WO2020133970A1 - 激光倾斜仪精度的测试方法、测试系统 - Google Patents

激光倾斜仪精度的测试方法、测试系统 Download PDF

Info

Publication number
WO2020133970A1
WO2020133970A1 PCT/CN2019/092620 CN2019092620W WO2020133970A1 WO 2020133970 A1 WO2020133970 A1 WO 2020133970A1 CN 2019092620 W CN2019092620 W CN 2019092620W WO 2020133970 A1 WO2020133970 A1 WO 2020133970A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
inclinometer
accuracy
laser inclinometer
target
Prior art date
Application number
PCT/CN2019/092620
Other languages
English (en)
French (fr)
Inventor
顾国明
朱亮
杨德生
尹婷婷
Original Assignee
上海建工集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海建工集团股份有限公司 filed Critical 上海建工集团股份有限公司
Publication of WO2020133970A1 publication Critical patent/WO2020133970A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass

Definitions

  • the invention relates to the technical field of building construction, in particular to a laser inclinometer accuracy test method and test system.
  • the laser inclinometer is an instrument that uses the angle between its reference axis and the natural vertical line to determine the verticality. It is widely used as a verticality measurement tool in construction engineering and equipment installation. As a high-precision measuring instrument, the accuracy of the laser inclinometer body is extremely important, so its accuracy needs to be measured, and there is currently no simple and effective test method.
  • a method for testing the accuracy of a laser inclinometer includes the following steps:
  • S4 Move the laser vertical collimator so that the crosshair of the laser vertical collimator coincides with the position of the target center, and adjust the laser line of the laser vertical collimator to be parallel to the natural vertical line;
  • the laser inclinometer is set at the position of the through hole of a specific floor of the building through the laser inclinometer adjustment device, and the verticality of the laser inclinometer is adjusted by the laser inclinometer adjustment device until The laser line of the laser inclinometer is completely coincident with the natural vertical line, so as to avoid the accuracy problem caused by the installation of the inclinometer.
  • the method further includes the steps of repeating the steps S1-S7 every predetermined time to obtain the accuracy of the plurality of laser inclinometers, and according to the accuracy of the plurality of laser inclinometers, to obtain the Test accuracy of laser inclinometer.
  • the second optical target is located below the laser inclinometer.
  • the step S7 includes: calculating a linear distance between the target point Pa and the target point Pb, and calculating a ratio between the linear distance and the height of the specific floor To obtain the accuracy of the laser inclinometer.
  • the step S1 includes: installing the laser inclinometer adjustment device on a connecting plate, the connecting plate is fixedly connected to a specific floor of the building, and the connecting plate is located The position of the sight hole of the super top floor of the building; the laser inclinometer is set on the laser inclinometer adjustment device.
  • the step S2 includes:
  • the display device is used to collect the vertical accuracy of the laser inclinometer in two directions;
  • the laser inclinometer adjustment device is fixed.
  • the laser collimator is fixed by a tripod.
  • a test system adopting the above-mentioned laser inclinometer accuracy test method includes:
  • Laser inclinometer adjustment device the laser inclinometer adjustment device is used for setting on a specific floor of the building, and the laser inclinometer adjustment device is located at the sight hole of the super top floor of the building Position; the laser inclinometer is installed on the laser inclinometer adjustment device, the laser inclinometer adjustment device is used to adjust the verticality of the laser inclinometer;
  • a first light target, the first light target is provided on the ground floor of the building, and the laser light emitted by the laser inclinometer passes through the through hole and irradiates the first light target;
  • a laser plummet the laser plummet used to be located on the ground floor of the building.
  • a second light target, the second light target is located below the laser inclinometer, and the second light target is located on the top floor of the building; the laser emitted by the laser vertical instrument is located in the A first target spot is formed on the second light target, and laser light emitted by the laser inclinometer forms a second target spot on the second light target.
  • the above test system has high test accuracy, simple structure and easy operation.
  • it further includes a connecting plate, which is fixedly connected to a specific floor of the building, and the connecting plate is located at the position of the through hole of the super top floor of the building.
  • the accuracy of the laser plummet is greater than or equal to three times the accuracy of the laser inclinometer.
  • FIG. 1 is a flowchart of a method for testing the accuracy of a laser inclinometer according to an embodiment
  • FIG. 2 is a schematic structural diagram of step S2 in FIG. 1;
  • FIG. 3 is a schematic structural diagram of step S3 in FIG. 1;
  • FIG. 4 is a partial enlarged view of A shown in FIG. 3;
  • FIG. 5 is a schematic structural diagram of step S6 in FIG. 1;
  • FIG. 6 is a schematic diagram of the measurement of the straight-line distance in step S7 shown in FIG. 1.
  • Laser inclinometer is an organic combination of laser and inclinometer.
  • Laser inclinometer includes inclinometer integrated circuit and protective shell.
  • the inclinometer integrated circuit is fixedly arranged in the protective case.
  • the inclinometer integrated circuit has a measuring axis.
  • the inclinometer integrated circuit can measure the angle between the measuring axis and the vertical line.
  • the laser inclinometer also includes a laser liner.
  • the laser liner is also fixedly installed in the protective shell.
  • the laser beam of the laser liner is parallel to the measuring axis.
  • the protective shell is provided with a light-transmitting window for the laser beam to exit.
  • the angle between the line to be measured and the vertical line of the object to be measured is equal to the angle between the measurement line of the oblique integrated circuit and the vertical line, Therefore, the verticality of the line to be measured of the object to be measured can be accurately and conveniently obtained through the inclinometer integrated circuit. Therefore, it is necessary to test the accuracy of the laser inclinometer.
  • the method for testing the accuracy of a laser inclinometer includes the following steps:
  • a building refers to a house under construction and has been built to more than ten floors.
  • the specific floor of the building may be the tenth floor or any floor above the tenth floor of the building.
  • the specific floor of the building refers to the floor of the twelfth floor of the building.
  • the laser inclinometer 110 is installed on a specific floor 200 of the building through a laser inclinometer adjustment device (not shown), and the laser inclinometer 110 is located at the position of the through hole 210 of the specific floor 200 So that the laser light emitted by the laser inclinometer 110 passes through the through hole 210, as shown in FIG. 3.
  • the natural vertical line refers to the line perpendicular to the sea level.
  • the laser inclinometer 110 is installed on the laser inclinometer adjustment device, and the installation position of the laser inclinometer adjustment device is adjusted, thereby adjusting the perpendicularity of the laser inclinometer 110 until the laser line of the laser inclinometer 110 coincides with the natural vertical line, as shown in picture 2.
  • the laser inclinometer adjustment device is fixed, and the laser inclinometer 110 is fixed. Through this step, it is avoided that the installation error of the laser inclinometer affects the accuracy of the laser inclinometer itself.
  • the laser inclinometer is fixed on the laser inclinometer adjustment device, and the laser inclinometer adjustment device is set on a specific floor of the building, and the specific floor of the building is 12 floors, each building The central axis of the sight hole on the floor is on the same straight line.
  • the laser inclinometer 110 emission switch is turned on, so that the laser light emitted by the laser inclinometer 110 is transmitted to the first light target on the ground floor of the building through the sight holes on each floor of the building.
  • the first optical target is moved so that the laser light emitted by the laser inclinometer 110 falls on the target center of the first optical target, as shown in FIGS. 3 and 4.
  • the first light target may be a scaled light target, and the first light target is placed on the ground floor of the building.
  • S4 Move the laser vertical collimator so that the crosshair of the laser vertical collimator coincides with the target center position, and adjust the laser line of the laser vertical collimator to be parallel to the natural vertical line.
  • the laser collimator 120 is located on the ground floor of the building, and the laser downward firing switch of the laser collimator 120 is turned on, and the laser collimator 120 is moved so that the laser collimator 120 The visible crosshair of the eyepiece coincides with the target position obtained in step S3.
  • the laser line of the laser vertical collimator 120 is adjusted to be parallel to the natural vertical line, that is, the laser line emitted by the laser vertical collimator 120 is completely perpendicular to the sea level. Through this step, the influence of the position of the laser vertical collimator 120 on the test accuracy can be avoided.
  • the accuracy of the laser collimator 120 is greater than or equal to three times the accuracy of the laser inclinometer 110.
  • the laser collimator 120 is erected on the ground floor of the building through a tripod 130. Through the setting of the tripod 130, it is convenient to adjust the laser vertical collimator 120. By moving the tripod 130, the crosshair of the laser collimator 120 coincides with the target position. Then, the tripod 130 is moved to adjust the laser line of the laser vertical collimator 120 to be parallel to the natural vertical line.
  • the laser downward emission switch of the laser collimator 120 is first turned off.
  • turn on the laser upward firing switch of the laser collimator 120 so that the laser emitted by the laser collimator 120 passes through the sight holes on each floor of the building, and emits in the direction of the laser inclinometer 110, and marks the laser at
  • the target point of the second light target set on the top floor is Pa, as shown in Figure 5.
  • the second light target is provided below the laser inclinometer 110, and the second light target may be a plastic light-transmitting light target. Therefore, the laser light emitted by the laser inclinometer 110 can pass through the second optical target, and the laser light emitted by the laser collimator 120 can also pass through the second optical target.
  • S6 Mark the laser light emitted by the laser inclinometer at the target point of the second light target as Pb. Please refer to Figure 5 for details.
  • step S5 and step S6 can be exchanged, and step S5 and step S6 can also be performed simultaneously.
  • the straight-line distance between the target points Pa and Pb is measured by a steel ruler to obtain the straight-line distance s, as shown in FIG. 6. Then according to the straight line distance s and the height h of the specific floor, the accuracy of the laser inclinometer is calculated.
  • the height h of a specific floor refers to the distance between the twelfth floor of the building and the ground.
  • the laser inclinometer is set at the position of the through hole of a specific floor of the building through the laser inclinometer adjustment device, and the verticality of the laser inclinometer is adjusted by the laser inclinometer adjustment device until The laser line of the laser inclinometer is completely coincident with the natural vertical line, so as to avoid the accuracy problem caused by the installation of the inclinometer.
  • step S7 includes calculating the straight-line distance between the target point Pa and the target point Pb, and calculating the ratio between the straight-line distance and the height of the specific floor to obtain the accuracy of the laser inclinometer.
  • the accuracy of the laser inclinometer may also be the square of the ratio between the linear distance and the height.
  • step S8 repeating the above steps S1-S7 every predetermined time to obtain the accuracy of multiple laser inclinometers, and according to the accuracy of multiple laser inclinometers, obtain the The test accuracy is the final accuracy of the laser inclinometer.
  • the predetermined time may be one week or two weeks, etc. Taking the predetermined time as two weeks as an example, the above steps S1-S7 are repeated every two weeks to obtain the accuracy of the corresponding laser inclinometer. Taking the test ten times as an example, repeat the above steps S1-S7 every two weeks to obtain the accuracy of ten laser inclinometers.
  • the average value of the accuracy of the laser inclinometer calculated in each test may be taken as the test accuracy of the laser inclinometer. Therefore, the influence of the structural floor itself can be eliminated, and the test accuracy of the laser inclinometer can be ensured more accurately. It should be noted that, in other embodiments, the variance of the accuracy of the laser inclinometer obtained in each test may be calculated as the test accuracy of the laser inclinometer.
  • the body accuracy of the second laser inclinometer is 1/2750
  • the body accuracy of the third laser inclinometer is 1/2800
  • the body accuracy of the fourth laser inclinometer is 1/2740
  • the fifth The body accuracy of the secondary laser inclinometer is 1/2760.
  • step S1 includes: setting the laser inclinometer adjustment device on the connecting plate 140, which is fixedly connected to the specific floor of the building, and the connecting plate 140 is located on the super top floor of the building The position of the through hole; the laser inclinometer 110 is set on the laser inclinometer adjustment device.
  • the connecting plate 140 is detachably connected to the floor 200 of a specific floor.
  • the laser inclinometer adjustment device is detachably connected to the connecting plate 140, and the laser inclinometer 110 is fixed to the laser inclinometer adjustment device through the positioning bolt 150.
  • the laser inclinometer 110 may also be fixed to the laser inclinometer adjustment device by screws or other methods.
  • step S2 includes:
  • S21 Connect the laser inclinometer to the display device.
  • the display device is used to collect the vertical accuracy in two directions of the laser inclinometer.
  • the display device 160 may be a data display or a computer.
  • the display device 160 is connected to the laser inclinometer 110 through a data line 170, and the display device 160 collects the vertical accuracy in two directions of the laser inclinometer 110.
  • the two directions of the laser inclinometer 110 refer to two directions of X and Y.
  • the position of the laser inclinometer adjustment device can be adjusted to adjust the vertical accuracy of the laser inclinometer.
  • the display device 160 acquires the vertical accuracy in two directions of the laser inclinometer 110 in real time.
  • the above method for measuring the accuracy of the laser inclinometer uses an inclinometer integrated circuit to calculate the inclination, and the accuracy is high, and the accuracy is above 1/2000. And the electronic electric signal is used to calculate the inclination, which improves the efficiency.
  • the test method is also loss-free, the instrument is reused, no consumables, easy to operate, and fully digitally displayed.
  • An embodiment of a test system using the above-mentioned laser inclinometer accuracy test method includes a laser inclinometer, a laser inclinometer adjustment device, a first optical target, a laser vertical collimator, and a second optical target.
  • the laser inclinometer adjustment device is used to set on a specific floor of the building, and the laser inclinometer adjustment device is located at the position of the through hole of the super top floor of the building.
  • the laser inclinometer is installed on the laser inclinometer adjustment device.
  • the laser inclinometer adjustment device is used to adjust the verticality of the laser inclinometer.
  • the first light target is used to be installed on the ground floor of the building, and the laser light emitted by the laser inclinometer passes through the sight hole and irradiates the first light target.
  • the laser vertical instrument is used on the ground floor of the building.
  • the second light target is located below the laser inclinometer, and the second light target is located on the top floor of the building.
  • the laser emitted by the laser vertical instrument forms the first target point on the second light target, and the laser inclinometer emits The laser light forms a second target point on the second light target.
  • the working principle of the test system is as described in the above method and will not be repeated here.
  • the test system has high test accuracy, simple structure and easy operation.
  • the test system further includes a connection plate, which is fixedly connected to a specific floor of the building, and the connection plate is located at the through-hole position of the super top floor of the building. Through the setting of the connecting plate, it is convenient to adjust the adjustment device of the laser inclinometer.
  • the accuracy of the laser plummet is greater than or equal to three times the accuracy of the laser inclinometer. Therefore, the test accuracy of the test system is further improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Conveying And Assembling Of Building Elements In Situ (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种激光倾斜仪(110)精度的测试方法、测试系统。该测试方法包括以下步骤:将激光倾斜仪(110)设于建筑物的特定层楼面(200)的通视孔(210)位置(S1);通过激光倾斜仪调整装置调整激光倾斜仪(110)的垂直度,直至其激光线与天然垂线重合(S2);打开激光倾斜仪(110),使得其发出的激光发射至建筑物底楼的第一光靶的靶心位置(S3);移动激光垂准仪(120),使得激光垂准仪(120)的十字丝与靶心位置重合,并将其激光线调整至与天然垂线平行(S4);打开激光垂准仪(120),标记激光在第二光靶的靶点为Pa(S5);标记激光倾斜仪(110)发出的激光在第二光靶的靶点为Pb(S6);根据靶点Pa和靶点Pb之间的直线距离及特定层楼面(200)的高度,计算激光倾斜仪(110)的精度(S7)。该激光倾斜仪(110)精度的测试方法、测试系统,无损耗、精度高、效率高,且操作便捷。

Description

激光倾斜仪精度的测试方法、测试系统 技术领域
本发明涉及建筑施工技术领域,特别是涉及一种激光倾斜仪精度的测试方法、测试系统。
背景技术
激光测斜仪是一种利用其基准轴线与天然垂直线之间的偏角来测定垂直度的仪器,建筑工程及设备安装中广泛应用其作为垂直度测量工具。作为高精度测量仪器,激光倾斜仪本体的精度极为重要,因此需要对其精度进行测定,而目前尚无简便有效的测试方法。
发明内容
基于此,有必要针对如何简便且高精度地检测激光倾斜仪的精度的问题,提供一种激光倾斜仪精度的测试方法、测试系统。
一种激光倾斜仪精度的测试方法,包括以下步骤:
S1:将激光倾斜仪通过激光倾斜仪调整装置设于建筑物的特定层楼面的通视孔位置;
S2:通过所述激光倾斜仪调整装置,调整所述激光倾斜仪的垂直度,直至所述激光倾斜仪的激光线与天然垂线重合,其中,所述天然垂线指的是垂直于海平面的线;
S3:打开所述激光倾斜仪,使得所述激光倾斜仪发出的激光通过所述建筑物的各楼层的通视孔发射至所述建筑物底楼的第一光靶的靶心位置;
S4:移动激光垂准仪,使得所述激光垂准仪的十字丝与所述靶心位置重合,并将所述激光垂准仪的激光线调整至与所述天然垂线平行;
S5:打开所述激光垂准仪,使得其发射出的激光向所述激光倾斜仪所在的方向发射,并标记所述激光在设在所述特顶层楼面的第二光靶的靶点为Pa;
S6:标记所述激光倾斜仪发出的激光在所述第二光靶的靶点为Pb;
S7:根据所述靶点Pa和所述靶点Pb之间的直线距离以及所述特定层楼面的高度,计算所述激光倾斜仪的精度。
上述激光倾斜仪精度的测试方法,将激光倾斜仪通过激光倾斜仪调整装置设于建筑物的特定层楼面的通视孔位置,并通过激光倾斜仪调整装置调整激光倾斜仪的垂直度,直至激光倾斜仪的激光线与天然垂线完全重合,从而避免倾斜仪安装所引起的精度问题,接着,打开激光倾斜仪,使得激光倾斜仪发出的激光通过建筑物的各楼层的通视孔发射至建筑物底楼的第一光靶的靶心位置,移动激光垂准仪,使得激光垂准仪的十字丝与靶心位置共和,并将激光垂准仪的激光线调整至与天然垂线平行,打开激光垂准仪,使得其发射出的激光向激光倾斜仪所在的方向发射,并标记激光在设在特顶层楼面的第二光靶的靶点为Pa,并标记激光倾斜仪发出的激光在第二光靶的靶点为Pb,根据靶点Pa和靶点Pb之间的直线距离以及特定层楼面的高度,计算激光倾斜仪的精度,通过建筑物的各楼层的通视孔,即利用工地现场施工条件对激光倾斜仪精度进行测试,该测试方法无损耗、精度高、效率高,且操作便捷。
在其中一个实施例中,还包括步骤:每隔预定时间,重复所述步骤S1-S7,得到多个所述激光倾斜仪的精度,并根据多个所述激光倾斜仪的精度,得到所述激光倾斜仪的测试精度。
在其中一个实施例中,在所述步骤S5中,所述第二光靶位于所述激光倾斜仪下方。
在其中一个实施例中,所述步骤S7包括:计算所述靶点Pa和所述靶点Pb之间的直线距离,并计算所述直线距离与所述特定层楼面的高度之间的比值,得到所述激光倾斜仪的精度。
在其中一个实施例中,所述步骤S1包括:将所述激光倾斜仪调整装置设于连接板上,所述连接板与所述建筑物的特定层楼面固定连接,且所述连接板位于所述建筑物的特顶层楼面的通视孔位置;将所述激光倾斜仪设于所述激光倾斜仪调整装置上。
在其中一个实施例中,所述步骤S2包括:
将所述激光倾斜仪与显示装置连接,所述显示装置用于采集所述激光倾斜 仪的两个方向上的垂直精度;
通过所述激光倾斜仪调整装置,调整所述激光倾斜仪的垂直精度;
当所述显示装置采集到的所述激光倾斜仪的两个方向上的垂直精度达到预设极大值时,固定所述激光倾斜仪调整装置。
在其中一个实施例中,在所述步骤S5中,通过三脚架固定所述激光垂准仪。
一种采用上述激光倾斜仪精度的测试方法的测试系统,包括:
激光倾斜仪;
激光倾斜仪调整装置,所述激光倾斜仪调整装置用于设置在建筑物的特定层楼面上,且所述激光倾斜仪调整装置位于所述建筑物的特顶层楼面的通视孔所在的位置;所述激光倾斜仪安装在所述激光倾斜仪调整装置上,所述激光倾斜仪调整装置用于调整所述激光倾斜仪的垂直度;
第一光靶,所述第一光靶用于设在所述建筑物的底楼,所述激光倾斜仪发射出的激光穿过所述通视孔,照射到所述第一光靶上;
激光垂准仪,所述激光垂直仪用于设在所述建筑物的底楼;以及
第二光靶,所述第二光靶位于所述激光倾斜仪的下方,且所述第二光靶设于所述建筑物的特顶层楼面;所述激光垂直仪发射出的激光在所述第二光靶上形成第一靶点,所述激光倾斜仪发射出的激光在所述第二光靶上形成第二靶点。
上述测试系统,测试精度高,且结构简单,便于操作。
在其中一个实施例中,还包括连接板,所述连接板与所述建筑物的特定层楼面固定连接,且所述连接板位于所述建筑物的特顶层楼面的通视孔位置。
在其中一个实施例中,所述激光垂准仪的精度大于等于所述激光倾斜仪的精度的三倍。
附图说明
图1为一实施例的激光倾斜仪精度的测试方法的流程图;
图2为图1中进行步骤S2后的结构示意图;
图3为图1中进行步骤S3后的结构示意图;
图4为图3中所示A的局部放大图;
图5为图1中进行步骤S6后的结构示意图;
图6为图1中所示的步骤S7中的直线距离的测量的示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
激光倾斜仪是激光器和倾斜仪的有机组合,激光倾斜仪包括测斜集成电路以及保护壳。测斜集成电路固定设置于保护壳内,测斜集成电路具有一测量轴线,测斜集成电路能够测量出测量轴线与铅垂线之间的夹角。该激光倾斜仪还包括一激光打线仪,激光打线仪器也固定设置于保护壳内,激光打线仪的激光射线与测量轴线平行,保护壳上开设供激光射线射出的透光窗口。由于被测物体的待测线与铅垂线的夹角(相当于被测物体的待测线的垂直度)就等于所述测斜集成电路的测量线与铅垂线之间的夹角,因而可以通过测斜集成电路精确而方便地获得被测物体的待测线的垂直度。因此,有必要对激光倾斜仪精度进行测试。
如图1所示,一实施例的激光倾斜仪精度的测试方法,包括以下步骤:
S1:将激光倾斜仪通过激光倾斜仪调整装置设于建筑物的特定层楼面的通视孔位置。
具体地,建筑物指的是在建房屋且已建至十层以上。建筑物的特定层楼面可以为建筑物的第十层或者十层以上的任一楼层的楼面。在本实施例中,建筑物的特定层楼面指的是该建筑物的第十二层楼的楼面。将激光倾斜仪110用过激光倾斜仪调整装置(未示出)设于建筑物的特定层楼面200上,且该激光倾斜仪110位于该特定层楼面200的通视孔210所在的位置,以便激光倾斜仪110发射出的激光穿过该通视孔210,如图3所示。
S2:通过激光倾斜仪调整装置,调整激光倾斜仪的垂直度,直至激光倾斜仪的激光线与天然垂线完全重合。
其中,天然垂线指的是垂直于海平面的线。具体地,激光倾斜仪110安装 在激光倾斜仪调整装置上,调整激光倾斜仪调整装置的安装位置,从而调整激光倾斜仪110的垂直度,直至激光倾斜仪110的激光线与天然垂线重合,如图2所示。此时,固定好激光倾斜仪调整装置,将激光倾斜仪110固定。通过该步骤,避免激光倾斜仪的安装误差等对激光倾斜仪本身的精度产生影响。
S3:打开激光倾斜仪,使得激光倾斜仪发出的激光通过建筑物的各楼层的通视孔发射至建筑物底楼的第一光靶的靶心位置。
具体地,由上述可知,激光倾斜仪固定在激光倾斜仪调整装置上,而激光倾斜仪调整装置设在建筑物的特定层楼面上,而建筑物的特定层为12层,建筑物每一层楼的通视孔的中心轴线位于同一直线上。从而打开激光倾斜仪110发射开关,使得激光倾斜仪110发射出的激光通过建筑物的各楼层的通视孔发射至建筑物底楼的第一光靶上。并且移动该第一光靶,使得激光倾斜仪110发射出的激光落在第一光靶的靶心位置,如图3和图4所示。需要说明的是,该第一光靶可以为有刻度的光靶,该第一光靶放置在建筑物底楼。
S4:移动激光垂准仪,使得激光垂准仪的十字丝与靶心位置重合,并将激光垂准仪的激光线调整至与天然垂线平行。
具体地,如图5所示,激光垂准仪120设在建筑物底楼,并打开激光垂准仪120的激光向下发射开关,并移动激光垂准仪120,使得该激光垂准仪120的目镜可视十字丝与步骤S3中得到的靶心位置重合。接着,将激光垂准仪120的激光线调整至与天然垂线平行,即使得激光垂准仪120发射出的激光线与海平面完全垂直。通过该步骤,可以避免激光垂准仪120的位置等对测试精度的影响。进一步地,在一实施例中,激光垂准仪120的精度大于等于激光倾斜仪110精度的三倍。
请再参考图5,在其中一个实施例中,通过三脚架130将激光垂准仪120架设在建筑物底楼。通过三脚架130的设置,便于对激光垂准仪120进行调整。通过移动三脚架130,使得激光垂准仪120的十字丝与靶心位置重合。再移动三脚架130,将激光垂准仪120的激光线调整至与天然垂线平行。
S5:打开激光垂准仪,使得其发射出的激光向激光倾斜仪所在的方向发射,并标记激光在设在特顶层楼面的第二光靶的靶点为Pa。
具体地,在步骤S4之后,先关闭激光垂准仪120的激光向下发射开关。接着,打开激光垂准仪120的激光向上发射开关,使得激光垂准仪120发射出的激光穿过建筑物各楼层的通视孔,往激光倾斜仪110所在的方向发射,并标记该激光在设在特顶层楼面的第二光靶的靶点为Pa,如图5所示。需要说明的是,第二光靶设在激光倾斜仪110的下方,且该第二光靶可以为塑料透光光靶。从而激光倾斜仪110所发射出的激光可以穿过第二光靶,而激光垂准仪120所发射出的激光也可以穿过第二光靶。
S6:标记激光倾斜仪发出的激光在第二光靶的靶点为Pb。具体地请参考图5。
需要说明的是,步骤S5和步骤S6可以交换,步骤S5和步骤S6也可以同时进行。换而言之,同时打开激光倾斜仪110和激光垂准仪120,标记它们在第二光靶上所形成的靶点分别为Pb和Pa。
S7:根据靶点Pa和靶点Pb之间的直线距离以及特定层楼面的高度,计算激光倾斜仪的精度。
具体地,通过钢直尺测量靶点Pa和Pb之间的直线距离,得到该直线距离s,如图6所示。再根据该直线距离s和特定层楼面的高度h,计算得到激光倾斜仪的精度。在本实施例中,特定层楼面的高度h指的是建筑物第十二层楼面与地面之间的距离。
上述激光倾斜仪精度的测试方法,将激光倾斜仪通过激光倾斜仪调整装置设于建筑物的特定层楼面的通视孔位置,并通过激光倾斜仪调整装置调整激光倾斜仪的垂直度,直至激光倾斜仪的激光线与天然垂线完全重合,从而避免倾斜仪安装所引起的精度问题,接着,打开激光倾斜仪,使得激光倾斜仪发出的激光通过建筑物的各楼层的通视孔发射至建筑物底楼的第一光靶的靶心位置,移动激光垂准仪,使得激光垂准仪的十字丝与靶心位置共和,并将激光垂准仪的激光线调整至与天然垂线平行,打开激光垂准仪,使得其发射出的激光向激光倾斜仪所在的方向发射,并标记激光在设在特顶层楼面的第二光靶的靶点为Pa,并标记激光倾斜仪发出的激光在第二光靶的靶点为Pb,根据靶点Pa和靶点Pb之间的直线距离以及特定层楼面的高度,计算激光倾斜仪的精度,通过建筑 物的各楼层的通视孔,即利用工地现场施工条件对激光倾斜仪精度进行测试,该测试方法无损耗、精度高、效率高,且操作便捷。
在其中一个实施例中,步骤S7包括:计算靶点Pa和靶点Pb之间的直线距离,并计算直线距离与特定层楼面的高度之间的比值,得到激光倾斜仪的精度。由上述可知,直线距离为s,特定层楼面的高度为h,从而激光倾斜仪的精度=s/h。需要说明的,激光倾斜仪的精度也可以为直线距离和高度之间的比值的平方等。
进一步地,在一实施例中,还包括步骤S8:每隔预定时间,重复上述步骤S1-S7,得到多个激光倾斜仪的精度,并根据多个激光倾斜仪的精度,得到激光倾斜仪的测试精度,即激光倾斜仪的最终精度。具体地,预定时间可以为一个星期或两个星期等,以预定时间为两个星期为例,每隔两个星期,重复上述步骤S1-S7,得到对应的激光倾斜仪的精度。以测试十次为例,每隔两个星期,重复上述步骤S1-S7,得到十个激光倾斜仪的精度。在一实施例中,可以取各次测试计算得到的激光倾斜仪的精度的平均值,作为激光倾斜仪的测试精度。从而可以消除结构楼层本身的影响,确保激光倾斜仪的测试精度更加精确。需要说明的是,在其他实施例中,也可以计算各次测试得到的激光倾斜仪的精度的方差等来作为激光倾斜仪的测试精度。
具体地,在本实施例中,设12个楼层高h=12层x4.5米/层=54米=5400cm,假如通过上述方法第一次测量得到第二光靶上的两个靶点Pa和Pb间直线距离s=2cm,则第一次激光倾斜仪的本体精度=s/h=2/5400=1/2700,即获得第一次激光倾斜仪的本体精度为1/2700。采用同样的方式,获得第二次激光倾斜仪的本体精度为1/2750,第三次激光倾斜仪的本体精度为1/2800,第四次激光倾斜仪的本体精度为1/2740,第五次激光倾斜仪的本体精度为1/2760。则激光倾斜仪的测试精度=1/[(2700+2750+2800+2740+2760)/5]=1/2750。需要说明的是,若测试次数大于五次,则采用同样的方式以此类推即可,在此不再赘述。
在其中一个实施例中,步骤S1包括:将激光倾斜仪调整装置设于连接板140上,连接板140与建筑物的特定层楼面固定连接,且连接板140位于建筑物的特顶层楼面的通视孔位置;将激光倾斜仪110设于激光倾斜仪调整装置上。具体地,如图2和图4所示,连接板140与特定层楼面200可拆卸连接。激光倾 斜仪调整装置与连接板140可拆卸连接,而激光倾斜仪110通过定位螺栓150固定在激光倾斜仪调整装置上。需要说明的是,激光倾斜仪110也可以通过螺钉等其他方式固定在激光倾斜仪调整装置上。
进一步地,在一实施例中,上述步骤S2包括:
S21:将激光倾斜仪与显示装置连接,显示装置用于采集激光倾斜仪的两个方向上的垂直精度。
具体地,如图4所示,显示装置160可以为数据显示仪或者计算机。显示装置160通过数据线170与激光倾斜仪110连接,显示装置160采集激光倾斜仪110的两个方向上的垂直精度。其中,激光倾斜仪110的两个方向指的是X和Y两个方向。
S22:通过激光倾斜仪调整装置,调整激光倾斜仪的垂直精度。
具体地,可以调整激光倾斜仪调整装置的位置,调整激光倾斜仪的垂直精度。此时,显示装置160实时采集激光倾斜仪110的两个方向上的垂直精度。
S23:当显示装置采集到的激光倾斜仪的两个方向上的垂直精度达到预设极大值时,固定激光倾斜仪调整装置。其中,预设极大值可以为1/5000。
上述激光倾斜仪精度的测试方法采用测斜集成电路计算倾斜度,精度高,该精度达到1/2000以上。且完全采用电子电信号计算倾斜度,提高效率。此外,该测试方法还无损耗,仪器重复使用,无耗材,操作便捷,完全数字化显示。
一实施例的采用上述激光倾斜仪精度的测试方法的测试系统,包括激光倾斜仪、激光倾斜仪调整装置、第一光靶、激光垂准仪以及第二光靶。激光倾斜仪调整装置用于设置在建筑物的特定层楼面上,且激光倾斜仪调整装置位于建筑物的特顶层楼面的通视孔所在的位置。激光倾斜仪安装在激光倾斜仪调整装置上,激光倾斜仪调整装置用于调整激光倾斜仪的垂直度。第一光靶用于设在建筑物的底楼,激光倾斜仪发射出的激光穿过通视孔,照射到第一光靶上。激光垂直仪用于设在建筑物的底楼。第二光靶位于激光倾斜仪的下方,且第二光靶设于建筑物的特顶层楼面,激光垂直仪发射出的激光在第二光靶上形成第一靶点,激光倾斜仪发射出的激光在第二光靶上形成第二靶点。该测试系统的工作原理如上述方法中所述,在此不再赘述。该测试系统,测试精度高,且结构 简单,便于操作。
在其中一个实施例中,该测试系统还包括连接板,连接板与建筑物的特定层楼面固定连接,且连接板位于建筑物的特顶层楼面的通视孔位置。通过连接板的设置,便于对激光倾斜仪调整装置进行调整。
进一步地,在一实施例中,激光垂准仪的精度大于等于激光倾斜仪的精度的三倍。从而进一步提高该测试系统的测试精度。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种激光倾斜仪精度的测试方法,其特征在于,包括以下步骤:
    S1:将激光倾斜仪通过激光倾斜仪调整装置设于建筑物的特定层楼面的通视孔位置;
    S2:通过所述激光倾斜仪调整装置,调整所述激光倾斜仪的垂直度,直至所述激光倾斜仪的激光线与天然垂线重合,其中,所述天然垂线指的是垂直于海平面的线;
    S3:打开所述激光倾斜仪,使得所述激光倾斜仪发出的激光通过所述建筑物的各楼层的通视孔发射至所述建筑物底楼的第一光靶的靶心位置;
    S4:移动激光垂准仪,使得所述激光垂准仪的十字丝与所述靶心位置重合,并将所述激光垂准仪的激光线调整至与所述天然垂线平行;
    S5:打开所述激光垂准仪,使得其发射出的激光向所述激光倾斜仪所在的方向发射,并标记所述激光在设在所述特顶层楼面的第二光靶的靶点为Pa;
    S6:标记所述激光倾斜仪发出的激光在所述第二光靶的靶点为Pb;
    S7:根据所述靶点Pa和所述靶点Pb之间的直线距离以及所述特定层楼面的高度,计算所述激光倾斜仪的精度。
  2. 根据权利要求1所述的激光倾斜仪精度的测试方法,其特征在于,还包括步骤:每隔预定时间,重复所述步骤S1-S7,得到多个所述激光倾斜仪的精度,并根据多个所述激光倾斜仪的精度,得到所述激光倾斜仪的测试精度。
  3. 根据权利要求1所述的激光倾斜仪精度的测试方法,其特征在于,在所述步骤S5中,所述第二光靶位于所述激光倾斜仪下方。
  4. 根据权利要求1所述的激光倾斜仪精度的测试方法,其特征在于,所述步骤S7包括:计算所述靶点Pa和所述靶点Pb之间的直线距离,并计算所述直线距离与所述特定层楼面的高度之间的比值,得到所述激光倾斜仪的精度。
  5. 根据权利要求1-4中任一项所述的激光倾斜仪精度的测试方法,其特征在于,所述步骤S1包括:将所述激光倾斜仪调整装置设于连接板上,所述连接板与所述建筑物的特定层楼面固定连接,且所述连接板位于所述建筑物的特顶层楼面的通视孔位置;将所述激光倾斜仪设于所述激光倾斜仪调整装置上。
  6. 根据权利要求5所述的激光倾斜仪精度的测试方法,其特征在于,所述 步骤S2包括:
    将所述激光倾斜仪与显示装置连接,所述显示装置用于采集所述激光倾斜仪的两个方向上的垂直精度;
    通过所述激光倾斜仪调整装置,调整所述激光倾斜仪的垂直精度;
    当所述显示装置采集到的所述激光倾斜仪的两个方向上的垂直精度达到预设极大值时,固定所述激光倾斜仪调整装置。
  7. 根据权利要求1所述的激光倾斜仪精度的测试方法,其特征在于,在所述步骤S5中,通过三脚架固定所述激光垂准仪。
  8. 一种采用权利要求1-7中任一项所述的激光倾斜仪精度的测试方法的测试系统,其特征在于,包括:
    激光倾斜仪;
    激光倾斜仪调整装置,所述激光倾斜仪调整装置用于设置在建筑物的特定层楼面上,且所述激光倾斜仪调整装置位于所述建筑物的特顶层楼面的通视孔所在的位置;所述激光倾斜仪安装在所述激光倾斜仪调整装置上,所述激光倾斜仪调整装置用于调整所述激光倾斜仪的垂直度;
    第一光靶,所述第一光靶用于设在所述建筑物的底楼,所述激光倾斜仪发射出的激光穿过所述通视孔,照射到所述第一光靶上;
    激光垂准仪,所述激光垂直仪用于设在所述建筑物的底楼;以及
    第二光靶,所述第二光靶位于所述激光倾斜仪的下方,且所述第二光靶设于所述建筑物的特顶层楼面;所述激光垂直仪发射出的激光在所述第二光靶上形成第一靶点,所述激光倾斜仪发射出的激光在所述第二光靶上形成第二靶点。
  9. 根据权利要求8所述的测试系统,其特征在于,还包括连接板,所述连接板与所述建筑物的特定层楼面固定连接,且所述连接板位于所述建筑物的特顶层楼面的通视孔位置。
  10. 根据权利要求8所述的测试系统,其特征在于,所述激光垂准仪的精度大于等于所述激光倾斜仪的精度的三倍。
PCT/CN2019/092620 2018-12-27 2019-06-25 激光倾斜仪精度的测试方法、测试系统 WO2020133970A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811607686.5A CN109631946B (zh) 2018-12-27 2018-12-27 激光倾斜仪精度的测试方法、测试系统
CN201811607686.5 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020133970A1 true WO2020133970A1 (zh) 2020-07-02

Family

ID=66078028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092620 WO2020133970A1 (zh) 2018-12-27 2019-06-25 激光倾斜仪精度的测试方法、测试系统

Country Status (2)

Country Link
CN (1) CN109631946B (zh)
WO (1) WO2020133970A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109631946B (zh) * 2018-12-27 2021-08-27 上海建工集团股份有限公司 激光倾斜仪精度的测试方法、测试系统
CN112161641B (zh) * 2020-08-31 2023-10-03 陕西交通职业技术学院 一种激光垂准仪竖轴与激光光轴同轴度的校准方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5864956A (en) * 1996-11-22 1999-02-02 Dong; Dawei Level line and limb line combination
CN201034613Y (zh) * 2007-06-02 2008-03-12 刘洪云 激光垂准仪的检定装置
CN104949689A (zh) * 2015-06-05 2015-09-30 武汉天宇光电仪器有限公司 基于源头成像的激光垂准仪数字化校准方法及装置
CN105973215A (zh) * 2016-08-03 2016-09-28 宝钢钢构有限公司 一种激光垂准仪进行铅锤定位测量的系统及方法
CN106546263A (zh) * 2016-10-12 2017-03-29 上海大学 一种基于机器视觉的激光水平仪出射激光线检测方法
CN108332708A (zh) * 2018-03-29 2018-07-27 苏州凌创瑞地测控技术有限公司 激光水平仪自动检测系统及检测方法
CN109631946A (zh) * 2018-12-27 2019-04-16 上海建工集团股份有限公司 激光倾斜仪精度的测试方法、测试系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5864956A (en) * 1996-11-22 1999-02-02 Dong; Dawei Level line and limb line combination
CN201034613Y (zh) * 2007-06-02 2008-03-12 刘洪云 激光垂准仪的检定装置
CN104949689A (zh) * 2015-06-05 2015-09-30 武汉天宇光电仪器有限公司 基于源头成像的激光垂准仪数字化校准方法及装置
CN105973215A (zh) * 2016-08-03 2016-09-28 宝钢钢构有限公司 一种激光垂准仪进行铅锤定位测量的系统及方法
CN106546263A (zh) * 2016-10-12 2017-03-29 上海大学 一种基于机器视觉的激光水平仪出射激光线检测方法
CN108332708A (zh) * 2018-03-29 2018-07-27 苏州凌创瑞地测控技术有限公司 激光水平仪自动检测系统及检测方法
CN109631946A (zh) * 2018-12-27 2019-04-16 上海建工集团股份有限公司 激光倾斜仪精度的测试方法、测试系统

Also Published As

Publication number Publication date
CN109631946B (zh) 2021-08-27
CN109631946A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
US8006394B2 (en) Apparatus, method and system of precise identification of multiple points distributed throughout an area
US7987605B2 (en) Reflector target tripod for survey system with light emitter and pivoting bracket for enhanced ground marking accuracy
CN103292795B (zh) 一种双棱镜精确测量的方法及测量杆
CN104634267A (zh) 一种桥门式起重机上拱度测量方法及配套测量装置
WO2020133970A1 (zh) 激光倾斜仪精度的测试方法、测试系统
CN101464146B (zh) 将地面水准点高程精确传递到高架桥上的测量方法及其装置
US20230272631A1 (en) Batter board placement method, batter board placement program, and survey system
CN207688877U (zh) 空间角度测量定位装置
KR101550403B1 (ko) 개량형 포터블 프리즘 수신장치와 개량형 포터블 gps 수신장치 그리고 이를 이용한 측량방법
CN105403194A (zh) 一种光学标定测距测长装置和测距测长的方法
CN203390520U (zh) 一种电梯导轨校准装置
CN216866572U (zh) 循环钻机钻孔过程中对循环钻机进行实时定位纠偏的装置
CN211147651U (zh) 用于建筑物倾斜度测量的装置
KR20180103787A (ko) 개량형 포터블 프리즘 수신장치와 이를 이용한 측량방법
CN110231055B (zh) 一种垂准仪和天顶仪的检校方法
CN113585094A (zh) 一种山区超高墩墩柱垂直度控制装置
CN111121656A (zh) 一种用于检测预制构件间距的检测设备及方法
CN111564084A (zh) 三轴飞行转台基础板安装方法
CN211121079U (zh) 一种用于检测预制构件间距的检测设备
CN214470668U (zh) 一种测量墙柱模板安装偏差值的装置
CN111693070B (zh) 电子经纬仪自准直误差原位检测方法
RU2452920C1 (ru) Оптико-электронный центрир
CN114427848B (zh) 建筑变形检测装置及方法
CN215976870U (zh) 一种山区超高墩墩柱垂直度控制装置
CN216348676U (zh) 数字水准仪室内快速检校装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903109

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903109

Country of ref document: EP

Kind code of ref document: A1