WO2020134323A1 - 一种辐射输出设备以及方法 - Google Patents

一种辐射输出设备以及方法 Download PDF

Info

Publication number
WO2020134323A1
WO2020134323A1 PCT/CN2019/110216 CN2019110216W WO2020134323A1 WO 2020134323 A1 WO2020134323 A1 WO 2020134323A1 CN 2019110216 W CN2019110216 W CN 2019110216W WO 2020134323 A1 WO2020134323 A1 WO 2020134323A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
module
output
feedback
electrical signal
Prior art date
Application number
PCT/CN2019/110216
Other languages
English (en)
French (fr)
Inventor
雷述宇
Original Assignee
宁波飞芯电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波飞芯电子科技有限公司 filed Critical 宁波飞芯电子科技有限公司
Priority to US17/417,258 priority Critical patent/US20220077653A1/en
Publication of WO2020134323A1 publication Critical patent/WO2020134323A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/139Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0657Mode locking, i.e. generation of pulses at a frequency corresponding to a roundtrip in the cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0078Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for frequency filtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC

Definitions

  • the embodiments of the present application relate to the technical field of microelectronics. More specifically, the embodiments of the present application relate to a radiation output device and method.
  • Semiconductor lasers are widely used in communications, medical treatment, material processing, laser display and distance measurement due to their advantages of small size, light weight, high efficiency and direct modulation.
  • the spectrum of the laser light output by the semiconductor laser is distributed within a certain range of the center wavelength, that is, the spectrum of the laser light output by the semiconductor laser is essentially composed of a plurality of wavelengths distributed within a certain range.
  • the interval between two adjacent wavelengths is the linewidth of the laser light output by the laser. The narrower the linewidth of the laser, the better the monochromaticity and coherence of the laser, and the wider the range of applications.
  • Narrow linewidth semiconductor lasers mainly include distributed Bragg reflector (DBR), distributed feedback laser (Distributed Feedback Laser, DFR), and external cavity lasers.
  • DBR distributed Bragg reflector
  • DFR distributed Feedback Laser
  • external cavity lasers have narrow linewidth, high output power and cost Low-end features are highly favored.
  • the output line width is optimized from the order of GHz to the order of KHz.
  • the narrow linewidth semiconductor laser will also use a grating as a mode selection filter to obtain a narrow linewidth output (ie, laser); but because the grating is susceptible to multiple factors such as ambient temperature and vibration, the narrow linewidth semiconductor laser is The output laser wavelength is unstable, and even the phenomenon of laser wavelength drift occurs.
  • a technical solution to solve the above-mentioned problems of the semiconductor laser.
  • a radiation output device including: a radiation generating module configured to generate initial radiation; and a filter module configured to reflect a portion of the initial radiation at a first preset wavelength to The radiation generating module, and transmits the portion of the initial radiation at the second preset wavelength, and the transmitted radiation is used as the output radiation of the radiation output device;
  • the detection feedback module is configured to use the output radiation Part or all of it is used as feedback radiation, and the adjustment module is adjusted according to the feedback radiation instruction adjustment module;
  • the adjustment module connected to the filter module, is configured to adjust the adjustment according to the instruction of the detection feedback module The position and/or angle of the filter module.
  • it further includes a beam splitting module configured to split the output radiation to obtain the feedback radiation and the subsequent output radiation;
  • the feedback radiation is configured as an incident light source of the detection feedback module, and the output radiation of the subsequent stage is configured as a working light source of the subsequent stage circuit.
  • the detection feedback module includes the following modules: a wave-locking module, a photoelectric conversion module, and a driving module; wherein the wave-locking module is configured to transmit the feedback radiation to filter out conforming to a preset Regular partial radiation; the photoelectric conversion module is configured to convert the selected partial radiation that meets the preset rule into an electrical signal; the drive module is configured to send a control signal to the adjustment module according to the electrical signal, The control signal is configured to control the adjustment module to adjust the position and/or angle of the filter module.
  • the preset rule includes the transmittance of the wave-locking module to the feedback radiation; and when the wavelength of the initial radiation is the first specified wavelength, the transmittance corresponds to Has the largest rate of change.
  • the driving module is further configured to: before sending the control signal to the adjustment module, compare the electrical signal with the reference electrical signal to obtain a comparison result; generate the comparison according to the comparison result control signal.
  • the reference electrical signal is an electrical signal converted by a portion of radiation transmitted from the feedback radiation when the wave-locking module has a maximum change rate corresponding to the transmittance.
  • the detection feedback module further includes an electrical signal processing module configured to amplify and/or convert the electrical signal output by the photoelectric conversion module and output it to the driving module.
  • it further includes a collimating module, the collimating module is disposed between the radiation module and the filtering module; and
  • the collimation module includes at least one lens element.
  • the filter module is a volume Bragg grating; and/or, the adjustment module is a piezoelectric ceramic element.
  • a radiation output method which is applied to the radiation output device according to any one of the first aspect, and includes: generating initial radiation; A part of a preset wavelength is reflected, and the part of the second preset wavelength of the initial radiation is transmitted, and the transmitted radiation is used as output radiation; part or all of the output radiation is used as feedback radiation, based on Adjust the position and/or angle of the filter module based on the feedback radiation.
  • the output radiation Spectroscopy is performed to obtain the feedback radiation and subsequent output radiation; wherein, the feedback radiation is configured as an incident light source of the detection feedback module, and the rear output radiation is configured as a light source for the subsequent circuit operation.
  • part or all of the output radiation is used as feedback radiation, and the position and/or angle of the filter module is adjusted according to the feedback radiation, specifically including: transmitting the feedback radiation To filter out a part of the radiation that meets the preset rules, convert the selected part of the radiation that meets the preset rules into an electrical signal, and control the adjustment module to adjust the position and/or angle of the filter module according to the electrical signal.
  • the preset rule includes the transmittance of the wave-locking module to the feedback radiation; and when the wavelength of the initial radiation is the first specified wavelength, the transmittance corresponds to Has the largest rate of change.
  • controlling the adjustment module according to the electrical signal to adjust the position and/or angle of the filter module specifically includes: comparing the electrical signal with a reference electrical signal to obtain a comparison result; according to the comparison result
  • the control and adjustment module adjusts the position and/or angle of the filter module.
  • the reference electrical signal is an electrical signal converted by a portion of radiation transmitted from the feedback radiation when the wave-locking module has a maximum change rate corresponding to the transmittance.
  • the method before adjusting the adjustment module to adjust the position and/or angle of the filter module according to the electrical signal, the method further includes: amplifying and/or converting the electrical signal.
  • the radiation output device further includes a collimating module, the collimating module is disposed between the radiation module and the filtering module; and the collimating module includes at least one lens element.
  • the filter module is a volume Bragg grating; and/or, the adjustment module is a piezoelectric ceramic element.
  • the filter module selectively reflects part of the radiation in the initial radiation back to the radiation generation module, and the closed-loop control formed by the detection feedback module, the adjustment module, and the filter module changes the radiation.
  • the cavity length and reflection direction of the resonant cavity of the output device not only helps to further enhance the intensity of the output radiation to obtain better monochromatic output radiation, further compress the output line width of the output radiation, but also helps in a limited space Achieve a better cavity length and further improve the performance of output radiation.
  • the simple structure of the present application reduces the number of packaged separate components and process complexity, and at the same time also greatly reduces the packaging space, product size and cost.
  • FIG. 1 schematically shows a schematic structural diagram of a radiation output device according to an embodiment of the present application
  • FIG. 2 schematically shows a transmission waveform diagram according to an embodiment of the present application
  • FIG. 3 schematically shows a schematic flowchart of a radiation output method according to an embodiment of the present application
  • the semiconductor laser currently uses a grating as a mode selection filter, which may cause the laser wavelength output by the semiconductor laser to be unstable, and even the phenomenon of laser wavelength drift.
  • the radiation output device includes at least a radiation generation module, a filter module, a detection feedback module and an adjustment module; wherein the radiation generation module is configured to generate initial radiation; the filter module is configured to reflect a portion of the initial preset wavelength at the initial radiation to the radiation generation Module, and transmits the part of the second preset wavelength in the initial radiation, using the transmitted radiation as the output radiation of the radiation output device; the detection feedback module is configured to obtain part or all of the output radiation as the feedback radiation, and according to the feedback The radiation is used to instruct the adjustment module to adjust the filter module; the adjustment module connected to the filter module is configured to adjust the position and/or angle of the filter module according to the indication of the detection feedback module.
  • This application selectively reflects part of the initial radiation back to the radiation generating module through the filtering module, thereby enhancing the intensity of the output radiation and compressing the line width of the output radiation; formed by the detection feedback module, the adjustment module and the filtering module Closed-loop control to further change the cavity length and reflection direction of the resonant cavity of the radiation output device, which helps to further enhance the intensity of the output radiation to obtain better monochromatic output radiation, and further compress the output line width of the output radiation. It helps to achieve a better cavity length in a limited space and further improve the performance of output radiation.
  • the simple structure of the present application reduces the number of packaged separate components and process complexity, and at the same time also greatly reduces the packaging space, product size and cost.
  • the embodiments of the present application can be applied to radiation output scenarios, especially laser output scenarios, such as narrow linewidth laser output scenarios in multiple fields such as lidar, aerospace, and communications.
  • the laser output devices involved in the embodiments of the present application include but are not limited to semiconductor lasers, laser chips, communication chips, and processor chips, which are not limited in the embodiments of the present application.
  • the radiation output device includes at least a radiation generation module, a filter module, a detection feedback module, and an adjustment module.
  • the specific modules/units in the radiation output device will be described and described below with reference to the drawings:
  • the radiation generating module is configured to generate initial radiation. Taking the initial radiation as a laser for example, the spectrum of the initial radiation is not all concentrated at the center wavelength determined by the transition energy level, but is distributed within a certain range of the center wavelength, that is, the spectrum of the initial radiation is distributed by a certain range Within multiple wavelengths. Optionally, when the wavelength of the initial radiation is the first specified wavelength, the change rate corresponding to the transmittance is the largest.
  • the filtering module is configured to reflect the portion of the first preset wavelength in the initial radiation to the radiation generating module, and transmit the portion of the second preset wavelength in the initial radiation, and use the transmitted radiation as the output radiation of the radiation output device.
  • the part of the initial radiation whose wavelength is the first preset wavelength is reflected to the radiation generating module, which can enhance the light intensity of the central wavelength single mode, thereby playing a role of suppressing other wavelength modes, and making the line width of the output radiation narrower.
  • the first preset wavelength is set to the center wavelength.
  • the filtering module may be a volume Bragg grating with good wavelength selection capability, such as a reflective volume Bragg grating (R-VBG) with a certain reflection function for the center wavelength. It should be noted that, in the embodiments of the present application, the filter module is not limited to a volume Bragg grating, and the filter module may also use other modules/elements.
  • the radiation output device further includes a beam splitting module.
  • the beam splitting module is located in the filtering module and the detection feedback module.
  • the beam splitting module is configured to split the output radiation to obtain feedback radiation and subsequent output radiation.
  • the feedback radiation is configured as an incident light source of the detection feedback module
  • the output radiation of the subsequent stage is configured as a working light source of the subsequent stage circuit.
  • the output radiation of the subsequent stage can be used as the working light source of the subsequent stage circuit shown in FIG. 1.
  • the detection feedback module is configured to use part or all of the output radiation as feedback radiation, and adjust the filtering module according to the feedback radiation instruction adjustment module.
  • the part input to the detection feedback module is used as feedback radiation, and the detection feedback module converts the feedback radiation into an electrical signal and compares A comparison result is obtained between the electrical signal and a preset reference electrical signal, so that the detection feedback module based on the comparison result can instruct the adjustment module to adjust the filter module.
  • the output radiation input to the detection feedback module is used as feedback radiation, and the detection feedback module
  • the feedback radiation is converted into an electrical signal, and the electrical signal is compared with a preset reference electrical signal to obtain a comparison result, so that the detection feedback module based on the comparison result can instruct the adjustment module to adjust the filter module.
  • the radiation input to the detection feedback module may also be only a part of the output radiation transmitted from the filter module, which is not limited herein.
  • the detection feedback module is composed of multiple sub-modules, that is, the detection feedback module includes the following modules: a wave-locking module, a photoelectric conversion module, and a driving module.
  • the detection feedback loop shown in FIG. 1 includes a wave-locking module, a photoelectric conversion module, an electrical signal processing module, and a driving module.
  • the wave-locking module is configured to transmit feedback radiation to filter out part of radiation that meets preset rules.
  • the preset rule includes the transmittance of the wave-locking module to the feedback radiation.
  • the transmittance of the wave-locking module changes with the change of wavelength, the transmittance of the wave-locking module to the center wavelength radiation and the transmission of the wave-locking module to the radiation of other wavelengths
  • the rate that is, the transmission rate of the wave-locking module has the largest rate of change when the radiation is at the center wavelength, so the photocurrent corresponding to the radiation transmitted by the wave-locking module also has a large difference, which helps from The input detects whether the wavelength of the incident radiation of the reflection module is the center wavelength.
  • the wave-locking module is an F-P etalon.
  • the photoelectric conversion module is configured to convert the selected part of the radiation that meets the preset rules into an electrical signal.
  • the magnitude of the electrical signal also changes accordingly, as shown in Figure 2 for the transmission waveform of the etalon.
  • the feedback radiation with a wavelength of 905nm in FIG. 2 as an example, when the transmission point of the wavelength at 905nm is at the maximum position of the slope of the transmission waveform diagram, the current generated by the wavelength less than 905nm has a relatively larger magnitude than the current generated by the wavelength of 905nm.
  • the photoelectric conversion module can convert the change in the current value caused by the wavelength change into a detection current (ie. Signal), the detection current is configured to be input to the drive module.
  • the drive module is configured to send a control signal to the adjustment module according to the electrical signal converted by the feedback radiation, and the control signal is configured to control the adjustment module to adjust the position and/or angle of the filter module.
  • the drive module is further configured to compare the electrical signal with a preset reference electrical signal to obtain a comparison result, and generate a control signal according to the comparison result.
  • the drive module detects whether the electrical signal converted by the feedback radiation deviates from the preset reference electrical signal, and generates a control signal and sends it to the adjustment module if the electrical signal deviates from the reference electrical signal. .
  • the reference electrical signal is an electrical signal converted from part of the radiation transmitted from the feedback radiation when the wave-locking module has the largest change rate corresponding to the transmittance, that is, the value of the reference electrical signal is equal to the transmittance of the wave-locking module
  • the magnitude of the converted electrical signal at the portion where the change rate is maximum is the magnitude of the electrical signal value corresponding to the point with the largest slope in the transmission waveform diagram shown in FIG. 2.
  • the detection feedback module further includes an electrical signal processing module.
  • the electrical signal processing module is configured to amplify the electrical signal output by the photoelectric conversion module and output the amplified electrical signal to the driving module.
  • the amplified electrical signal helps the driver module get a more accurate control signal, which helps to adjust the filter module more accurately to improve the output line width and optimize the output radiation performance.
  • the electrical signal processing module may also be configured to transform the electrical signal output by the photoelectric conversion module, and output the transformed electrical signal to the driving module. Taking the adjustment module as a piezoelectric ceramic element as an example, in this case, the electrical signal processing module can convert the current signal into a voltage signal, so that the piezoelectric ceramic element can be accurately regulated by means of voltage control.
  • the adjustment module is configured to adjust the position and/or angle of the filter module according to the indication of the detection feedback module.
  • the adjustment module is electrically connected to the filter module.
  • the adjustment module is preferably a lead zirconate titanate piezoelectric ceramic device (PZT).
  • PZT lead zirconate titanate piezoelectric ceramic device
  • the lead zirconate titanate piezoelectric ceramic device can be quickly and accurately positioned, its micro displacement is proportional to the input voltage, and the response time is in the order of microseconds .
  • the adjustment module is not limited to a piezoelectric ceramic element, and the adjustment module may also use other modules/elements.
  • the radiation output device is also preferably provided with a collimation module.
  • the collimating module is disposed between the radiation module and the filtering module; and, the collimating module includes at least one lens element.
  • the injected electrical power is converted into heat to cause the temperature of the radiation generation module to rise, but the temperature increase will cause the laser radiation source
  • the output power drops and the wavelength drifts, so there is a heat dissipation module at the bottom of the radiation generation module.
  • the radiation generating module is a laser radiation source
  • the filtering module is a reflective volume Bragg grating
  • the beam splitting module is a beam splitter
  • the collimating module is a collimating mirror
  • the first preset wavelength is 905nm
  • detection feedback The module includes FP etalon (ie wave-locking module), photodiode (ie photoelectric conversion module), electrical signal processing module and drive module
  • the adjustment module is PZT
  • the initial radiation generated by the laser radiation source enters the reflective volume Bragg grating
  • the reflective volume Bragg grating reflects the portion of the initial radiation with a wavelength of 905 nm into the laser radiation source through a collimating mirror, where the reflectivity is greater than or equal to 90%; the radiation reflected back to the laser radiation source passes through the reflective volume Bragg grating Filtering, which results in a narrower output linewidth, which helps to induce more single-frequency lasers, suppress radiation in other spectrum ranges, and further
  • the reflective volume Bragg grating transmits the output radiation from the initial radiation to the detection feedback module through the spectroscopic processing of the beam splitter, and transmits the part of the radiation with a wavelength of 905 nm in the feedback radiation to the photodiode through the FP etalon, and the photodiode transmits this part
  • the radiation is converted into detection current and output to the electrical signal processing module.
  • the PZT is controlled by the drive module to adjust the micro-displacement of the reflective body Bragg grating to control the reflective body
  • the rotation of the Bragg grating and the forward and backward movement distance in the direction of the optical path can obtain the best reflection angle and cavity length, and realize the output of narrow line width.
  • the filter module selectively reflects part of the radiation in the initial radiation, and detects part or all of the output radiation to adjust the position and/or angle of the filter module to form a closed-loop control to change the radiation
  • the cavity length and reflection direction of the resonant cavity of the output device which not only helps to increase the intensity of the output radiation to obtain a better monochromatic laser output, but also helps to compress the output line width of the output radiation, and also helps in a limited space It achieves a better cavity length inside, further improving the output radiation performance.
  • the portion of the initial radiation whose wavelength is the first preset wavelength is reflected to the radiation generation module, which can enhance the light intensity of the central wavelength single mode, thereby playing a role of suppressing other wavelength modes, and making the line width of the output radiation narrower.
  • the first preset wavelength is set to the center wavelength; preferably, the filter module may be a volume Bragg grating with good wavelength selection capability, such as a reflective volume Bragg grating (R- VBG). It should be noted that, in the embodiments of the present application, the filter module is not limited to a volume Bragg grating, and the filter module may also use other modules/elements.
  • the output radiation is split to obtain feedback radiation and subsequent output radiation.
  • the feedback radiation is configured as an incident light source of the detection feedback module
  • the output radiation of the subsequent stage is configured as a working light source of the subsequent stage circuit.
  • the output radiation of the subsequent stage can be used as the working light source of the subsequent stage circuit shown in FIG. 1.
  • some or all of the output radiation is used as feedback radiation to adjust the position and/or angle of the filter module according to the feedback radiation.
  • a possible implementation manner may be: transmitting feedback radiation to filter out a part of radiation that meets a preset rule, and convert the selected part of the radiation that meets a preset rule into an electrical signal, so as to control the adjustment module according to the electrical signal Adjust the position and/or angle of the filter module.
  • the preset rule includes but is not limited to the transmittance of the wave-locking module to the feedback radiation. Further, when the wavelength of the initial radiation is the first specified wavelength, the change rate corresponding to the transmittance is the largest.
  • an implementation method of controlling the adjustment module to adjust the position and/or angle of the filter module according to the electrical signal may be: comparing the electrical signal with the reference electrical signal to obtain a comparison result, and according to the comparison As a result, the control and adjustment module adjusts the position and/or angle of the filter module.
  • the reference electrical signal may be an electrical signal converted by partial radiation transmitted from the feedback radiation when the wave-locking module corresponds to the maximum change rate corresponding to the transmittance.
  • amplify and/or convert the electrical signal converted from a part of radiation that meets a preset rule before adjusting the position and/or angle of the filter module according to the electrical signal control adjustment module.
  • the radiation output device is also preferably provided with a collimation module, which is disposed between the radiation module and the filter module, and the collimation module includes at least one lens element.
  • the position and/or angle of the filter module may be adjusted through the adjustment module.
  • the adjustment module can be a piezoelectric ceramic element, especially a lead zirconate titanate piezoelectric ceramic device (PZT).
  • PZT lead zirconate titanate piezoelectric ceramic device
  • the lead zirconate titanate piezoelectric ceramic device can be quickly and accurately positioned. Its micro displacement is proportional to the input voltage, and the response time is Microsecond level.
  • the adjustment module is not limited to a piezoelectric ceramic element, and the adjustment module may also use other modules/elements.

Abstract

一种辐射输出设备以及方法。辐射输出设备包括:辐射生成模块,配置成产生初始辐射;滤波模块,配置成将初始辐射中第一预设波长的部分反射至辐射生成模块,并对初始辐射中第二预设波长的部分进行透射,以透射出的辐射作为辐射输出装置的输出辐射;检测反馈模块,配置成以输出辐射中的部分或全部作为反馈辐射,根据反馈辐射指示调节模块对滤波模块进行调整;调节模块,与滤波模块相连,配置成根据检测反馈模块的指示来调整滤波模块的位置和/或角度。

Description

一种辐射输出设备以及方法
相关申请的交叉引用
本申请要求于2018年12月24日提交中国专利局的申请号为CN201811583864.5、名称为“一种辐射输出设备以及方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请的实施方式涉及微电子技术领域,更具体地,本申请的实施方式涉及一种辐射输出设备以及方法。
背景技术
本部分旨在为权利要求书中陈述的本申请的实施方式提供背景或上下文。此处的描述不因为包括在本部分中就承认是现有技术。
半导体激光器因其具有体积小、重量轻、效率高和可直接调制等优点,广泛应用于通信、医疗、材料加工、激光显示及测距等多个领域。半导体激光器所输出激光的光谱分布于中心波长的一定范围内,即半导体激光器所输出激光的光谱实质上是由分布于一定范围内的多个波长组成的。当激光器所输出的激光光强从峰值下降到峰值的二分之一时,相邻两个波长之间的间隔即为激光器所输出激光的线宽。激光器的线宽越窄,激光器的单色性和相干性越好,应用范围也越为广泛。
窄线宽半导体激光器主要有分布式布拉格反射器(Distributed Bragg Reflector,DBR)、分布反馈激光器(Distributed Feedback Laser,DFR)以及外腔式激光器,其中外腔式激光器由于线宽窄、输出功率高且成本低等特点而备受青睐。但由于如激光雷达、航天航空和通信等高新领域对激光线宽的要求不断提高,目前窄线宽半导体激光器的线宽量级已经无法满足这些领域的需求,因此亟待将窄线宽半导体激光器的输出线宽从GHz量级优化为KHz量级。此外,窄线宽半导体激光器还会采用光栅作为选模滤波器,以获得窄线宽输出(即激光);但由于光栅易受到环境温度和振动等多因素的影响,导致窄线宽半导体激光器所输出的激光波长不稳定,甚至出现激光波长漂移的现象。综上,亟待提出一种技术方案用以解决半导体激光器存在的上述问题。
发明内容
为了克服现有技术存在的问题,本申请中提出了一种辐射输出设备以及方法。
本申请实施方式的第一方面中,提供了一种辐射输出装置,包括:辐射生成模块,配置成产生初始辐射;滤波模块,配置成将所述初始辐射中第一预设波长的部分反射至所述辐射生成模块,并对所述初始辐射中第二预设波长的部分进行透射,以透射出的辐射作为所述辐射输出装置的输出辐射;检测反馈模块,配置成以所述输出辐射中的部分或全部作为反馈辐射,根据所述反馈辐射指示调节模块对所述滤波模块进行调整;所述调节模块,与所述滤波模块相连,配置成根据所述检测反馈模块的指示来调整所述滤波模块的位置和/或角度。
在本申请的一个实施例中,还包括分光模块,配置成对所述输出辐射进行分光以获得所述反馈辐射和后级输出辐射;
其中,所述反馈辐射配置成作为所述检测反馈模块的入射光源,所述后级输出辐射配置成作为后级电路工作光源。
在本申请的一个实施例中,所述检测反馈模块包括以下模块:锁波模块、光电转换模块和驱动模块;其中所述锁波模块配置成对所述反馈辐射进行透射以筛选出符合预设规则的部分辐射;所述光电转化模块配置成将筛选出的符合所述预设规则的部分辐射转化为电信号;所述驱动模块配置成依据所述电信号向所述调节模块发送控制信号,所述控制信号配置成控制所述调节模块对所述滤波模块的位置和/或角度进行调整。
在本申请的一个实施例中,所述预设规则包括所述锁波模块对所述反馈辐射的透射率;且当所述初始辐射的波长为所述第一指定波长时所述透射率对应的变化率最大。
在本申请的一个实施例中,所述驱动模块还配置成:在向所述调节模块发送控制信号之前,比较所述电信号与参考电信号以获取比较结果;根据所述比较结果生成所述控制信号。
在本申请的一个实施例中,所述参考电信号是所述锁波模块在所述透射率对应的变化率最大时从所述反馈辐射中透射出的部分辐射所转化的电信号。
在本申请的一个实施例中,所述检测反馈模块还包括电信号处理模块,配置成对所述光电转化模块输出的所述电信号进行放大和/或转化并输出至驱动模块。
在本申请的一个实施例中,还包括准直模块,所述准直模块设置于所述辐射模块和所 述滤波模块之间;且
所述准直模块包括至少一个透镜元件。
在本申请的一个实施例中,所述滤波模块为体布拉格光栅;和/或,所述调节模块为压电陶瓷元件。
在本申请实施方式的第二方面中,提供了一种辐射输出方法,应用于如第一方面任一所述的辐射输出装置,包括:产生初始辐射;通过滤波模块对所述初始辐射中第一预设波长的部分进行反射,并对所述初始辐射中第二预设波长的部分进行透射,以透射出的辐射作为输出辐射;以所述输出辐射中的部分或全部作为反馈辐射,依据于所述反馈辐射来调整所述滤波模块的位置和/或角度。
在本申请的一个实施例中,在对所述初始辐射中第二预设波长的部分进行透射之后,依据于所述反馈辐射来调整所述滤波模块的位置和/或角度之前,对输出辐射进行分光以获得所述反馈辐射和后级输出辐射;其中,所述反馈辐射配置成作为所述检测反馈模块的入射光源,所述后级输出辐射配置成作为后级电路工作光源。
在本申请的一个实施例中,以所述输出辐射中的部分或全部作为反馈辐射,依据于所述反馈辐射来调整所述滤波模块的位置和/或角度,具体包括:对反馈辐射进行透射以筛选出符合预设规则的部分辐射,将筛选出的符合预设规则的这部分辐射转化为电信号,根据该电信号控制调节模块对滤波模块的位置和/或角度进行调整。
在本申请的一个实施例中,所述预设规则包括所述锁波模块对所述反馈辐射的透射率;且当所述初始辐射的波长为所述第一指定波长时所述透射率对应的变化率最大。
在本申请的一个实施例中,根据该电信号控制调节模块对滤波模块的位置和/或角度进行调整,具体包括:比较所述电信号与参考电信号以获取比较结果;根据所述比较结果控制调节模块对滤波模块的位置和/或角度进行调整。
在本申请的一个实施例中,所述参考电信号是所述锁波模块在所述透射率对应的变化率最大时从所述反馈辐射中透射出的部分辐射所转化的电信号。
在本申请的一个实施例中,在根据该电信号控制调节模块对滤波模块的位置和/或角度进行调整之前,还包括:对所述电信号进行放大和/或转化。
在本申请的一个实施例中,辐射输出设备还包括准直模块,所述准直模块设置于所述辐射模块和所述滤波模块之间;且所述准直模块包括至少一个透镜元件。
在本申请的一个实施例中,所述滤波模块为体布拉格光栅;和/或,所述调节模块为压电陶瓷元件。
本申请实施例提供的技术方案中,通过滤波模块选择性地将初始辐射中的部分辐射反射回到辐射生成模块,以及由检测反馈模块、调节模块以及滤波模块所形成的闭环控制,改变了辐射输出装置谐振腔的腔长和反射方向,从而既有助于进一步增强输出辐射的光强以获得单色性更好的输出辐射,进一步压缩输出辐射的输出线宽,也有助于在有限空间内达到更优的腔长,进一步提升输出辐射的性能。此外,本申请结构简单,减少了封装的分离组件的数目和工艺复杂度,同时也使得封装空间、产品的尺寸及成本大幅减小。
附图说明
通过参考附图阅读下文的详细描述,本申请示例性实施方式的上述以及其他目的、特征和优点将变得易于理解。在附图中,以示例性而非限制性的方式示出了本申请的若干实施方式,其中:
图1示意性地示出了根据本申请实施例涉及的一种辐射输出设备的结构示意图;
图2示意性地示出了根据本申请实施例涉及的透射波形图;
图3示意性地示出了根据本申请实施例涉及的一种辐射输出方法的流程示意图;
在附图中,相同或对应的标号表示相同或对应的部分。
具体实施方式
下面将参考若干示例性实施方式来描述本申请的原理和精神。应当理解,给出这些实施方式仅仅是为了使本领域技术人员能够更好地理解进而实现本申请,而并非以任何方式限制本申请的范围。相反,提供这些实施方式是为了使本申请更加透彻和完整,并且能够将本申请的范围完整地传达给本领域的技术人员。
发明人发现,目前半导体激光器的输出线宽多为GHz量级,无法满足激光雷达、航天航空和通信等高新领域对激光线宽的要求。此外,目前半导体激光器采用光栅作为选模滤波器,还会导致半导体激光器所输出的激光波长不稳定,甚至出现激光波长漂移的现象。
为了克服现有技术存在的问题,本申请中提出了一种辐射输出设备以及方法。该辐射输出设备至少包括辐射生成模块、滤波模块、检测反馈模块以及调节模块;其中辐射生成模块配置成产生初始辐射;滤波模块配置成将初始辐射中第一预设波长的部分反射至该辐 射生成模块,并对初始辐射中第二预设波长的部分进行透射,以透射出的辐射作为辐射输出装置的输出辐射;检测反馈模块配置成获取输出辐射中的部分或全部作为反馈辐射,并根据反馈辐射来指示调节模块对滤波模块进行调整;调节模块与滤波模块相连的调节模块配置成根据检测反馈模块的指示来调整滤波模块的位置和/或角度。
本申请通过滤波模块选择性地将初始辐射中的部分辐射反射回到辐射生成模块,从而增强输出辐射的光强,压缩输出辐射的线宽;由检测反馈模块、调节模块以及滤波模块所形成的闭环控制,进一步改变辐射输出装置谐振腔的腔长和反射方向,从而既有助于进一步增强输出辐射的光强以获得单色性更好的输出辐射,进一步压缩输出辐射的输出线宽,也有助于在有限空间内达到更优的腔长,进一步提升输出辐射的性能。此外,本申请结构简单,减少了封装的分离组件的数目和工艺复杂度,同时也使得封装空间、产品的尺寸及成本大幅减小。
在介绍了本申请的基本原理之后,下面具体介绍本申请的各种非限制性实施方式。
本申请实施例可以应用于辐射输出场景,尤其是激光输出场景,例如激光雷达、航天航空和通信等多个领域下的窄线宽激光输出场景。本申请实施例涉及的激光输出设备包括但不限于半导体激光器、激光器芯片、通信芯片和处理器芯片,本申请实施例中并不限定。
下面结合上文所示的应用场景来描述根据本申请示例性实施方式的结构。需要注意的是,上述应用场景仅是为了便于理解本申请的精神和原理而示出,本申请的实施方式在此方面不受任何限制。相反,本申请的实施方式可以应用于适用的任何场景。
本申请实施例提供的一种辐射输出设备,参见图1,该辐射输出设备至少包括辐射生成模块、滤波模块、检测反馈模块以及调节模块。下面将结合附图对该辐射输出设备中的具体模块/单元进行说明介绍:
辐射生成模块配置成产生初始辐射。以初始辐射是激光为例,初始辐射的光谱并不全部集中于由跃迁能级所决定的中心波长处,而是分布于中心波长的一定范围内,即初始辐射的光谱是由分布于一定范围内多个波长组成的。可选地,当初始辐射的波长为第一指定波长时透射率对应的变化率最大。
滤波模块配置成将初始辐射中第一预设波长的部分反射至辐射生成模块,并对初始辐射中第二预设波长的部分进行透射,以透射出的辐射作为辐射输出装置的输出辐射。初始辐射中波长为第一预设波长的部分反射至辐射生成模块,可以增强中心波长单模的光强,从而起到抑制其他波长模式的作用,使得输出辐射的线宽更窄。可选地,第一预设波长设 置为中心波长。较佳地,滤波模块可以是具有良好的波长选择能力的体布拉格光栅,例如对中心波长具有一定反射功能的反射式体布拉格光栅(R-VBG)。需要说明的是,本申请实施例中并不限定滤波模块为体布拉格光栅,滤波模块也可以采用其他模块/元件。
可选地,辐射输出设备还包括分光模块,该分光模块位于滤波模块和检测反馈模块,该分光模块配置成对输出辐射进行分光以获得反馈辐射和后级输出辐射。其中,反馈辐射配置成作为检测反馈模块的入射光源,后级输出辐射配置成作为后级电路工作光源,例如后级输出辐射可以作为图1所示的后级电路的工作光源。
检测反馈模块,配置成以输出辐射中的部分或全部作为反馈辐射,根据反馈辐射指示调节模块对滤波模块进行调整。一种可能的实现方式中,从滤波模块透射出的输出辐射中部分输入到检测反馈模块之后,以输入该检测反馈模块的部分作为反馈辐射,检测反馈模块将反馈辐射转换为电信号,并比较该电信号与预设的参考电信号得到比较结果,从而根据该比较结果检测反馈模块可以指示调节模块对滤波模块进行调整。另一种实现方式中,在预设的滤波模块调整周期内,从滤波模块透射出的输出辐射中全部输入到检测反馈模块之后,以输入该检测反馈模块的输出辐射作为反馈辐射,检测反馈模块将该反馈辐射转换为电信号,并比较该电信号与预设的参考电信号得到比较结果,从而根据该比较结果检测反馈模块可以指示调节模块对滤波模块进行调整。需要注意的是,在预设的滤波模块调整周期内,输入到检测反馈模块的辐射也可以仅是从滤波模块透射出的输出辐射中的部分,此处并不限定。
在一种可能的实施例中,检测反馈模块由多个子模块组成,即检测反馈模块包括以下模块:锁波模块、光电转换模块和驱动模块。例如图1所示的检测反馈回路,该检测反馈回路即包括锁波模块、光电转换模块、电信号处理模块以及驱动模块。
其中,锁波模块配置成对反馈辐射进行透射以筛选出符合预设规则的部分辐射。可选地,预设规则包括锁波模块对反馈辐射的透射率。以锁波模块为波长锁定的选模元件为例,锁波模块的透射率随着波长的变化而变化,该锁波模块对于中心波长辐射的透射率与该锁波模块对于其他波长辐射的透射率存在明显差异,即该锁波模块的透射率在辐射处于中心波长处时的变化率最大,因此经该锁波模块透射的辐射所对应的光电流也存在较大差异,这样有助于从输入检测反射模块的入射辐射波长是否为中心波长。可选地,锁波模块为F-P标准具。
光电转化模块配置成将筛选出的符合预设规则的部分辐射转化为电信号。随着锁波模块的透射率变化,该电信号的大小也相应变化,如图2所示为标准具的透射波形图所示。 以图2中波长为905nm的反馈辐射为例,当905nm的波长透射点在透射波形图的斜率最大位置时,小于905nm的波长所产生的电流大小相较于905nm波长所产生的电流大小存在较大差异,大于905nm的波长所产生的电流大小相较于905nm波长所产生的电流大小存在较大差异;此情况下光电转化模块可以将波长变化导致的电流值大小变化转换为探测电流(即电信号)的变化,该探测电流配置成输入驱动模块。
驱动模块配置成依据于反馈辐射所转换得到的电信号来向调节模块发送控制信号,控制信号配置成控制调节模块对滤波模块的位置和/或角度进行调整。在向调节模块发送控制信号之前,驱动模块还配置成比较电信号与预设的参考电信号以获取比较结果,根据该比较结果生成控制信号。一种可能的实现方式中,驱动模块检测反馈辐射所转换得到的电信号与预设的参考电信号是否存在偏差,若检测到电信号与参考电信号存在偏差则生成控制信号并向调节模块发送。可选地,参考电信号是锁波模块在透射率对应的变化率最大时从反馈辐射中透射出的部分辐射所转化的电信号,也即参考电信号的取值等于锁波模块透射率的变化率最大时透射出的部分所转换的电信号的大小,即如图2所示的透射波形图中斜率最大的点所对应的电信号值的大小。
可选地,检测反馈模块还包括电信号处理模块。该电信号处理模块配置成对光电转化模块输出的电信号进行放大,并将经过放大后的电信号输出至驱动模块。通过放大的电信号有助于驱动模块得到更准确的控制信号,从而有助于更准确地调整滤波模块以改善输出线宽,优化输出辐射的性能。该电信号处理模块也可以配置成对光电转化模块输出的电信号进行转化,并将经过转化后的电信号输出至驱动模块。以调节模块为压电陶瓷元件为例,此情况下电信号处理模块可将电流信号转化为电压信号,以便于通过电压控制的方式实现压电陶瓷元件的精准调控。
调节模块配置成根据检测反馈模块的指示来调整滤波模块的位置和/或角度。可选地,调节模块与滤波模块电相连。通过调整滤波模块的位置和/或角度可以改变腔长和反射方向,既有助于滤波模块反射回的光可以准确进入激光辐射源,还有助于有限的封装空间内获取更佳的腔长。
可选地,调节模块优选为锆钛酸铅压电陶瓷器件(PZT),锆钛酸铅压电陶瓷器件可快速精准定位,其微位移量与输入电压成比例关系,响应时间为微秒级。本申请实施例中并不限定调节模块为压电陶瓷元件,调节模块也可以采用其他模块/元件。
由于辐射在快轴和慢轴上均会产生发散,因此辐射输出设备还优选地设有准直模块。准直模块设置于辐射模块和滤波模块之间;并且,准直模块包括至少一个透镜元件。
由于辐射生成模块工作过程中不可避免地存在各种非辐射复合损耗、自由载流子吸收等损耗机制,从而使注入的电功率转化为热量引起辐射生成模块温度升高,但升温会导致激光辐射源输出功率的下降以及波长的漂移,因此辐射生成模块底部还设有散热模块。
举例说明,假设中心波长为905nm,辐射生成模块为激光辐射源,滤波模块为反射式体布拉格光栅,分光模块为分光镜,准直模块为准直镜,第一预设波长为905nm,检测反馈模块包括F-P标准具(即锁波模块)、光电二极管(即光电转化模块)、电信号处理模块和驱动模块,调节模块为PZT,则激光辐射源所产生的初始辐射进入反射式体布拉格光栅,该反射式体布拉格光栅将初始辐射中波长为905nm的部分经由准直镜反射至激光辐射源中,其中反射率大于或等于90%;反射回到激光辐射源的辐射由于经过反射式体布拉格光栅的滤波,从而获得了较窄的输出线宽,有助于诱导获得更多的单频激光,抑制其他频谱范围的辐射,进一步压缩线宽,进而使得辐射输出装置的输出线宽可下降到100KHz量级。
反射式体布拉格光栅从初始辐射中透射出输出辐射经分光镜的分光处理进入检测反馈模块,通过F-P标准具将反馈辐射中波长为905nm的部分辐射透射至光电二极管中,该光电二极管将这部分辐射转化为探测电流输出至电信号处理模块,由电信号处理模块进行放大并转化为电压信号后,通过驱动模块来控制PZT对反射式体布拉格光栅进行微位移量的调节,从而控制反射式体布拉格光栅的转动和沿光路方向的前后移动距离,以获得最佳的反射角度和腔长,实现窄线宽输出。
本申请实施例提供的一种辐射输出方法,参见图3,该方法包括以下步骤:
S301、产生初始辐射;
S302、通过滤波模块对初始辐射中第一预设波长的部分进行反射,并对初始辐射中第二预设波长的部分进行透射,以透射出的辐射作为输出辐射;
S303、以输出辐射中的部分或全部作为反馈辐射,依据于反馈辐射来调整该滤波模块的位置和/或角度。
本申请实施例提供的辐射输出方法中,通过滤波模块选择性地反射初始辐射中的部分辐射,并检测输出辐射中部分或全部来调整滤波模块的位置和/或角度形成闭环控制,以改变辐射输出装置谐振腔的腔长和反射方向,这样不仅有助于增强输出辐射的光强以获得单色性更好的激光输出,也有助于压缩输出辐射的输出线宽,也有助于在有限空间内达到更优的腔长,进一步提升输出辐射的性能。
S302中,初始辐射中波长为第一预设波长的部分反射至辐射生成模块,可以增强中心 波长单模的光强,从而起到抑制其他波长模式的作用,使得输出辐射的线宽更窄。可选地,第一预设波长设置为中心波长;较佳地,滤波模块可以是具有良好的波长选择能力的体布拉格光栅,例如对中心波长具有一定反射功能的反射式体布拉格光栅(R-VBG)。需要说明的是,本申请实施例中并不限定滤波模块为体布拉格光栅,滤波模块也可以采用其他模块/元件。
在S302之后,S303之前,对输出辐射进行分光以获得反馈辐射和后级输出辐射。其中,反馈辐射配置成作为检测反馈模块的入射光源,后级输出辐射配置成作为后级电路工作光源,例如后级输出辐射可以作为图1所示的后级电路的工作光源。
S303中,以输出辐射中的部分或全部作为反馈辐射从而依据于反馈辐射来调整滤波模块的位置和/或角度的具体实现方式有多种,本申请实施例并不限定。一种可能的实现方式可以为:对反馈辐射进行透射以筛选出符合预设规则的部分辐射,将筛选出的符合预设规则的这部分辐射转化为电信号,从而根据该电信号控制调节模块对滤波模块的位置和/或角度进行调整。预设规则包括但不限于锁波模块对反馈辐射的透射率,进一步地,当初始辐射的波长为第一指定波长时透射率对应的变化率最大。
可选地,S303中根据电信号控制调节模块对滤波模块的位置和/或角度进行调整的实现方法,例如其中一种可以为:比较电信号与参考电信号以获取比较结果,根据所述比较结果控制调节模块对滤波模块的位置和/或角度进行调整。进一步地,参考电信号可以是锁波模块在透射率对应的变化率最大时从反馈辐射中透射出的部分辐射所转化的电信号。进一步地,在根据该电信号控制调节模块对滤波模块的位置和/或角度进行调整之前,对符合预设规则的部分辐射转换而来的电信号进行放大和/或转化。
由于辐射在快轴和慢轴上均会产生发散,因此辐射输出设备还优选设有准直模块,该准直模块设置于辐射模块和滤波模块之间,且准直模块包括至少一个透镜元件。
可选地,S303中可以通过调节模块来调整滤波模块的位置和/或角度。调节模块可以为压电陶瓷元件,尤其是锆钛酸铅压电陶瓷器件(PZT),锆钛酸铅压电陶瓷器件可快速精准定位,其微位移量与输入电压成比例关系,响应时间为微秒级。本申请实施例中并不限定调节模块为压电陶瓷元件,调节模块也可以采用其他模块/元件。
需要说明的是,图3所示方法应用于上文图1所示的辐射输出装置中任一实施例类似,相似之处相互参见,此处不再赘述。
应当注意,尽管在上文详细描述中提及了装置的若干单元/模块或子单元/模块,但是这 种划分仅仅是示例性的并非强制性的。实际上,根据本申请的实施方式,上文描述的两个或更多单元/模块的特征和功能可以在一个单元/模块中具体化。反之,上文描述的一个单元/模块的特征和功能可以进一步划分为由多个单元/模块来具体化。
此外,尽管在附图中以特定顺序描述了本申请方法的操作,但是,这并非要求或者暗示必须按照该特定顺序来执行这些操作,或是必须执行全部所示的操作才能实现期望的结果。附加地或备选地,可以省略某些步骤,将多个步骤合并为一个步骤执行,和/或将一个步骤分解为多个步骤执行。
虽然已经参考若干具体实施方式描述了本申请的精神和原理,但是应该理解,本申请并不限于所公开的具体实施方式,对各方面的划分也不意味着这些方面中的特征不能组合以进行受益,这种划分仅是为了表述的方便。本申请旨在涵盖所附权利要求的精神和范围内所包括的各种修改和等同布置。

Claims (10)

  1. 一种辐射输出装置,其特征在于,包括:
    辐射生成模块,配置成产生初始辐射;
    滤波模块,配置成将所述初始辐射中第一预设波长的部分反射至所述辐射生成模块,并对所述初始辐射中第二预设波长的部分进行透射,以透射出的辐射作为所述辐射输出装置的输出辐射;
    检测反馈模块,配置成以所述输出辐射中的部分或全部作为反馈辐射,根据所述反馈辐射指示调节模块对所述滤波模块进行调整;
    所述调节模块,与所述滤波模块相连,配置成根据所述检测反馈模块的指示来调整所述滤波模块的位置和/或角度。
  2. 如权利要求1所述的装置,其特征在于,还包括分光模块,配置成对所述输出辐射进行分光以获得所述反馈辐射和后级输出辐射;
    其中,所述反馈辐射配置成作为所述检测反馈模块的入射光源,所述后级输出辐射配置成作为后级电路工作光源。
  3. 如权利要求2所述的装置,其特征在于,所述检测反馈模块包括以下模块:锁波模块、光电转换模块和驱动模块;其中
    所述锁波模块配置成对所述反馈辐射进行透射以筛选出符合预设规则的部分辐射;
    所述光电转化模块配置成将筛选出的符合所述预设规则的部分辐射转化为电信号;
    所述驱动模块配置成依据所述电信号向所述调节模块发送控制信号,所述控制信号配置成控制所述调节模块对所述滤波模块的位置和/或角度进行调整。
  4. 如权利要求3所述的装置,其特征在于,所述预设规则包括所述锁波模块对所述反馈辐射的透射率;且
    当所述初始辐射的波长为所述第一指定波长时所述透射率对应的变化率最大。
  5. 如权利要求3所述的装置,其特征在于,所述驱动模块还配置成:
    在向所述调节模块发送控制信号之前,比较所述电信号与参考电信号以获取比较结果;根据所述比较结果生成所述控制信号。
  6. 如权利要求5所述的装置,其特征在于,所述参考电信号是所述锁波模块在所述透射率对应的变化率最大时从所述反馈辐射中透射出的部分辐射所转化的电信号。
  7. 如权利要求3至6任一所述的装置,其特征在于,所述检测反馈模块还包括电信号处理模块,配置成对所述光电转化模块输出的所述电信号进行放大和/或转化并输出至驱动模块。
  8. 如权利要求1所述的装置,其特征在于,还包括准直模块,所述准直模块设置于所述辐射模块和所述滤波模块之间;且
    所述准直模块包括至少一个透镜元件。
  9. 如权利要求1所述的装置,其特征在于,所述滤波模块为体布拉格光栅;和/或,所述调节模块为压电陶瓷元件。
  10. 一种辐射输出方法,应用于如权利要求1至权利要求9任一所述的辐射输出装置,其特征在于,包括:
    产生初始辐射;
    通过滤波模块对所述初始辐射中第一预设波长的部分进行反射,并对所述初始辐射中第二预设波长的部分进行透射,以透射出的辐射作为输出辐射;
    以所述输出辐射中的部分或全部作为反馈辐射,依据于所述反馈辐射来调整所述滤波模块的位置和/或角度。
PCT/CN2019/110216 2018-12-24 2019-10-09 一种辐射输出设备以及方法 WO2020134323A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/417,258 US20220077653A1 (en) 2018-12-24 2019-10-09 Radiation output device and method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811583864.5A CN109672084B (zh) 2018-12-24 2018-12-24 一种辐射输出设备以及方法
CN201811583864.5 2018-12-24

Publications (1)

Publication Number Publication Date
WO2020134323A1 true WO2020134323A1 (zh) 2020-07-02

Family

ID=66147584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110216 WO2020134323A1 (zh) 2018-12-24 2019-10-09 一种辐射输出设备以及方法

Country Status (3)

Country Link
US (1) US20220077653A1 (zh)
CN (1) CN109672084B (zh)
WO (1) WO2020134323A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109672084B (zh) * 2018-12-24 2020-07-03 宁波飞芯电子科技有限公司 一种辐射输出设备以及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249400A (ja) * 2010-05-24 2011-12-08 Mitsutoyo Corp レーザ光源の調整システム、及びレーザ光源の調整方法
CN103779778A (zh) * 2013-12-16 2014-05-07 中国电子科技集团公司第四十一研究所 一种中波红外激光功率稳定装置及稳定方法
CN105511029A (zh) * 2014-09-25 2016-04-20 青岛海信宽带多媒体技术有限公司 一种光模块及光模块中激光器波长偏移的调整方法、装置
CN106802186A (zh) * 2017-02-24 2017-06-06 中国科学院上海技术物理研究所 基于声光调制激光波长跟随滤光的智能型窄带滤光系统
CN109672084A (zh) * 2018-12-24 2019-04-23 西安飞芯电子科技有限公司 一种辐射输出设备以及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6567450B2 (en) * 1999-12-10 2003-05-20 Cymer, Inc. Very narrow band, two chamber, high rep rate gas discharge laser system
US6901088B2 (en) * 2001-07-06 2005-05-31 Intel Corporation External cavity laser apparatus with orthogonal tuning of laser wavelength and cavity optical pathlength
CN102025102B (zh) * 2009-09-23 2013-11-27 中国计量科学研究院 一种窄线宽激光器
CN104242028A (zh) * 2014-09-19 2014-12-24 武汉锐科光纤激光器技术有限责任公司 一种反馈式高峰值功率皮秒脉冲光纤激光器系统
CN106451071A (zh) * 2016-11-30 2017-02-22 武汉光迅科技股份有限公司 一种基于体布拉格光栅的窄线宽半导体激光器
CN206878311U (zh) * 2017-04-28 2018-01-12 浙江嘉莱光子技术有限公司 一种光电反馈实现单频半导体激光器线宽压窄系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249400A (ja) * 2010-05-24 2011-12-08 Mitsutoyo Corp レーザ光源の調整システム、及びレーザ光源の調整方法
CN103779778A (zh) * 2013-12-16 2014-05-07 中国电子科技集团公司第四十一研究所 一种中波红外激光功率稳定装置及稳定方法
CN105511029A (zh) * 2014-09-25 2016-04-20 青岛海信宽带多媒体技术有限公司 一种光模块及光模块中激光器波长偏移的调整方法、装置
CN106802186A (zh) * 2017-02-24 2017-06-06 中国科学院上海技术物理研究所 基于声光调制激光波长跟随滤光的智能型窄带滤光系统
CN109672084A (zh) * 2018-12-24 2019-04-23 西安飞芯电子科技有限公司 一种辐射输出设备以及方法

Also Published As

Publication number Publication date
US20220077653A1 (en) 2022-03-10
CN109672084A (zh) 2019-04-23
CN109672084B (zh) 2020-07-03

Similar Documents

Publication Publication Date Title
EP1771768A2 (en) Apparatus, system, and method for wavelength conversion of mode-locked extended cavity surface emitting semiconductor lasers
US8879589B2 (en) Stabilizing beam pointing of a frequency-converted laser system
JP2008508561A (ja) モード同期拡張キャビティ面発光半導体レーザの波長変換用装置、システム、および方法
CN102593715B (zh) 半导体激光器稳频装置及其调整方法
EP2101378A1 (en) Laser frequency stabilizing device, method and program
EP2208266A1 (en) Extended cavity semiconductor laser device with increased intensity
US7961772B2 (en) Optimized pulse pumped laser system using feedback
WO2020134323A1 (zh) 一种辐射输出设备以及方法
US5025449A (en) Optical pumping-type solid-state laser apparatus with a semiconductor laser device
US10554011B2 (en) Light source device and wavelength conversion method using non-linear crystal and a first and second optical path length control mechanism
Werner et al. Direct modulation capabilities of micro-integrated laser sources in the yellow–green spectral range
CN113708203B (zh) 一种稳定高功率超短脉冲产生系统
JP4799911B2 (ja) 半導体レーザ装置及び半導体増幅装置
KR20190067631A (ko) 반도체 레이저 다이오드 광원 패키지
CN112531448A (zh) 一种双波长光纤耦合激光泵浦源
WO2005006508A1 (ja) 短光パルス発生装置
JP6273716B2 (ja) 固体レーザ装置
KR20080023579A (ko) 펌핑 레이저 다이오드를 이용한 dpss 레이저 장치
JP2000357833A (ja) 波長変換レーザ装置
CN217239990U (zh) 一种波长稳定的激光器
CN214625711U (zh) 一种双波长光纤耦合激光泵浦源
JP3339081B2 (ja) レーザ光発生装置
Li et al. 350 mW green light emission from a directly frequency-doubled DBR laser in a compact package
JP6872750B2 (ja) 光源装置、光源利用装置、複数波長光発生方法、光素子及び光増幅器
Hong et al. Optimization and pulse control of diode-pumped cesium vapor laser by pump laser frequency modulation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905051

Country of ref document: EP

Kind code of ref document: A1