of the continuous packet loss length. 98.95% of the continuous packet loss lengths are less than or equal to 5. Based on this, the packet loss The empirical value of the packet length is set to 5.
  • S104 it is determined whether the number of packet losses is greater than the congestion packet loss threshold; if the number of packet losses is greater than the congestion packet loss threshold, the data transmission speed of the client is reduced; if the number of packet losses is less than or equal to the congestion packet loss threshold, then Keep the data sending speed of the client unchanged.
  • these packet losses can be determined to be congestion packet loss, that is, the network bandwidth is insufficient to meet the data transmission speed of the sender, so you can send an adjustment command to the client , To reduce the data transmission speed of the client; when the number of packet losses is not greater than the congestion packet loss threshold, these packet losses can be determined as random packet loss, which may be caused by problems such as Wi-Fi signal interference and link layer transmission errors. , Does not mean that the network bandwidth is insufficient, therefore, keep the data transmission speed of the client unchanged, thereby reducing the waste of bandwidth.
  • the data transmission method provided by the embodiment of the present application can be based on the one-way delay of the Mth data packet, the one-way delay of the M-1th data packet, and the Mth data packet and the M-th
  • the number of packet losses between 1 data packet determines the data transmission speed of different clients.
  • the data transmission speed of the client can be determined according to different types of packet loss, and different data transmission strategies are adopted to make the network bandwidth. Can be fully utilized.
  • FIG. 4 it is a schematic structural diagram of a data transmission device provided by an embodiment of the present application.
  • the device includes an acquisition unit 401, a packet loss determination unit 402, a calculation unit 403, a determination unit 404, and a transmission speed determination unit 405. among them:
  • the obtaining unit 401 is configured to obtain the one-way delay of the Mth data packet and the one-way delay of the M-1th data packet; wherein, the Mth data packet is the Mth received by the client A data packet sent by the terminal, the M-1th data packet is the M-1th received data packet sent by the client, and the M is a positive integer greater than 1;
  • the packet loss quantity determining unit 402 is configured to determine the number of packet losses between the Mth data packet and the M-1th data packet;
  • the calculation unit 403 is configured to calculate the congestion packet loss threshold according to the one-way delay of the M-th data packet and the one-way delay of the M-th data packet;
  • the judging unit 404 is configured to judge whether the number of packet losses is greater than the congestion packet loss threshold
  • the transmission speed determining unit 405 is configured to reduce the data transmission speed of the client when the number of packet losses is greater than the congestion packet loss threshold; when the number of packet losses is not greater than the congestion packet loss threshold In this case, the data sending speed of the client is kept unchanged.
  • the obtaining unit 401 is specifically configured as:
  • the packet loss quantity determining unit 402 is specifically configured as:
  • the difference between the packet sequence number of the M-th data packet and the packet sequence number of the M-th data packet is calculated as the number of lost packets.
  • the packet loss quantity determining unit 402 is specifically configured as:
  • the number of dropped packets between the Mth data packet and the M-1th data packet is determined.
  • the calculation unit 403 is further configured to:
  • the calculation of the congestion packet loss threshold based on the one-way delay of the Mth data packet and the one-way delay of the M-1th data packet is performed step.
  • calculation unit 403 is specifically configured to:
  • the unidirectional delay of each data packet determine the maximum unidirectional delay and the minimum unidirectional delay
  • the calculation unit 403 is based on the one-way delay of the Mth data packet, the one-way delay of the M-1th data packet, the maximum one-way delay, and all The minimum one-way delay, the specific method for calculating the relative delay of the Mth data packet is:
  • ORTTavg (ORTT(M-1)+ORTT(M))/2
  • ORTT(M-1) represents the one-way delay of the M-1th data packet
  • ORTT(M) represents the one-way delay of the Mth data packet
  • ORTTavg represents the intermediate value
  • ORTTmin represents the minimum one-way delay
  • ORTTmax represents the maximum one-way delay
  • max represents the function of taking the maximum value
  • a represents the lower bound empirical value
  • alpha represents the relative delay of the Mth data packet.
  • the calculation unit 403 calculates the specific method of the congestion packet loss threshold as follows:
  • threshold max(1,ceil(b-b*aphla))
  • alpha represents the relative delay of the Mth data packet
  • max represents the function of taking the maximum value
  • ceil(bb*aphla) represents the smallest integer not less than bb*aphla
  • b represents the empirical value of the packet loss length
  • threshold represents the congestion and packet loss Threshold.
  • the data transmission device provided by the embodiment of the present application, according to the one-way delay of the Mth data packet, the one-way delay of the M-1th data packet, and the Mth data packet and the M-th
  • the number of packet losses between 1 data packet determines the data transmission speed of different clients.
  • the data transmission speed of the client can be determined according to different types of packet loss, and different data transmission strategies are adopted to make the network bandwidth. Can be fully utilized.
  • Fig. 5 is a block diagram of a terminal device 500 for data transmission according to an exemplary embodiment.
  • the terminal device 500 may be a mobile phone, a computer, a digital broadcasting terminal device, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • the terminal device 500 may include one or more of the following components: a processing component 502, a memory 504, a power supply component 506, a multimedia component 508, an audio component 510, an input/output (I/O) interface 512, a sensor component 514, ⁇ 516.
  • the processing component 502 generally controls the overall operations of the terminal device 500, such as operations associated with display, telephone calls, data communication, camera operations, and recording operations.
  • the processing component 502 may include one or more processors 520 to execute instructions to complete all or part of the steps in the above method.
  • the processing component 502 may include one or more modules to facilitate interaction between the processing component 502 and other components.
  • the processing component 502 may include a multimedia module to facilitate interaction between the multimedia component 508 and the processing component 502.
  • the memory 504 is configured to store various types of data to support operation at the terminal device 500. Examples of these data include instructions for any application or method for operating on the terminal device 500, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 504 may be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable and removable Programmable read only memory (EPROM), programmable read only memory (PROM), read only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable and removable Programmable read only memory
  • PROM programmable read only memory
  • ROM read only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power supply component 506 provides power to various components of the terminal device 500.
  • the power supply component 506 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the terminal device 500.
  • the multimedia component 508 includes a screen that provides an output interface between the terminal device 500 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense the boundary of the touch or sliding action, but also detect the duration and pressure related to the touch or sliding operation.
  • the multimedia component 508 includes a front camera and/or a rear camera. When the device 500 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 510 is configured to output and/or input audio signals.
  • the audio component 510 includes a microphone (MIC), and when the terminal device 500 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode, the microphone is configured to receive an external audio signal.
  • the received audio signal may be further stored in the memory 504 or transmitted via the communication component 516.
  • the audio component 510 further includes a speaker for outputting audio signals.
  • the I/O interface 512 provides an interface between the processing component 502 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, or a button. These buttons may include, but are not limited to: home button, volume button, start button, and lock button.
  • the sensor component 514 includes one or more sensors for providing the terminal device 500 with status evaluation in various aspects.
  • the sensor component 514 can detect the opening/closing state of the device 500 and the relative positioning of the components, for example, the component is the display and keypad of the terminal device 500, and the sensor component 514 can also detect the terminal device 500 or a component of the terminal device 500 , The location of the user changes, the presence or absence of contact between the user and the terminal device 500, the orientation or acceleration/deceleration of the terminal device 500, and the temperature change of the terminal device 500.
  • the sensor assembly 514 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • the sensor component 514 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 514 may also include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 516 is configured to facilitate wired or wireless communication between the terminal device 500 and other devices.
  • the terminal device 500 may access a wireless network based on a communication standard, such as Wi-Fi, an operator network (such as 2G, 3G, 4G, or 5G), or a combination thereof.
  • the communication component 516 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 516 further includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the terminal device 500 may be controlled by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), or A microcontroller, a microcontroller, a microprocessor or other electronic components are implemented to perform the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • a microcontroller, a microcontroller, a microprocessor or other electronic components are implemented to perform the above method.
  • a non-transitory computer-readable storage medium including instructions is also provided, for example, a memory 504 including instructions, which can be executed by the processor 520 of the terminal device 500 to complete the above method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, or the like.
  • the data transmission device provided by the embodiment of the present application, according to the one-way delay of the Mth data packet, the one-way delay of the M-1th data packet, and the Mth data packet and the M-th
  • the number of packet losses between 1 data packet determines the data transmission speed of different clients.
  • the data transmission speed of the client can be determined according to different types of packet loss, and different data transmission strategies are adopted to make the network bandwidth. Can be fully utilized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请实施例提供了一种数据传输方法、装置、终端设备及存储介质,应用于服务端,包括:获取第M个数据包的单向延时及第M-1个数据包的单向延时;确定第M个数据包及第M-1个数据包之间的丢包数量;根据第M个数据包的单向延时及第M-1个数据包的单向延时,计算拥塞丢包阈值;判断丢包数量是否大于拥塞丢包阈值;如果丢包数量大于拥塞丢包阈值,则降低客户端的数据发送速度;如果丢包数量小于或等于拥塞丢包阈值,则保持客户端的数据发送速度不变。这样,根据第M个数据包的单向延时、第M-1个数据包的单向延时及第M个数据包和第M-1个数据包之间的丢包数量,确定不同的客户端的数据发送速度,使得网络带宽可以得到充分利用。

Description

一种数据传输方法、装置、终端设备及存储介质
相关申请的交叉引用
本申请要求在2018年12月29日提交中国专利局、申请号为201811637178.1、发明名称为“一种数据传输方法、装置、终端设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请是关于网络传输技术领域,尤其是关于一种数据传输方法、装置、终端设备及存储介质。
背景技术
通常,服务端与客户端之间通过数据包传输数据,但是,在数据传输的过程中,数据包有可能会发生丢失,也就是发生丢包。
丢包的类型可以分为拥塞丢包和随机丢包。其中,拥塞丢包是指由于网络带宽不足,路由器的缓存队列堆积且超出一定阈值后导致的丢包,这种情况下发生的丢包,意味着网络已经发生了拥堵,也就是说,网络带宽不足以满足发送端的数据发送速度;随机丢包是指由于无线局域网Wi-Fi信号干扰、链路层传输错误等问题导致的随机性的丢包,这种情况下发生的丢包,并不意味着网络带宽不足。
但是,发明人发现,相关技术中,当监测到丢包时,通常会直接对发送端的数据发送速度进行调整,这样,在丢包类型为随机丢包的情况下,导致网络带宽不能得到充分利用。因此,亟需一种能够针对不同类型的丢包,采取不同的数据发送调整策略的数据传输方法。
发明内容
本申请实施例的目的在于提供一种数据传输方法、装置、终端设备及存储介质,以针对不同类型的丢包采取不同的数据发送策略,从而提升带宽利用率。
具体技术方案如下:
本申请实施例提供了一种数据传输方法,应用于服务端,包括:
获取第M个数据包的单向延时及第M-1个数据包的单向延时;其中,所述第M个数据包为第M个接收到的由客户端发送的数据包,所述第M-1个数据包为第M-1个接收到的由所述客户端发送的数据包,所述M为大于1的正整数;
确定所述第M个数据包及所述第M-1个数据包之间的丢包数量;
根据所述第M个数据包的单向延时及所述第M-1个数据包的单向延时,计算拥塞丢包阈值;
判断所述丢包数量是否大于所述拥塞丢包阈值;
如果所述丢包数量大于所述拥塞丢包阈值,则降低所述客户端的数据发送速度;如果所述丢包数量小于或等于所述拥塞丢包阈值,则保持所述客户端的数据发送速度不变。
本申请实施例还提供了一种数据传输装置,包括:
获取单元,被配置为获取第M个数据包的单向延时及第M-1个数据包的单向延时;其中,所述第M个数据包为第M个接收到的由客户端发送的数据包,所述第M-1个数据包为第M-1个接收到的由所述客户端发送的数据包,所述M为大于1的正整数;
丢包数量确定单元,被配置为确定所述第M个数据包及所述第M-1个数据包之间的丢包数量;
计算单元,被配置为根据所述第M个数据包的单向延时及所述第M-1个数据包的单向延时,计算拥塞丢包阈值;
判断单元,被配置为判断所述丢包数量是否大于所述拥塞丢包阈值;
发送速度确定单元,被配置为在所述丢包数量大于所述拥塞丢包阈值的情况下,降低所述客户端的数据发送速度;在所述丢包数量不大于所述拥塞 丢包阈值的情况下,保持所述客户端的数据发送速度不变。
本申请实施例还提供了一种数据传输终端设备,包括:
处理器;
用于存储所述处理器可执行指令的存储器;
其中,所述处理器被配置为:
用于获取第M个数据包的单向延时及第M-1个数据包的单向延时;其中,所述第M个数据包为第M个接收到的由客户端发送的数据包,所述第M-1个数据包为第M-1个接收到的由所述客户端发送的数据包,所述M为大于1的正整数;
确定所述第M个数据包及所述第M-1个数据包之间的丢包数量;
根据所述第M个数据包的单向延时及所述第M-1个数据包的单向延时,计算拥塞丢包阈值;
判断所述丢包数量是否大于所述拥塞丢包阈值;
如果所述丢包数量大于所述拥塞丢包阈值,则降低所述客户端的数据发送速度;如果所述丢包数量小于或等于所述拥塞丢包阈值,则保持所述客户端的数据发送速度不变。
本申请实施例还提供了一种非临时性计算机可读存储介质,当所述存储介质中的指令由移动终端设备的处理器执行时,使得所述移动终端设备能够执行本申请上述实施例提供的数据传输方法。
通过获取第M个接收到的由客户端发送的数据包的单向延时及第M-1个接收到的由客户端发送的数据包的单向延时,确定第M个数据包及第M-1个数据包之间的丢包数量,然后,根据第M个数据包的单向延时及第M-1个数据包的单向延时,计算拥塞丢包阈值,进而,判断丢包数量是否大于拥塞丢包阈值;如果所述丢包数量大于所述拥塞丢包阈值,则降低所述客户端的数据发送速度;如果所述丢包数量小于或等于所述拥塞丢包阈值,则保持所述客户端的数据发送速度不变。这样,可以根据第M个数据包的单向延时、第M-1个数据包的单向延时及第M个数据包和第M-1个数据包之间的丢包数量,确定不 同的客户端的数据发送速度,换句话说,可以根据不同的类型的丢包确定客户端的数据发送速度,采取不同的数据发送策略,从而使得网络带宽可以得到充分利用。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请实施例,并与说明书一起用于解释本申请的原理。
图1是根据一示例性实施例示出的一种数据传输方法的流程图;
图2是根据一示例性实施例示出的一种连续丢包长度的累计分布图;
图3是根据一示例性实施例示出的一种拥塞丢包阈值随着第M个数据包的相对延时递增而单调递减的示意图;
图4是根据一示例性实施例示出的一种数据传输装置的框图;
图5是根据一示例性实施例示出的一种终端设备的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
通常,服务端与客户端之间通过数据包传输数据,但是,在数据传输的过程中,数据包有可能会发生丢失,也就是发生丢包。
丢包的类型可以分为拥塞丢包和随机丢包。其中,拥塞丢包是指由于网络带宽不足,路由器的缓存队列堆积且超出一定阈值后导致的丢包,这种情况下发生的丢包,意味着网络已经发生了拥堵,也就是说,网络带宽不足以满足发送端的数据发送速度;随机丢包是由于Wi-Fi信号干扰、链路层传输错误等问题导致的随机性的丢包,这种情况下发生的丢包,并不意味着网络带 宽不足。
但是,发明人发现,相关技术中,当监测到丢包时,通常会直接对发送端的数据发送速度进行调整,这样,在丢包类型为随机丢包的情况下,导致网络带宽不能得到充分利用。因此,亟需一种能够针对不同类型的丢包,采取不同的数据发送调整策略的数据传输方法。
为了解决上述技术问题,本申请实施例提供了一种数据传输方法和装置,该方法和装置可以应用于服务端,服务端可以为服务器、计算机、基站、路由器等设备。
下面首先对本申请实施例提供的数据传输方法进行详细介绍。
图1是根据一示例性实施例示出的一种数据传输方法的流程图,如图1所示,数据传输方法用于服务端,包括以下步骤。
在S101中,获取第M个数据包的单向延时及第M-1个数据包的单向延时。
其中,第M个数据包为第M个接收到的由客户端发送的数据包,第M-1个数据包为第M-1个接收到的由客户端发送的数据包,M为大于1的正整数。
在本步骤中,可以将每个数据包的单向延时存储在服务端的设备中,然后,在每个较长时间的周期内,获取每个数据包的单向延时,并基于此执行后续步骤,对客户端的数据发送速度进行调整。
或者,也可以在接收到第M个数据包之后,直接计算该数据包的单向延时。举例来说,可以先接收第M个数据包及第M-1个数据包,其中,每个数据包中携带该数据包的发送时间,然后,记录接收到第M个数据包及第M-1个数据包的接收时间,进而,计算第M个数据包的发送时间和接收时间之差,作为第M个数据包的单向延时;计算第M-1个数据包的发送时间和接收时间之差,作为第M-1个数据包的单向延时。
单向延时的精度可以设置为毫秒,也可以设置得更精确,可以根据网络状态或实际应用情况确定其精度,具体不做限定。
在S102中,确定第M个数据包及第M-1个数据包之间的丢包数量。
其中,可以根据数据包的标识信息,比如,数据包的包序号,确定第M个数据包及第M-1个数据包之间的丢包数量。
举例而言,可以先获取第M个数据包的包序号及第M-1个数据包的包序号,然后,计算第M个数据包的包序号及第M-1个数据包的包序号之间的差值,作为丢包数量。其中,包序号可以是携带在数据包上的信息。
或者,也可以在解析数据包之后,根据数据包中的数据内容,确定第M个数据包及第M-1个数据包之间的丢包数量,比如,如果数据包中的数据内容为视频数据,那么,可以根据视频播放过程中的视频帧缺失情况,确定第M个数据包及第M-1个数据包之间的丢包数量。
在S103中,根据第M个数据包的单向延时及第M-1个数据包的单向延时,计算拥塞丢包阈值。
在计算拥塞丢包阈值之前,可以先判断丢包数量是否大于预设阈值,在丢包数量大于预设阈值的情况下,再执行根据第M个数据包的单向延时及第M-1个数据包的单向延时,计算拥塞丢包阈值的步骤。这样,当没有发生丢包,或丢包数量较少时,可以不进行后续的计算、调整步骤,从而节省资源占用率。
举例而言,根据第M个数据包的单向延时及第M-1个数据包的单向延时,计算拥塞丢包阈值的方式,可以为:
第一步,获取最大单向延时及最小单向延时。
其中,最大单向延时及最小单向延时可以是根据不同的网络带宽预设的经验值;也可以是根据每个数据包的单向延时,确定最大单向延时及最小单向延时,每当接收到一个新的数据包,都可以对最大单向延时及最小单向延时进行更新,从而使得最大单向延时及最小单向延时更符合当前网络的状态。
第二步,根据第M个数据包的单向延时、第M-1个数据包的单向延时、最大单向延时及最小单向延时,计算第M个数据包的相对延时。
举例而言,可以采用如下公式,计算第M个数据包的相对延时:
ORTTavg=(ORTT(M-1)+ORTT(M))/2
alpha=(ORTTavg-ORTTmin)/max(ORTTmax–ORTTmin,a)
其中,ORTT(M-1)表示第M-1个数据包的单向延时、ORTT(M)表示第M个数据包的单向延时,ORTTavg表示中间值,ORTTmin表示最小单向延时,ORTTmax表示最大单向延时,max表示取最大值函数,a表示下界经验值,alpha表示第M个数据包的相对延时。
根据上述公式,alpha是一个取值范围为[0,1]的变量,alpha越小,第M个数据包的单向延时越接近最小单向延时,表示网络畅通,alpha越大,第M个数据包的单向延时越接近最大单向延时,网络较为拥堵。
其中,下界经验值是为了防止最大单向延时及最小单向延时过于接近,其取值可以为50,也可以根据情况进行调整,具体不做限定。
第三步,根据第M个数据包的相对延时,计算拥塞丢包阈值。
举例而言,可以采用如下公式,计算拥塞丢包阈值:
threshold=max(1,ceil(b-b*aphla))
其中,alpha表示第M个数据包的相对延时,max表示取最大值函数,ceil(b-b*aphla)表示不小于b-b*aphla的最小整数,b表示丢包长度经验值,threshold表示拥塞丢包阈值。
丢包长度经验值可以通过对数据进行统计分析得到,比如,如图2所示,为连续丢包长度的累计分布图,98.95%的连续丢包长度都小于等于5,基于此,可以将丢包长度经验值设置为5。
这样,如图3所示,当相对延时从0到1逐渐增大时,表示网络从通畅渐渐变的拥塞,也就是说,连续丢包更可能是拥塞丢包,因此,拥塞丢包阈值随着第M个数据包的相对延时递增而单调递减。
或者,也可以采用其他的公式计算拥塞丢包阈值,只要满足拥塞丢包阈值随着第M个数据包的相对延时递增而单调递减即可,具体不做限定。
在S104中,判断丢包数量是否大于拥塞丢包阈值;如果丢包数量大于拥塞丢包阈值,则降低客户端的数据发送速度;如果所述丢包数量小于或等于所述拥塞丢包阈值,则保持所述客户端的数据发送速度不变。
可以理解,当丢包数量大于拥塞丢包阈值时,这些丢包可以判定为是拥塞丢包,也就是说,网络带宽不足以满足发送端的数据发送速度,因此,可以通过向客户端发送调整指令,降低客户端的数据发送速度;当丢包数量不大于拥塞丢包阈值时,这些丢包可以判定为是为随机丢包,可能是由于Wi-Fi信号干扰、链路层传输错误等问题导致的,并不意味着网络带宽不足,因此,保持客户端的数据发送速度不变,从而减少带宽浪费。
由以上可见,应用本申请实施例提供的数据传输方法,可以根据第M个数据包的单向延时、第M-1个数据包的单向延时及第M个数据包和第M-1个数据包之间的丢包数量,确定不同的客户端的数据发送速度,换句话说,可以根据不同的类型的丢包确定客户端的数据发送速度,采取不同的数据发送策略,从而使得网络带宽可以得到充分利用。
如图4所示,为本申请实施例提供的一种数据传输装置的结构示意图,该装置包括获取单元401、丢包数量确定单元402、计算单元403、判断单元404和发送速度确定单元405。其中:
获取单元401,被配置为获取第M个数据包的单向延时及第M-1个数据包的单向延时;其中,所述第M个数据包为第M个接收到的由客户端发送的数据包,所述第M-1个数据包为第M-1个接收到的由所述客户端发送的数据包,所述M为大于1的正整数;
丢包数量确定单元402,被配置为确定所述第M个数据包及所述第M-1个数据包之间的丢包数量;
计算单元403,被配置为根据所述第M个数据包的单向延时及所述第M-1个数据包的单向延时,计算拥塞丢包阈值;
判断单元404,被配置为判断所述丢包数量是否大于所述拥塞丢包阈值;
发送速度确定单元405,被配置为在所述丢包数量大于所述拥塞丢包阈值的情况下,降低所述客户端的数据发送速度;在所述丢包数量不大于所述拥塞丢包阈值的情况下,保持所述客户端的数据发送速度不变。
一种实现方式中,所述获取单元401,具体被配置为:
接收第M个数据包及第M-1个数据包,其中,每个数据包中携带该数据包的发送时间;
记录接收到所述第M个数据包及所述第M-1个数据包的接收时间;
计算所述第M个数据包的发送时间和接收时间之差,作为所述第M个数据包的单向延时;计算所述第M-1个数据包的发送时间和接收时间之差,作为所述第M-1个数据包的单向延时。
一种实现方式中,所述丢包数量确定单元402,具体被配置为:
获取所述第M个数据包的包序号及所述第M-1个数据包的包序号;
计算所述所述第M个数据包的包序号及所述第M-1个数据包的包序号之间的差值,作为所述丢包数量。
一种实现方式中,所述丢包数量确定单元402,具体被配置为:
对所述第M个数据包及所述第M-1个数据包进行解析;
根据解析结果,确定所述第M个数据包及第M-1个数据包之间的丢包数量。
一种实现方式中,所述计算单元403,还被配置为:
判断所述丢包数量是否大于预设阈值;
若所述丢包数量大于预设阈值,则执行所述根据所述第M个数据包的单向延时及所述第M-1个数据包的单向延时,计算拥塞丢包阈值的步骤。
一种实现方式中,所述计算单元403,具体被配置为:
根据每个数据包的单向延时,确定最大单向延时及最小单向延时;
根据所述第M个数据包的单向延时、所述第M-1个数据包的单向延时、所述最大单向延时及所述最小单向延时,计算所述第M个数据包的相对延时;
根据所述第M个数据包的相对延时,计算拥塞丢包阈值。
一种实现方式中,所述计算单元403,根据所述第M个数据包的单向延时、所述第M-1个数据包的单向延时、所述最大单向延时及所述最小单向延时,计算所述第M个数据包的相对延时的具体方法为:
ORTTavg=(ORTT(M-1)+ORTT(M))/2
alpha=(ORTTavg-ORTTmin)/max(ORTTmax–ORTTmin,a)
其中,ORTT(M-1)表示第M-1个数据包的单向延时、ORTT(M)表示第M个数据包的单向延时,ORTTavg表示中间值,ORTTmin表示最小单向延时,ORTTmax表示最大单向延时,max表示取最大值函数,a表示下界经验值,alpha表示第M个数据包的相对延时。
一种实现方式中,所述计算单元403,根据所述第M个数据包的相对延时,计算拥塞丢包阈值的具体方法为:
threshold=max(1,ceil(b-b*aphla))
其中,alpha表示第M个数据包的相对延时,max表示取最大值函数,ceil(b-b*aphla)表示不小于b-b*aphla的最小整数,b表示丢包长度经验值,threshold表示拥塞丢包阈值。
由以上可见,应用本申请实施例提供的数据传输装置,可以根据第M个数据包的单向延时、第M-1个数据包的单向延时及第M个数据包和第M-1个数据包之间的丢包数量,确定不同的客户端的数据发送速度,换句话说,可以根据不同的类型的丢包确定客户端的数据发送速度,采取不同的数据发送策略,从而使得网络带宽可以得到充分利用。
图5是根据一示例性实施例示出的一种用于数据传输的终端设备500的框图。例如,终端设备500可以是移动电话,计算机,数字广播终端设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图5,终端设备500可以包括以下一个或多个组件:处理组件502,存储器504,电源组件506,多媒体组件508,音频组件510,输入/输出(I/O)接口512,传感器组件514,以及通信组件516。
处理组件502通常控制终端设备500的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件502可以包括一个或多个处理器520来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件502可以包括一个或多个模块,便于处理组件502和其他组 件之间的交互。例如,处理组件502可以包括多媒体模块,以方便多媒体组件508和处理组件502之间的交互。
存储器504被配置为存储各种类型的数据以支持在终端设备500的操作。这些数据的示例包括用于在终端设备500上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器504可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件506为终端设备500的各种组件提供电力。电源组件506可以包括电源管理系统,一个或多个电源,及其他与为终端设备500生成、管理和分配电力相关联的组件。
多媒体组件508包括在所述终端设备500和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件508包括一个前置摄像头和/或后置摄像头。当设备500处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件510被配置为输出和/或输入音频信号。例如,音频组件510包括一个麦克风(MIC),当终端设备500处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器504或经由通信组件516发送。在一些实施例中,音频组件510还包括一个扬声器,用于输出音频信号。
I/O接口512为处理组件502和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件514包括一个或多个传感器,用于为终端设备500提供各个方面的状态评估。例如,传感器组件514可以检测到设备500的打开/关闭状态,组件的相对定位,例如所述组件为终端设备500的显示器和小键盘,传感器组件514还可以检测终端设备500或终端设备500一个组件的位置改变,用户与终端设备500接触的存在或不存在,终端设备500方位或加速/减速和终端设备500的温度变化。传感器组件514可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件514还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件514还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件516被配置为便于终端设备500和其他设备之间有线或无线方式的通信。终端设备500可以接入基于通信标准的无线网络,如Wi-Fi,运营商网络(如2G、3G、4G或5G),或它们的组合。在一个示例性实施例中,通信组件516经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件516还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,终端设备500可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器504,上述指令可由终端设备500的处理器520 执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
由以上可见,应用本申请实施例提供的数据传输装置,可以根据第M个数据包的单向延时、第M-1个数据包的单向延时及第M个数据包和第M-1个数据包之间的丢包数量,确定不同的客户端的数据发送速度,换句话说,可以根据不同的类型的丢包确定客户端的数据发送速度,采取不同的数据发送策略,从而使得网络带宽可以得到充分利用。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (18)

  1. 一种数据传输方法,应用于服务端,包括:
    获取第M个数据包的单向延时及第M-1个数据包的单向延时;其中,所述第M个数据包为第M个接收到的由客户端发送的数据包,所述第M-1个数据包为第M-1个接收到的由所述客户端发送的数据包,所述M为大于1的正整数;
    确定所述第M个数据包及所述第M-1个数据包之间的丢包数量;
    根据所述第M个数据包的单向延时及所述第M-1个数据包的单向延时,计算拥塞丢包阈值;
    判断所述丢包数量是否大于所述拥塞丢包阈值;
    如果所述丢包数量大于所述拥塞丢包阈值,则降低所述客户端的数据发送速度;如果所述丢包数量小于或等于所述拥塞丢包阈值,则保持所述客户端的数据发送速度不变。
  2. 根据权利要求1所述的数据传输方法,所述获取第M个数据包的单向延时及所述第M-1个数据包的单向延时,包括:
    接收所述第M个数据包及所述第M-1个数据包,其中,每个数据包中携带该数据包的发送时间;
    记录接收到所述第M个数据包及所述第M-1个数据包的接收时间;
    计算所述第M个数据包的发送时间和接收时间之差,作为所述第M个数据包的单向延时;计算所述第M-1个数据包的发送时间和接收时间之差,作为所述第M-1个数据包的单向延时。
  3. 根据权利要求1所述的数据传输方法,所述确定所述第M个数据包及所述第M-1个数据包之间的丢包数量,包括:
    获取所述第M个数据包的包序号及所述第M-1个数据包的包序号;
    计算所述第M个数据包的包序号与所述第M-1个数据包的包序号之间的差值,作为所述丢包数量。
  4. 根据权利要求1所述的数据传输方法,所述确定所述第M个数据包及所 述第M-1个数据包之间的丢包数量,包括:
    对所述第M个数据包及所述第M-1个数据包进行解析;
    根据解析结果,确定所述第M个数据包及第M-1个数据包之间的丢包数量。
  5. 根据权利要求1所述的数据传输方法,在所述根据所述第M个数据包的单向延时及所述第M-1个数据包的单向延时,计算拥塞丢包阈值之前,所述方法还包括:
    判断所述丢包数量是否大于预设阈值;
    若所述丢包数量大于预设阈值,则执行所述根据所述第M个数据包的单向延时及所述第M-1个数据包的单向延时,计算拥塞丢包阈值的步骤。
  6. 根据权利要求1所述的数据传输方法,所述根据所述第M个数据包的单向延时及所述第M-1个数据包的单向延时,计算拥塞丢包阈值,包括:
    根据每个数据包的单向延时,确定最大单向延时及最小单向延时;
    根据所述第M个数据包的单向延时、所述第M-1个数据包的单向延时、所述最大单向延时及所述最小单向延时,计算所述第M个数据包的相对延时;
    根据所述第M个数据包的相对延时,计算拥塞丢包阈值。
  7. 根据权利要求6所述的数据传输方法,所述根据所述第M个数据包的单向延时、所述第M-1个数据包的单向延时、所述最大单向延时及所述最小单向延时,计算所述第M个数据包的相对延时的具体方法为:
    ORTTavg=(ORTT(M-1)+ORTT(M))/2
    alpha=(ORTTavg-ORTTmin)/max(ORTTmax–ORTTmin,a)
    其中,ORTT(M-1)表示所述第M-1个数据包的单向延时、ORTT(M)表示所述第M个数据包的单向延时,ORTTavg表示中间值,ORTTmin表示所述最小单向延时,ORTTmax表示所述最大单向延时,max表示取最大值函数,a表示下界经验值,alpha表示所述第M个数据包的相对延时。
  8. 根据权利要求6所述的数据传输方法,所述根据所述第M个数据包的相对延时,计算拥塞丢包阈值的具体方法为:
    threshold=max(1,ceil(b-b*aphla))
    其中,alpha表示所述第M个数据包的相对延时,max表示取最大值函数,ceil(b-b*aphla)表示不小于b-b*aphla的最小整数,b表示丢包长度经验值,threshold表示所述拥塞丢包阈值。
  9. 一种数据传输装置,包括:
    获取单元,被配置为获取第M个数据包的单向延时及所述第M-1个数据包的单向延时;其中,所述第M个数据包为第M个接收到的由客户端发送的数据包,所述第M-1个数据包为第M-1个接收到的由所述客户端发送的数据包,所述M为大于1的正整数;
    丢包数量确定单元,被配置为确定所述第M个数据包及所述第M-1个数据包之间的丢包数量;
    计算单元,被配置为根据所述第M个数据包的单向延时及所述第M-1个数据包的单向延时,计算拥塞丢包阈值;
    判断单元,被配置为判断所述丢包数量是否大于所述拥塞丢包阈值;
    发送速度确定单元,被配置为在所述丢包数量大于所述拥塞丢包阈值的情况下,降低所述客户端的数据发送速度;在所述丢包数量不大于所述拥塞丢包阈值的情况下,保持所述客户端的数据发送速度不变。
  10. 一种数据传输终端设备,包括:
    处理器;
    用于存储所述处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    获取第M个数据包的单向延时及第M-1个数据包的单向延时;其中,所述第M个数据包为第M个接收到的由客户端发送的数据包,所述第M-1个数据包为第M-1个接收到的由所述客户端发送的数据包,所述M为大于1的正整数;
    确定所述第M个数据包及所述第M-1个数据包之间的丢包数量;
    根据所述第M个数据包的单向延时及所述第M-1个数据包的单向延时,计算拥塞丢包阈值;
    判断所述丢包数量是否大于所述拥塞丢包阈值;
    如果所述丢包数量大于所述拥塞丢包阈值,则降低所述客户端的数据发送速度;如果所述丢包数量小于或等于所述拥塞丢包阈值,则保持所述客户端的数据发送速度不变。
  11. 根据权利要求10所述的数据传输设备,所述处理器具体被配置为:
    接收所述第M个数据包及所述第M-1个数据包,其中,每个数据包中携带该数据包的发送时间;
    记录接收到所述第M个数据包及所述第M-1个数据包的接收时间;
    计算所述第M个数据包的发送时间和接收时间之差,作为所述第M个数据包的单向延时;计算所述第M-1个数据包的发送时间和接收时间之差,作为所述第M-1个数据包的单向延时。
  12. 根据权利要求10所述的数据传输设备,所述处理器具体被配置为:
    获取所述第M个数据包的包序号及所述第M-1个数据包的包序号;
    计算所述第M个数据包的包序号与所述第M-1个数据包的包序号之间的差值,作为所述丢包数量。
  13. 根据权利要求10所述的数据传输设备,所述处理器具体被配置为:
    对所述第M个数据包及所述第M-1个数据包进行解析;
    根据解析结果,确定所述第M个数据包及第M-1个数据包之间的丢包数量。
  14. 根据权利要求10所述的数据传输设备,所述处理器还被配置为:
    在所述根据所述第M个数据包的单向延时及所述第M-1个数据包的单向延时,计算拥塞丢包阈值之前,判断所述丢包数量是否大于预设阈值;
    若所述丢包数量大于预设阈值,则执行所述根据所述第M个数据包的单向延时及所述第M-1个数据包的单向延时,计算拥塞丢包阈值的步骤。
  15. 根据权利要求10所述的数据传输设备,所述处理器具体被配置为:
    根据每个数据包的单向延时,确定最大单向延时及最小单向延时;
    根据所述第M个数据包的单向延时、所述第M-1个数据包的单向延时、所述最大单向延时及所述最小单向延时,计算所述第M个数据包的相对延时;
    根据所述第M个数据包的相对延时,计算拥塞丢包阈值。
  16. 根据权利要求15所述的数据传输设备,所述处理器具体被配置为:采用如下公式计算所述第M个数据包的相对延:
    ORTTavg=(ORTT(M-1)+ORTT(M))/2
    alpha=(ORTTavg-ORTTmin)/max(ORTTmax–ORTTmin,a)
    其中,ORTT(M-1)表示所述第M-1个数据包的单向延时、ORTT(M)表示所述第M个数据包的单向延时,ORTTavg表示中间值,ORTTmin表示所述最小单向延时,ORTTmax表示所述最大单向延时,max表示取最大值函数,a表示下界经验值,alpha表示所述第M个数据包的相对延时。
  17. 根据权利要求15所述的数据传输设备,所述处理器具体被配置为:采用如下公式计算拥塞丢包阈值:
    threshold=max(1,ceil(b-b*aphla))
    其中,alpha表示所述第M个数据包的相对延时,max表示取最大值函数,ceil(b-b*aphla)表示不小于b-b*aphla的最小整数,b表示丢包长度经验值,threshold表示所述拥塞丢包阈值。
  18. 一种非临时性计算机可读存储介质,当所述存储介质中的指令由移动终端设备的处理器执行时,使得所述移动终端设备能够执行权利要求1-8中任一项所述的数据传输方法。
PCT/CN2019/114887 2018-12-29 2019-10-31 一种数据传输方法、装置、终端设备及存储介质 WO2020134559A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811637178.1A CN109474538B (zh) 2018-12-29 2018-12-29 一种数据传输方法、装置、终端设备及存储介质
CN201811637178.1 2018-12-29

Publications (1)

Publication Number Publication Date
WO2020134559A1 true WO2020134559A1 (zh) 2020-07-02

Family

ID=65677427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114887 WO2020134559A1 (zh) 2018-12-29 2019-10-31 一种数据传输方法、装置、终端设备及存储介质

Country Status (2)

Country Link
CN (1) CN109474538B (zh)
WO (1) WO2020134559A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112822117A (zh) * 2021-01-07 2021-05-18 厦门亿联网络技术股份有限公司 一种实时流媒体传输的拥塞检测方法及装置
CN113595830A (zh) * 2021-07-30 2021-11-02 百果园技术(新加坡)有限公司 一种网络丢包状态的检测方法、装置、设备及存储介质
CN113691882A (zh) * 2021-09-02 2021-11-23 广州市奥威亚电子科技有限公司 判断网络状况的方法、装置、设备及存储介质
CN114221909A (zh) * 2021-12-13 2022-03-22 杭州逗酷软件科技有限公司 数据传输方法、装置、终端及存储介质
CN114650260A (zh) * 2022-03-14 2022-06-21 清华大学 网络丢包类型识别方法、装置及电子设备
WO2024109734A1 (zh) * 2022-11-25 2024-05-30 抖音视界有限公司 数据传输方法、装置、电子设备及存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109474538B (zh) * 2018-12-29 2021-07-30 北京达佳互联信息技术有限公司 一种数据传输方法、装置、终端设备及存储介质
CN110120896B (zh) * 2019-04-15 2020-12-25 北京达佳互联信息技术有限公司 网络延迟控制方法、装置、电子设备及存储介质
EP4250677A1 (en) * 2020-12-16 2023-09-27 Huawei Technologies Co., Ltd. Network congestion management method and related apparatus
CN113315918B (zh) * 2021-07-28 2021-10-08 湖南涉外经济学院 计算机网络数据处理方法及系统
CN116155827A (zh) * 2023-01-17 2023-05-23 中国联合网络通信集团有限公司 数据传输方法、装置、路由器、电子设备和存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201019649A (en) * 2008-11-06 2010-05-16 Inst Information Industry Network system, adjusting method of data transmission rate and computer program procut thereof
CN101854268A (zh) * 2009-04-04 2010-10-06 华为技术有限公司 Ip网络性能测量、服务质量控制的方法、装置和系统
CN103997434A (zh) * 2014-05-21 2014-08-20 华为技术有限公司 网络传输状况的探测方法和相关设备
CN105721333A (zh) * 2016-01-21 2016-06-29 全时云商务服务股份有限公司 一种数据传输装置及方法
US20170331744A1 (en) * 2016-05-11 2017-11-16 Microsoft Technology Licensing, Llc Combined delay and loss based congestion control algorithms
CN108234224A (zh) * 2016-12-13 2018-06-29 腾讯科技(深圳)有限公司 可用带宽的探测方法及装置
CN109474538A (zh) * 2018-12-29 2019-03-15 北京达佳互联信息技术有限公司 一种数据传输方法、装置、终端设备及存储介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6958998B2 (en) * 2001-07-09 2005-10-25 International Business Machines Corporation Traffic management in packet-based networks
CN104159166B (zh) * 2014-08-07 2015-08-05 西安交通大学 基于移动网络丢包状态的直播视频数据传输差错控制方法
CN105306888B (zh) * 2015-10-03 2018-07-10 上海大学 基于丢包区分的移动视频监控带宽自适应方法
CN105262643B (zh) * 2015-10-29 2018-05-18 西安交通大学 一种基于td-lte移动网络传输特征的丢包区分方法
CN105634875A (zh) * 2016-02-05 2016-06-01 中国科学院计算技术研究所 识别可靠传输协议的数据传输中的丢包类型的方法及系统
CN106255149B (zh) * 2016-08-10 2019-12-24 广州市百果园网络科技有限公司 一种媒体数据传输方法及装置
CN108075988A (zh) * 2017-11-16 2018-05-25 华为技术有限公司 数据传输方法和装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201019649A (en) * 2008-11-06 2010-05-16 Inst Information Industry Network system, adjusting method of data transmission rate and computer program procut thereof
CN101854268A (zh) * 2009-04-04 2010-10-06 华为技术有限公司 Ip网络性能测量、服务质量控制的方法、装置和系统
CN103997434A (zh) * 2014-05-21 2014-08-20 华为技术有限公司 网络传输状况的探测方法和相关设备
CN105721333A (zh) * 2016-01-21 2016-06-29 全时云商务服务股份有限公司 一种数据传输装置及方法
US20170331744A1 (en) * 2016-05-11 2017-11-16 Microsoft Technology Licensing, Llc Combined delay and loss based congestion control algorithms
CN108234224A (zh) * 2016-12-13 2018-06-29 腾讯科技(深圳)有限公司 可用带宽的探测方法及装置
CN109474538A (zh) * 2018-12-29 2019-03-15 北京达佳互联信息技术有限公司 一种数据传输方法、装置、终端设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CARLUCCI, GAETANO ET AL.: "Congestion Control for Web Real-Time Communication", IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 5,, vol. 25, no. 5, 5 June 2017 (2017-06-05), XP058385231, DOI: 20191217110117A *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112822117A (zh) * 2021-01-07 2021-05-18 厦门亿联网络技术股份有限公司 一种实时流媒体传输的拥塞检测方法及装置
CN113595830A (zh) * 2021-07-30 2021-11-02 百果园技术(新加坡)有限公司 一种网络丢包状态的检测方法、装置、设备及存储介质
CN113595830B (zh) * 2021-07-30 2024-02-20 百果园技术(新加坡)有限公司 一种网络丢包状态的检测方法、装置、设备及存储介质
CN113691882A (zh) * 2021-09-02 2021-11-23 广州市奥威亚电子科技有限公司 判断网络状况的方法、装置、设备及存储介质
CN113691882B (zh) * 2021-09-02 2024-04-26 广州市奥威亚电子科技有限公司 判断网络状况的方法、装置、设备及存储介质
CN114221909A (zh) * 2021-12-13 2022-03-22 杭州逗酷软件科技有限公司 数据传输方法、装置、终端及存储介质
CN114221909B (zh) * 2021-12-13 2024-02-02 杭州逗酷软件科技有限公司 数据传输方法、装置、终端及存储介质
CN114650260A (zh) * 2022-03-14 2022-06-21 清华大学 网络丢包类型识别方法、装置及电子设备
CN114650260B (zh) * 2022-03-14 2024-03-12 清华大学 网络丢包类型识别方法、装置及电子设备
WO2024109734A1 (zh) * 2022-11-25 2024-05-30 抖音视界有限公司 数据传输方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN109474538A (zh) 2019-03-15
CN109474538B (zh) 2021-07-30

Similar Documents

Publication Publication Date Title
WO2020134559A1 (zh) 一种数据传输方法、装置、终端设备及存储介质
WO2020211535A1 (zh) 网络延迟控制方法、装置、电子设备及存储介质
WO2018120906A1 (zh) 缓存状态报告bsr上报触发方法、装置和用户终端
EP3185480B1 (en) Method and apparatus for processing network jitter, and terminal device
CN109698794B (zh) 一种拥塞控制方法、装置、电子设备及存储介质
CN107743096B (zh) 网络优化方法、装置、终端以及存储介质
CN108401479B (zh) 数据传输方法及装置、接收端设备和发送端设备
US10009283B2 (en) Method and device for processing information
CN109561356B (zh) 数据发送方法、数据发送装置、电子设备和计算机可读存储介质
US11375403B2 (en) Method and apparatus for detecting maximum transmission unit value
WO2018232561A1 (zh) 一种上报缓存状态报告的方法及装置
CN110138679B (zh) 数据流调度方法及装置
CN113965517A (zh) 网络传输方法、装置、电子设备及存储介质
WO2018195913A1 (zh) 一种发送缓存状态的方法及装置
US11665586B2 (en) Method and apparatus for data transmission, electronic device and computer readable storage medium
US11812386B2 (en) Configuration adjustment methods, apparatuses, electronic device and computer readable storage medium
WO2019148495A1 (zh) 系统消息接收方法和装置、系统消息发送方法和装置
WO2021073394A1 (zh) 一种数据传输方法、装置、电子设备及存储介质
CN115002007A (zh) 网络延迟判别方法、装置、电子设备及存储介质
CN109450595B (zh) 报文发送方法和装置
CN104618165B (zh) 一种网络评估方法及装置
WO2020097883A1 (zh) 传输消息的方法及装置
WO2020223969A1 (zh) 直连链路数据发送和直连链路资源配置方法以及装置
WO2024016344A1 (zh) 接收参数调整方法、装置及存储介质
CN115065643B (zh) 网络链路拥塞检测方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901546

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19901546

Country of ref document: EP

Kind code of ref document: A1