WO2020133929A1 - 一种用于分层注水工艺中层段组合的确定方法及装置 - Google Patents

一种用于分层注水工艺中层段组合的确定方法及装置 Download PDF

Info

Publication number
WO2020133929A1
WO2020133929A1 PCT/CN2019/090304 CN2019090304W WO2020133929A1 WO 2020133929 A1 WO2020133929 A1 WO 2020133929A1 CN 2019090304 W CN2019090304 W CN 2019090304W WO 2020133929 A1 WO2020133929 A1 WO 2020133929A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
layer
injection
small layer
small
Prior art date
Application number
PCT/CN2019/090304
Other languages
English (en)
French (fr)
Inventor
王文东
苏玉亮
王森
冯其红
郝永卯
李蕾
徐纪龙
范理尧
Original Assignee
中国石油大学(华东)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油大学(华东) filed Critical 中国石油大学(华东)
Publication of WO2020133929A1 publication Critical patent/WO2020133929A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/20Displacing by water
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/14Obtaining from a multiple-zone well

Definitions

  • the invention relates to the technical field of oil and gas field development engineering, in particular to a method and device for determining the combination of layers in a layered water injection process.
  • layered water injection technology is often used for water injection.
  • the layered water injection process is to separate the oil layers with large differences by running packers in the oil wells, and then combine the water distributors to carry out layered quantitative water distribution, thereby maximizing the production capacity of various reservoirs.
  • the key problem in the layered water injection process is how to combine the layers according to the reservoir parameters, fluid physical parameters and the production performance of the corresponding oil wells.
  • commonly used determination methods are mainly based on static parameters such as reservoirs and fluid properties, and the approximate horizons are combined together through clustering algorithms and fuzzy evaluation algorithms.
  • the existing determination method only determines the combination of layers based on the difference between layers.
  • the production performance of an oil well is a combination optimization problem of plane, interlayer and injection volume ratio.
  • the optimal result of the layer is not the optimal result of the combination problem. .
  • the embodiments of the present invention provide a method and device for determining a combination of intervals combining the injection rate ratio of intervals, which can solve the above problems.
  • the technical solution is as follows:
  • a method for determining the combination of layers in a layered water injection process including the following steps:
  • the optimal horizon combination scheme in the preset horizon combination scheme is determined.
  • the determination of the water injection section of the target water injection well includes:
  • the water injection interval of the target water injection well is determined.
  • the calculating the water seepage time of each small layer under the condition of equal injection volume according to the total water injection volume of the target injection well and the parameter information of each small layer includes:
  • the parameter information of each small layer is obtained, combined with the average injection volume of each small layer, and the water breakthrough time of each small layer is calculated based on the two-phase seepage theory.
  • the parameter information of each small layer includes: oil phase permeability, water phase permeability, formation crude oil viscosity, formation water viscosity, porosity, injection-production well spacing, and seepage cross-sectional area.
  • the determining the optimal injection volume of each small layer according to the water breakthrough time of each small layer includes:
  • the optimal injection volume of each small layer is determined.
  • the determining the optimal horizon combination scheme among the preset horizon combination schemes based on the water breakthrough time variance and the cumulative oil production at the water breakthrough time includes:
  • the determination device includes:
  • the first determining module is used to determine the water injection interval of the target water injection well, where the water injection interval includes n small layers, and n is a positive integer;
  • a combination module configured to divide the n small layers into m segments, and combine to obtain K preset layer combination solutions, wherein, m is a positive integer less than n;
  • the first calculation module is used to calculate the water seepage time of each small layer under the condition of equal injection volume based on the total water injection volume of the target injection well and the parameter information of each small layer;
  • a second determining module configured to determine the optimal injection volume of each small layer according to the water seepage time of each small layer
  • the second calculation module is used to calculate the variance of the water breakthrough time and the water breakthrough time of each of the preset horizon combination schemes based on the water breakthrough time of each small layer and the optimized injection volume of each small layer Accumulated oil production;
  • the third determining module is configured to determine the optimal horizon combination scheme among the preset horizon combination schemes according to the variance of the water breakthrough time and the cumulative oil production at the water breakthrough time.
  • a machine-readable storage medium stores instructions, which are used to cause the machine to execute the above-mentioned determination method for the layer combination in the layered water injection process.
  • the method and device for determining the combination of intervals provided by the embodiments of the present invention firstly pre-set the water injection interval, and then based on the water seepage time of each small layer in the water injection interval to "suppress the early seeing water layer and promote late "See the water layer” as the goal, determine the optimal injection volume of each small layer, and then calculate the water breakthrough time variance and cumulative oil production at the water breakthrough time in each preset horizon combination scheme, and finally based on the water breakthrough time variance and water breakthrough Accumulate oil production at all times and comprehensively evaluate each preset horizon combination plan.
  • each preset layer combination scheme is further evaluated so that the final determined The horizon combination scheme is more in line with oil well production dynamics, and can achieve the purpose of optimizing horizon combination.
  • FIG. 1 is a schematic diagram of a method for determining a combination of layers in a layered water injection process according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a device for determining a combination of layers in a layered water injection process according to an embodiment of the present invention.
  • the method and device for determining the layer combination not only relate to the layer combination based on the difference between layers in the layered water injection process, but also involve the optimized injection volume allocation of each layer after the layer combination That is to say, the optimal horizon combination scheme determined by the method and the device is the optimal horizon combination scheme considering the optimization of the injection volume ratio.
  • an embodiment of the present invention provides a method for determining the combination of layers in a layered water injection process, as shown in FIG. 1,
  • the determination method includes the following steps:
  • Step 101 Determine the water injection interval of the target water injection well, the water injection interval includes n small layers, and n is a positive integer;
  • Step 102 Divide n small layers into m segments, and combine to obtain K preset layer combination schemes, where, m is a positive integer less than n;
  • Step 103 Calculate the water seepage time of each small layer under the condition of equal injection volume according to the total water injection volume of the target injection well and the parameter information of each small layer;
  • Step 104 Determine the optimal injection volume of each small layer according to the water seepage time of each small layer;
  • Step 105 Based on the water breakthrough time of each small layer and the optimized injection volume of each small layer, calculate the variance of the water breakthrough time and the cumulative oil production at the water breakthrough time of each preset horizon combination scheme;
  • Step 106 According to the variance of the water seepage time and the cumulative oil production at the water seepage time, determine the optimal horizon combination scheme among the preset horizon combination schemes.
  • the method for determining the combination of intervals provided by the embodiments of the present invention first pre-sets the water injection interval, and then based on the water seepage time of each small layer in the water injection interval to "suppress the early seeing water layer and promote the late seeing water"
  • the goal is to determine the optimal injection volume of each small layer, and then calculate the variance of the water breakthrough time and the cumulative oil production at the water breakthrough time in each preset horizon combination scheme, and finally based on the water breakthrough time variance and the water breakthrough time. For oil production, comprehensively evaluate each preset horizon combination plan.
  • each preset layer combination scheme is further evaluated so that the final determined The horizon combination scheme is more in line with oil well production dynamics, and can achieve the purpose of optimizing horizon combination.
  • water seepage time refers to the time from production to the front of the water injection front of a single production layer to the position of the oil recovery well;
  • accumulated oil production at the time of water seepage refers to the combined production of multiple production layers from the beginning From simulated production to the time when a single production layer reaches the earliest water breakthrough time, the corresponding cumulative oil production of the whole well.
  • the water injection interval of the target water injection well is determined, the water injection interval includes n small layers, n is a positive integer, and may include the following steps:
  • Step 1011 Obtain the logging data of the target water injection well
  • logging data of target injection wells can be obtained by a professional logging service company.
  • Commonly used logging data can include spontaneous potential curves, natural gamma curves, resistance curves, etc.
  • Step 1012 Determine the water injection interval of the target water injection well according to the logging data.
  • the resistance curve can be used to determine the oil-bearing interval of the target injection well, and the thickness of different sand layers in the oil-bearing interval can be obtained by the natural potential curve and the natural gamma curve.
  • the target interval refers to the sand layer interval with a more stable mudstone interlayer that meets the thickness requirements of the layering process, therefore, for multiple natural small layers with unsatisfactory thickness or unstable thickness, the average Into one layer.
  • the water injection layer containing multiple sand layers can be determined according to the logging data, and each sand layer can be regarded as a small layer, that is, the water injection layer includes n small layers, and n is a positive integer.
  • the value range of n can be generally set to [2, 20], that is, n can take 2, 3, 4, 5, 6, 7, and so on. That is, according to the natural attributes of the water injection interval, the water injection interval is divided into 2-20 layers.
  • step 102 divide n small layers into m segments, and combine to obtain K preset layer combination schemes, where, m is a positive integer less than n;
  • Step 102 is essentially a preset combination of n small layers in the water injection interval, that is, firstly enumerate the possible K preset horizon combination schemes, and then optimize and select the best among the K preset horizon combination schemes. Excellent combination plan.
  • n horizons are expected to be divided into m segments, which is equivalent to arbitrarily selecting m-1 positions in n-1 intervals. Preset combinations.
  • the value range of m can be [1, 5], that is, m can take 1, 2, 3, 4, and 5.
  • m 1
  • calculating the water breakthrough time of each sub-layer under the condition of equal injection volume may include the following steps:
  • Step 1031 Obtain the total injection volume of the target injection well and calculate the average injection volume of each small layer;
  • the target acquires the total water amount Q of injection wells total.
  • Step 1032 Obtain the parameter information of each small layer, combine with the average injection volume of each small layer, and calculate the water breakthrough time of each small layer based on the two-phase seepage theory.
  • the parameter information of each small layer can be obtained based on laboratory core measurement or log data inversion data.
  • the parameter information may include oil phase permeability, water phase permeability, formation crude oil viscosity, formation water viscosity, porosity, injection-production well spacing, and seepage cross-sectional area.
  • the water seepage time of each small layer can be calculated separately according to the parameter information of each small layer.
  • the first step is to calculate the water content and water saturation curve (f w ⁇ S w ) based on the oil phase permeability and water phase permeability, using formula (1).
  • f w is water content
  • ⁇ o is the viscosity of formation crude oil
  • ⁇ w is the viscosity of formation water
  • K ro is the permeability of oil phase
  • K rw is the permeability of water phase
  • S w is the water saturation.
  • the oil-water front edge saturation S wf and the oil-water front edge position x 0 are obtained .
  • the third step is based on the Berkeley Levitt two-phase flooding theory, combined with the oil-water front saturation S wf and applying equation (2) to calculate the water content versus water saturation derivative.
  • f′ w (S wf ) is the derivative of water content versus water saturation
  • f w (S wf ) is the water content corresponding to the leading edge saturation (can be obtained from the water content and water saturation curve obtained in the second step above )
  • Swf is the water saturation of the leading edge
  • Swc is the bound water saturation.
  • T is the water seepage time
  • L is the injection-production well spacing
  • is the porosity
  • Q is the injection volume
  • A is the seepage cross-sectional area.
  • the parameters used can be adjusted according to the specific conditions of the reservoir, and the water breakthrough time can be calculated in other ways.
  • the embodiment of the present invention does not strictly limit the calculation of the water breakthrough time.
  • step 104 determine the optimal injection volume of each small layer, which may include the following steps:
  • Step 1041 based on the water seepage time of each small layer, determine the optimal proportion of the injection volume of each small layer;
  • the optimal proportion of each small layer can be determined according to the time of seeing water.
  • the ratio of the optimal dosage of each small layer can be made equal to the water breakthrough time ratio of each small layer.
  • the embodiments of the present invention do not exclude other optimal allocation schemes that can achieve the effect of "suppressing early seeing water layers and promoting late seeing water layers”.
  • Step 1042 based on the proportion of the injection volume of each small layer and the total injection volume of the target injection well, determine the optimal injection volume of each small layer.
  • the optimal injection volume of each small layer can be calculated.
  • step 105 based on the water breakthrough time of each small layer and the optimized injection volume of each small layer, the variance of the water breakthrough time and the cumulative oil production at the water breakthrough time of each preset horizon combination scheme are calculated.
  • the following uses an example of a preset horizon combination plan including n small layers and m segments as an example to illustrate the calculation process of the water breakthrough time variance and cumulative oil production at the time of water breakthrough. It's similar.
  • the minimum water seepage time corresponding to each small layer is taken as the water seepage time of the segment to obtain m water seepage times, and then calculate the variance of the m water seepage times Is the variance of the water seepage time of the preset horizon combination scheme.
  • the injection volume of this segment is the injection volume multiplied by The average water content, the cumulative oil production at the time of seeing water is the accumulation of the oil production in the m segment at the time of seeing the water.
  • determining the optimal horizon combination scheme in the preset horizon combination schemes may include the following steps:
  • Step 1061 Calculate the first ranking of each preset horizon combination scheme according to the order of the water seepage time variance in ascending order of the water seepage time variance;
  • Step 1062 according to the cumulative oil production at the time of water seepage, and the order of the cumulative oil production at the water seepage from high to bottom, to calculate the second ranking of each preset horizon combination scheme;
  • Step 1063 Add the first ranking and the second ranking of each preset horizon combination plan separately, and determine the preset horizon combination plan corresponding to the minimum added value as the optimal horizon combination plan.
  • the weights of the first ranking and the second ranking can be set, and then the sum value of the two under the weight condition can be calculated, and the preset horizon combination scheme corresponding to the minimum sum value can be calculated. Determined as the optimal horizon combination plan.
  • the water injection interval includes 5 small layers (N1-N5);
  • the seepage cross-sectional area of each small layer takes the value of 1/2 of the injection-production well distance L times the small layer thickness h.
  • the water seepage time of the five layers N1-N5 is 110 days, 108 days, 414 days, 1938 days, and 749 days;
  • an optimal interval combination plan including the combination of the horizon and injection volume of the water injection well can be obtained, that is, the water injection interval of the water injection well can be carried out according to [N1], [N2, N3, N4], [N5] Layer combination, and make the injection volume of [N1] layer is 3m 3 /d, the injection volume of [N2,N3,N4] layer is 74m 3 /d, and the injection volume of [N5] layer is 23m 3 / d.
  • an embodiment of the present invention also provides a determination device for the combination of layers in a layered water injection process.
  • the determination device includes:
  • the first determination module 201 is used to determine the water injection interval of the target water injection well.
  • the water injection interval includes n small layers, and n is a positive integer;
  • the combination module 202 is used to divide n small layers into m segments and combine to obtain K preset layer combination schemes, where, m is a positive integer less than n;
  • the first calculation module 203 is used to calculate the water seepage time of each small layer under the condition of equal injection volume according to the total water injection volume of the target injection well and the parameter information of each small layer;
  • the second determination module 204 is used to determine the optimal injection volume of each small layer according to the water seepage time of each small layer;
  • the second calculation module 205 is used to calculate the variance of the water breakthrough time and the cumulative oil production at the water breakthrough time of each preset horizon combination scheme based on the water breakthrough time of each small layer and the optimized injection volume of each small layer;
  • the third determination module 206 is configured to determine the optimal horizon combination scheme among the preset horizon combination schemes based on the variance of the water breakthrough time and the cumulative oil production at the water breakthrough time.
  • the first determining module 201 includes:
  • the first acquisition unit is used to acquire the logging data of the target injection well
  • the first determining unit is configured to determine the water injection interval of the target water injection well based on the logging data.
  • the first calculation module 203 includes:
  • the second obtaining unit is used to obtain the total water injection volume of the target water injection well and the parameter information of each small layer;
  • the first calculation unit is used to calculate the average injection volume of each small layer and the water breakthrough time of each small layer.
  • the second determining module 204 includes:
  • the second determination unit is used to determine the optimal proportion of the injection volume of each small layer based on the water breakthrough time of each small layer;
  • the third determining unit is used to determine the optimal injection volume of each small layer based on the proportion of the injection volume of each small layer and the total injection volume of the target injection well.
  • the third determining module 206 includes:
  • the second calculation unit is used to calculate the first ranking of each preset horizon combination scheme according to the variance of the water seepage time and the order of the variance of the water seepage time from small to large;
  • the third calculation unit is used to calculate the second ranking of each preset horizon combination scheme according to the order of cumulative oil production at the time of water seepage and the order of the cumulative oil production from high to bottom at the time of water seepage;
  • the fourth determining unit is used to add the first ranking and the second ranking of each preset horizon combination scheme respectively, and determine the preset horizon combination scheme corresponding to the minimum added value as the optimal horizon Combination plan.
  • the device for determining the layer combination provided by the embodiment of the present invention not only considers the interlayer difference of each small layer, but also further evaluates each preset layer combination scheme based on the optimized injection amount of each small layer, so that the final The determined layer combination scheme is more in line with the oil well production dynamics, and can achieve the purpose of optimizing the layer combination.
  • the layer combination determination device provided in the above embodiment only uses the division of the above functional modules as an example for the description of the layer combination.
  • the above functions can be allocated by different functions as needed
  • Module completion means dividing the internal structure of the device into different functional modules to complete all or part of the functions described above.
  • the apparatus for determining the combination of intervals and the method for determining the combination of intervals provided in the above embodiments belong to the same concept. For the specific implementation process, see the method embodiments, and details are not described here.
  • an embodiment of the present invention also provides a machine-readable storage medium having instructions stored on the machine-readable storage medium. The instructions are used to cause the machine to execute the above-mentioned layer combination for layered water injection process. Determine the method.
  • the program may be stored in a computer-readable storage medium.
  • the mentioned storage medium may be a read-only memory, a magnetic disk or an optical disk.

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Tires In General (AREA)
  • Cosmetics (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

一种用于分层注水工艺中层段组合的确定方法、装置以及机器可读存储介质,属于油气田开发工程技术领域。首先对注水层段进行预设组合,然后基于注水层段中每个小层的见水时间,以"抑制早见水层,促进晚见水层"为目标,确定每个小层的优化注入量,再计算每个预设层位组合方案中的见水时间方差和见水时刻累产油,最后基于见水时间方差和见水时刻累产油,综合评价每个预设层位组合方案。采用该确定方法进行层位组合时,不仅考虑了每个小层的层间差异性,还基于每个小层的优化注入量,进一步评价了每个预设层位组合方案,使得最终确定的层位组合方案更符合油井生产动态,能够达到优化层位组合的目的。

Description

一种用于分层注水工艺中层段组合的确定方法及装置 技术领域
本发明涉及油气田开发工程技术领域,特别涉及一种用于分层注水工艺中层段组合的确定方法及装置。
背景技术
在油田水驱开发中,为了避免层间干扰造成注水量分布不均匀,多采用分层注水工艺进行注水。分层注水工艺即是通过在油井中下入封隔器,将差异较大的油层隔开,然后结合配水器进行分层定量配水,由此可最大程度发挥各类油藏的生产能力。
分层注水工艺中的关键问题是如何根据油藏参数、流体物性参数以及对应油井的生产动态进行层位组合。现有技术中,常用的确定方法是以油藏、流体物性等静态参数为主,通过聚类算法、模糊评判算法将近似层位组合在一起。
发明人发现现有技术中至少存在以下问题:
现有的确定方法只基于层间差异确定了层位组合,而实质上油井生产动态是平面、层间与注入量配比的组合优化问题,层位最优结果并不是组合问题的最优结果。
发明内容
基于此,本发明实施例提供了一种结合了层段注入量配比的层段组合的确定方法及装置,可解决上述问题。所述技术方案如下:
具体而言,包括以下的技术方案:
一方面,提供了一种用于分层注水工艺中层段组合的确定方法,包括以下步骤:
确定目标注水井的注水层段,所述注水层段包括n个小层,n为正整数;
将所述n个小层划分为m段,组合得到K个预设层位组合方案,其中,
Figure PCTCN2019090304-appb-000001
m为小于n的正整数;
根据所述目标注水井的总注水量和每个小层的参数信息,计算等注入量条件下的每个小层的见水时间;
根据所述每个小层的见水时间,确定每个小层的优化注入量;
基于所述每个小层的见水时间和所述每个小层的优化注入量,计算每个所述预设层位组合方案的见水时间方差和见水时刻累产油;
根据所述见水时间方差和所述见水时刻累产油,确定所述预设层位组合方案中的最优层位组合方案。
在一种可能的设计中,所述确定目标注水井的注水层段,包括:
获取所述目标注水井的测井数据;
根据所述测井数据,确定所述目标注水井的所述注水层段。
在一种可能的设计中,所述根据所述目标注水井的总注水量和每个小层的参数信息,计算等注入量条件下的每个小层的见水时间,包括:
获取所述目标注水井的总注水量,计算平均每个小层的注入量;
获取每个小层的参数信息,结合所述平均每个小层的注入量,基于两相渗流理论,计算每个小层的见水时间。
在一种可能的设计中,所述每个小层的参数信息包括:油相渗透率、水相渗透率、地层原油粘度、地层水粘度、孔隙度、注采井距、渗流截面积。
在一种可能的设计中,所述根据所述每个小层的见水时间,确定每个小层的优化注入量,包括:
基于所述每个小层的见水时间,确定每个小层的优化配注量比例;
基于所述每个小层的配注量比例,结合所述目标注水井的所述总注水量,确定所述每个小层的优化注入量。
在一种可能的设计中,所述根据所述见水时间方差和所述见水时刻累产油,确定所述预设层位组合方案中的最优层位组合方案,包括:
根据所述见水时间方差,按照所述见水时间方差从小到大的顺序排列,计算每个所述预设层位组合方案的第一次排名;
根据所述见水时刻累产油,按照所述见水时刻累产油从高到底的顺序排列,计算每个所述预设层位组合方案的第二次排名;
将每个所述预设层位组合方案的所述第一次排名和所述第二次排名分别相加,将最小相加值所对应的预设层位组合方案确定为最优层位组合方案。
另一方面,还提供了一种用于分层注水工艺中层段组合的确定装置,所述确定装置包括:
第一确定模块,用于确定目标注水井的注水层段,所述注水层段包括n个小层,n为正整数;
组合模块,用于将所述n个小层划分为m段,组合得到K个预设层位组合方案, 其中,
Figure PCTCN2019090304-appb-000002
m为小于n的正整数;
第一计算模块,用于根据所述目标注水井的总注水量和每个小层的参数信息,计算等注入量条件下的每个小层的见水时间;
第二确定模块,用于根据所述每个小层的见水时间,确定每个小层的优化注入量;
第二计算模块,用于基于所述每个小层的见水时间和所述每个小层的优化注入量,计算每个所述预设层位组合方案的见水时间方差和见水时刻累产油;
第三确定模块,用于根据所述见水时间方差和所述见水时刻累产油,确定所述预设层位组合方案中的最优层位组合方案。
另一方面,还提供了一种机器可读存储介质,所述机器可读存储介质上存储有指令,该指令用于使得机器执行上述的用于分层注水工艺中层段组合的确定方法。
本发明实施例提供的技术方案带来的有益效果至少包括:
本发明实施例提供的层段组合的确定方法及装置,首先对注水层段进行预设组合,然后基于注水层段中每个小层的见水时间,以“抑制早见水层,促进晚见水层”为目标,确定每个小层的优化注入量,再计算每个预设层位组合方案中的见水时间方差和见水时刻累产油,最后基于见水时间方差和见水时刻累产油,综合评价每个预设层位组合方案。采用该确定方法进行层位组合时,不仅考虑了每个小层的层间差异性,还基于每个小层的优化注入量,进一步评价了每个预设层位组合方案,使得最终确定的层位组合方案更符合油井生产动态,能够达到优化层位组合的目的。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种用于分层注水工艺中层段组合的确定方法的示意图;
图2为本发明实施例提供的一种用于分层注水工艺中层段组合的确定装置的示意图。
具体实施方式
为使本发明的技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。除非另有定义,本发明实施例所用的所有技术术语均具有与本领域技术 人员通常理解的相同的含义。
需要说明的是,本发明实施例提供的层段组合的确定方法及装置,不仅涉及分层注水工艺中基于层间差异的层位组合,还涉及层位组合后各层段的优化注入量配比,也即是说,该方法及装置确定的最优层位组合方案是在考虑优化注入量配比的情况下的最优层位组合方案。
一方面,本发明实施例提供了一种分层注水工艺中层段组合的确定方法,如图1所述,
该确定方法包括以下步骤:
步骤101:确定目标注水井的注水层段,该注水层段包括n个小层,n为正整数;
步骤102:将n个小层划分为m段,组合得到K个预设层位组合方案,其中,
Figure PCTCN2019090304-appb-000003
m为小于n的正整数;
步骤103:根据目标注水井的总注水量和每个小层的参数信息,计算等注入量条件下的每个小层的见水时间;
步骤104:根据每个小层的见水时间,确定每个小层的优化注入量;
步骤105:基于每个小层的见水时间和每个小层的优化注入量,计算每个预设层位组合方案的见水时间方差和见水时刻累产油;
步骤106:根据见水时间方差和见水时刻累产油,确定预设层位组合方案中的最优层位组合方案。
本发明实施例提供的层段组合的确定方法,首先对注水层段进行预设组合,然后基于注水层段中每个小层的见水时间,以“抑制早见水层,促进晚见水层”为目标,确定每个小层的优化注入量,再计算每个预设层位组合方案中的见水时间方差和见水时刻累产油,最后基于见水时间方差和见水时刻累产油,综合评价每个预设层位组合方案。采用该确定方法进行层位组合时,不仅考虑了每个小层的层间差异性,还基于每个小层的优化注入量,进一步评价了每个预设层位组合方案,使得最终确定的层位组合方案更符合油井生产动态,能够达到优化层位组合的目的。
可以理解的是,“见水时间”是指从生产到单个生产层注水前缘到达采油井位置所对应的时间;“见水时刻累产油”是指多个生产层合采时,从开始模拟生产到单个生产层最早达到见水时刻时,所对应的全井累产油量。
具体地,对于步骤101,确定目标注水井的注水层段,该注水层段包括n个小层,n为正整数,可包括以下步骤:
步骤1011,获取目标注水井的测井数据;
在实际应用中,可通过测井专业服务公司获取目标注水井的测井数据,常用的测井数据可包括自然电位曲线、自然伽马曲线和电阻曲线等等。
步骤1012,根据测井数据,确定目标注水井的注水层段。
借助电阻曲线能确定目标注水井的含油层段,借助自然电位曲线和自然伽马曲线能得到含油层段中不同砂层的厚度。另外,考虑到目标层段是指满足分层工艺厚度要求的、具有较稳定的泥岩隔夹层的砂层层段,因此,对于厚度不满足要求或不稳定的多个自然小层,可通过平均化处理为一层。
基于此,可根据测井数据确定包含多个砂层的注水层段,每个砂层可视为小层,即注水层段包括n个小层,n为正整数。
示例地,为了便于后续实际的组合操作,通常可使n的取值范围为[2,20],即n可以取2、3、4、5、6、7等等。即,根据注水层段的自然属性,将注水层段分为2-20层。
对于步骤102,将n个小层划分为m段,组合得到K个预设层位组合方案,其中,
Figure PCTCN2019090304-appb-000004
m为小于n的正整数;
步骤102实质上是对注水层段中的n个小层的预设组合,即是先列举出可能的K个预设层位组合方案,然后在K个预设层位组合方案优化筛选出最优组合方案。
可以理解的是,将n个层位预期分为m段,相当于在n-1个间隔中任意选择m-1个位置,共有
Figure PCTCN2019090304-appb-000005
个预设组合方案。
考虑到实际分层注水工艺中所能达到的封隔层数和分注段数,可使m的取值范围是[1,5],即m可以取1、2、3、4、5。
示例地,以n=5,m=3为例(将包括5个小层的注水层段划分为3个注水段),可得到
Figure PCTCN2019090304-appb-000006
中预设组合方案。
另外,当m取1时,即是对注水层段进行整层注水,而不进行分层注水。
对于步骤103,根据目标注水井的总注水量和每个小层的参数信息,计算等注入量条件下的每个小层的见水时间,可包括以下步骤:
步骤1031,获取目标注水井的总注水量,计算平均每个小层的注入量;
实际应用中,可根据实际生产需要,获取目标注水井的总注水量Q 。示例地,可按照年度或月度计划的产量,获取目标注水井的总注水量Q ,平均每个小层的注入量Q=Q /n。
步骤1032,获取每个小层的参数信息,结合平均每个小层的注入量,基于两相渗流理论,计算每个小层的见水时间。
具体可根据实验室岩心测量或测井数据反演数据,获取每个小层的参数信息。该参数信息可包括油相渗透率、水相渗透率、地层原油粘度、地层水粘度、孔隙度、注采井距、渗流截面积。
在计算过程中,可根据每个小层的参数信息,分别计算每个小层的见水时间。下面以某个小层的见水时间为例,来具体说明该计算过程。
第一步,根据油相渗透率、水相渗透率,应用公式(1),计算获得含水率与含水饱和度曲线(f w~S w)。
Figure PCTCN2019090304-appb-000007
其中,f w是含水率;μ o是地层原油粘度;μ w是地层水粘度;K ro是油相渗透率;K rw是水相渗透率;S w是含水饱和度。
第二步,根据该含水率与含水饱和度曲线(f w~S w),得到油水前缘饱和度S wf及油水前缘位置x 0
具体地,从最小的Sw为起点对含水率与含水饱和度曲线做切线,切点对应的点即为油水前缘饱和度S wf及油水前缘位置x 0
第三步,基于贝克莱列维而特两相驱油理论,结合油水前缘饱和度S wf,应用公式(2),计算含水率对含水饱和度导数。
Figure PCTCN2019090304-appb-000008
其中,f′ w(S wf)是含水率对含水饱和度导数,f w(S wf)是前缘饱和度对应的含水率(可根据上述第二步获得的含水率与含水饱和度曲线获得的),S wf是前缘含水饱和度,S wc是束缚水饱和度。
第四步,基于贝克莱列维而特两相驱油理论,结合含水率对含水饱和度导数f′ w(S wf)和油水前缘位置x 0,应用公式(3),计算见水时间。
Figure PCTCN2019090304-appb-000009
其中,T是见水时间,L是注采井距,φ是孔隙度,Q是注入量,A是渗流截面积。
此外,也可根据油藏具体情况,调整使用的参数,进而采用其他方式计算见水时间,本发明实施例对见水时间的计算不做严格限定。
对于步骤104,根据每个小层的见水时间,确定每个小层的优化注入量,可包括以 下步骤:
步骤1041,基于每个小层的见水时间,确定每个小层的优化配注量比例;
为达到“抑制早见水层,促进晚见水层”的效果,可根据见水时间,来确定每个小层的优化配注量比例。
示例地,可使各个小层的优化配注量比例等于各个小层的见水时间比。
另外,本发明实施例也不排除其他能够实现“抑制早见水层,促进晚见水层”效果的优化配注量比例配置方案。
步骤1042,基于每个小层的配注量比例,结合目标注水井的总注水量,确定每个小层的优化注入量。
根据目标注水井的总注水量和每个小层的配注量比例,即可计算得到每个小层的优化注入量。
对于步骤105,基于每个小层的见水时间和每个小层的优化注入量,计算每个预设层位组合方案的见水时间方差和见水时刻累产油。
下面以包括n小层m段的某一预设层位组合方案为例,对见水时间方差和见水时刻累产油的计算过程做示例性说明,其余预设层位组合方案的计算与之类似。
计算见水时间方差时,针对m段中的每一段,取各小层对应的最小见水时间为该段的见水时间,得到m个见水时间,然后计算该m个见水时间的方差,即为该预设层位组合方案的见水时间方差。
计算见水时刻累产油时,对于m段中的每一段,设定该段的注入量为该段中各小层的优化注入量的累和,该段的产油量为注入量乘以平均含水率,见水时刻累产油即为达到见水时刻时m段的产油量的累和。
对于步骤106,根据见水时间方差和见水时刻累产油,确定预设层位组合方案中的最优层位组合方案,可包括以下步骤:
步骤1061,根据见水时间方差,按照见水时间方差从小到大的顺序排列,计算每个预设层位组合方案的第一次排名;
步骤1062,根据见水时刻累产油,按照见水时刻累产油从高到底的顺序排列,计算每个预设层位组合方案的第二次排名;
步骤1063,将每个预设层位组合方案的第一次排名和第二次排名分别相加,将最小相加值所对应的预设层位组合方案确定为最优层位组合方案。
进一步地,还可以根据实际需要,设置第一次排名和第二次排名的权重,然后计算 二者在权重条件下的相加值,并将最小相加值所对应的预设层位组合方案确定为最优层位组合方案。
下面将以长庆姬塬油田某注水井为实例,进一步说明本发明技术方案的实施方式。
(1)根据该注水井的测井数据,确定注水层段,且注水层段包括5个小层(N1-N5);
(2)考虑到实际分层注水工艺限制,将5个小层划分为3段,可组合得到
Figure PCTCN2019090304-appb-000010
共6(P1-P6)种预设层位组合方案,如表1所示:
表1五层三段的预设层位组合方案
方案序号 层位组合
P1 [N1],[N2],[N3,N4,N5]
P2 [N1],[N2,N3],[N4,N5]
P3 [N1],[N2,N3,N4],[N5]
P4 [N1,N2],[N3],[N4,N5]
P5 [N1,N2],[N3,N4],[N5]
P6 [N1,N2,N3],[N4],[N5]
(3)根据生产需要,确定目标注水井的总注入量Q 为100m 3/d,获取每小层的参数信息如表2所示:
表2各小层参数表
Figure PCTCN2019090304-appb-000011
其中,各小层渗流截面积取值注采井距L的1/2乘以小层厚度h。
通过测试得到的各小层油相渗透率、水相渗透率的部分数据,示例地如下表2-1-2-5 所示:
表2-1 N1小层的油相渗透率和水相渗透率
Figure PCTCN2019090304-appb-000012
表2-2 N2小层的油相渗透率和水相渗透率
Figure PCTCN2019090304-appb-000013
表2-3 N3小层的油相渗透率和水相渗透率
Figure PCTCN2019090304-appb-000014
表2-4 N4小层的油相渗透率和水相渗透率
Figure PCTCN2019090304-appb-000015
表2-5 N5小层的油相渗透率和水相渗透率
Figure PCTCN2019090304-appb-000016
根据应用公式(1)-(3),结合上述数据,可计算得到,N1-N5五个层的见水时间分别为110天、108天、414天、1938天、749天;
(4)根据N1-N5的见水时间,确定N1-N5的优化配注量比例为110:108:414:1939:749,结合目标注水井的总注入量Q ,可得到N1-N5中每个小层的优化注入量,为3m 3/d,3m 3/d,12m 3/d,59m 3/d,23m 3/d(一般取整数)。
(5)根据N1-N5的见水时间和优化注入量,可计算得到P1-P6预设层位组合方案的见水时间方差和见水时刻累产油,如表3所示:
表3 P1-P6预设层位组合方案的见水时间方差和见水时刻累产油及排名
Figure PCTCN2019090304-appb-000017
Figure PCTCN2019090304-appb-000018
(6)根据见水时间方差的排名(第一次排名)和见水时刻累产油的排名(第二次排名),将最小排名相加值所对应的预设层位组合方案P3确定为最优层位组合方案。
由此可得到包括该注水井的层位组合和注入量的最优层段组合方案,即是将该注水井的注水层段按[N1],[N2,N3,N4],[N5]进行层位组合,且使[N1]层位的注入量为3m 3/d,[N2,N3,N4]层位的注入量为74m 3/d,[N5]层位的注入量为23m 3/d。
另一方面,本发明实施例还提供了一种用于分层注水工艺中层段组合的确定装置,如图2所示,该确定装置包括:
第一确定模块201,用于确定目标注水井的注水层段,注水层段包括n个小层,n为正整数;
组合模块202,用于将n个小层划分为m段,组合得到K个预设层位组合方案,其中,
Figure PCTCN2019090304-appb-000019
m为小于n的正整数;
第一计算模块203,用于根据目标注水井的总注水量和每个小层的参数信息,计算等注入量条件下的每个小层的见水时间;
第二确定模块204,用于根据每个小层的见水时间,确定每个小层的优化注入量;
第二计算模块205,用于基于每个小层的见水时间和每个小层的优化注入量,计算每个预设层位组合方案的见水时间方差和见水时刻累产油;
第三确定模块206,用于根据见水时间方差和见水时刻累产油,确定预设层位组合方案中的最优层位组合方案。
可选地,该第一确定模块201,包括:
第一获取单元,用于获取目标注水井的测井数据;
第一确定单元,用于根据所述测井数据,确定目标注水井的所述注水层段。
可选地,该第一计算模块203,包括:
第二获取单元,用于获取目标注水井的总注水量和每个小层的参数信息;
第一计算单元,用于计算平均每个小层的注入量和每个小层的见水时间。
可选地,该第二确定模块204,包括:
第二确定单元,用于基于每个小层的见水时间,确定每个小层的优化配注量比例;
第三确定单元,用于基于每个小层的配注量比例,结合目标注水井的总注水量,确定每个小层的优化注入量。
可选地,第三确定模块206,包括:
第二计算单元,用于根据见水时间方差,按照见水时间方差从小到大的顺序排列,计算每个预设层位组合方案的第一次排名;
第三计算单元,用于根据见水时刻累产油,按照见水时刻累产油从高到底的顺序排列,计算每个预设层位组合方案的第二次排名;
第四确定单元,用于将每个预设层位组合方案的第一次排名和第二次排名分别相加,将最小相加值所对应的预设层位组合方案确定为最优层位组合方案。
本发明实施例提供的层段组合的确定装置不仅考虑了每个小层的层间差异性,还基于每个小层的优化注入量,进一步评价了每个预设层位组合方案,使得最终确定的层位组合方案更符合油井生产动态,能够达到优化层位组合的目的。
需要说明的是,上述实施例提供的层段组合确定装置在确定层段组合时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的层段组合的确定装置与层段组合的确定方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
另一方面,本发明实施例还提供了一种机器可读存储介质,所述机器可读存储介质上存储有指令,该指令用于使得机器执行上述的用于分层注水工艺中层段组合的确定方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅是为了便于本领域的技术人员理解本发明的技术方案,并不用以限制本发明。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含 在本发明的保护范围。

Claims (8)

  1. 一种用于分层注水工艺中层段组合的确定方法,其特征在于,包括以下步骤:
    确定目标注水井的注水层段,所述注水层段包括n个小层,n为正整数;
    将所述n个小层划分为m段,组合得到K个预设层位组合方案,其中,
    Figure PCTCN2019090304-appb-100001
    m为小于n的正整数;
    根据所述目标注水井的总注水量和每个小层的参数信息,计算等注入量条件下的每个小层的见水时间;
    根据所述每个小层的见水时间,确定每个小层的优化注入量;
    基于所述每个小层的见水时间和所述每个小层的优化注入量,计算每个所述预设层位组合方案的见水时间方差和见水时刻累产油;
    根据所述见水时间方差和所述见水时刻累产油,确定所述预设层位组合方案中的最优层位组合方案。
  2. 根据权利要求1所述的确定方法,其特征在于,所述确定目标注水井的注水层段,包括:
    获取所述目标注水井的测井数据;
    根据所述测井数据,确定所述目标注水井的所述注水层段。
  3. 根据权利要求1所述的确定方法,其特征在于,所述根据所述目标注水井的总注水量和每个小层的参数信息,计算等注入量条件下的每个小层的见水时间,包括:
    获取所述目标注水井的总注水量,计算平均每个小层的注入量;
    获取每个小层的参数信息,结合所述平均每个小层的注入量,基于两相渗流理论,计算每个小层的见水时间。
  4. 根据权利要求3所述的确定方法,其特征在于,所述每个小层的参数信息包括:油相渗透率、水相渗透率、地层原油粘度、地层水粘度、孔隙度、注采井距、渗流截面积。
  5. 根据权利要求3所述的确定方法,其特征在于,所述根据所述每个小层的见水时间,确定每个小层的优化注入量,包括:
    基于所述每个小层的见水时间,确定每个小层的优化配注量比例;
    基于所述每个小层的配注量比例,结合所述目标注水井的所述总注水量,确定所述每个小层的优化注入量。
  6. 根据权利要求1所述的确定方法,其特征在于,所述根据所述见水时间方差和所述见水时刻累产油,确定所述预设层位组合方案中的最优层位组合方案,包括:
    根据所述见水时间方差,按照所述见水时间方差从小到大的顺序排列,计算每个所述预设层位组合方案的第一次排名;
    根据所述见水时刻累产油,按照所述见水时刻累产油从高到底的顺序排列,计算每个所述预设层位组合方案的第二次排名;
    将每个所述预设层位组合方案的所述第一次排名和所述第二次排名分别相加,将最小相加值所对应的预设层位组合方案确定为最优层位组合方案。
  7. 一种用于分层注水工艺中层段组合的确定装置,其特征在于,所述确定装置包括:
    第一确定模块,用于确定目标注水井的注水层段,所述注水层段包括n个小层,n为正整数;
    组合模块,用于将所述n个小层划分为m段,组合得到K个预设层位组合方案,其中,
    Figure PCTCN2019090304-appb-100002
    m为小于n的正整数;第一计算模块,用于根据所述目标注水井的总注水量和每个小层的参数信息,计算等注入量条件下的每个小层的见水时间;
    第二确定模块,用于根据所述每个小层的见水时间,确定每个小层的优化注入量;
    第二计算模块,用于基于所述每个小层的见水时间和所述每个小层的优化注入量,计算每个所述预设层位组合方案的见水时间方差和见水时刻累产油;
    第三确定模块,用于根据所述见水时间方差和所述见水时刻累产油,确定所述预设层位组合方案中的最优层位组合方案。
  8. 一种机器可读存储介质,其特征在于,所述机器可读存储介质上存储有指令,该指令用于使得机器执行根据权利要求1-6中任一项所述的用于分层注水工艺中层段组合的确定方法。
PCT/CN2019/090304 2018-12-29 2019-06-06 一种用于分层注水工艺中层段组合的确定方法及装置 WO2020133929A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811637039.9 2018-12-29
CN201811637039.9A CN109667568B (zh) 2018-12-29 2018-12-29 一种用于分层注水工艺中层段组合的确定方法及装置

Publications (1)

Publication Number Publication Date
WO2020133929A1 true WO2020133929A1 (zh) 2020-07-02

Family

ID=66147680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090304 WO2020133929A1 (zh) 2018-12-29 2019-06-06 一种用于分层注水工艺中层段组合的确定方法及装置

Country Status (2)

Country Link
CN (1) CN109667568B (zh)
WO (1) WO2020133929A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111622724A (zh) * 2020-07-11 2020-09-04 西南石油大学 一种分层注水层段配注量计算和优化的方法
CN111927410A (zh) * 2020-08-06 2020-11-13 中国石油天然气股份有限公司 一种井-藏协同分注测试调节设计方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109667568B (zh) * 2018-12-29 2021-05-11 中国石油大学(华东) 一种用于分层注水工艺中层段组合的确定方法及装置
CN110162867A (zh) * 2019-05-16 2019-08-23 中国石油化工股份有限公司 注水井分层配注水量计算新方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2380523C1 (ru) * 2008-07-23 2010-01-27 Николай Иванович Парийчук Способ разработки многопластовой нефтяной залежи
CN104234673A (zh) * 2014-07-30 2014-12-24 中国石油大学 考虑层间干扰的多层油藏分层配注方法
CN105626010A (zh) * 2016-03-16 2016-06-01 中国石油大学(华东) 一种分段注水井中注水层段合理划分方法
CN105888633A (zh) * 2016-06-20 2016-08-24 中国石油大学(华东) 分层注水层段配注量确定方法
RU2669322C1 (ru) * 2017-06-06 2018-10-10 Общество с ограниченной ответственностью "Конкорд" Способ определения перспективных участков и оптимальных технологических параметров для применения циклического заводнения
CN109002574A (zh) * 2018-06-06 2018-12-14 西安石油大学 一种多层油藏脉冲周期注水开发指标预测方法
CN109667568A (zh) * 2018-12-29 2019-04-23 中国石油大学(华东) 一种用于分层注水工艺中层段组合的确定方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2742794B1 (fr) * 1995-12-22 1998-01-30 Inst Francais Du Petrole Methode pour modeliser les effets des interactions entre puits sur la fraction aqueuse produite par un gisement souterrain d'hydrocarbures
US7369979B1 (en) * 2005-09-12 2008-05-06 John Paul Spivey Method for characterizing and forecasting performance of wells in multilayer reservoirs having commingled production
RU2478783C2 (ru) * 2008-06-19 2013-04-10 Шлюмберже Текноложи Б.В. Способ добычи углеводородов из скважины, проходящей через многослойный резервуар с гидроразрывом
CN102953713B (zh) * 2011-08-18 2014-05-14 中国石油大学(华东) 一种底水油藏水平井分段控水完井设计方法
CN106801596A (zh) * 2015-11-26 2017-06-06 中国石油化工股份有限公司 海上注水井注水层段划分的新方法
CN108446831A (zh) * 2018-02-24 2018-08-24 中国石油天然气股份有限公司 一种考虑经济性的多层系分压合求选层方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2380523C1 (ru) * 2008-07-23 2010-01-27 Николай Иванович Парийчук Способ разработки многопластовой нефтяной залежи
CN104234673A (zh) * 2014-07-30 2014-12-24 中国石油大学 考虑层间干扰的多层油藏分层配注方法
CN105626010A (zh) * 2016-03-16 2016-06-01 中国石油大学(华东) 一种分段注水井中注水层段合理划分方法
CN105888633A (zh) * 2016-06-20 2016-08-24 中国石油大学(华东) 分层注水层段配注量确定方法
RU2669322C1 (ru) * 2017-06-06 2018-10-10 Общество с ограниченной ответственностью "Конкорд" Способ определения перспективных участков и оптимальных технологических параметров для применения циклического заводнения
CN109002574A (zh) * 2018-06-06 2018-12-14 西安石油大学 一种多层油藏脉冲周期注水开发指标预测方法
CN109667568A (zh) * 2018-12-29 2019-04-23 中国石油大学(华东) 一种用于分层注水工艺中层段组合的确定方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111622724A (zh) * 2020-07-11 2020-09-04 西南石油大学 一种分层注水层段配注量计算和优化的方法
CN111927410A (zh) * 2020-08-06 2020-11-13 中国石油天然气股份有限公司 一种井-藏协同分注测试调节设计方法

Also Published As

Publication number Publication date
CN109667568B (zh) 2021-05-11
CN109667568A (zh) 2019-04-23

Similar Documents

Publication Publication Date Title
WO2020133929A1 (zh) 一种用于分层注水工艺中层段组合的确定方法及装置
CN105095986B (zh) 多层油藏整体产量预测的方法
Alhuthali et al. Optimal waterflood management using rate control
AU2009314449B2 (en) Systems and methods for dynamically developing wellbore plans with a reservoir simulator
US8095349B2 (en) Dynamic updating of simulation models
AU2014307109B2 (en) System and method of determining and optimizing waterflood performance
CN106324228B (zh) 预测致密油甜点目标区的方法
CN105134191A (zh) 致密油油井储量的评价方法
CN110263439A (zh) 一种油藏见水前分层注水技术政策界限
El-Khatib Waterflooding performance in inclined communicating stratified reservoirs
CN106499370A (zh) 井组同步分注分采的分层采油井各层段产液量计算方法及装置
CN111401597B (zh) 油井开发指标的预测方法及装置
Kornberger et al. Experiences With an Efficient Rate-Management Approach for the 8th Tortonian Reservoir in the Vienna Basin
Sennhauser et al. A practical numerical model to optimize the productivity of multistage fractured horizontal wells in the cardium tight oil resource
CN113803029B (zh) 煤层气井网的调整方法、装置及计算机可读存储介质
US20230229981A1 (en) Star rating management method and system for deployment and implementation of gas field development wells
Gong et al. Prediction of interwell connectivity and interference degree between production wells in a tight gas reservoir
CN111985747A (zh) 油藏开发方法及装置
CN112949025B (zh) 水平井的分段压裂设计方法、装置及介质
Tewari et al. Quantification of Uncertainty of Reserves with High Quality History Matching Models in a Mature Field
CN106437690B (zh) 辫状河三角洲相三维空间分布确定方法及装置
CN114004078B (zh) 一种表征薄互层油藏多层合采渗流拟相渗计算方法
Grinchenko et al. Development history case of a major oil-gas-condensate field in a new province
Syrtlanov et al. Assisted History Matching for Reservoir Simulation Models
Last Estimating zonal gas-in-place in a commingled well using results from production logs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903725

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903725

Country of ref document: EP

Kind code of ref document: A1