WO2020133921A1 - 一种空调防凝露控制方法及空调室内机 - Google Patents

一种空调防凝露控制方法及空调室内机 Download PDF

Info

Publication number
WO2020133921A1
WO2020133921A1 PCT/CN2019/090006 CN2019090006W WO2020133921A1 WO 2020133921 A1 WO2020133921 A1 WO 2020133921A1 CN 2019090006 W CN2019090006 W CN 2019090006W WO 2020133921 A1 WO2020133921 A1 WO 2020133921A1
Authority
WO
WIPO (PCT)
Prior art keywords
air outlet
condensation
air
control method
temperature
Prior art date
Application number
PCT/CN2019/090006
Other languages
English (en)
French (fr)
Inventor
刘卫兵
吴洪金
耿宝寒
郝本华
王星元
张盼盼
Original Assignee
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2020133921A1 publication Critical patent/WO2020133921A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F2013/221Means for preventing condensation or evacuating condensate to avoid the formation of condensate, e.g. dew
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to an air conditioner control method and equipment, in particular to an air conditioner anti-condensation control method and an air conditioner indoor unit.
  • An object of the present invention is to provide an air-conditioning anti-condensation control method and an air-conditioning indoor unit that can effectively eliminate indoor wall condensation.
  • the present invention provides an anti-condensation control method for an air conditioner.
  • the air conditioner includes an indoor unit installed indoors.
  • the control method includes the following steps:
  • the air outlet temperature of the air outlet of the indoor unit is increased for a first preset time.
  • the step of obtaining the condensation state of the wall surface in the room, and judging whether to generate a decondensation signal according to the condensation state includes:
  • the step of obtaining the condensation state of the indoor wall surface includes:
  • a sensor is used to sense the condensation state of the wall surface.
  • the air outlet temperature of the air outlet of the indoor unit is raised above the indoor dew point temperature.
  • the step of increasing the air outlet temperature of the air outlet of the indoor unit and continuing for the first preset time includes:
  • the air outlet temperature is raised by reducing the frequency of the compressor of the air conditioner.
  • the step of increasing the air outlet temperature of the air outlet of the indoor unit and continuing for the first preset time includes:
  • the temperature of the air outlet is increased by reducing the frequency of the compressor of the air conditioner while increasing the rotation speed of the fan that blows airflow out of the air outlet.
  • the step of increasing the air outlet temperature of the air outlet of the indoor unit and continuing for the first preset time includes:
  • a heating element is used to heat the heat exchange airflow exiting the air outlet to increase the temperature of the air outlet.
  • the value interval of the first preset time is greater than or equal to 1 hour and less than or equal to 2.5 hours.
  • the value interval of the second preset time is greater than or equal to 1 hour and less than or equal to 2 hours.
  • a second aspect of the present invention also provides an air conditioner, including:
  • the controller includes a memory and a processor.
  • the memory stores a computer program.
  • the computer program is executed by the processor, the anti-condensation control method according to any one of the foregoing is implemented.
  • the status of the condensation information on the ground is first obtained, and when the amount of condensation is found to be large, which is prone to danger, the air outlet temperature of the air outlet is increased to perform the decondensation treatment, which reduces the user's factors. Risk of condensation and slipping.
  • FIG. 1 is a flowchart of an anti-condensation control method according to an embodiment of the present invention
  • FIG. 2 is a flowchart of an anti-condensation control method according to another embodiment of the present invention.
  • FIG. 3 is a flowchart of an anti-condensation control method according to yet another embodiment of the present invention.
  • FIG. 4 is a schematic structural block diagram of an air conditioner according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural view of an air conditioner according to an embodiment of the present invention.
  • FIGS. 1 to 3 it is a preferred embodiment of the present invention.
  • the heat exchange air flow from the air outlet of the air conditioner makes condensation easily occur on the indoor wall surface.
  • the indoor wall surface tends to form dewdrops due to the temperature drop.
  • the anti-condensation control method in the present invention is used to solve the problem of condensation on the indoor wall surface. The control method will be described in detail below.
  • the air-conditioning cabinet with an upper air outlet and a lower air outlet located below the upper air outlet will be exemplified below.
  • control method in the present invention It is not limited by the type of air conditioner indoor unit and the number and placement of air outlets, any easy to make indoor wall surface (see Figure 4, wall surface 1 can be indoor vertical layout wall, horizontal layout floor or horizontal layout ceiling, etc. , The following uses the wall surface as an example for illustration.) Air conditioners that produce condensation can be decondensed using this control method.
  • the air conditioner in this embodiment includes an air conditioner indoor unit 10 installed indoors.
  • the air conditioner indoor unit 10 may specifically be an air conditioner cabinet and includes at least one air outlet. Specifically, it may include an upper air outlet 11 and a The lower air outlet 12 below the air outlet, the lower air outlet 12 is provided below the air conditioner indoor unit 10, and the heat exchange air flow blown from the lower air outlet 12 can be directed to the ground, so that when the air conditioner is in the cooling mode, the indoor floor is prone to condensation, It is easy to cause user complaints or user accidents.
  • the control method includes the following steps:
  • the air conditioner generally has several positions of strong wind, high wind, medium wind, low wind and silent wind. Specifically, when the air conditioner is in a strong wind state, the fan speed is about 780rpm; when the air conditioner is in a high wind state, the fan speed is about 680rpm; when the air conditioner is in a stroke state, the fan speed is about 620rpm; when the air conditioner is in a low wind state The speed of the fan is about 540rpm; when the air conditioner is in a silent wind state, the speed of the fan is about 400rpm.
  • step S102 before the anti-condensation process is performed, the rotation speed of the fan is acquired so that when the rotation speed of the fan is too high and no special anti-condensation process is required, the air conditioner does not cause unnecessary actions.
  • the air-out gear position of the air conditioner may be obtained, and when the air-out gear position is a middle-stroke and low-wind gear position, a subsequent decondensation process is performed.
  • the number of air outlets and the actual speed of each air outlet are different. Therefore, in order to better adapt to various types of air conditioners.
  • step S104 in the cooling mode, the rotation speed of the fan ejecting the airflow outside the downward air outlet of the indoor unit can be obtained, and the default is air conditioner when the rotation speed of the fan is within the range of [490rpm, 670rpm] At this time, decondensation treatment is required, and when the rotation speed of the fan is not within the above-mentioned interval, subsequent decondensation steps may not be performed.
  • the decondensation process you need to first obtain the condensation state of the ground (the ground that is in contact with the airflow blown from the lower air outlet). When the amount of condensation is found to be large, the decondensation signal is generated; when the amount of condensation is found to be small , No decondensation signal is generated.
  • step S106 after the decondensation signal is generated, the temperature of the heat exchange airflow derived from the lower air outlet can be continuously increased for a first preset time (that is, within the first preset time, the heat exchange airflow derived from the lower air outlet).
  • the temperature of is always maintained at the increased temperature
  • the value range of the first preset time can be [1h, 2.5h], for example, 1h, 2h or 2.5h, h is the hour; that is, the first preset time
  • the value range of can be greater than or equal to 1 hour and less than or equal to 2.5 hours), so as to perform decondensation treatment.
  • the heat exchange airflow is increased, if the amount of increase is small, the generation of condensation can be reduced to achieve the removal of condensation (the amount of condensation generated is small, the generated condensation is continuously air-dried, and eventually the total condensation is reduced); When the amount of increase is large, the air-drying effect can be enhanced to achieve dew condensation.
  • the fan speed of each air conditioner does not correspond to the generated air volume or wind speed (that is, the fan speed of the first air conditioner may be higher than the fan speed of the second air conditioner, but due to the different blade structure, the second fan (The generated air volume or wind speed is higher than the air volume or wind speed generated by the first fan).
  • the method of monitoring the fan speed in the above control method is no longer applicable.
  • the air volume generated by the fan can be monitored Or wind speed, in another embodiment, step S102 can also be eliminated, and the condensation state in the room can be directly obtained. That is, the anti-condensation control method can also be as follows:
  • S302 In the cooling mode, obtain the condensation state of the indoor wall surface 1, and determine whether to generate a decondensation signal according to the condensation state;
  • step S104 when the condensation state of the indoor floor is acquired, it may be acquired directly or indirectly.
  • the step of acquiring the condensation state of the indoor floor and judging whether to generate a decondensation signal according to the condensation state may include: when the lower air outlet starts to discharge the heat exchange airflow The discharge time of the airflow is timed.
  • the discharge time of the heat exchange airflow is greater than the second preset time (the value range of the second preset time may be [1h, 2h], for example, 1h, 1.5h, or 2h; that is, The value interval of the second preset time may be greater than or equal to 1 hour and less than or equal to 2 hours), and the decondensation signal is generated.
  • the condensation status of the indoor floor is obtained indirectly by monitoring the air outlet time of the lower air outlet.
  • the wind-out time is less than the second preset time
  • the default indoor floor has less condensation and there are no hidden safety risks.
  • the wind-out time is greater than the second preset time
  • the default indoor floor has a large amount of condensation and decondensation treatment is required.
  • a sensor can also be provided to directly sense the condensation state of the ground. That is, the step of acquiring the condensation state of the floor in the room includes: sensing the condensation state of the floor with a sensor.
  • the sensor may be an infrared sensor.
  • step S106 there are various means for raising the air outlet temperature of the lower air outlet of the indoor unit.
  • the air temperature can be increased by reducing the frequency of the compressor 50 of the air conditioner.
  • the frequency of the compressor When the frequency of the compressor is reduced, the frequency of a fixed value can be decreased, for example, the frequency is decreased by 10 Hz or 15 Hz. It is also possible to reduce the compressor frequency to a fixed ratio of the original frequency, for example, the compressor frequency is reduced to 50% or 60% of the original frequency. Regardless of how the frequency of the compressor is reduced, in order for the compressor to operate well, the frequency of the compressor needs to be higher than 10 Hz.
  • the air conditioner may have multiple outlet gears, but due to the different specifications of each air conditioner, the specific speed of the fan under each outlet gear cannot be determined. Therefore, in one embodiment, when the speed of the fan is in the range of [490rpm, 590rpm], the default fan is in the low wind range, which can be increased by reducing the frequency of the compressor of the air conditioner to 50% of the original Wind temperature.
  • the default fan When the speed of the fan is in the range of (590rpm, 670rpm), the default fan is in the stroke position, which can increase the temperature of the wind by reducing the frequency of the compressor of the air conditioner to 60% of the original. That is, when When the fan speed is greater than or equal to 490 rpm and less than or equal to 590 rpm, the default fan is in the low wind range. When the fan speed is greater than 590 rpm and less than or equal to 670 rpm, the default fan is in the mid-range position.
  • the temperature of the air outlet can also be increased by increasing the speed of the fan that blows out airflow outside the air outlet.
  • increase the speed of the fan by 20 rpm and 40 rpm.
  • the speed increase value may be larger when the original speed of the fan is smaller, and the speed increase value may be smaller when the original speed of the fan is larger.
  • the speed of the fan can be increased by 40rpm.
  • the speed of the fan can be increased by 20rpm.
  • the frequency of the compressor of the air conditioner can be reduced while increasing the rotation speed of the blower that ejects the airflow outside the air outlet to increase the temperature of the air outlet.
  • a heating component may be provided at the lower air outlet of the air conditioner to heat the heat exchange airflow discharged from the lower air outlet.
  • the air outlet temperature of the lower air outlet of the indoor unit can be raised to the indoor Above the dew point temperature. That is, after the temperature of the air outlet at the lower air outlet rises, the heat exchange air flow from the lower air outlet cannot increase the condensation on the ground, and the remaining condensation is naturally dried to achieve the purpose of removing condensation.
  • the temperature of the outlet air can also be raised above the ambient temperature of the room, which not only makes the condensation not increase, but also accelerates the evaporation rate of the generated condensation.
  • the air conditioner may have multiple outlet gears, but due to the different specifications of each air conditioner, the specific speed of the fan under each outlet gear cannot be determined. Therefore, in one embodiment, when the speed of the fan is in the range of [490rpm, 590rpm], the default fan is in the low wind range, which can be increased by reducing the frequency of the compressor of the air conditioner to 50% of the original Wind temperature. When the speed of the fan is in the range of (590rpm, 670rpm), the default fan is in the stroke position, and the temperature of the air can be increased by reducing the frequency of the compressor of the air conditioner to 60% of the original.
  • this embodiment exemplarily provides an optional process of the anti-condensation control method of the air conditioner:
  • the second aspect of the present invention also provides an air-conditioning indoor unit 10 that performs de-condensation treatment using the anti-condensation control method in any of the above embodiments.
  • the air-conditioning indoor unit may specifically be an air-conditioning cabinet
  • the machine includes an upper air outlet 11, a lower air outlet 12, a fan 42 and a controller 20.
  • the lower air outlet 12 is provided below the upper air outlet 11.
  • the controller 20 includes a memory 31 and a processor 32.
  • the memory 31 stores a computer program. When the computer program is executed by the processor, the anti-condensation control method according to any one of the above is implemented.
  • the air conditioner indoor unit further includes a sensor 33, which is used to sense the condensation state of the indoor floor.
  • the indoor unit of the air conditioner may further include a sensor 33 that senses the position information of the human body.
  • the sensor is electrically connected to the controller.
  • the controller controls the heating element 41 to heat the heat exchange airflow blown from the lower air outlet, specifically, the difference between the temperature of the heat exchange airflow led out of the lower air outlet and the indoor ambient temperature can be within 2 degrees Celsius. That is, the heating element 41 has a first heating power.
  • the temperature of the heat exchange air flow led out of the lower air outlet is heated by the heating element to a difference of 2 degrees Celsius from the ambient temperature of the room.
  • the controller can turn off the heating element.
  • the heating element can also be used to remove condensation.
  • the controller can control the heating element to heat the heating element when decondensation is required, so that the temperature of the air outlet at the lower air outlet is high Indoor dew point temperature. That is, the heating element has a second heating power. When the heating element is under the second heating power, the temperature of the heat exchange airflow led out of the lower air outlet is heated by the heating element to a temperature above the dew point of the room.
  • the indoor unit of the air conditioner may further include a heating element 41, which is configured to heat the heat exchange airflows leading out of the lower air outlets when turned on, to Make the temperature of the heat exchange airflow led out of the upper air outlet equal to the temperature of the heat exchange airflow led out of the lower air outlet.
  • the temperature generated by the heating element is controlled by the controller in real time, but due to the lack of control accuracy, the temperature difference between the heat exchange air flow derived from the lower air outlet and the sub-heat exchange air flow derived from the upper air outlet can be actually within the range of 0.3 degrees Celsius. That is, the heating element has a third heating power. When the heating element is under the third heating power, the temperature of the heat exchange airflow derived from the lower air outlet is heated by the heating element to the temperature difference of the heat exchange airflow derived from the upper air outlet Within 0.3 degrees Celsius.
  • the heating element may be arranged in the lower air outlet so that the heat exchange airflow exchanges heat with the heating element when it is led out of the lower air outlet.
  • the heating element may be in the form of a net, and arranged to allow the heat exchange airflow to pass through the heating element and then lead out to the lower air outlet. This can increase the heat exchange rate between the heat exchange airflow and the heating element.
  • the heating element when it is in a mesh shape, it can completely cover the lower air outlet, that is, the heat exchange airflow must pass through the heating element to be led out of the lower air outlet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Fluid Mechanics (AREA)
  • Human Computer Interaction (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明提供了一种空调防凝露控制方法,空调包括设置于室内的室内机,其中,控制方法包括以下步骤:制冷模式下,获取室内的壁面的凝露状态,并根据凝露状态判断是否产生除凝露信号;当产生除凝露信号后,提高室内机的出风口的出风温度并持续第一预设时间。本发明中防凝露控制方法中,先获取地面的凝露信状态,当发现凝露量较大,易产生危险时,提高出风口的出风温度来进行除凝露处理,降低了用户因凝露而滑倒的危险。

Description

一种空调防凝露控制方法及空调室内机 技术领域
本发明涉及空调控制方法及设备,特别是涉及一种空调防凝露控制方法及空调室内机。
背景技术
为适应市场需求,满足用户的高智能化高舒适性需求,出现了具有竖直高度较低的下出风口的空调室内机,在实验室特定工况下进行凝露实验时,长期运行实验后由于下出风口位置较低,导致冷风接触地板,经常会出现室内地板结露,模拟用户家使用情况,在一定的条件下由于下出风口冷风与地板表面热风混合之后形成冷热交汇进而产生凝露,这种情况不仅严重影响到整机体验效果,更容易引起用户投诉或产生事故。
发明内容
本发明的一个目的是要提供一种可有效消除室内壁面凝露的空调防凝露控制方法及空调室内机。
特别地,本发明提供了一种空调防凝露控制方法,所述空调包括设置于室内的室内机,所述控制方法包括以下步骤:
制冷模式下,获取所述室内的壁面的凝露状态,并根据所述凝露状态判断是否产生除凝露信号;
当产生除凝露信号后,提高所述室内机的出风口的出风温度并持续第一预设时间。
进一步地,获取所述室内的壁面的凝露状态,并根据所述凝露状态判断是否产生除凝露信号的步骤包括:
当所述出风口开始排出换热气流时对所述换热气流的排出时间进行计时,当所述换热气流的排出时间大于第二预设时间时,产生除凝露信号。
进一步地,获取所述室内的壁面的凝露状态的步骤包括:
利用传感器感测所述壁面的凝露状态。
进一步地,当产生除凝露信号后,提高所述室内机的出风口的出风温度时,将所述室内机的出风口的出风温度提升到所述室内的露点温度以上。
进一步地,提高所述室内机的出风口的出风温度并持续第一预设时间的步骤包括:
通过降低所述空调的压缩机的频率来提升所述出风温度。
进一步地,提高所述室内机的出风口的出风温度并持续第一预设时间的步骤包括:
通过提高向所述出风口外喷出气流的风机的转速来提升所述出风温度;或
通过降低所述空调的压缩机的频率的同时提高向所述出风口外喷出气流的风机的转速来提升所述出风温度。
进一步地,提高所述室内机的出风口的出风温度并持续第一预设时间的步骤包括:
利用加热件对排出所述出风口的换热气流进行加热来提升所述出风温度。
进一步地,所述第一预设时间的取值区间为大于等于1小时且小于等于2.5小时。
进一步地,所述第二预设时间的取值区间为大于等于1小时且小于等于2小时。
本发明的第二方面还提供了一种空调,其包括:
控制器,包括存储器以及处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时实现根据前述任一项所述的防凝露控制方法。
本发明中防凝露控制方法中,先获取地面的凝露信状态,当发现凝露量较大,易产生危险时,提高出风口的出风温度来进行除凝露处理,降低了用户因凝露而滑倒的危险。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的防凝露控制方法的流程图;
图2是根据本发明另一个实施例的防凝露控制方法的流程图;
图3是根据本发明又一个实施例的防凝露控制方法的流程图;
图4是根据本发明一个实施例的空调的示意性结构框图;
图5是根据本发明一个实施例的空调的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
如图1至图3所示,为本发明较佳的实施例。
现有的空调器,在制冷模式下,空调的出风口导出的换热气流使得室内的壁面易产生凝露。特别是空调的出风口吹出的换热气流被直接导向室内的壁面时,室内的壁面因为温度下降而易形成露珠。本发明中的防凝露控制方法用于解决室内壁面产生凝露的问题。以下对本控制方法进行具体描述,为了方便阐述,以下以具有上出风口以及位于上出风口下方的下出风口的空调柜机进行举例说明,应当注意的是,本发明中的控制方法的使用场景并不受空调室内机的类型以及出风口的数量和布置位置的限制,任何易使室内壁面(参见图4,壁面1可以为室内的竖直布置墙壁、横向布置的地面或横向布置的天花板等,以下以壁面为地面进行举例说明)产生凝露的空调均可以利用本控制方法进行除凝露处理。
本实施例中的空调包括设置于室内的空调室内机10,参见图5,空调室内机10具体可以为空调柜机且包括至少一个出风口,具体地,其可包括上出风口11以及位于上出风口下方的下出风口12,下出风口12设置于空调室内机10的下方,且下出风口12吹出的换热气流可导向地面,使得空调为制冷模式时,室内地面易产生凝露,容易引起用户投诉或产生用户滑倒的事故。
控制方法包括以下步骤:
S102:制冷模式下,获取室内机的向下出风口外喷出气流的风机的转速;
S104:当风机的转速位于[490rpm,670rpm]区间内时,获取地面的凝露状态,并根据凝露状态判断是否产生除凝露信号;
S106:当产生除凝露信号后,提高室内机的下出风口的出风温度并持续 第一预设时间。
空调一般具有强力风、高风、中风、低风以及静音风几个档位。具体地,空调处于强力风状态时,风机的转速为780rpm左右;空调处于高风状态时,风机的转速为680rpm左右;空调处于中风状态时,风机的转速为620rpm左右;空调处于低风状态时,风机的转速为540rpm左右;空调处于静音风状态时,风机的转速为400rpm左右。当空调具有上述档位时,经过推理以及实验论证发现,当空调处于中风以及低风状态时,易产生较多凝露;当空调处于静音风状态时,产生的凝露较少;当空调处于高风以及强力风状态时,产生的凝露大部分被自然风干。即只有在中风以及低风状态需要进行特别的除凝露处理。故步骤S102中,在进行防凝露处理前,先获取风机的转速,使得当风机转速过高而不需要特别进行防凝露处理时不让空调产生多余的动作。
一种实施例中,可以获取空调的所处的出风档位,当出风档位为中风以及低风档位时,进行后续的除凝露处理。但由于每个空调的型号不一,造成各出风档位的数量以及每个出风档位的实际转速不一样。故为了更好的适配各型号的空调。另一种实施例中,如步骤S104,可以在制冷模式下,获取室内机的向下出风口外喷出气流的风机的转速,当风机的转速位于[490rpm,670rpm]区间内时默认为空调此时需要进行除凝露处理,而当风机的转速不位于上述区间内时,可以不进行后续的除凝露步骤。
除凝露处理时,需要先获取地面(为与下出风口吹出的气流接触的地面)的凝露状态,当发现凝露量较大时,产生除凝露信号;当发现凝露量较少时,不产生除凝露信号。步骤S106中,当产生除凝露信号后,可以将下出风口导出的换热气流的温度持续升高第一预设时间(即在第一预设时间内,下出风口导出的换热气流的温度一直维持在升高后的温度,第一预设时间的取值区间可以为[1h,2.5h],例如1h、2h或2.5h,h为小时;也即是,第一预设时间的取值区间可以为大于等于1小时,小于等于2.5小时),从而进行除凝露处理。当换热气流升高后,升高量小时,可以减小凝露的产生从而实现除凝露(产生的凝露量小时,已产生的凝露被不断风干,最终减少总凝露量);升高量大时,可以增强风干效果从而实现除凝露。
由于各个空调的风机的转速并不对应产生的风量或风速(即可能出现第一个空调的风机转速虽然比第二个空调的风机转速高,但由于扇叶的结构不 同,使得第二个风机产生的风量或风速反而比第一个风机产生的风量或风速高),出现此情形时,上述控制方法中监控风机转速的方法便不再适用,一种实施例中,可以监控风机产生的风量或风速,另一种实施例中,亦可以去掉步骤S102,直接获取室内的凝露状态。即防凝露控制方法还可以如下:
S302:制冷模式下,获取所述室内的壁面1的凝露状态,并根据所述凝露状态判断是否产生除凝露信号;
S304:当产生除凝露信号后,提高所述室内机的出风口的出风温度并持续第一预设时间。
步骤S104中,获取室内的地面的凝露状态时,可以直接获取,也可以间接获取。当为间接获取时,一种实施例中,获取室内的地面的凝露状态,并根据凝露状态判断是否产生除凝露信号的步骤可以包括:当下出风口开始排出换热气流时对换热气流的排出时间进行计时,当换热气流的排出时间大于第二预设时间(第二预设时间的取值区间可以为[1h,2h],例如1h、1.5h或2h;也即是,第二预设时间的取值区间可以为大于等于1小时,小于等于2小时)时,产生除凝露信号。即上述步骤中,通过监控下出风口的出风时间来间接获取室内地板的凝露状况。当出风时间小于第二预设时间时,默认室内地板的凝露量较少,不存在安全隐患。当出风时间大于第二预设时间时,默认室内地板的凝露量较大,需要进行除凝露处理。
除了间接获取室内地面的凝露状态外,还可以通过设置传感器来直接感测地面的凝露状态。即获取室内的地面的凝露状态的步骤包括:利用传感器感测地面的凝露状态。具体地,传感器可以为红外线传感器。
步骤S106中,使室内机的下出风口的出风温度提高的手段是多样的。一种实施例中,可以通过降低空调的压缩机50的频率来提升出风温度。降低压缩机的频率时,可以下降固定值的频率,例如频率下降10赫兹或15赫兹。也可以将压缩机频率下降到原有频率的固定比例,例如压缩机的频率下降到原有频率的50%或60%。不管以上述何种方式下降压缩机频率,为了压缩机能够良好的运行,均需要使压缩机的频率高于10赫兹。
当风机转速升高时,下出风口出风大,风干效果强,故出风温度可以适当的变低,压缩机的下降频率可以适当缩小。当风机转速位于[490rpm,670rpm]区间内时,空调可能会具有多个出风档位,但由于每个空调的规格不一,因此无法确定每个出风档位下风机的具体转速。故一种实施例中,当 风机的转速位于[490rpm,590rpm]区间内时,默认风机处于低风档位,可以通过降低空调的压缩机的频率至原有的百分之五十来提升出风温度。当风机的转速位于(590rpm,670rpm]区间内时,默认风机处于中风档位,可以通过降低空调的压缩机的频率至原有的百分之六十来提升出风温度。也即是,当风机转速大于等于490rpm且小于等于590rpm时,默认风机处于低风档位。当风机转速大于590rpm且小于等于670rpm时,默认风机处于中风档位。
另一种实施例中,还可以通过提高向下出风口外喷出气流的风机的转速来提升出风温度。例如将风机的转速提升20rpm、40rpm。具体地,可以在风机原有转速较小时转速提升值较大,在风机原有转速较大时转速提升值较小。例如,当风机原有转速位于[490rpm,590rpm]区间内时,为了增大下出风口的出风温度,可以使风机转速上升40rpm。当风机原有转速位于(590rpm,670rpm]区间内时,为了增大下出风口的出风温度,可以使风机转速上升20rpm。
又一种实施例中,亦可以降低空调的压缩机的频率的同时提高向下出风口外喷出气流的风机的转速来提升出风温度。
再一种实施例中,还可以在空调的下出风口处设置加热部件来对下出风口排出的换热气流进行加热。
为了加快除凝露的效率,当产生除凝露信号后,提高室内机的下出风口的出风温度时,一种实施例中,可以将室内机的下出风口的出风温度提升到室内的露点温度以上。即下出风口的出风温度升高后,由下出风口导出的换热气流无法使地面增加凝露,而剩下的凝露被自然风干,从而实现了除凝露的目的。特别地,为了进一步提高除凝露效率,还可以将出风温度提升到室内的环境温度之上,这样不但使得凝露不增加,还能加快已产生的凝露的蒸发速率。
当风机转速升高时,下出风口出风大,风干效果强,故出风温度可以适当的变低,压缩机的下降频率可以适当缩小。当风机转速位于[490rpm,670rpm]区间内时,空调可能会具有多个出风档位,但由于每个空调的规格不一,因此无法确定每个出风档位下风机的具体转速。故一种实施例中,当风机的转速位于[490rpm,590rpm]区间内时,默认风机处于低风档位,可以通过降低空调的压缩机的频率至原有的百分之五十来提升出风温度。当风机的转速位于(590rpm,670rpm]区间内时,默认风机处于中风档位,可以通过 降低空调的压缩机的频率至原有的百分之六十来提升出风温度。
如图2所示,本实施例示例性的给出了空调器的防凝露控制方法的一种可选流程:
S204:空调位于制冷模式下开始运行时,对出风时间进行计时。
S206:用计时时间于第二预设时间进行比较。
S208:当计时时间大于第二预设时间时,获取风机转速。
S210:当风机转速位于[490rpm,590rpm]区间内时,将压缩机的频率降低为原有频率的百分之五十,并同时将风机转速提高40rpm,以提升下出风口的出风温度。
S212:当风机转速位于(590rpm,670rpm]区间内时,将压缩机的频率降低为原有频率的百分之六十,并同时将风机转速提高20rpm,以提升下出风口的出风温度。
S214:保持出风温度的提升效果并持续第一预设时间后,恢复空调的原有制冷模式下的正常运行。
参见图4和图5,本发明第二方面还提供了一种利用上述任意一实施例中的防凝露控制方法进行除凝露处理的空调室内机10,该空调室内机具体可以为空调柜机,其包括上出风口11、下出风口12,风机42以及控制器20。下出风口12设置于上出风口11下方。控制器20包括存储器31以及处理器32,存储器31存储有计算机程序,计算机程序被处理器执行时实现根据上述任意一项的防凝露控制方法。为了能够检测地面的凝露状态,在一种实施例中,空调室内机还包括传感器33,传感器用于感测室内地面的凝露状态。
一种情形下,由于下出风口吹出的换热气流可能会直接导向用户腿部,导致用户腿部过冷。为了解决上述缺陷,空调室内机还可以包括感应人体位置信息的传感器33,传感器与控制器电性连接,当传感器检测到人体位于下出风口附近,下出风口吹出的换热气流将直接吹向人体腿部时,控制器控制加热件41加热下出风口吹出的换热气流,具体可以使下出风口导出的换热气流的温度与室内的环境温度的差值在2摄氏度的范围内。即加热件41具有第一加热功率,当加热件处于第一加热功率下时,下出风口导出的换热气流的温度被加热件加热到与室内的环境温度的差值为2摄氏度之内。当传感器没有检测到下出风口吹出的换热气流,或换热气流不直接导向人体后,控制器可以关闭加热件。
特别地,加热件还可以用于除凝露,当空调室内机具有加热件时,控制器可以控制加热件在需要进行除凝露时让加热件加热,以使得下出风口的出风温度高于室内的露点温度。即加热件具有第二加热功率,当加热件处于第二加热功率下时,下出风口导出的换热气流的温度被加热件加热到高于室内的露点温度。
由于空调柜机的上出风口比下出风口的竖直高度高,故使得由下出风口导出的换热气流的温度会低于上出风口导出的换热气流的温度,导致出风不均匀。为了使得两个出风口导出的换热气流的温度一致,一种实施例中,空调室内机还可以包括加热件41,加热件配置成开启时对导出下出风口的换热气流进行加热,以使得上出风口中导出的换热气流的温度等于下出风口导出的换热气流的温度。加热件产生的温度由控制器进行实时控制,但由于控制精度的不足,实际可以使下出风口导出的换热气流与上出风口导出分换热气流的温度差值处于0.3摄氏度的范围内。即加热件具有第三加热功率,当加热件处于第三加热功率下时,下出风口导出的换热气流的温度被加热件加热到与上出风口导出的换热气流的温度的差值为0.3摄氏度之内。
加热件可以设置于下出风口内,使得换热气流在导出下出风口时与加热件进行换热。特别地,加热件可以呈网状,并设置成使换热气流穿过加热件后导出下出风口。这样可以增加换热气流与加热件的换热速率。进一步地,加热件呈网状时,其可以完全覆盖下出风口,即换热气流必须穿过加热件才能导出下出风口。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种空调防凝露控制方法,所述空调包括设置于室内的空调室内机,其中,所述控制方法包括以下步骤:
    制冷模式下,获取所述室内的壁面的凝露状态,并根据所述凝露状态判断是否产生除凝露信号;
    当产生所述除凝露信号后,提高所述空调室内机的出风口的出风温度并持续第一预设时间。
  2. 根据权利要求1所述的防凝露控制方法,其中,获取所述室内的壁面的凝露状态,并根据所述凝露状态判断是否产生除凝露信号的步骤包括:
    当所述出风口开始排出换热气流时对所述换热气流的排出时间进行计时,当所述换热气流的排出时间大于第二预设时间时,产生除凝露信号。
  3. 根据权利要求1所述的防凝露控制方法,其中,获取所述室内的壁面的凝露状态的步骤包括:
    利用传感器感测所述壁面的凝露状态。
  4. 根据权利要求1所述的防凝露控制方法,其中,
    当产生除凝露信号后,提高所述空调室内机的所述出风口的所述出风温度时,将所述空调室内机的所述出风口的所述出风温度提升到所述室内的露点温度以上。
  5. 根据权利要求1所述的防凝露控制方法,其中,提高所述空调室内机的出风口的出风温度并持续第一预设时间的步骤包括:
    通过降低所述空调的压缩机的频率来提升所述出风温度。
  6. 根据权利要求1所述的防凝露控制方法,其中,提高所述空调室内机的出风口的出风温度并持续第一预设时间的步骤包括:
    通过提高向所述出风口外喷出气流的风机的转速来提升所述出风温度;或
    通过降低所述空调的压缩机的频率的同时提高向所述出风口外喷出气 流的风机的转速来提升所述出风温度。
  7. 根据权利要求1所述的防凝露控制方法,其中,提高所述空调室内机的出风口的出风温度并持续第一预设时间的步骤包括:
    利用加热件对排出所述出风口的换热气流进行加热来提升所述出风温度。
  8. 根据权利要求1所述的防凝露控制方法,其中,
    所述第一预设时间的取值区间为大于等于1小时且小于等于2.5小时。
  9. 根据权利要求2所述的防凝露控制方法,其中,
    所述第二预设时间的取值区间为大于等于1小时且小于等于2小时。
  10. 一种空调,包括:
    控制器,包括存储器以及处理器,所述存储器存储有计算机程序,其中
    所述计算机程序被所述处理器执行时实现根据权利要求1至9中任一项所述的防凝露控制方法。
PCT/CN2019/090006 2018-12-27 2019-06-04 一种空调防凝露控制方法及空调室内机 WO2020133921A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811615812.1 2018-12-27
CN201811615812.1A CN111380143B (zh) 2018-12-27 2018-12-27 一种空调防凝露控制方法及空调室内机

Publications (1)

Publication Number Publication Date
WO2020133921A1 true WO2020133921A1 (zh) 2020-07-02

Family

ID=71127578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090006 WO2020133921A1 (zh) 2018-12-27 2019-06-04 一种空调防凝露控制方法及空调室内机

Country Status (2)

Country Link
CN (1) CN111380143B (zh)
WO (1) WO2020133921A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113251637A (zh) * 2021-05-11 2021-08-13 青岛海尔空调器有限总公司 用于控制空调的方法、装置及空调
CN115930358A (zh) * 2022-11-15 2023-04-07 珠海格力电器股份有限公司 一种新风机防凝露控制方法、装置及新风机

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113847685B (zh) * 2021-09-10 2022-11-22 珠海格力电器股份有限公司 空调器的控制方法、装置、计算机可读存储介质与处理器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107796093A (zh) * 2017-11-22 2018-03-13 海信(山东)空调有限公司 一种空调器防止凝露的控制方法和空调器
CN108592303A (zh) * 2018-04-27 2018-09-28 广东美的制冷设备有限公司 空调器的控制方法以及空调器
CN108679824A (zh) * 2018-07-23 2018-10-19 奥克斯空调股份有限公司 防凝露控制方法及空调器
CN108731196A (zh) * 2018-04-18 2018-11-02 青岛海尔空调器有限总公司 一种防凝露的空调控制方法及装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519696Y2 (zh) * 1987-09-14 1993-05-24
CN201672607U (zh) * 2010-04-30 2010-12-15 清华大学 一种配合地板辐射供冷系统使用的中央空调置换送风末端
EP2681497A4 (en) * 2011-02-28 2017-05-31 Emerson Electric Co. Residential solutions hvac monitoring and diagnosis
CN102278793A (zh) * 2011-08-05 2011-12-14 广东美的电器股份有限公司 一种空调器室内机
CN105890106A (zh) * 2015-01-26 2016-08-24 青岛海尔空调器有限总公司 空调器防凝露控制方法、控制装置及空调器
CN105091112B (zh) * 2015-09-11 2019-03-26 珠海格力电器股份有限公司 立式空调器
CN205980094U (zh) * 2016-05-30 2017-02-22 江苏二十六度节能科技有限公司 一种带吹风机的辐射板及使用该辐射板的辐射空调系统
KR101904428B1 (ko) * 2017-02-15 2018-10-08 한국에너지기술연구원 Ict 기반의 실내환경 제어방법 및 제어시스템
CN107152756B (zh) * 2017-05-19 2019-11-29 珠海格力电器股份有限公司 空调器的控制方法和装置
CN207936240U (zh) * 2017-12-25 2018-10-02 青岛海尔空调器有限总公司 空调器
CN108375186A (zh) * 2018-01-31 2018-08-07 青岛海尔空调器有限总公司 空调防凝露控制的方法、装置及计算机存储介质
CN108644955B (zh) * 2018-04-12 2020-07-14 东南大学 一种地板供冷复合置换通风系统的空间湿度控制方法
CN108488919B (zh) * 2018-04-26 2020-12-22 广东美的制冷设备有限公司 空调器及其控制方法、装置
CN109059171B (zh) * 2018-07-25 2021-03-02 浙江工业大学 带自学习功能的自动追踪加热系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107796093A (zh) * 2017-11-22 2018-03-13 海信(山东)空调有限公司 一种空调器防止凝露的控制方法和空调器
CN108731196A (zh) * 2018-04-18 2018-11-02 青岛海尔空调器有限总公司 一种防凝露的空调控制方法及装置
CN108592303A (zh) * 2018-04-27 2018-09-28 广东美的制冷设备有限公司 空调器的控制方法以及空调器
CN108679824A (zh) * 2018-07-23 2018-10-19 奥克斯空调股份有限公司 防凝露控制方法及空调器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113251637A (zh) * 2021-05-11 2021-08-13 青岛海尔空调器有限总公司 用于控制空调的方法、装置及空调
CN113251637B (zh) * 2021-05-11 2022-07-19 青岛海尔空调器有限总公司 用于控制空调的方法、装置及空调
CN115930358A (zh) * 2022-11-15 2023-04-07 珠海格力电器股份有限公司 一种新风机防凝露控制方法、装置及新风机

Also Published As

Publication number Publication date
CN111380143B (zh) 2021-12-21
CN111380143A (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
WO2020133921A1 (zh) 一种空调防凝露控制方法及空调室内机
WO2020133922A1 (zh) 一种空调防凝露控制方法及空调室内机
US20120174608A1 (en) Control device
WO2021004453A1 (zh) 空调器及其控制方法
CN107143994A (zh) 空调防凝露控制方法及空调室内机
CN109724202B (zh) 空调器及其控制方法
JPWO2017203603A1 (ja) 空調制御装置、空気調和機、及び空調システム
JP2010008004A5 (zh)
JP2011149654A (ja) 省エネルギーシステム
CN209459097U (zh) 一种空调加热结构及空调室内机
CN113251636A (zh) 一种空调器控制方法、装置、电子设备及空调器
JP2017194249A (ja) 空気調和機
CN113531892A (zh) 一种暖风机控制方法、装置及暖风机
JP2016038135A (ja) 空気調和機
WO2024093391A1 (zh) 壁挂空调器室内机的控制方法、装置与壁挂空调器室内机
CN109945434B (zh) 空调的控制方法、装置和空调
WO2024093392A1 (zh) 壁挂空调器室内机的控制方法、装置与壁挂空调器室内机
US20190353369A1 (en) Environmental control system and method for automatically adjusting operating parameters
JP5730689B2 (ja) 空調運転制御システム
JP5055973B2 (ja) 浴室サウナ装置
CN107490124B (zh) 取暖设备及室内通风检测方法和检测装置
KR102346657B1 (ko) 공기 조화 시스템, 공기 조화 시스템의 실내기 및 이의 제어 방법
CN115614948A (zh) 壁挂空调器室内机的控制方法、装置与壁挂空调器室内机
JP3785866B2 (ja) 空気調和装置
JP5366768B2 (ja) 空気調和機の室外機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902761

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902761

Country of ref document: EP

Kind code of ref document: A1