WO2020134321A1 - 一种控制电路及方法 - Google Patents

一种控制电路及方法 Download PDF

Info

Publication number
WO2020134321A1
WO2020134321A1 PCT/CN2019/110143 CN2019110143W WO2020134321A1 WO 2020134321 A1 WO2020134321 A1 WO 2020134321A1 CN 2019110143 W CN2019110143 W CN 2019110143W WO 2020134321 A1 WO2020134321 A1 WO 2020134321A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
sub
preset
bias
circuit
Prior art date
Application number
PCT/CN2019/110143
Other languages
English (en)
French (fr)
Inventor
陈涛
张州
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2020134321A1 publication Critical patent/WO2020134321A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29331Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by evanescent wave coupling
    • G02B6/29335Evanescent coupling to a resonator cavity, i.e. between a waveguide mode and a resonant mode of the cavity
    • G02B6/29338Loop resonators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means

Definitions

  • This application relates to the field of optical communication technology, and in particular to a control circuit method.
  • micro-ring resonators have the advantages of resonance enhancement at specific wavelengths, controllable direction and path of light transmission, compact structure, large design freedom, and ease of integration with other devices.
  • One of the most important basic functional units in the integrated circuit As a kind of micro-ring resonator, the double-ring resonator can realize the same side of the input end and the same side of the output end. Since the silicon optical micro-ring of the double-ring resonator is very sensitive to process errors and temperature changes, automatic calibration of the wavelength is essential.
  • the two microrings of the double-ring resonator are respectively scanned and tested to find the best parameter corresponding to the center wavelength and fixed, so as to lock the center wavelength.
  • the above method performs scanning tests on the two micro-rings of the double-ring resonator separately, and the operation is complicated and the efficiency is low.
  • the embodiments of the present application provide a control circuit and method.
  • An embodiment of the present application provides a control circuit, including: a photoelectric conversion sub-circuit for converting an optical signal output by a double ring resonator to obtain an output current; and a signal processing sub-circuit for obtaining a preset from the output current Current at a frequency; and based on the obtained current, an adjustment strategy is determined; a feedback control sub-circuit for adjusting the bias DC current acting on the micro-ring of the double-ring resonator based on the adjustment strategy to lock the double-loop
  • the resonance wavelength of the resonator is the center wavelength of the input optical signal.
  • An embodiment of the present application provides a control method, which is applied to a control circuit, and includes: converting an optical signal output by a double ring resonator to obtain an output current; obtaining a current of a preset frequency from the output current; and based on the obtained current To determine the adjustment strategy; based on the adjustment strategy, adjust the bias DC current acting on the micro-ring of the double-ring resonator to lock the resonance wavelength of the double-ring resonator to the center wavelength of the input optical signal.
  • FIG. 1 is a schematic structural diagram of a double ring resonator in the related art
  • FIG. 2 is a schematic diagram 1 of the structural composition of a control circuit according to an embodiment of the present application
  • 3a is a schematic diagram of a coupling efficiency curve of a double ring resonator according to an embodiment of the present application
  • 3b is a second schematic diagram of the structure of the control circuit according to an embodiment of the present application.
  • 3c is a schematic diagram 3 of the structural composition of the control circuit of the embodiment of the present application.
  • FIG. 4 is a schematic diagram 4 of the structural composition of a control circuit according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram 5 of the structural composition of a control circuit according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an implementation process of calibrating the resonance wavelength of ring 1 according to an embodiment of the present application
  • FIG. 7 is a schematic diagram of an implementation process of calibrating the resonance wavelength of the ring 2 according to an embodiment of the present application
  • FIG. 8 is a schematic flowchart of an implementation of a control method according to an embodiment of the present application.
  • the 21st century is a highly informationized era, and the transmission, processing and storage of information are facing higher and higher requirements.
  • Traditional electrical interconnection technologies are facing "electronic bottlenecks" such as signal delay, power consumption, and heat dissipation.
  • optical interconnection technologies are widely used because of their advantages such as fast transmission rate, anti-electromagnetic crosstalk, large transmission bandwidth, and low transmission energy consumption.
  • Information processing field The silicon-on-insulator (SoI, Silicon-on-Insulator) has become transparent in the communication band, has a large refractive index difference, and is fully compatible with standard complementary metal oxide semiconductor (CMOS, Complementary-Metal-Oxide-Semiconductor) processes.
  • CMOS complementary metal oxide semiconductor
  • Complementary-Metal-Oxide-Semiconductor Complementary-Metal-Oxide-Semiconductor
  • micro-ring resonators have become the photonic integration due to their advantages of resonance enhancement at specific wavelengths, controllable direction and path of light transmission, compact structure, large design freedom, and ease of integration with other devices.
  • Micro-ring resonators are widely used in theory. The single-ring resonator cannot theoretically achieve the same side of the input end and the output side. If the same-side optical field is encountered, more cross-waveguides will be encountered during transmission, resulting in increased losses.
  • the fifth generation mobile communication (5G, 5fifth Generation) networking application is limited.
  • Fig. 1 is a schematic diagram of the structure of a double-ring resonator in the related art.
  • the double-ring resonator includes two silicon optical microrings (ring 1 and ring 2 shown in Fig. 1), a waveguide along the way, and a waveguide down the way ⁇ HEATER 1 AND HEATER 2.
  • the upstream waveguide is located above a ring 2 for inputting optical signals; the downstream waveguide is located below the ring 1 for outputting optical signals.
  • Silicon optical micro-rings that is, silicon-based waveguide micro-rings, are used to couple optical waveguides propagating close to the micro-ring through the evanescent field to generate resonance.
  • the heater 1 is wrapped on the ring 1 to heat the ring 1; the heater 2 is wrapped on the ring 2 to heat the ring 2.
  • the center wavelength may refer to the center wavelength of the input optical signal. Assuming that the wavelength range of the input optical signal is 420 nm to 760 nm, the center wavelength may be 510 nm.
  • the above-mentioned wavelength calibration method needs to scan and test each micro ring, which is inefficient; and the flexibility is not enough. If the performance of the micro ring is deteriorated, the curing parameters will gradually fail; in addition, fast and accurate online wavelength locking cannot be achieved.
  • the photoelectric conversion sub-circuit in the control circuit converts the optical signal output by the double ring resonator to obtain an output current; the signal processing sub-circuit in the control circuit derives from the output Obtain a current of a preset frequency from the current; and determine an adjustment strategy based on the obtained current; the feedback control sub-circuit in the control circuit is based on the adjustment strategy to bias the DC current acting on the micro-ring of the double-ring resonator Adjust to lock the resonance wavelength of the double ring resonator to the center wavelength of the input optical signal.
  • the control circuit includes: a photoelectric conversion sub-circuit 21 for converting the optical signal output by the double ring resonator to obtain an output current; a signal processing sub-circuit 22, For obtaining a current of a preset frequency from the output current; and determining an adjustment strategy based on the obtained current; a feedback control sub-circuit 23 is used for, based on the adjustment strategy, for the effect on the microring of the double ring resonator The bias DC current is adjusted to lock the resonance wavelength of the double-loop resonator to the center wavelength of the input optical signal.
  • the intensity change trend of the optical signal output by the double ring resonator may be used as a basis for adjusting the corresponding bias DC applied to the micro ring. Since it does not involve the use of other complex algorithms such as quadrature demodulation algorithms, etc. to achieve locking of the center wavelength, it is also simpler to implement.
  • the photoelectric conversion sub-circuit 21 is specifically used to detect the optical signal output by the double-ring resonator and perform conversion processing on the optical signal to obtain an output current;
  • the optical signal is After the two microrings of the double-ring resonator apply the first current and the second current respectively, the optical signal output by the double-ring resonator;
  • the first current is the current after the first bias DC and the first preset AC are superimposed
  • the second current is the current after the second bias DC and the second preset AC are superimposed.
  • the frequency of the first preset AC is the first frequency
  • the frequency of the second preset AC is the second frequency.
  • the micro ring may be a silicon light micro ring.
  • the optical signal output by the double ring resonator may be obtained by coupling the input optical signals by two micro rings in the double ring resonator.
  • two AC signals can be extracted from the output current, and based on the two AC signals, an adjustment strategy for adjusting the corresponding bias DC can be obtained.
  • the signal processing sub-circuit 22 is specifically configured to obtain the first sub-current of the first frequency and the second sub-current of the second frequency by filtering the output current;
  • the first sub-current determines a first adjustment strategy for adjusting the first bias DC; and based on the second sub-current, determines a second adjustment strategy for adjusting the second bias DC.
  • a determined corresponding adjustment strategy may be used, and the resonance wavelength of the two microrings is locked at the center wavelength at the same time.
  • the feedback control sub-circuit 23 is specifically configured to adjust the first bias DC based on the first adjustment strategy, and adjust the second bias DC based on the second adjustment strategy so that The resonance wavelengths of the two microrings of the double ring resonator reach the center wavelength.
  • the center wavelength may refer to the center wavelength of the input optical signal of the double ring resonator.
  • Fig. 3a is the coupling efficiency curve of the double ring resonator, the abscissa represents the resonance wavelength of the two microrings, and the ordinate represents the coupling efficiency.
  • the coupling efficiency is the largest, that is, the optical power output by the double ring resonator is the largest.
  • the resonance wavelengths of the two microrings of the double ring resonator may be firstly calibrated and then finely calibrated. Through two-level calibration, not only can the number of locks be reduced, but also the center wavelength can be accurately locked. In this way, the locking accuracy and speed can be improved.
  • the first bias current and the second bias current can be applied to the two micro-rings of the double-ring resonator by two heaters, respectively, so that the resonance wavelength of the corresponding micro-rings is The center wavelength of the input optical signal is roughly aligned.
  • the process of finely calibrating the resonance wavelengths of the two microrings may be: by using the output current, the bias current applied to the two heaters may be changed, thereby affecting the resonance wavelengths of the two microrings.
  • the coupling optical power of the two microrings changes, which in turn causes the output current obtained by the photoelectric conversion sub-circuit 21 to change.
  • the resonance wavelength of the two microrings can be adjusted multiple times through the output current to make the corresponding microrings
  • the resonance wavelength of the ring reaches the center wavelength.
  • the output current may be decoupled first to obtain two currents with the same frequency as the corresponding preset AC.
  • the signal processing sub-circuit 22 is specifically configured to: filter the output current based on the first cut-off frequency to obtain the first sub-current at the first frequency; and based on the second Cut-off frequency, filtering the output current to obtain the second sub-current of the second frequency.
  • the greater the frequency difference between the first frequency and the second frequency the smaller the interference of the signal when performing automatic locking, and thus, the better the calibration effect obtained.
  • the signal processing sub-circuit 22 includes two filters for filtering the output current; wherein the cutoff frequency of one filter is the first cutoff frequency, and the cutoff frequency of the other filter is Describe the second cutoff frequency.
  • the filter may be a low-pass filter, a band-pass filter, or a high-pass filter.
  • two sub-currents obtained by decoupling the output current, and the first preset AC and the second preset AC can be used to determine The correlation between the output current and the first preset AC, and the correlation between the output current and the second preset AC.
  • the correlation can be used to adjust the bias DC applied to the heater.
  • the correlation relationship may mean that the output current is positively related to the first preset AC, for example, the output current increases as the first preset AC increases.
  • the correlation may also mean that the output current is negatively correlated with the first preset AC, for example, the output current decreases as the first preset AC increases.
  • the signal processing sub-circuit 22 further includes a differential operation circuit; the differential operation circuit is used for each of the first sub-current and the second sub-current, Differentiate the corresponding sub-current and the corresponding preset AC separately to obtain two operation results, multiply the two operation results to obtain the corresponding processing result; use the corresponding processing result as the output current and Corresponding correlation coefficient of the corresponding preset AC; the corresponding correlation coefficient is used to determine an adjustment strategy for adjusting the corresponding bias DC.
  • the amplitudes of the first sub-current and the first preset AC may be periodically obtained, and the acquired amplitudes of the first sub-current and the first preset AC may be differentiated separately Processing to obtain two operation results, multiplying the two operation results to obtain a first processing result; using the first processing result as a first correlation coefficient between the output current and the first preset AC .
  • the amplitudes of the second sub-current and the second preset AC may be periodically obtained, and the amplitude of the second sub-current and the amplitude of the second preset AC are separately subjected to differential arithmetic processing To obtain two operation results, multiply the two operation results to obtain a second processing result; use the second processing result as a second correlation coefficient between the output current and the second preset AC.
  • the first correlation coefficient and the second correlation coefficient that characterize the change trend of the output current can be determined, so that the first correlation
  • the coefficient and the second correlation coefficient are used as the basis for adjusting the corresponding bias DC applied to the microring, and the adjustment strategy is obtained. Since the amplitude of the current signal is extracted and the differential operation is combined, the adjustment strategy can be determined without complicated calculation of the current signal, which reduces the complexity and further improves the locking efficiency.
  • the determined first correlation coefficient may be greater than zero; if the output current is negatively correlated with the first preset AC, Then, the determined first correlation coefficient may be less than zero. If the output current is positively correlated with the second preset AC, the determined second correlation coefficient may be greater than zero; if the output current is negatively correlated with the second preset AC, the determined The second correlation coefficient may be less than zero. In this way, a preset threshold can be set to determine the correlation between the output current and the corresponding preset AC.
  • the signal processing sub-circuit 22 is specifically configured to: determine whether the corresponding correlation coefficient is greater than a preset threshold to obtain a determination result; when the determination result indicates that the corresponding correlation coefficient is greater than a preset threshold , Determine that the output current is positively correlated with the corresponding preset AC, and determine an adjustment strategy to increase the corresponding bias DC; when the judgment result indicates that the corresponding correlation coefficient is less than a preset threshold, determine the output current and The corresponding preset AC is negatively correlated, and the adjustment strategy to reduce the corresponding bias DC is determined.
  • the preset threshold may be zero.
  • the bias current applied to the heater can be increased to make the resonance wavelength of the double ring resonator closer to the center wavelength;
  • the bias current applied to the heater can be reduced to make the resonance wavelength of the double ring resonator closer to the center wavelength.
  • the feedback control sub-circuit 23 is specifically configured to: for each of the first preset AC and the second preset AC, when the output current When there is a positive correlation with the corresponding preset AC, the corresponding bias DC is increased; when the output current is negatively correlated with the corresponding preset AC, the corresponding bias DC is decreased.
  • the first bias DC is increased to increase the first current, thereby affecting the resonance wavelength of the corresponding microring, resulting in The coupling optical power of the corresponding microring changes, which in turn causes the output current obtained by the photoelectric conversion sub-circuit 21 to change, so that the optical power output by the double-ring resonator continues to increase to reach the maximum optical power; when the output current is equal to
  • reduce the first bias DC to reduce the first current, thereby affecting the resonant wavelength of the corresponding microring, thereby causing the coupling optical power of the corresponding microring
  • a change occurs, which in turn causes a change in the output current obtained by the photoelectric conversion sub-circuit 21, so that the optical power output by the double ring resonator continues to increase to reach the maximum optical power.
  • the second bias DC is increased to increase the second current, thereby affecting the resonance wavelength of the corresponding microring, resulting in
  • the coupling optical power of the corresponding microring changes, which in turn causes the output current obtained by the photoelectric conversion sub-circuit 21 to change, so that the optical power output by the double-ring resonator continues to increase to reach the maximum optical power;
  • reduce the second bias DC to reduce the second current, thereby affecting the resonant wavelength of the corresponding microring, thereby causing the coupling optical power of the corresponding microring
  • a change occurs, which in turn causes a change in the output current obtained by the photoelectric conversion sub-circuit 21, so that the optical power output by the double ring resonator continues to increase to reach the maximum optical power.
  • the resonance wavelengths of the two micro-rings of the double-ring resonator can be automatically locked. There is no need to scan and test each micro ring separately, and the operation is simple. Here, two micro rings can be locked at the same time. Compared with the way that only one micro ring can be locked at a time, the center wavelength can be quickly locked.
  • the center wavelength is locked by two-stage wavelength adjustment.
  • a corresponding bias DC is applied to the two micro-rings of the double-ring resonator to resonate the micro-rings of the double-ring resonator The wavelength is roughly aligned with the center wavelength.
  • corresponding preset AC is applied to the two microrings of the double-ring resonator to obtain the output current. Based on the output current, the The corresponding bias current corresponding to the micro ring is adjusted to affect the resonance wavelength of the corresponding micro ring, thereby causing the coupling optical power of the corresponding micro ring to change, which in turn causes the output current obtained by the photoelectric conversion sub-circuit 21 to change.
  • the output current adjusts the resonance wavelengths of the two microrings, so that the resonance wavelengths of the corresponding microrings can be locked to the center wavelength, so that the optical power output by the double ring resonator reaches the maximum value.
  • the double-ring resonator includes: two silicon photomicro
  • the ring (ring 1, ring 2 in Fig. 3c) has a waveguide along the way, a waveguide down the way, and two heaters.
  • the upstream waveguide is located above the ring 2 and the downstream waveguide is located below the ring 1.
  • the upstream waveguide, the downstream waveguide and the two silicon optical microrings form an upper and lower double-loop resonator.
  • the heater 1 is wrapped on the ring 1 for heating the ring 1 by the voltage applied on the electrode of the heater 1; the heater 2 is wrapped on the ring 2 for the voltage applied on the electrode of the heater 1
  • the ring 2 is heated.
  • the photodetector is located on the light exit side of the downstream waveguide.
  • the specific implementation process may include: inputting a DC bias 1 (corresponding to the above-mentioned first bias DC) at the electrode of the heater 1, To generate a bias voltage so that the resonance wavelength of the ring 1 is approximately aligned with the center wavelength.
  • a DC bias 2 (corresponding to the above-mentioned second bias DC) is input at the electrode of the heater 2 corresponding to the ring 2 to generate a second bias voltage, so that the resonance wavelength of the ring 2 is roughly aligned with the center wavelength .
  • the specific implementation process may include: inputting a DC offset 1 and a jitter signal 1 (corresponding to the above-mentioned first preset AC) at the electrode of the heater 1 after superposition To control the current, a control current obtained by superimposing a DC bias 2 and a jitter signal 2 (corresponding to the above-mentioned second preset AC) at the electrodes of the heater 2 is input.
  • the optical signal output by the double ring resonator is detected by a photoelectric detection sub-circuit, the optical signal is converted and processed to obtain an output current, and sent to the signal processing module.
  • the jitter signal 1 can be represented by mcos(f1t)
  • the jitter signal 2 can be represented by mcos(f2t)
  • f1 represents the frequency of the jitter signal 1
  • f2 represents the frequency of the jitter signal 2
  • the signal processing sub-circuit decouples the output current, that is, by filtering the output current, a first current including f1 and a second current including f2 are obtained; based on the first current To determine the first correlation coefficient between the output current signal and the jitter signal 1; and based on the second current, determine the second correlation coefficient between the output current signal and the jittered signal 1.
  • the signal processing module sends the first correlation coefficient and the second correlation coefficient to the feedback control sub-circuit.
  • the feedback control sub-circuit determines that the output current signal is positively correlated with the jitter signal 1 based on the first correlation coefficient, increases the DC bias 1; when determines the output current and the jitter based on the first correlation coefficient When signal 1 is negatively correlated, reduce DC offset 1.
  • the corresponding bias currents applied to ring 1 and ring 2 are adjusted to affect the resonant wavelength of ring 1 and ring 2, resulting in changes in the coupling optical power of ring 1 and ring 2, which in turn leads to photoelectricity
  • the change of the output current obtained by the detector so that the resonant wavelength of ring 1 and ring 2 can be adjusted multiple times through the output current, so that the resonant wavelength of ring 1 and ring 2 can reach the center of the input optical signal of the double ring resonator Wavelength, which in turn causes the optical power output by the double ring resonator to reach its maximum value.
  • FIG. 4 it includes: a double-loop resonator, a photoelectric conversion sub-circuit, a low-pass filter, a band-pass filter, a differential operation circuit, and a feedback control sub-circuit; wherein, the double-loop resonator Including: two silicon optical micro-rings (ring 1, ring 2 in Fig. 4), a waveguide along the way, a waveguide down the way, and two heaters.
  • the upstream waveguide is located above the ring 2 and the downstream waveguide is located below the ring 1.
  • the upstream waveguide, the downstream waveguide and the two silicon optical microrings form an upper and lower double-loop resonator.
  • the heater 1 is wrapped on the ring 1 for heating the ring 1 by the voltage applied on the electrode of the heater 1; the heater 2 is wrapped on the ring 2 for the voltage applied on the electrode of the heater 1
  • the ring 2 is heated.
  • the photodetector is located on the light exit side of the downstream waveguide.
  • the low-pass filter and the band-pass filter correspond to the two filters included in the signal processing circuit 22, and the differential operation circuit corresponds to the differential operation circuit included in the signal processing circuit 22.
  • the resonance wavelengths of the two silicon optical microrings are first roughly calibrated.
  • the specific implementation process may include: inputting a DC offset 1 (corresponding to the above-mentioned first offset DC) at the electrode of the heater 1, To generate a bias voltage so that the resonance wavelength of the ring 1 is approximately aligned with the center wavelength.
  • a DC bias 2 (corresponding to the above-mentioned second bias DC) is input at the electrode of the heater 2 corresponding to the ring 2 to generate a second bias voltage, so that the resonance wavelength of the ring 2 is roughly aligned with the center wavelength .
  • the specific implementation process may include: inputting a DC offset 1 and a jitter signal 1 (corresponding to the above-mentioned first preset AC) at the electrode of the heater 1 after superposition To control the current, a control current obtained by superimposing a DC bias 2 and a jitter signal 2 (corresponding to the above-mentioned second preset AC) at the electrodes of the heater 2 is input.
  • the optical signal output by the double-ring resonator is detected by a photodetector, the optical signal is converted and processed to obtain an output current, and respectively sent to the low-pass filter and the band-pass filter.
  • the jitter signal 1 can be represented by mcos(f1t)
  • the jitter signal 2 can be represented by mcos(f2t)
  • f1 represents the frequency of the jitter signal 1
  • f2 represents the frequency of the jitter signal 2
  • Decoupling the output current through two filters that is, filtering the output current through a low-pass filter to obtain the first current (including signal a in FIG. 4) containing f1, passing the band A pass filter performs a filtering process on the output current to obtain a second current including f2 (shown as signal b in FIG. 4); based on the signal a, the first correlation coefficient of the output current signal and the jitter signal 1 is determined ; And based on the signal b, determine the second correlation coefficient of the output current signal and the jittered signal 1.
  • the low-pass filter sends the first correlation coefficient to the differential operation circuit, and the band-pass filter sends the second correlation coefficient to the differential operation circuit.
  • the cut-off frequency of the low-pass filter can be set to 2f1, the cut-off center frequency of the band-pass filter can be set to f2, and the pass-band bandwidth is set to f1.
  • the differential operation circuit performs differential operation processing on the signal a and the jitter signal 1, respectively, to obtain two operation results, and performs multiplication operation processing on the two operation results to obtain a first processing result (which can be represented by the signal c); Whether the processing result is greater than zero, if the first processing result is greater than zero, it is determined that the output current is positively correlated with the first preset AC, and the bias 1 is increased, thereby changing the resonance wavelength of the ring 1 to lock to the center Wavelength; if the first processing result is less than zero, it is determined that the output current is negatively correlated with the first preset AC, and the DC offset 1 is reduced, thereby changing the resonance wavelength of the ring 1 to lock to the center wavelength.
  • the signal b and the jitter signal 2 are separately subjected to differential arithmetic processing to obtain two arithmetic results, and the two arithmetic results are subjected to multiplication arithmetic processing to obtain a second processing result (represented by the signal d).
  • the corresponding bias currents applied to ring 1 and ring 2 are adjusted to affect the resonant wavelength of ring 1 and ring 2, resulting in changes in the coupling optical power of ring 1 and ring 2, which in turn leads to photoelectricity
  • the change of the output current obtained by the detector so that the resonant wavelength of ring 1 and ring 2 can be adjusted multiple times through the output current, so that the resonant wavelength of ring 1 and ring 2 can reach the center of the input optical signal of the double ring resonator Wavelength, which in turn causes the optical power output by the double ring resonator to reach its maximum value.
  • FIG. 5 it includes: a double-loop resonator, a photoelectric conversion sub-circuit, a band-pass filter 1, a band-pass filter 2, a differential operation circuit, a feedback control sub-circuit; wherein, the double-loop
  • the resonator includes: two silicon optical microrings (ring 1, ring 2 in FIG. 5), a waveguide along the way, a waveguide down the way, and two heaters.
  • the upstream waveguide is located above the ring 2 and the downstream waveguide is located below the ring 1.
  • the upstream waveguide, the downstream waveguide and the two silicon optical microrings form an upper and lower double-loop resonator.
  • the heater 1 is wrapped on the ring 1 for heating the ring 1 by the voltage applied on the electrode of the heater 1; the heater 2 is wrapped on the ring 2 for the voltage applied on the electrode of the heater 1
  • the ring 2 is heated.
  • the photodetector is located on the light exit side of the downstream waveguide.
  • the band-pass filter 1 and the band-pass filter 2 correspond to the two filters included in the signal processing circuit 22, and the differential operation circuit corresponds to the differential operation circuit included in the signal processing circuit 22.
  • the resonance wavelengths of the two silicon optical microrings are first roughly calibrated.
  • the specific implementation process may include: inputting a DC bias 1 (corresponding to the above-mentioned first DC) to generate a bias voltage so that the resonance wavelength of the ring 1 is approximately aligned with the center wavelength.
  • a DC bias 2 (corresponding to the above-mentioned second bias DC) is input at the electrode of the heater 2 corresponding to the ring 2 to generate a second bias voltage, so that the resonance wavelength of the ring 2 is roughly aligned with the center wavelength .
  • the specific implementation process may include: inputting a DC offset 1 and a jitter signal 1 (corresponding to the above-mentioned first preset AC) at the electrode of the heater 1 after superposition To control the current, a control current obtained by superimposing the DC bias 2 and the jitter signal 2 (corresponding to the above-mentioned second preset AC) at the electrode of the heater 2 corresponding to the ring 2 is input.
  • the optical signal output by the double-ring resonator is detected by a photodetector, and the optical signal is converted to obtain an output current, which is sent to the band-pass filter 1 and the band-pass filter 2, respectively.
  • the jitter signal 1 can be represented by mcos(f1t)
  • the jitter signal 2 can be represented by mcos(f2t)
  • f1 represents the frequency of the jitter signal 1
  • f2 represents the frequency of the jitter signal 2
  • the band-pass filter 2 performs a filtering process on the output current to obtain a second current including f2 (shown as signal b in FIG. 5); based on the signal a, the first correlation between the output current and the jitter signal 1 is determined Coefficient; and based on the signal b, determine the second correlation coefficient of the output current and the dithered signal 1.
  • the band-pass filter 1 sends the first correlation coefficient to the differential operation circuit, and the band-pass filter 2 sends the second correlation coefficient to the differential operation circuit.
  • the cut-off center frequency of the band-pass filter 1 can be set to f1, and the pass-band bandwidth is set to f1; the cut-off center frequency of the band-pass filter 2 can be set to f2, and the pass-band bandwidth is set to f1.
  • the differential operation circuit performs differential operation processing on the signal a and the jitter signal 1, respectively, to obtain two operation results, and performs multiplication operation processing on the two operation results to obtain a first processing result (represented by the signal c); Whether the processing result is greater than zero, if the first processing result is greater than zero, it is determined that the output current is positively correlated with the first preset AC, and the bias current 1 is increased, thereby changing the resonance wavelength of the ring 1 to lock to Center wavelength; if the first processing result is less than zero, determine that the output current is negatively correlated with the first preset AC, and reduce the bias current 1 to change the resonance wavelength of ring 1 to lock to the center wavelength .
  • the signal b and the jitter signal 2 are separately subjected to differential arithmetic processing to obtain two arithmetic results, and the two arithmetic results are subjected to multiplication arithmetic processing to obtain a second processing result (represented by the signal d).
  • the corresponding bias currents applied to ring 1 and ring 2 are adjusted to affect the resonant wavelength of ring 1 and ring 2, resulting in changes in the coupling optical power of ring 1 and ring 2, which in turn leads to photoelectricity
  • the change of the output current obtained by the detector so that the resonant wavelength of ring 1 and ring 2 can be adjusted multiple times through the output current, so that the resonant wavelength of ring 1 and ring 2 can reach the center of the input optical signal of the double ring resonator Wavelength, which in turn causes the optical power output by the double ring resonator to reach its maximum value.
  • FIG. 6 is a schematic diagram of an implementation process for calibrating the resonance wavelength of the ring 1, as shown in FIG. 6, including the following steps: Step 601: The differential operation circuit performs differential operations on the signal a and the jitter signal 1 respectively Processing, get two operation results.
  • the signal a represents filtering the output current to obtain the first current including the first frequency; the jitter signal 1 represents the first preset AC.
  • Step 602 The multiplier multiplies the two operation results to obtain the first processing result.
  • Step 603 The decision circuit judges whether the first processing result is greater than zero. If the first processing result is greater than zero, step 604 is performed; if the first processing result is less than zero, step 605 is performed.
  • Step 604 Determine that the output current is positively correlated with the first preset AC, and then increase the DC bias by 1.
  • the DC offset 1 corresponds to the above-mentioned first offset DC.
  • Step 605 Determine that the output current is negatively related to the first preset AC, and then reduce the DC bias by 1.
  • FIG. 7 is a schematic diagram of an implementation process for calibrating the resonance wavelength of the ring 2. As shown in FIG. 7, it includes the following steps: Step 701: The differential operation circuit performs differential operations on the signal b and the jitter signal 2 respectively Processing, get two operation results.
  • the signal b represents filtering the output current to obtain a second current including the second frequency; the jitter signal 2 represents the second preset AC.
  • Step 702 The multiplier multiplies the two operation results to obtain the second processing result.
  • Step 703 The decision circuit judges whether the second processing result is greater than zero. If the second processing result is greater than zero, step 704 is performed; if the second processing result is less than zero, step 705 is performed.
  • Step 704 Determine that the output current is positively correlated with the second preset AC, and increase the DC bias 2.
  • the DC offset 2 represents the second offset DC.
  • Step 705 Determine that the output current is negatively correlated with the second preset AC, and reduce the DC bias by 2.
  • the corresponding bias currents applied to ring 1 and ring 2 are adjusted to affect the resonant wavelength of ring 1 and ring 2, resulting in changes in the coupling optical power of ring 1 and ring 2, which in turn leads to photoelectricity
  • the change of the output current obtained by the detector so that the resonant wavelength of ring 1 and ring 2 can be adjusted multiple times through the output current, so that the resonant wavelength of ring 1 and ring 2 can reach the center of the input optical signal of the double ring resonator Wavelength, which in turn causes the optical power output by the double ring resonator to reach its maximum value.
  • the embodiment of the present application also provides a control method, which is applied to the control circuit.
  • the method includes: Step 801: the light output by the photoelectric conversion sub-circuit in the control circuit to the double ring resonator The signal is converted to obtain an output current; step 802: the signal processing sub-circuit in the control circuit obtains a current of a preset frequency from the output current; and based on the obtained current, an adjustment strategy is determined; step 803: the control Based on the adjustment strategy, the feedback control sub-circuit in the circuit adjusts the bias DC current acting on the micro-ring of the double-ring resonator to lock the resonance wavelength of the double-ring resonator to the center wavelength of the input optical signal.
  • the intensity change trend of the optical signal output by the double ring resonator can be used as a basis for adjusting the corresponding bias DC applied to the micro ring. Since it does not involve the use of other complex algorithms such as quadrature demodulation algorithms, etc. to achieve locking of the center wavelength, it is also simpler to implement.
  • the photoelectric conversion sub-circuit converts the optical signal output by the double ring resonator to obtain an output current
  • the photoelectric conversion sub-circuit in the control circuit detects the optical signal output by the double ring resonator And perform conversion processing on the optical signal to obtain an output current.
  • the optical signal is an optical signal output by the dual-ring resonator after the first current and the second current are applied to the two microrings of the dual-ring resonator respectively; the first current is the first bias DC and the first The current after the preset AC superposition; the second current is the current after the second bias DC and the second preset AC are superimposed.
  • the frequency of the first preset AC is the first frequency
  • the frequency of the second preset AC is the second frequency.
  • two AC signals can be extracted from the output current, and based on the two AC signals, an adjustment strategy for adjusting the corresponding bias DC can be obtained.
  • the signal processing sub-circuit in the control circuit obtains a current of a preset frequency from the output current; and based on the obtained current, determines an adjustment strategy, including: The signal processing sub-circuit obtains a first sub-current and a second sub-current by filtering the output current; based on the first sub-current, determines a first adjustment strategy for adjusting the first bias DC; Based on the second sub-current, a second adjustment strategy for adjusting the second bias DC is determined.
  • a determined corresponding adjustment strategy may be used, and the resonance wavelength of the two microrings is locked at the center wavelength at the same time.
  • the feedback control sub-circuit in the control circuit adjusts the bias DC current acting on the micro-ring of the double-loop resonator based on the adjustment strategy, including: Based on the first adjustment strategy, adjusts the first bias DC, and based on the second adjustment strategy, adjusts the second bias DC to resonate the double loop
  • the resonance wavelengths of the two microrings of the device both reach the center wavelength.
  • the micro ring may be a silicon light micro ring.
  • the optical signal output by the double ring resonator may be obtained by coupling the input optical signals by two micro rings in the double ring resonator.
  • the center wavelength may refer to the center wavelength of the input optical signal of the double ring resonator.
  • the resonance wavelengths of the two microrings of the double ring resonator may be firstly calibrated and then finely calibrated. Through two-level calibration, not only can the number of locks be reduced, but also the center wavelength can be accurately locked. In this way, the locking accuracy and speed can be improved.
  • the first bias current and the second bias current can be applied to the two micro-rings of the double-ring resonator by two heaters, respectively, so that the resonance wavelength of the corresponding micro-rings is The center wavelength of the input optical signal is roughly aligned.
  • the process of finely calibrating the resonance wavelengths of the two microrings may be: changing the bias current applied to the two heaters through the output current, thereby affecting the resonance wavelengths of the two microrings , Which causes the coupling optical power of the two microrings to change, which in turn causes the output current obtained by the photoelectric conversion sub-circuit to change.
  • the resonance current of the two microrings can be adjusted multiple times through the output current to make the corresponding
  • the resonance wavelength of the microring reaches the center wavelength.
  • the output current may be decoupled first to obtain two currents with the same frequency as the corresponding preset AC.
  • the signal processing sub-circuit in the control circuit filters the output current to obtain the first sub-current at the first frequency and the second sub-current at the second frequency
  • the method includes: filtering the output current based on the first cutoff frequency to obtain the first sub-current of the first frequency; and filtering the output current based on the second cutoff frequency to obtain the second of the second frequency Sub current.
  • the greater the frequency difference between the first frequency and the second frequency the smaller the interference of the signal when performing automatic locking, and thus, the better the calibration effect obtained.
  • the signal processing sub-circuit includes two filters for filtering the output current; wherein, the cutoff frequency of one filter is the first cutoff frequency, and the cutoff frequency of the other filter is the The second cutoff frequency.
  • the filter may be a low-pass filter, a band-pass filter, or a high-pass filter.
  • the two sub-currents obtained by decoupling the output current, and the first preset AC and the second preset AC can be used to determine the correlation between the output current and the first preset AC Relationship, and the relationship between the output current and the second preset AC.
  • the correlation relationship may mean that the output current is positively correlated with the first preset AC, for example, the output current increases as the first preset AC increases; the correlation may also be It means that the output current is negatively correlated with the first preset AC, for example, the output current decreases as the first preset AC increases.
  • the first adjustment strategy for adjusting the first bias DC is determined based on the first sub-current; and based on the second sub-current, the first adjustment strategy is determined.
  • the second adjustment strategy for adjusting the two bias DCs includes: for each of the first sub-current and the second sub-current, performing a differential operation on the corresponding current and the corresponding preset AC respectively to obtain Two operation results, multiplying the two operation results to obtain the corresponding processing result; using the corresponding processing result as the corresponding correlation coefficient between the output current and the corresponding preset AC; the corresponding correlation coefficient is used for Determine the adjustment strategy to adjust the corresponding bias DC.
  • the determined first correlation coefficient may be greater than zero; if the output current is negatively correlated with the first preset AC, Then, the determined first correlation coefficient may be less than zero. If the output current is positively correlated with the second preset AC, the determined second correlation coefficient may be greater than zero; if the output current is negatively correlated with the second preset AC, the determined The second correlation coefficient may be less than zero. In this way, a preset threshold can be set to determine the correlation between the output current and the corresponding preset AC.
  • the determining an adjustment strategy for adjusting the corresponding bias DC based on the obtained corresponding correlation coefficient includes: determining whether the corresponding correlation coefficient is greater than a preset threshold to obtain a judgment result; when the judgment When the result indicates that the corresponding correlation coefficient is greater than a preset threshold, it is determined that the output current is positively correlated with the corresponding preset AC, and an adjustment strategy for increasing the corresponding bias DC is determined; when the judgment result indicates that the corresponding correlation coefficient is less than When the threshold is preset, it is determined that the output current is negatively correlated with the corresponding preset AC, and an adjustment strategy to reduce the corresponding bias DC is determined.
  • the preset threshold may be zero.
  • the bias current applied to the heater can be increased to make the resonance wavelength of the double ring resonator closer to the center wavelength;
  • the bias current applied to the heater can be reduced to make the resonance wavelength of the double ring resonator closer to the center wavelength.
  • the feedback control sub-circuit in the control circuit adjusts the first bias DC based on the first adjustment strategy, and based on the second adjustment strategy, adjusts the The adjustment of the second bias DC includes: for each of the first preset AC and the second preset AC, when the output current is positively correlated with the corresponding preset AC, increase Corresponding bias DC; when the output current is negatively correlated with the corresponding preset AC, reduce the corresponding bias DC.
  • the first bias DC when the output current is positively correlated with the first preset AC, the first bias DC is increased to increase the first current, thereby affecting the resonance wavelength of the corresponding microring, resulting in The coupling optical power of the corresponding microring changes, which in turn causes the output current obtained by the photoelectric conversion sub-circuit to change, so that the optical power output by the double-ring resonator continues to increase to reach the maximum optical power;
  • the first bias DC is reduced to reduce the first current, thereby affecting the resonance wavelength of the corresponding microring, thereby causing the coupling optical power of the corresponding microring to occur
  • the change in turn, causes a change in the output current obtained by the photoelectric conversion sub-circuit, so that the optical power output by the double ring resonator continues to increase to reach the maximum optical power.
  • the second bias DC is increased to increase the second current, thereby affecting the resonance wavelength of the corresponding microring, resulting in
  • the coupling optical power of the corresponding microring changes, which in turn causes the output current obtained by the photoelectric conversion sub-circuit to change, so that the optical power output by the double-ring resonator continues to increase to reach the maximum optical power;
  • the second bias DC is reduced to reduce the second current, thereby affecting the resonance wavelength of the corresponding microring, thereby causing the coupling optical power of the corresponding microring to occur
  • the change causes a change in the output current obtained by the photoelectric conversion sub-circuit, so that the optical power output by the double ring resonator continues to increase to reach the maximum optical power.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种控制电路和控制方法,控制电路包括:光电转换子电路(21),用于对双环谐振器输出的光信号进行转换,得到输出电流;信号处理子电路(22),用于从输出电流中获得预设频率的电流;并基于获得的电流,确定调整策略;反馈控制子电路(23),用于基于调整策略,对作用于双环谐振器微环的偏置直流电流进行调整,以锁定双环谐振器的谐振波长为输入光信号的中心波长。

Description

一种控制电路及方法
交叉引用
本申请引用于2018年12月29日递交的名称为“一种控制电路及方法”的第201811640501.0号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请涉及光通信技术领域,尤其涉及一种控制电路方法。
背景技术
目前,硅基光子集成器件中,由于微环谐振器具有对特定的波长谐振增强、光传输的方向和路径可控、结构紧凑、设计自由度大、便于与其它器件集成等优点,因此成为光子集成回路中最重要的基础功能单元之一。双环谐振器作为微环谐振器的一种,能够实现输入端同侧、输出端同侧。由于双环谐振器的硅光微环对工艺误差和温度改变有很大的敏感性,因此波长的自动校准必不可少。相关技术中,对双环谐振器的两个微环分别进行扫描测试,寻找中心波长对应的最佳参数进行固定,以锁定中心波长。
上述方式对双环谐振器的两个微环分别进行扫描测试,操作复杂,效率低。
发明内容
为解决存在的相关技术问题,本申请实施例提供一种控制电路及方法。
本申请实施例的技术方案是这样实现的。
本申请实施例提供一种控制电路,包括:光电转换子电路,用于对双环谐振器输出的光信号进行转换,得到输出电流;信号处理子电路,用于从所述输出电流中获得预设频率的电流;并基于获得的电流,确定调整策略;反馈控制子电路,用于基于所述调整策略,对作用于所述双环谐振器微环的偏置直流电流进行调整,以锁定所述双环谐振器的谐振波长为输入光信号的中心波长。
本申请实施例提供一种控制方法,应用于控制电路,包括:对双环谐振 器输出的光信号进行转换,得到输出电流;从所述输出电流中获得预设频率的电流;并基于获得的电流,确定调整策略;基于所述调整策略,对作用于所述双环谐振器微环的偏置直流电流进行调整,以锁定所述双环谐振器的谐振波长为输入光信号的中心波长。
附图说明
图1是相关技术中双环谐振器的结构示意图;
图2是本申请实施例控制电路的结构组成示意图一;
图3a是本申请实施例双环谐振器的耦合效率曲线示意图;
图3b是本申请实施例控制电路的结构组成示意图二;
图3c是本申请实施例控制电路的结构组成示意图三;
图4是本申请实施例控制电路的结构组成示意图四;
图5是本申请实施例控制电路的结构组成示意图五;
图6是本申请实施例对环1的谐振波长进行校准的实现流程示意图;
图7是本申请实施例对环2的谐振波长进行校准的实现流程示意图;
图8是本申请实施例控制方法的实现流程示意图。
具体实施方式
下面结合附图及实施例对本申请再作进一步详细的描述。
21世纪是一个高度信息化的时代,信息的传输、处理和存储面临越来越高的要求。传统的电互连技术正面临信号延迟、功耗和散热等“电子瓶颈”,取而代之的光互连技术因传输速率快、抗电磁串扰、传输带宽大、传输能耗低等优点被广泛应用于信息处理领域。绝缘体上硅材料(SoI,Silicon-on-Insulator)由于其在通信波段透明、折射率差大以及与标准的互补金属氧化物半导体(CMOS,Complementary-Metal-Oxide-Semiconductor)工艺完全兼容等优点成为最热门的低成本高集成度光互连平台。在众多硅基光子集成器件中,微环谐振器由于具有对特定的波长谐振增强、光传输的方向和路径可控、结构紧凑、设计自由度大、便于与其它器件集成等优点,成为光子集成回路中最重要的基础功能单元之一。微环谐振器运用较为广泛的单环谐振器理论上无法实现输入端同侧、输出端同侧,如要同侧光场在传输中就会遇到较多交叉波导,导致损耗加大,在第五代移动通信(5G,5fifth Generation)组网应用中受限。
双环谐振器在理论上能够实现输入端同侧、输出端同侧。图1是相关技术中双环谐振器的结构示意图,如图1所示,双环谐振器包括两个硅光微环(图1所示的环1和环2)、一路上行波导,一路下行波导、加热器1和加热器2。其中,所述上行波导位于一个环2的上方,用于输入光信号;所述下行波导位于环1的下方,用于输出光信号。硅光微环,即硅基波导微环,用于通过倏逝场将离微环近距离传播的光波导耦合进来,产生谐振。加热器1包裹在环1上,用于对环1进行加热;加热器2包裹在环2上,用于对环2进行加热。
由于硅光微环对工艺误差和温度改变有很大的敏感性,因此在大规模的应用中,波长的自动校准和温漂的自动补偿必不可少。目前,针对双环谐振器,实现波长校准的过程为:先对两个硅光微环的参数分别进行扫描测试,寻找中心波长对应的最佳参数,并将最佳参数固化,以锁定中心波长。其中,所述中心波长可以是指输入的光信号的中心波长。假设输入的光信号的波长范围为420纳米至760纳米,所述中心波长可以为510纳米。
但是,上述波长校准的方式需要对每个微环进行扫描测试,效率低;且灵活性不够,若微环性能恶化,则固化的参数将逐渐失效;另外,也无法实现在线波长快速精准锁定。
基于此,在本申请的各种实施例中,控制电路中的光电转换子电路对双环谐振器输出的光信号进行转换,得到输出电流;所述控制电路中的信号处理子电路从所述输出电流中获得预设频率的电流;并基于获得的电流,确定调整策略;所述控制电路中的反馈控制子电路基于所述调整策略,对作用于所述双环谐振器微环的偏置直流电流进行调整,以锁定所述双环谐振器的谐振波长为输入光信号的中心波长。
本申请实施例提供一种控制电路,如图2所示,该控制电路包括:光电转换子电路21,用于对双环谐振器输出的光信号进行转换,得到输出电流;信号处理子电路22,用于从所述输出电流中获得预设频率的电流;并基于获得的电流,确定调整策略;反馈控制子电路23,用于基于所述调整策略,对作用于所述双环谐振器微环的偏置直流电流进行调整,以锁定所述双环谐振器的谐振波长为输入光信号的中心波长。
实际应用时,可以将所述双环谐振器输出的光信号的强度变化趋势,作为对施加在微环的相应偏置直流进行调整的依据。由于不涉及使用其他复杂算法比如正交解调算法等等实现锁定中心波长,因而实现起来也较简单些。
基于此,在一实施例中,光电转换子电路21,具体用于检测所述双环谐振器输出的光信号,并对所述光信号进行转换处理,得到输出电流;所述光信号是在所述双环谐振器的两个微环分别施加第一电流、第二电流后所述双环谐振器输出的光信号;所述第一电流为第一偏置直流和第一预设交流叠加后的电流;所述第二电流为第二偏置直流和第二预设交流叠加后的电流。其中,所述第一预设交流的频率为第一频率,所述第二预设交流的频率为第二频率。
其中,所述微环可以为硅光微环。所述双环谐振器输出的光信号可以是所述双环谐振器中的两个微环对输入的光信号进行耦合得到的。
实际应用时,为了实现对两个微环实现同时控制,可以从所述输出电流中提取两路交流信号,基于两路交流信号,得到对相应偏置直流进行调整的调整策略。
基于此,在一实施例中,信号处理子电路22,具体用于通过对所述输出电流进行滤波处理,得到第一频率的第一子电流及第二频率的第二子电流;基于所述第一子电流,确定对所述第一偏置直流进行调整的第一调整策略;并基于所述第二子电流,确定对所述第二偏置直流进行调整的第二调整策略。
实际应用时,为了提高锁定效率,可以利用确定的相应调整策略,同时锁定两个微环的谐振波长为所述中心波长。
反馈控制子电路23,具体用于基于所述第一调整策略,对所述第一偏置直流进行调整,并基于所述第二调整策略,对所述第二偏置直流进行调整,以使所述双环谐振器的两个微环的谐振波长均达到中心波长。
其中,所述中心波长可以是指所述双环谐振器的输入光信号的中心波长。
图3a是双环谐振器的耦合效率曲线,横坐标表示的是两个微环的谐振波长,纵坐标表示的是耦合效率,从图3a可看出,当所述双环谐振器的两个微环的谐振波长均达到所述中心波长时,耦合效率最大,也就是说,所述双环谐振器输出的光功率最大。
实际应用时,为了使所述双环谐振器的两个微环的谐振波长均达到所述中心波长,可以对两个微环的谐振波长先进行粗校准,再进行精校准。通过两级校准,不仅可以减小锁定次数,还可以精确锁定到中心波长,如此,能够提高锁定精度和速度。
基于此,可以通过两个加热器在所述双环谐振器的两个微环上分别施加第一偏置电流、第二偏置电流,以使相应微环的谐振波长与所述双环谐振器的 输入光信号的中心波长大致对准。
实际应用时,对两个微环的谐振波长进行精校准的过程可以为:通过所述输出电流,改变施加在两个加热器上的偏置电流,进而影响两个微环的谐振波长,从而导致两个微环的耦合光功率发生变化,进而导致光电转换子电路21得到的输出电流的变化,这样,通过所述输出电流对两个微环的谐振波长进行多次调整,可使相应微环的谐振波长达到所述中心波长。为了通过所述输出电流,对施加在两个加热器上的偏置电流进行调整,可以先对所述输出电流进行解耦,以得到与相应预设交流的频率相同的两路电流。
基于此,在一实施例中,所述信号处理子电路22,具体用于:基于第一截止频率,对所述输出电流进行滤波处理,得到第一频率的第一子电流;并基于第二截止频率,对所述输出电流进行滤波处理,得到第二频率的第二子电流。
其中,所述第一频率与所述第二频率之间的频率差越大,在进行自动锁定时,信号的干扰越小,这样,得到的校准效果越好。
这里,所述信号处理子电路22包括两个滤波器,用于对所述输出电流进行滤波;其中,一个滤波器的截止频率为所述第一截止频率,另一个滤波器的截止频率为所述第二截止频率。所述滤波器可以为低通滤波器、带通滤波器、高通滤波器。
实际应用时,为了使相应微环的谐振波长达到所述中心波长,可以利用对所述输出电流进行解耦得到的两个子电流,以及所述第一预设交流、第二预设交流,确定所述输出电流与所述第一预设交流的相关关系,以及所述输出电流与所述第二预设交流的相关关系。所述相关关系可以用于对施加在加热器上的偏置直流进行调整。
其中,所述相关关系可以是指所述输出电流与所述第一预设交流成正相关,比如,所述输出电流随着所述第一预设交流的增大而增大。所述相关关系也可以是指所述输出电流与所述第一预设交流成负相关,比如,所述输出电流随着所述第一预设交流的增大而减小。
基于此,在一实施例中,所述信号处理子电路22还包括微分运算电路;所述微分运算电路,用于针对所述第一子电流和所述第二子电流中的每个子电流,将相应子电流和对应的预设交流分别进行微分运算处理,得到两个运算结果,将两个运算结果进行相乘运算处理,得到相应处理结果;将所述相应处理结果作为所述输出电流与对应的预设交流的相应相关系数;所述相应相关系数 用于确定对相应偏置直流进行调整的调整策略。
具体地,可以周期性获取所述第一子电流、第一预设交流的幅值,将获取的所述第一子电流的幅值和所述第一预设交流的幅值分别进行微分运算处理,得到两个运算结果,将两个运算结果进行相乘运算处理,得到第一处理结果;将所述第一处理结果作为所述输出电流与所述第一预设交流的第一相关系数。同样地,可以周期性获取所述第二子电流、第二预设交流的幅值,并将所述第二子电流的幅值和所述第二预设交流的幅值分别进行微分运算处理,得到两个运算结果,将两个运算结果进行相乘运算处理,得到第二处理结果;将所述第二处理结果作为所述输出电流与所述第二预设交流的第二相关系数。
这里,通过所述第一子电流、第二子电流的幅值,可以确定出表征所述输出电流的变化趋势的第一相关系数、第二相关系数,这样,就可以将所述第一相关系数及第二相关系数,作为对施加在微环的相应偏置直流进行调整的依据,并得到调整策略。由于通过提取电流信号的幅值,结合微分运算,就可以确定调整策略,无需对电流信号进行复杂运算,实现复杂度降低,进而能够提高锁定效率。
实际应用时,如果所述输出电流与所述第一预设交流成正相关,则确定的所述第一相关系数可以大于零;如果所述输出电流与所述第一预设交流成负相关,则确定的所述第一相关系数可以小于零。如果所述输出电流与所述第二预设交流成正相关,则确定的所述第二相关系数可以大于零;如果所述输出电流与所述第二预设交流成负相关,则确定的所述第二相关系数可以小于零。这样,可以设置预设阈值以确定所述输出电流与相应预设交流的相关关系。
基于此,在一实施例中,所述信号处理子电路22,具体用于:判断相应相关系数是否大于预设阈值,得到判断结果;当所述判断结果表征所述相应相关系数大于预设阈值时,确定所述输出电流与相应预设交流呈正相关,并确定增大相应偏置直流的调整策略;当所述判断结果表征所述相应相关系数小于预设阈值时,确定所述输出电流与相应预设交流呈负相关,并确定减小相应偏置直流的调整策略。其中,所述预设阈值可以为零。
这里,从图3a所示的耦合效率曲线示意图,可得出,当使所述双环谐振器的两个微环的谐振波长朝着所述中心波长进行增大调整时,耦合效率逐渐增大;当所述双环谐振器的两个微环的谐振波长均达到所述中心波长时,耦合效率达到最大值;当使所述双环谐振器的两个微环的谐振波长朝着远离所述中心 波长的方向进行增大调整时,耦合效率逐渐减小。这里,耦合效率越大,说明所述双环谐振器输出的光功率越大,所述光电转换子电路21得到的输出电流越大;两个微环的谐振波长越大,说明施加在加热器上的偏置电流越大。换句话说,当所述双环谐振器的谐振波长小于所述中心波长时,可以通过增大施加在加热器上的偏置电流,以使双环谐振器的谐振波长更接近所述中心波长;当所述双环谐振器的谐振波长大于所述中心波长时,可以通过减小施加在加热器上的偏置电流,以使双环谐振器的谐振波长更接近所述中心波长。
基于此,在一实施例中,所述反馈控制子电路23,具体用于:针对所述第一预设交流和所述第二预设交流中的每个预设交流,当所述输出电流与相应预设交流呈正相关时,增大对应的偏置直流;当所述输出电流与相应预设交流呈为负相关时,减小对应的偏置直流。
具体地,当所述输出电流与所述第一预设交流呈正相关时,增大所述第一偏置直流,以增大所述第一电流,从而影响相应微环的谐振波长,从而导致相应微环的耦合光功率发生变化,进而导致光电转换子电路21得到的输出电流的变化,从而使得所述双环谐振器输出的光功率继续增大以达到最大光功率;当所述输出电流与所述第一预设交流呈为负相关时,减小所述第一偏置直流,以减小所述第一电流,从而影响相应微环的谐振波长,从而导致相应微环的耦合光功率发生变化,进而导致光电转换子电路21得到的输出电流的变化,从而使得所述双环谐振器输出的光功率继续增大以达到最大光功率。
同样地,当所述输出电流与所述第二预设交流呈正相关时,增大所述第二偏置直流,以增大所述第二电流,从而影响相应微环的谐振波长,从而导致相应微环的耦合光功率发生变化,进而导致光电转换子电路21得到的输出电流的变化,从而使得所述双环谐振器输出的光功率继续增大以达到最大光功率;当所述输出电流与所述第二预设交流呈为负相关时,减小所述第二偏置直流,以减小所述第二电流,从而影响相应微环的谐振波长,从而导致相应微环的耦合光功率发生变化,进而导致光电转换子电路21得到的输出电流的变化,从而使得所述双环谐振器输出的光功率继续增大以达到最大光功率。
采用本申请实施例的方案,通过控制电路中的光电转换子电路21、信号处理子电路22、反馈控制子电路23,可以对所述双环谐振器的两个微环的谐振波长实现自动锁定,无需对每个微环进行单独扫描测试,操作简单。这里,可以对两个微环同时实现锁定,相对于每次仅能对一个微环进行锁定的方式,能 够实现快速锁定所述中心波长。
另外,通过两级波长调整实现锁定所述中心波长,第一级波长调整过程中,在所述双环谐振器的两个微环施加相应偏置直流,使所述双环谐振器的微环的谐振波长与所述中心波长大致对准,第二级波长调整过程中,在所述双环谐振器的两个微环再施加相应预设交流,得到所述输出电流,基于所述输出电流,对各个微环对应的相应偏置电流进行调整,以影响相应微环的谐振波长,从而导致相应微环的耦合光功率发生变化,进而导致光电转换子电路21得到的输出电流的变化,这样,通过所述输出电流对两个微环的谐振波长进行调整,可使相应微环的谐振波长锁定到所述中心波长,从而使所述双环谐振器输出的光功率达到最大值。通过两级波长校准,不仅可以实现中心波长的精准锁定,还可以实现中心波长的快速锁定,进而能够提高锁定精度和速度。
下面结合应用实施例对本申请再作进一步详细的描述。
应用实施例一
在本应用实施例中,如图3b、3c所示,包括:双环谐振器、光电转换子电路、信号处理子电路、反馈控制子电路;其中,所述双环谐振器包括:两个硅光微环(图3c中的环1、环2),一路上行波导,一路下行波导,两个加热器。所述上行波导位于环2的上方,所述下行波导位于环1的下方,所述上行波导、所述下行波导与两个硅光微环构成一个上下路双环谐振器。加热器1包裹在环1上,用于通过在加热器1的电极上施加的电压对环1进行加热;加热器2包裹在环2上,用于通过在加热器1的电极上施加的电压对环2进行加热。光电探测器位于下行波导的出光侧。
如图3c所示,先对两个硅光微环的谐振波长进行粗校准,具体实现过程可以包括:在加热器1的电极处输入直流偏置1(对应上述的第一偏置直流),以产生偏置电压,从而使得环1的谐振波长大致对准中心波长。同样地,在环2对应的加热器2的电极处输入直流偏置2(对应上述的第二偏置直流),以产生第二偏置电压,从而使得环2的谐振波长大致对准中心波长。
再对两个硅光微环的谐振波长进行精校准,具体实现过程可以包括:在加热器1的电极处输入直流偏置1和抖动信号1(对应上述的第一预设交流)叠加后的控制电流,在加热器2的电极处输入直流偏置2和抖动信号2(对应上述的第二预设交流)叠加后的控制电流。通过光电探测子电路检测所述双环谐振器输出的光信号,对光信号进行转化处理得到输出电流,并送入所述信号 处理模块。其中,抖动信号1可以用mcos(f1t)表示,抖动信号2可以用mcos(f2t)表示,f1表示抖动信号1的频率,f2表示抖动信号2的频率,且f2>3f1。
所述信号处理子电路对所述输出电流进行解耦,即通过对所述输出电流进行滤波处理,得到包含f1的第一路电流及包含f2的第二路电流;基于所述第一路电流,确定输出电流信号与抖动信号1的第一相关系数;并基于所述第二路电流,确定输出电流信号与所抖动信号1的第二相关系数。所述信号处理模块将所述第一相关系数、第二相关系数送入所述反馈控制子电路。
所述反馈控制子电路当基于所述第一相关系数确定所述输出电流信号与抖动信号1呈正相关时,增大直流偏置1;当基于所述第一相关系数确定所述输出电流与抖动信号1呈为负相关时,减小直流偏置1。
需要说明的是,对施加在环1和环2上的相应偏置电流进行调整,以影响环1和环2的谐振波长,从而导致环1和环2的耦合光功率发生变化,进而导致光电探测器得到的输出电流的变化,这样,通过所述输出电流对环1和环2的谐振波长进行多次调整,可使环1和环2的谐振波长达到双环谐振器的输入光信号的中心波长,进而使双环谐振器输出的光功率达到最大值。
应用实施例二
在本应用实施例中,如图4所示,包括:双环谐振器、光电转换子电路、低通滤波器、带通滤波器、微分运算电路、反馈控制子电路;其中,所述双环谐振器包括:两个硅光微环(图4中的环1、环2),一路上行波导,一路下行波导,两个加热器。所述上行波导位于环2的上方,所述下行波导位于环1的下方,所述上行波导、所述下行波导与两个硅光微环构成一个上下路双环谐振器。加热器1包裹在环1上,用于通过在加热器1的电极上施加的电压对环1进行加热;加热器2包裹在环2上,用于通过在加热器1的电极上施加的电压对环2进行加热。光电探测器位于下行波导的出光侧。
其中,低通滤波器、带通滤波器对应上述信号处理电路22包括的两个滤波器,微分运算电路对应上述信号处理电路22包括的微分运算电路。
如图4所示,先对两个硅光微环的谐振波长进行粗校准,具体实现过程可以包括:在加热器1的电极处输入直流偏置1(对应上述的第一偏置直流),以产生偏置电压,从而使得环1的谐振波长大致对准中心波长。同样地,在环2对应的加热器2的电极处输入直流偏置2(对应上述的第二偏置直流),以产生第二偏置电压,从而使得环2的谐振波长大致对准中心波长。
再对两个硅光微环的谐振波长进行精校准,具体实现过程可以包括:在加热器1的电极处输入直流偏置1和抖动信号1(对应上述的第一预设交流)叠加后的控制电流,在加热器2的电极处输入直流偏置2和抖动信号2(对应上述的第二预设交流)叠加后的控制电流。通过光电探测器检测所述双环谐振器输出的光信号,对光信号进行转化处理得到输出电流,并分别送入所述低通滤波器、带通滤波器。其中,抖动信号1可以用mcos(f1t)表示,抖动信号2可以用mcos(f2t)表示,f1表示抖动信号1的频率,f2表示抖动信号2的频率,且f2>3f1。
通过两个滤波器对所述输出电流进行解耦,即通过低通滤波器对所述输出电流进行滤波处理,得到包含f1的第一路电流(图4中的信号a所示),通过带通滤波器对所述输出电流进行滤波处理,得到包含f2的第二路电流(图4中的信号b所示);基于信号a,确定所述输出电流信号与抖动信号1的第一相关系数;并基于信号b,确定所述输出电流信号与所抖动信号1的第二相关系数。所述低通滤波器将所述第一相关系数送入所述微分运算电路,所述带通滤波器将所述第二相关系数送入所述微分运算电路。其中,低通滤波器的截止频率可以设置为2f1,带通滤波器的截止中心频率可以设置为f2,通频带宽设置为f1。
所述微分运算电路对信号a和抖动信号1分别进行微分运算处理,得到两个运算结果,将两个运算结果进行相乘运算处理,得到第一处理结果(可用信号c表示);判断第一处理结果是否大于零,如果第一处理结果大于零,则确定所述输出电流与所述第一预设交流呈正相关,并增大偏置1,从而改变环1的谐振波长,以锁定到中心波长;如果第一处理结果小于零,则确定所述输出电流与所述第一预设交流呈负相关,并减小直流偏置1,从而改变环1的谐振波长,以锁定到中心波长。
同样地,将信号b和抖动信号2分别进行微分运算处理,得到两个运算结果,将两个运算结果进行相乘运算处理,得到第二处理结果(可用信号d表示)。判断第二处理结果是否大于零,如果第二处理结果大于零,则确定所述输出电流与所述第二预设交流呈正相关,并增大偏置电流2;如果第二处理结果小于零,则确定所述输出电流与所述第二预设交流呈负相关,并减小偏置电流2。
需要说明的是,对施加在环1和环2上的相应偏置电流进行调整,以影 响环1和环2的谐振波长,从而导致环1和环2的耦合光功率发生变化,进而导致光电探测器得到的输出电流的变化,这样,通过所述输出电流对环1和环2的谐振波长进行多次调整,可使环1和环2的谐振波长达到双环谐振器的输入光信号的中心波长,进而使双环谐振器输出的光功率达到最大值。
应用实施例三
在本应用实施例中,如图5所示,包括:双环谐振器、光电转换子电路、带通滤波器1、带通滤波器2、微分运算电路、反馈控制子电路;其中,所述双环谐振器包括:两个硅光微环(图5中的环1、环2),一路上行波导,一路下行波导,两个加热器。所述上行波导位于环2的上方,所述下行波导位于环1的下方,所述上行波导、所述下行波导与两个硅光微环构成一个上下路双环谐振器。加热器1包裹在环1上,用于通过在加热器1的电极上施加的电压对环1进行加热;加热器2包裹在环2上,用于通过在加热器1的电极上施加的电压对环2进行加热。光电探测器位于下行波导的出光侧。
其中,带通滤波器1、带通滤波器2对应上述信号处理电路22包括的两个滤波器,微分运算电路对应上述信号处理电路22包括的微分运算电路。
如图5所示,先对两个硅光微环的谐振波长进行粗校准,具体实现过程可以包括:在环1对应的加热器1的电极处输入直流偏置1(对应上述的第一偏置直流),以产生偏置电压,从而使得环1的谐振波长大致对准中心波长。同样地,在环2对应的加热器2的电极处输入直流偏置2(对应上述的第二偏置直流),以产生第二偏置电压,从而使得环2的谐振波长大致对准中心波长。
再对两个硅光微环的谐振波长进行精校准,具体实现过程可以包括:在加热器1的电极处输入直流偏置1和抖动信号1(对应上述的第一预设交流)叠加后的控制电流,在环2对应的加热器2的电极处输入直流偏置2和抖动信号2(对应上述的第二预设交流)叠加后的控制电流。通过光电探测器检测所述双环谐振器输出的光信号,对光信号进行转化处理得到输出电流,并送入分别送入所述带通滤波器1、带通滤波器2。其中,抖动信号1可以用mcos(f1t)表示,抖动信号2可以用mcos(f2t)表示,f1表示抖动信号1的频率,f2表示抖动信号2的频率,且f2>3f1。
通过两个滤波器对所述输出电流进行解耦,即通过带通滤波器1对所述输出电流进行滤波处理,得到包含f1的第一路电流(图5中的信号a所示),通过带通滤波器2对所述输出电流进行滤波处理,得到包含f2的第二路电流(图 5中的信号b所示);基于信号a,确定所述输出电流与抖动信号1的第一相关系数;并基于信号b,确定所述输出电流与所抖动信号1的第二相关系数。所述带通滤波器1将所述第一相关系数送入所述微分运算电路,所述带通滤波器2将所述第二相关系数送入所述微分运算电路。其中,带通滤波器1的截止中心频率可以设置为f1,通频带宽设置为f1;带通滤波器2的截止中心频率可以设置为f2,通频带宽设置为f1。
所述微分运算电路将信号a和抖动信号1分别进行微分运算处理,得到两个运算结果,将两个运算结果进行相乘运算处理,得到第一处理结果(可用信号c表示);判断第一处理结果是否大于零,如果第一处理结果大于零,则确定所述输出电流与所述第一预设交流呈正相关,并增大偏置电流1,从而改变环1的谐振波长,以锁定到中心波长;如果第一处理结果小于零,则确定所述输出电流与所述第一预设交流呈负相关,并减小偏置电流1,从而改变环1的谐振波长,以锁定到中心波长。
同样地,将信号b和抖动信号2分别进行微分运算处理,得到两个运算结果,将两个运算结果进行相乘运算处理,得到第二处理结果(可用信号d表示)。判断第二处理结果是否大于零,如果第二处理结果大于零,则确定所述输出电流与所述第二预设交流呈正相关,并增大偏置电流2;如果第二处理结果小于零,则确定所述输出电流与所述第二预设交流呈负相关,并减小偏置电流2。
需要说明的是,对施加在环1和环2上的相应偏置电流进行调整,以影响环1和环2的谐振波长,从而导致环1和环2的耦合光功率发生变化,进而导致光电探测器得到的输出电流的变化,这样,通过所述输出电流对环1和环2的谐振波长进行多次调整,可使环1和环2的谐振波长达到双环谐振器的输入光信号的中心波长,进而使双环谐振器输出的光功率达到最大值。
基于上述控制电路的结构,图6是对环1的谐振波长进行校准的实现流程示意图,如图6所示,包括以下步骤:步骤601:微分运算电路对信号a和抖动信号1分别进行微分运算处理,得到两个运算结果。
其中,信号a表示的是对所述输出电流进行滤波处理,得到包含第一频率的第一路电流;抖动信号1表示的是第一预设交流。
步骤602:乘法器将两个运算结果进行相乘运算处理,得到第一处理结果。
步骤603:判决电路判断第一处理结果是否大于零,如果第一处理结果大于零,则执行步骤604;如果第一处理结果小于零,执行步骤605。
步骤604:确定所述输出电流与所述第一预设交流呈正相关,则增大直流偏置1。
其中,直流偏置1对应上述第一偏置直流。
步骤605:确定所述输出电流与所述第一预设交流呈负相关,则减小直流偏置1。
基于上述控制电路的结构,图7是对环2的谐振波长进行校准的实现流程示意图,如图7所示,包括以下步骤:步骤701:微分运算电路对信号b和抖动信号2分别进行微分运算处理,得到两个运算结果。
其中,信号b表示的是对所述输出电流进行滤波处理,得到包含第二频率的第二路电流;抖动信号2表示的是第二预设交流。
步骤702:乘法器将两个运算结果进行相乘运算处理,得到第二处理结果。
步骤703:判决电路判断第二处理结果是否大于零,如果第二处理结果大于零,则执行步骤704;如果第二处理结果小于零,执行步骤705。
步骤704:确定所述输出电流与所述第二预设交流呈正相关,并增大直流偏置2。
其中,直流偏置2表示的是所述第二偏置直流。
步骤705:确定所述输出电流与所述第二预设交流呈负相关,并减小直流偏置2。
需要说明的是,对施加在环1和环2上的相应偏置电流进行调整,以影响环1和环2的谐振波长,从而导致环1和环2的耦合光功率发生变化,进而导致光电探测器得到的输出电流的变化,这样,通过所述输出电流对环1和环2的谐振波长进行多次调整,可使环1和环2的谐振波长达到双环谐振器的输入光信号的中心波长,进而使双环谐振器输出的光功率达到最大值。
基于上述控制电路,本申请实施例还提供了一种控制方法,应用于控制电路,如图8所示,该方法包括:步骤801:控制电路中的光电转换子电路对双环谐振器输出的光信号进行转换,得到输出电流;步骤802:所述控制电路中的信号处理子电路从所述输出电流中获得预设频率的电流;并基于获得的电流,确定调整策略;步骤803:所述控制电路中的反馈控制子电路基于所述调 整策略,对作用于所述双环谐振器微环的偏置直流电流进行调整,以锁定所述双环谐振器的谐振波长为输入光信号的中心波长。
实际应用时,可以将所述双环谐振器输出的光信号的强度变化趋势,作为对施加在微环的相应偏置直流进行调整的依据。由于不涉及使用其他复杂算法比如正交解调算法等等实现锁定中心波长,因而实现起来也较简单些。
基于此,在一实施例中,所述光电转换子电路对双环谐振器输出的光信号进行转换,得到输出电流,包括:控制电路中的光电转换子电路检测所述双环谐振器输出的光信号,并对所述光信号进行转换处理,得到输出电流。所述光信号是在所述双环谐振器的两个微环分别施加第一电流、第二电流后所述双环谐振器输出的光信号;所述第一电流为第一偏置直流和第一预设交流叠加后的电流;所述第二电流为第二偏置直流和第二预设交流叠加后的电流。其中,所述第一预设交流的频率为第一频率,所述第二预设交流的频率为第二频率。
实际应用时,为了实现对两个微环实现同时控制,可以从所述输出电流中提取两路交流信号,基于两路交流信号,得到对相应偏置直流进行调整的调整策略。
基于此,在一实施例中,所述控制电路中的信号处理子电路从所述输出电流中获得预设频率的电流;并基于获得的电流,确定调整策略,包括:所述控制电路中的信号处理子电路通过对所述输出电流进行滤波处理,得到第一子电流及第二子电流;基于所述第一子电流,确定对所述第一偏置直流进行调整的第一调整策略;并基于所述第二子电流,确定对所述第二偏置直流进行调整的第二调整策略。
实际应用时,为了提高锁定效率,可以利用确定的相应调整策略,同时锁定两个微环的谐振波长为所述中心波长。
基于此,在一实施例中,所述控制电路中的反馈控制子电路基于所述调整策略,对作用于所述双环谐振器微环的偏置直流电流进行调整,包括:所述控制电路中的反馈控制子电路基于所述第一调整策略,对所述第一偏置直流进行调整,并基于所述第二调整策略,对所述第二偏置直流进行调整,以使所述双环谐振器的两个微环的谐振波长均达到中心波长。
其中,所述微环可以为硅光微环。所述双环谐振器输出的光信号可以是所述双环谐振器中的两个微环对输入的光信号进行耦合得到的。其中,所述中心波长可以是指所述双环谐振器的输入光信号的中心波长。
实际应用时,为了使所述双环谐振器的两个微环的谐振波长均达到所述中心波长,可以对两个微环的谐振波长先进行粗校准,再进行精校准。通过两级校准,不仅可以减小锁定次数,还可以精确锁定到中心波长,如此,能够提高锁定精度和速度。
基于此,可以通过两个加热器在所述双环谐振器的两个微环上分别施加第一偏置电流、第二偏置电流,以使相应微环的谐振波长与所述双环谐振器的输入光信号的中心波长大致对准。
这里,实际应用时,对两个微环的谐振波长进行精校准的过程可以为:通过所述输出电流,改变施加在两个加热器上的偏置电流,进而影响两个微环的谐振波长,从而导致两个微环的耦合光功率发生变化,进而导致光电转换子电路得到的输出电流的变化,这样,通过所述输出电流对两个微环的谐振波长进行多次调整,可使相应微环的谐振波长达到所述中心波长。为了通过所述输出电流,对施加在两个加热器上的偏置电流进行调整,可以先对所述输出电流进行解耦,以得到与相应预设交流的频率相同的两路电流。
基于此,在一实施例中,控制电路中的信号处理子电路通过对所述输出电流进行滤波处理,得到所述第一频率的第一子电流及所述第二频率的第二子电流,包括:基于第一截止频率,对所述输出电流进行滤波处理,得到第一频率的第一子电流;并基于第二截止频率,对所述输出电流进行滤波处理,得到第二频率的第二子电流。
其中,所述第一频率与所述第二频率之间的频率差越大,在进行自动锁定时,信号的干扰越小,这样,得到的校准效果越好。
这里,所述信号处理子电路包括两个滤波器,用于对所述输出电流进行滤波;其中,一个滤波器的截止频率为所述第一截止频率,另一个滤波器的截止频率为所述第二截止频率。所述滤波器可以为低通滤波器、带通滤波器、高通滤波器。
实际应用时,可以利用对所述输出电流进行解耦得到的两个子电流,以及所述第一预设交流、第二预设交流,确定所述输出电流与所述第一预设交流的相关关系,以及所述输出电流与所述第二预设交流的相关关系。所述相关关系可以是指所述输出电流与所述第一预设交流成正相关,比如,所述输出电流随着所述第一预设交流的增大而增大;所述相关关系也可以是指所述输出电流与所述第一预设交流成负相关,比如,所述输出电流随着所述第一预设交流的 增大而减小。
基于此,在一实施例中,所述基于所述第一子电流,确定对所述第一偏置直流进行调整的第一调整策略;并基于所述第二子电流,确定对所述第二偏置直流进行调整的第二调整策略,包括:针对所述第一子电流和所述第二子电流中的每个子电流,将相应电流和对应的预设交流分别进行微分运算处理,得到两个运算结果,将两个运算结果进行相乘运算处理,得到相应处理结果;将所述相应处理结果作为所述输出电流与对应的预设交流的相应相关系数;所述相应相关系数用于确定对相应偏置直流进行调整的调整策略。
实际应用时,如果所述输出电流与所述第一预设交流成正相关,则确定的所述第一相关系数可以大于零;如果所述输出电流与所述第一预设交流成负相关,则确定的所述第一相关系数可以小于零。如果所述输出电流与所述第二预设交流成正相关,则确定的所述第二相关系数可以大于零;如果所述输出电流与所述第二预设交流成负相关,则确定的所述第二相关系数可以小于零。这样,可以设置预设阈值以确定所述输出电流与相应预设交流的相关关系。
基于此,在一实施例中,所述基于得到的相应相关系数,确定对相应偏置直流进行调整的调整策略,包括:判断相应相关系数是否大于预设阈值,得到判断结果;当所述判断结果表征所述相应相关系数大于预设阈值时,确定所述输出电流与相应预设交流呈正相关,并确定增大相应偏置直流的调整策略;当所述判断结果表征所述相应相关系数小于预设阈值时,确定所述输出电流与相应预设交流呈负相关,并确定减小相应偏置直流的调整策略。其中,所述预设阈值可以为零。
这里,从图3a所示的耦合效率曲线示意图,可得出,当使所述双环谐振器的两个微环的谐振波长朝着所述中心波长进行增大调整时,耦合效率逐渐增大;当所述双环谐振器的两个微环的谐振波长均达到所述中心波长时,耦合效率达到最大值;当使所述双环谐振器的两个微环的谐振波长朝着远离所述中心波长的方向进行增大调整时,耦合效率逐渐减小。这里,耦合效率越大,说明所述双环谐振器输出的光功率越大,所述光电转换子电路得到的输出电流越大;两个微环的谐振波长越大,说明施加在加热器上的偏置电流越大。换句话说,当所述双环谐振器的谐振波长小于所述中心波长时,可以通过增大施加在加热器上的偏置电流,以使双环谐振器的谐振波长更接近所述中心波长;当所述双环谐振器的谐振波长大于所述中心波长时,可以通过减小施加在加热器上的偏 置电流,以使双环谐振器的谐振波长更接近所述中心波长。
基于此,在一实施例中,所述控制电路中的反馈控制子电路基于所述第一调整策略,对所述第一偏置直流进行调整,并基于所述第二调整策略,对所述第二偏置直流进行调整,包括:针对所述第一预设交流和所述第二预设交流中的每个预设交流,当所述输出电流与相应预设交流呈正相关时,增大对应的偏置直流;当所述输出电流与相应预设交流呈为负相关时,减小对应的偏置直流。
具体地,当所述输出电流与所述第一预设交流呈正相关时,增大所述第一偏置直流,以增大所述第一电流,从而影响相应微环的谐振波长,从而导致相应微环的耦合光功率发生变化,进而导致光电转换子电路得到的输出电流的变化,从而使得所述双环谐振器输出的光功率继续增大以达到最大光功率;当所述输出电流与所述第一预设交流呈为负相关时,减小所述第一偏置直流,以减小所述第一电流,从而影响相应微环的谐振波长,从而导致相应微环的耦合光功率发生变化,进而导致光电转换子电路得到的输出电流的变化,从而使得所述双环谐振器输出的光功率继续增大以达到最大光功率。
同样地,当所述输出电流与所述第二预设交流呈正相关时,增大所述第二偏置直流,以增大所述第二电流,从而影响相应微环的谐振波长,从而导致相应微环的耦合光功率发生变化,进而导致光电转换子电路得到的输出电流的变化,从而使得所述双环谐振器输出的光功率继续增大以达到最大光功率;当所述输出电流与所述第二预设交流呈为负相关时,减小所述第二偏置直流,以减小所述第二电流,从而影响相应微环的谐振波长,从而导致相应微环的耦合光功率发生变化,进而导致光电转换子电路得到的输出电流的变化,从而使得所述双环谐振器输出的光功率继续增大以达到最大光功率。
需要说明的是:“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
另外,本申请实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。

Claims (17)

  1. 一种控制电路,其特征在于,包括:
    光电转换子电路,用于对双环谐振器输出的光信号进行转换,得到输出电流;
    信号处理子电路,用于从所述输出电流中获得预设频率的电流;并基于获得的电流,确定调整策略;
    反馈控制子电路,用于基于所述调整策略,对作用于所述双环谐振器微环的偏置直流电流进行调整,以锁定所述双环谐振器的谐振波长为输入光信号的中心波长。
  2. 根据权利要求1所述的电路,其特征在于,
    光电转换子电路,用于检测所述双环谐振器输出的光信号,并对所述光信号进行转换处理,得到输出电流;所述光信号是在所述双环谐振器的两个微环分别施加第一电流、第二电流后所述双环谐振器输出的光信号;所述第一电流为第一偏置直流和第一预设交流叠加后的电流;所述第二电流为第二偏置直流和第二预设交流叠加后的电流;其中,所述第一预设交流的频率为第一频率,所述第二预设交流的频率为第二频率。
  3. 根据权利要求2上述的电路,其特征在于,所述信号处理子电路,用于通过对所述输出电流进行滤波处理,得到所述第一频率的第一子电流及所述第二频率的第二子电流;基于所述第一子电流,确定对所述第一偏置直流进行调整的第一调整策略;并基于所述第二子电流,确定对所述第二偏置直流进行调整的第二调整策略。
  4. 根据权利要求3所述的电路,其特征在于,反馈控制子电路,用于基于所述第一调整策略,对所述第一偏置直流进行调整,并基于所述第二调整策略,对所述第二偏置直流进行调整,以使所述双环谐振器的两个微环的谐振波长均达到所述中心波长。
  5. 根据权利要求3或4所述的电路,其特征在于,所述信号处理子电路,用于:
    基于第一截止频率,对所述输出电流进行滤波处理,得到所述第一频率的第一子电流;并基于第二截止频率,对所述输出电流进行滤波处理,得到所述 第二频率的第二子电流。
  6. 根据权利要求3或4所述的电路,其特征在于,所述信号处理子电路包括两个滤波器,用于对所述输出电流进行滤波;其中,一个滤波器的截止频率为所述第一截止频率,另一个滤波器的截止频率为所述第二截止频率。
  7. 根据权利要求6所述的电路,其特征在于,所述信号处理子电路还包括微分运算电路;
    所述微分运算电路,用于针对所述第一子电流和所述第二子电流中的每个子电流,将相应子电流和对应的预设交流分别进行微分运算处理,得到两个运算结果,将两个运算结果进行相乘运算处理,得到相应处理结果;将所述相应处理结果作为所述输出电流与对应的预设交流的相应相关系数;所述相应相关系数用于确定对相应偏置直流进行调整的调整策略。
  8. 根据权利要求7所述的电路,其特征在于,所述信号处理子电路,用于:
    判断相应相关系数是否大于预设阈值,得到判断结果;当所述判断结果表征所述相应相关系数大于预设阈值时,确定所述输出电流与相应预设交流呈正相关,并确定增大相应偏置直流的调整策略;当所述判断结果表征所述相应相关系数小于预设阈值时,确定所述输出电流与相应预设交流呈负相关,并确定减小相应偏置直流的调整策略。
  9. 根据权利要求2所述的电路,其特征在于,所述反馈控制子电路,用于:
    针对所述第一预设交流和所述第二预设交流中的每个预设交流,当所述输出电流与相应预设交流呈正相关时,增大对应的偏置直流;当所述输出电流与相应预设交流呈为负相关时,减小对应的偏置直流。
  10. 一种控制方法,其特征在于,应用于控制电路,包括:
    对双环谐振器输出的光信号进行转换,得到输出电流;
    从所述输出电流中获得预设频率的电流;并基于获得的电流,确定调整策略;
    基于所述调整策略,对作用于所述双环谐振器微环的偏置直流电流进行调整,以锁定所述双环谐振器的谐振波长为输入光信号的中心波长。
  11. 根据权利要求10所述的方法,其特征在于,所述对双环谐振器输出的光信号进行转换,得到输出电流,包括:
    检测所述双环谐振器输出的光信号,并对所述光信号进行转换处理,得到输出电流;所述光信号是在所述双环谐振器的两个微环分别施加第一电流、第二电流后所述双环谐振器输出的光信号;所述第一电流为第一偏置直流和第一预设交流叠加后的电流;所述第二电流为第二偏置直流和第二预设交流叠加后的电流;其中,所述第一预设交流的频率为第一频率,所述第二预设交流的频率为第二频率。
  12. 根据权利要求11所述的方法,其特征在于,所述从所述输出电流中获得预设频率的电流;并基于获得的电流,确定调整策略,包括:
    通过对所述输出电流进行滤波处理,得到所述第一频率的第一子电流及所述第二频率的第二子电流;基于所述第一子电流,确定对所述第一偏置直流进行调整的第一调整策略;并基于所述第二子电流,确定对所述第二偏置直流进行调整的第二调整策略。
  13. 根据权利要求12所述的方法,其特征在于,所述基于所述调整策略,对作用于所述双环谐振器微环的偏置直流电流进行调整,以锁定所述双环谐振器的谐振波长为输入光信号的中心波长,包括:
    基于所述第一调整策略,对所述第一偏置直流进行调整,并基于所述第二调整策略,对所述第二偏置直流进行调整,以使所述双环谐振器的两个微环的谐振波长均达到所述中心波长。
  14. 根据权利要求12或13所述的方法,其特征在于,所述通过对所述输出电流进行滤波处理,得到所述第一频率的第一子电流及所述第二频率的第二子电流,包括:
    基于第一截止频率,对所述输出电流进行滤波处理,得到所述第一频率的第一子电流;并基于第二截止频率,对所述输出电流进行滤波处理,得到所述第二频率的第二子电流。
  15. 根据权利要求12或13所述的方法,其特征在于,所述基于所述第一子电流,确定对所述第一偏置直流进行调整的第一调整策略;并基于所述第二子电流,确定对所述第二偏置直流进行调整的第二调整策略,包括:
    针对所述第一子电流和所述第二子电流中的每个子电流,将相应子电流和对应的预设交流分别进行微分运算处理,得到两个运算结果,将两个运算结果进行相乘运算处理,得到相应处理结果;将所述相应处理结果作为所述输出电 流与对应的预设交流的相应相关系数;基于得到的相应相关系数,确定对相应偏置直流进行调整的调整策略。
  16. 根据权利要求15所述的方法,其特征在于,所述基于得到的相应相关系数,确定对相应偏置直流进行调整的调整策略,包括:
    判断相应相关系数是否大于预设阈值,得到判断结果;当所述判断结果表征所述相应相关系数大于预设阈值时,确定所述输出电流与相应预设交流呈正相关,并确定增大相应偏置直流的调整策略;当所述判断结果表征所述相应相关系数小于预设阈值时,确定所述输出电流与相应预设交流呈负相关,并确定减小相应偏置直流的调整策略。
  17. 根据权利要求11所述的方法,其特征在于,所述基于所述调整策略,对作用于所述双环谐振器微环的偏置直流电流进行调整,包括:
    针对所述第一预设交流和所述第二预设交流中的每个预设交流,当所述输出电流与相应预设交流呈正相关时,增大对应的偏置直流;当所述输出电流与相应预设交流呈为负相关时,减小对应的偏置直流。
PCT/CN2019/110143 2018-12-29 2019-10-09 一种控制电路及方法 WO2020134321A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811640501.0A CN111381323B (zh) 2018-12-29 2018-12-29 一种控制电路及方法
CN201811640501.0 2018-12-29

Publications (1)

Publication Number Publication Date
WO2020134321A1 true WO2020134321A1 (zh) 2020-07-02

Family

ID=71126392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110143 WO2020134321A1 (zh) 2018-12-29 2019-10-09 一种控制电路及方法

Country Status (2)

Country Link
CN (1) CN111381323B (zh)
WO (1) WO2020134321A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114280728B (zh) * 2020-10-27 2022-09-30 华中科技大学 一种基于双微环谐振腔耦合的色散调控装置
CN114188818A (zh) * 2021-11-09 2022-03-15 暨南大学 一种集成光敏电阻和热敏电阻的微环、波长锁定系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101169501A (zh) * 2007-10-24 2008-04-30 北京航空航天大学 基于双环谐振腔的可调光学色散补偿器
US20130064501A1 (en) * 2010-05-14 2013-03-14 Cornell University Tunable optical apparatus, method, and applications
CN103326789A (zh) * 2013-05-03 2013-09-25 华中科技大学 一种频率可调谐的微波相移系统及方法
CN104359836A (zh) * 2014-10-23 2015-02-18 大连民族学院 一种基于光学谐振结构的高灵敏度生化传感器
CN105259614A (zh) * 2015-11-20 2016-01-20 大连民族大学 一种基于环形谐振结构的带通箱型滤波器
CN108496286A (zh) * 2016-01-22 2018-09-04 甲骨文国际公司 双环激光器的波长控制
CN108650187A (zh) * 2018-06-29 2018-10-12 浙江工商大学 一种基于串联双环谐振器的4×4无阻塞波长选择路由器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI251393B (en) * 2004-03-31 2006-03-11 Nec Corp Tunable laser
JP4945907B2 (ja) * 2005-03-03 2012-06-06 日本電気株式会社 波長可変レーザ
JP4586654B2 (ja) * 2005-07-04 2010-11-24 ソニー株式会社 光データ伝送システムおよび光データ伝送方法
US9134169B2 (en) * 2012-10-19 2015-09-15 The Hong Kong University Of Science And Technology In-microresonator linear-absorption-based real-time photocurrent-monitoring and tuning with closed-loop control for silicon microresonators
WO2014142832A1 (en) * 2013-03-13 2014-09-18 1Hewlett-Packard Development Company, L.P. Coupled ring resonator system
JP6266311B2 (ja) * 2013-11-08 2018-01-24 富士通株式会社 光共振装置、光送信機及び光共振器の制御方法
WO2017099802A1 (en) * 2015-12-11 2017-06-15 Hewlett Packard Enterprise Development Lp Tunable ring resonator multiplexers
CN107168401B (zh) * 2017-06-30 2018-02-27 华中科技大学 一种时分复用闭环反馈热控制方法及系统
CN108054632A (zh) * 2017-12-21 2018-05-18 浙江大学 具有功能复用的载流子耗尽型微环谐振器波长锁定方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101169501A (zh) * 2007-10-24 2008-04-30 北京航空航天大学 基于双环谐振腔的可调光学色散补偿器
US20130064501A1 (en) * 2010-05-14 2013-03-14 Cornell University Tunable optical apparatus, method, and applications
CN103326789A (zh) * 2013-05-03 2013-09-25 华中科技大学 一种频率可调谐的微波相移系统及方法
CN104359836A (zh) * 2014-10-23 2015-02-18 大连民族学院 一种基于光学谐振结构的高灵敏度生化传感器
CN105259614A (zh) * 2015-11-20 2016-01-20 大连民族大学 一种基于环形谐振结构的带通箱型滤波器
CN108496286A (zh) * 2016-01-22 2018-09-04 甲骨文国际公司 双环激光器的波长控制
CN108650187A (zh) * 2018-06-29 2018-10-12 浙江工商大学 一种基于串联双环谐振器的4×4无阻塞波长选择路由器

Also Published As

Publication number Publication date
CN111381323A (zh) 2020-07-07
CN111381323B (zh) 2023-02-28

Similar Documents

Publication Publication Date Title
Ma et al. Silicon photonic entangled photon-pair and heralded single photon generation with CAR> 12,000 and g (2)(0)< 0.006
WO2020134321A1 (zh) 一种控制电路及方法
Rosenberg et al. A multispectral and polarization-selective surface-plasmon resonant midinfrared detector
Abdi et al. Effect of phase noise on the generation of stationary entanglement in cavity optomechanics
Marpaung On-chip photonic-assisted instantaneous microwave frequency measurement system
US20130034352A1 (en) Coherent receiver apparatus and chromatic dispersion compensation method
Guo et al. High-performance modified uni-traveling carrier photodiode integrated on a thin-film lithium niobate platform
WO2019210671A1 (zh) 微波光子矢量网络分析装置及微波器件散射参数的测量方法
CN103115688B (zh) 频率可调谐的吉赫兹正弦门控近红外单光子探测器
Merrer et al. Characterization technique of optical whispering gallery mode resonators in the microwave frequency domain for optoelectronic oscillators
US20170331550A1 (en) Photonic-chip-based optical spectrum analyzer
Heuck et al. Heterodyne pump probe measurements of nonlinear dynamics in an indium phosphide photonic crystal cavity
WO2015161535A1 (zh) 一种微环光开关的控制装置
CN113391136B (zh) 一种基于固定低频检测的微波光子频率测量装置及方法
JP2009253934A (ja) 光受信装置
CN110346874A (zh) 基于自零差检测的自动波长锁定装置
JP3875160B2 (ja) 量子干渉を利用した光特性測定装置、方法、プログラムおよび該プログラムを記録した記録媒体
US8532500B1 (en) System and method for receiving optical signals
JP4287320B2 (ja) 固体撮像装置、信号処理装置、カメラ及び分光装置
CN104377533B (zh) 基于相移光栅进行频率自稳定的光电振荡器
Schlipf et al. Robust Si/Ge heterostructure metasurfaces as building blocks for wavelength-selective photodetectors
TWI291814B (en) Apparatus and method for homodyne detecting quality-factor measuring
Srinivasan et al. Non-invasive light monitoring for heterogeneous photonic integrated circuits
CN104459350B (zh) 一种铌酸锂直波导电场测量系统
CN104991355B (zh) 基于硅基自耦合微环谐振腔的微波光子陷波装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902354

Country of ref document: EP

Kind code of ref document: A1