WO2020133758A1 - 具有双级压缩的空调系统 - Google Patents

具有双级压缩的空调系统 Download PDF

Info

Publication number
WO2020133758A1
WO2020133758A1 PCT/CN2019/079659 CN2019079659W WO2020133758A1 WO 2020133758 A1 WO2020133758 A1 WO 2020133758A1 CN 2019079659 W CN2019079659 W CN 2019079659W WO 2020133758 A1 WO2020133758 A1 WO 2020133758A1
Authority
WO
WIPO (PCT)
Prior art keywords
conditioning system
supercharger
air
stage compression
receiver
Prior art date
Application number
PCT/CN2019/079659
Other languages
English (en)
French (fr)
Inventor
孟庆良
宋强
谭雪艳
刘景升
李银银
任滔
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Priority to US16/764,522 priority Critical patent/US20210222917A1/en
Publication of WO2020133758A1 publication Critical patent/WO2020133758A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the invention relates to the technical field of air conditioning, in particular to an air conditioning system with two-stage compression.
  • the evaporating temperature of the air conditioning system needs to be controlled at a very low temperature, such as the temperature in low-temperature devices such as large-scale cold storage or low-temperature boxes, etc., needs to be controlled at -30°C to -40°C or even lower
  • the single-stage compressor is unable to meet the requirements due to certain restrictions on the compression ratio and pressure difference.
  • a two-stage compressor or a multi-stage compressor with a low-temperature refrigerant solution is used. The refrigerant is compressed twice by the two-stage compressor to obtain -65°C to -75°C or even lower Evaporation temperature.
  • the two-stage compressor or the multi-stage compressor solves the above problems to a certain extent, it inevitably also has the following problems: First, the two-stage compressor is bulky and the internal structure is complicated, resulting in high manufacturing costs and reduced product Competitiveness. Second, the existing two-stage compressors have low energy efficiency during operation.
  • the present invention provides an air-conditioning system with two-stage compression
  • the air-conditioning system includes A connected compressor, condenser, throttle element and evaporator
  • the air-conditioning system further includes a booster unit disposed between the compressor and the condenser, the booster unit is configured to convert natural energy It is mechanical energy to repressurize the refrigerant discharged from the compressor.
  • the booster unit includes a receiver and a supercharger, the supercharger is connected to the receiver, and the receiver can receive the natural
  • the natural energy can be converted into mechanical energy and then the mechanical energy is transferred to the supercharger, so that the supercharger performs second supercharging on the refrigerant.
  • the supercharger is a charge accumulator
  • the rotating shaft of the charge accumulator is connected to the receiver
  • the charge accumulator The suction port of is connected to the exhaust port of the compressor, and the discharge port of the energy-accumulating supercharger is connected to the intake port of the condenser.
  • the natural energy is ocean energy
  • the receiver is a water turbine
  • the wheel shaft of the water turbine is connected to the supercharger.
  • the natural energy is wind energy
  • the receiver is a wind wheel
  • the wheel shaft of the wind wheel is connected to the supercharger.
  • the receiver further includes a converter, and the booster is connected to the receiver through the converter, so that the converter receives the The mechanical energy converted by the compressor is transferred to the supercharger.
  • the converter is a bevel gear commutator
  • the input shaft of the bevel gear commutator is connected to the receiver
  • the bevel gear commutator The output shaft is connected to the supercharger.
  • the converter is a worm gear commutator
  • the input shaft of the worm gear commutator is connected to the receiver
  • the worm gear commutator The output shaft is connected to the supercharger.
  • the air-conditioning system further includes a supercooling unit, the supercooling unit includes a supercooling inlet, a first supercooling outlet, and a second supercooling outlet.
  • the cold inlet is in communication with the liquid outlet of the condenser
  • the first supercooling outlet is in communication with the inlet of the throttle element
  • the second supercooling outlet is in communication with the exhaust port of the compressor.
  • the air conditioning system further includes an economizer, a flasher, or a supercooler.
  • an air-conditioning system with two-stage compression includes a compressor, a condenser, a throttle element, and an evaporator connected in sequence, characterized in that the air-conditioning system further includes A booster unit is provided between the compressor and the condenser.
  • the booster unit is configured to convert natural energy into mechanical energy to perform secondary boosting of the refrigerant discharged from the compressor.
  • the supercharging unit is arranged to convert natural energy into mechanical energy to perform secondary supercharging of the refrigerant discharged from the compressor.
  • the air-conditioning system with two-stage compression of the present invention can realize the two-stage compression using the driving force provided by natural energy At the same time, it can also improve the energy efficiency of two-stage compression.
  • the compressor first boosts the refrigerant once. After the compressor discharges the primary boosted refrigerant, the booster unit uses the natural energy to provide the driving force for secondary boosting, which will Natural energy is converted into mechanical energy and the mechanical energy is used to perform secondary supercharging of the supercharged refrigerant.
  • the air conditioning system of the present invention can achieve secondary supercharging without additional energy consumption, which not only improves the performance of the air conditioning system, but also It also achieves zero energy consumption for secondary supercharging.
  • the air conditioning system of the present invention can also achieve supercooling of the refrigerant, which reduces the evaporation temperature and improves the cooling capacity and cooling efficiency.
  • the air conditioning system can also achieve supercooling of the refrigerant, which reduces the evaporation temperature and improves the cooling capacity and cooling efficiency.
  • the refrigerant discharged from the condenser outlet is divided into two parts, one part is cooled by throttling and evaporating into a gaseous refrigerant, to reduce the temperature of the other part, so that it is supercooled and reduces the refrigerant Temperature, the supercooled liquid refrigerant flows out from the first supercooling outlet, and enters the evaporator through the throttling element to evaporate and cool, thereby achieving a lower evaporation temperature and the compressor discharge temperature; and the un
  • FIG. 1 is a system diagram of an air-conditioning system with dual-stage compression according to the present invention
  • Fig. 2 is a cyclic enthalpy diagram of an air conditioning system with two-stage compression according to the present invention.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a It is a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected, or it can be indirectly connected through an intermediate medium, or it can be a connection between two components.
  • installation e.g., it can be a fixed connection or a It is a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected, or it can be indirectly connected through an intermediate medium, or it can be a connection between two components.
  • FIG. 1 is a system diagram of an air-conditioning system with two-stage compression of the present invention
  • FIG. 2 is a cycle pressure enthalpy diagram of an air-conditioning system with two-stage compression of the present invention.
  • the air-conditioning system with two-stage compression (hereinafter or simply air-conditioning system) of the present invention mainly includes compressors 1 connected in sequence , Condenser 2, throttle element 3 (such as electronic expansion valve) and evaporator 4, the above components form a traditional air-conditioning circulation circuit, the circuit is filled with refrigerant.
  • the air conditioning system also has a booster unit and a supercooling unit, the booster unit is disposed between the compressor 1 and the condenser 2, and the booster unit is configured to convert natural energy into mechanical energy to discharge the compressor 1
  • the refrigerant is pressurized twice.
  • the supercooling unit includes a supercooling inlet 61, a first supercooling outlet 62 and a second supercooling outlet 63, wherein the supercooling inlet 61 communicates with the liquid outlet 22 of the condenser 2, the first supercooling outlet 62 and the throttle element 3 The inlet of is connected, and the second supercooling outlet 63 is communicated with the exhaust port 11 of the compressor 1.
  • the refrigerant flowing through the condenser 2 from the liquid outlet 22 is divided into two parts (state point 4 ⁇ 5 ⁇ 6), the first part is in the supercooling unit Under the effect of throttling, thermal expansion is used to cool, and the temperature of the second part is reduced by heat exchange.
  • the first part of the refrigerant after heat exchange comes to the exhaust port 11 of the compressor 1 through the second supercooling port.
  • the second part of the refrigerant is after the first part of the refrigerant heat exchange and enters the evaporator 4 for further throttling through the throttling element 3 for evaporation (state point 6 ⁇ 7 ⁇ 1), the evaporated refrigerant
  • the refrigerant enters the compressor 1 for one boost and is discharged through the exhaust port 11 of the compressor 1 (state point 1 ⁇ 2), and is mixed with the first part of the refrigerant that comes to the exhaust port 11 of the compressor 1 (state point 2 ⁇ 3), the mixed refrigerant enters the supercharging unit, and the supercharging unit performs second supercharging on the mixed refrigerant by converting natural energy into mechanical energy (state point 3 ⁇ 4), and the refrigerant again Enter the condenser 2 to complete one cycle.
  • the supercharging unit is configured to convert natural energy into mechanical energy to perform secondary supercharging of the refrigerant discharged from the compressor 1.
  • the air-conditioning system with two-stage compression of the present invention can be realized using natural energy Simultaneously with the two-stage compression, the energy efficiency of the two-stage compression is improved.
  • the compressor 1 when the air conditioning system is operating, the compressor 1 first pressurizes the refrigerant once, and after the compressor 1 discharges the once-pressurized refrigerant and mixes with part of the refrigerant in the supercooling unit, the booster unit uses Natural energy provides the driving force for secondary supercharging, converts natural energy into mechanical energy and uses the mechanical energy to perform secondary supercharging on the refrigerant after primary supercharging, so that the air conditioning system of the present invention can achieve two without additional energy consumption. Sub-supercharging not only improves the performance of the air conditioning system, but also achieves zero energy consumption for secondary supercharging.
  • the air conditioning system of the present invention can also achieve supercooling of the refrigerant, which reduces the evaporation temperature and improves the cooling capacity and cooling efficiency.
  • the air conditioning system of the present invention can also achieve supercooling of the refrigerant, which reduces the evaporation temperature and improves the cooling capacity and cooling efficiency.
  • the air conditioning system of the present invention can also achieve supercooling of the refrigerant, which reduces the evaporation temperature and improves the cooling capacity and cooling efficiency.
  • the supercooling inlet 61 of the supercooling unit to the liquid outlet 22 of the condenser 2
  • the first supercooling outlet 62 is connected to the inlet of the throttle element 3
  • the second supercooling outlet 63 is connected to the compressor
  • the exhaust port 11 of 1 is connected.
  • the refrigerant discharged from the liquid outlet 22 of the condenser 2 is divided into two parts by the supercooling unit, and one part is cooled by throttling and evaporating into a gaseous refrigerant. Lower the temperature of the other part and make it supercooled to reduce the temperature of the refrigerant.
  • the supercooled liquid refrigerant flows out from the first supercooled outlet 62 and enters the evaporator 4 through the throttling element 3 for evaporative cooling.
  • the pressure unit performs secondary pressure increase to improve the cooling capacity and cooling efficiency.
  • natural energy is ocean energy, such as any flowing water source such as rivers, rivers, lakes, and seas.
  • the supercharging unit includes a receiver 51, a converter 52 and a supercharger 53, the receiver 51 is connected to the converter 52, and the converter 52 is connected to the supercharger 53, the supercharger 53 is provided at the exhaust port 11 of the compressor 1 With the air inlet 21 of the condenser 2.
  • the receiver 51 can receive ocean energy and convert the ocean energy into mechanical energy, and the converter 52 can transmit the mechanical energy to the supercharger 53 so that the supercharger 53 uses the mechanical energy to supercharge the refrigerant.
  • the receiver 51 may be a water turbine, which has an impeller and a wheel shaft;
  • the converter 52 may be a bevel gear commutator, which has an input shaft and an output shaft;
  • the supercharger 53 may be a charge accumulator supercharger.
  • the compressor has a suction port 531, a discharge port 532, a scroll, and a rotating shaft.
  • the axle of the turbine is connected to the input shaft of the bevel gear commutator, such as welding, key connection or coupling connection, etc.; the output shaft of the bevel gear commutator is connected to the rotating shaft of the concentrating supercharger, such as by welding, key Connection or coupling connection, etc.; the suction port 531 of the concentrating supercharger communicates with the exhaust port 11 of the compressor 1, and the discharge port 532 of the scroll compressor communicates with the intake port 21 of the condenser 2. Therefore, when the water flows (such as seawater at high tide and low tide), the impeller of the turbine is rotated.
  • the water flows such as seawater at high tide and low tide
  • the impeller rotation drives the input shaft of the bevel gear commutator, and the input shaft of the bevel gear commutator drives its output shaft to rotate, and the output shaft further
  • the scroll that drives the concentrator supercharger rotates. When the scroll rotates, the refrigerant is sucked from the suction port 531 and compressed, and then discharged from the discharge port 532.
  • the supercooling unit may be an economizer
  • the inlet of the economizer is connected to the liquid outlet 22 of the condenser 2
  • the first outlet of the economizer is connected to the throttle element 3
  • the second outlet is connected between the exhaust port 11 and the suction port 531 of the compressor 1.
  • the supercooled liquid refrigerant flows out from the first outlet of the economizer and enters the evaporator 4 through the throttling element 3 for evaporative cooling; and the uncooled gaseous refrigerant passes through the economizer
  • the second outlet is discharged to the exhaust port 11 of the compressor 1, and then mixed with the refrigerant discharged from the compressor 1 to enter the accumulator supercharger for secondary supercharging.
  • the air conditioner of the present invention can make full use of natural resources, especially the flowing water resources of the coastal city to the refrigerant Carrying out secondary supercharging not only has a significant supercharging effect, but also does not require an external power source during the supercharging process, thus greatly saving energy consumption.
  • the components of the booster unit of the present invention are standard parts, and the assembly method is simple and reliable, so the purchase cost is relatively reduced, and the competitiveness of the product is improved.
  • the present invention can also achieve a lower evaporation temperature and the discharge temperature of the compressor 1 to improve the cooling capacity and cooling efficiency of the air conditioning system.
  • the selection of energy-concentrating supercharger has no reciprocating mechanism and can be supercharged only by rotating the scroll, so its structure is simple, small in size, light in weight and high in reliability.
  • it has high efficiency within the range of cooling capacity it adapts to, and low noise, which can improve the user's experience.
  • the selection of the hydraulic turbine and the bevel gear commutator not only has a simple structure, but also has high durability and can improve the operating stability of the air conditioning system.
  • the setting mode of the booster unit is not unique, and those skilled in the art can adjust it without departing from the principles of the present invention so that it is suitable for more specific application scenarios.
  • the booster unit may not include the converter 52, but the receiver 51 is directly connected to the booster 53.
  • the form of the supercharger 53 is not static, as long as the setting form can effectively increase the refrigerant using the driving force provided by natural energy without the need for an external power supply. Press it.
  • the accumulator supercharger can also use a plunger structure, which can drive the plunger to reciprocate through the converter 52 to achieve supercharging of the refrigerant; or the supercharger can also be modified by modifying the existing compressor Realization, such as by modifying the scroll compressor, disassembling its driving part and power part, leaving only the scroll chamber and scroll disk, connecting the rotating shaft of the scroll disk with the output shaft of the bevel gear commutator, Therefore, the purpose of using ocean energy to provide driving force for the scroll plate is achieved, and the refrigerant is subjected to secondary supercharging.
  • the receiver 51 can be applied to the present invention in any form of equipment capable of converting ocean energy into mechanical energy except for the water turbine.
  • the converter 52 may also use a worm gear commutator.
  • the input shaft of the worm gear commutator is connected to the wheel shaft of the hydraulic turbine
  • the output shaft of the worm gear commutator is connected to the rotating shaft of the energy gathering supercharger.
  • the arrangement form of the supercooling unit can also be adjusted, for example, the supercooling unit can also be a flasher, a supercooler, and the like. Or the setting of the supercooling unit can be omitted in the air conditioning system.
  • natural energy in addition to ocean energy, natural energy may also be other energy that can be collected in nature, such as wind energy.
  • the receiver 51 may be a wind wheel, and the wheel shaft of the wind wheel is directly connected to the rotating shaft of the energy-concentrating supercharger or connected through a converter 52, etc., which can also be achieved without the need for an external power source
  • the purpose of providing the driving force for the supercharger 53 is to realize the two-stage supercharging of the refrigerant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种具有双级压缩的空调系统,包括依次连接的压缩机(1)、冷凝器(2)、节流元件(3)和蒸发器(4),还包括设置于压缩机(1)和冷凝器(2)之间的增压单元,增压单元设置成能够将自然能转化为机械能从而对压缩机(1)排出的制冷剂进行二次增压。

Description

具有双级压缩的空调系统 技术领域
本发明涉及空气调节技术领域,具体涉及一种具有双级压缩的空调系统。
背景技术
空调作为常用的电器应用范围越来越广泛,随之对其性能的要求也越来越高。以商业空调为例,在一些特殊的应用场景中,空调系统的蒸发温度需要被控制在很低,如大型冷库或低温箱等低温装置中温度需要控制在-30℃至-40℃甚至更低,此时单级压缩机由于压缩比和压力差受到一定的限制,因此无法满足要求。通常这种情况下会采用双级压缩机或多级压缩机配合低温制冷剂的解决方案,通过双级压缩机对制冷剂进行两次压缩,可获得-65℃至-75℃甚至更低的蒸发温度。
虽然双级压缩机或多级压缩机一定程度上解决了上述问题,但是其不可避免地也存在如下问题:首先,双级压缩机体积庞大,内部结构复杂,导致制造成本高,降低了产品的竞争力。其次,现有的双级压缩机在运行过程中能效低。
相应地,本领域需要一种新的具有双级压缩的空调系统来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有的多级压缩机存在的成本高、能效低的问题,本发明提供了一种具有双级压缩的空调系统,所述空调系统包括依次连接的压缩机、冷凝器、节流元件和蒸发器,所述空调系统还包括设置于所述压缩机与所述冷凝器之间增压单元,所述增压单元设置成能够将自然能转化为机械能从而对压缩机排出的制冷剂进行二次增压。
在上述具有双级压缩的空调系统的优选技术方案中,在所述增压单元包括接收器和增压器,所述增压器与所述接收器连接,所述接收器能够接收所述自然能并将所述自然能转化为机械能后将所述机械能传递给所述增压器,从而所述增压器对所述制冷剂进行二次增压。
在上述具有双级压缩的空调系统的优选技术方案中,所述增压器为聚能增压器,所述聚能增压器的转轴与所述接收器连接,所述聚能增压器的吸入端口与所述压缩机的排气口连通,所述聚能增压器的排出端口与所述冷凝器的进气口连通。
在上述具有双级压缩的空调系统的优选技术方案中,所述自然能为海洋能,所述接收器为水轮机,所述水轮机的轮轴与所述增压器连接。
在上述具有双级压缩的空调系统的优选技术方案中,所述自然能为风能,所述接收器为风轮,所述风轮的轮轴与所述增压器连接。
在上述具有双级压缩的空调系统的优选技术方案中,所述接收器还包括转换器,所述增压器通过所述转换器与所述接收器连接,从而所述转换器将所述接收器转化的机械能传递给所述增压器。
在上述具有双级压缩的空调系统的优选技术方案中,所述转换器为锥齿轮换向器,所述锥齿轮换向器的输入轴与所述接收器连接,所述锥齿轮换向器的输出轴与所述增压器连接。
在上述具有双级压缩的空调系统的优选技术方案中,所述转换器为蜗轮蜗杆换向器,所述蜗轮蜗杆换向器的输入轴与所述接收器连接,所述蜗轮蜗杆换向器的输出轴与所述增压器连接。
在上述具有双级压缩的空调系统的优选技术方案中,所述空调系统还包括过冷单元,所述过冷单元包括过冷入口、第一过冷出口和第二过冷出口,所述过冷入口与所述冷凝器的出液口连通,所述第一过冷出口与所述节流元件的进口连通,所述第二过冷出口与所述压缩机的排气口连通。
在上述具有双级压缩的空调系统的优选技术方案中,所述空调系统还包括经济器、闪发器或过冷器。
本领域技术人员能够理解的是,在本发明的优选技术方案中,具有双级压缩的空调系统包括依次连接的压缩机、冷凝器、节流元件和蒸发器,其特征在于,空调系统还包括设置于压缩机与冷凝器之间增压单元,增压单元设置成能够将自然能转化为机械能从而对压缩机排出的制冷剂进行二次增压。
通过增压单元设置成能够将自然能转化为机械能从而对压缩机排出的制冷剂进行二次增压,本发明的具有双级压缩的空调系统能够利用自然能提供的驱动力实现两级压缩的同时,还能够提高双级压缩的能效。具体而言,在空调系统运行时,压缩机首先对制冷剂进行一次增压,在压缩机排出一次增压的制冷剂后,增压单元通过利用自然能提供二次增压的驱动力,将自然能转化为机械能并使用该机械能对一次增压后的制冷剂进行二次增压,本发明的空调系统无需额外的能耗即可实现二次增压,不仅提高了空调系统的性能,而且还实现了二次增压的零能耗。
进一步地,通过在空调系统中设置过冷单元,本发明的空调系统还能够实现制冷剂的过冷,使得蒸发温度降低的同时,提高制冷量和制冷效率。具体而言,通过将过冷单元的过冷入口与冷凝器的出液口连通、第一过冷出口与节流元件的进口连通、以及第二过冷出口与压缩机的排气口连通,在空调系统运行时,冷凝器出液口排出的制冷剂被分为两部分,一部分通过节流蒸发为气态制冷剂的方式进行冷却,去降低另一部分的温度,令其过冷而降低制冷剂温度,过冷后的液态制冷剂从第一过冷出口流出,并通过节流元件后进入蒸发器进行蒸发制冷,从而实现更低的蒸发温度和压缩机的排气温度;而未冷却的气态制冷剂通过第二过冷出口排出至压缩机的排气口,然后随压缩机排出的制冷剂一同进入增压单元进行二次增压,以提高制冷量和制冷效率。
附图说明
下面参照附图并结合制冷模式来描述本发明的具有双级压缩的空调系统。附图中:
图1为本发明的具有双级压缩的空调系统的系统图;
图2为本发明的具有双级压缩的空调系统的循环压焓图。
附图标记列表
1、压缩机;11、排气口;2、冷凝器;21、进气口;22、出液口;3、节流元件;4、蒸发器;51、接收器;52、转换器;53、增压器;531、吸入端口;532、排出端口;6、过冷单元;61、过冷入口;62、第一过冷出口;63、第二过冷出口。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。例如,虽然本实施方式是结合制冷模式进行说明的,但是本发明的应用场景不限于此,本领域技术人员可以对其进行调整。如本发明显然还可以应用于空调系统的制热模式、除湿模式等需要压缩机参与运转的模式。
需要说明的是,在本发明的描述中,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
首先参照图1和图2,对本发明的具有双级压缩的空调系统进行介绍。其中,图1为本发明的具有双级压缩的空调系统的系统图,图2为本发明的具有双级压缩的空调系统的循环压焓图。
如图1所示,为解决现有多级压缩机1存在的成本高、能效低的问题,本发明的具有双级压缩的空调系统(以下或简称空调系统)主要包括依次连接的压缩机1、冷凝器2、节流元件3(如电子膨胀阀)和蒸发器4,以上各部件之间组成传统的空调循环回路,回路中填充有制冷剂。特别地,空调系统还具有增压单元和过冷单元,增压单元设置于压缩机1与冷凝器2之间,并且该增压单元设置成能够将自然能转化为机械能从而对压缩机1排出的制冷剂进行二次增压。过冷单元包括过冷入口61、第一过冷出口62和第二过冷出口63,其中过冷入口61与冷凝器2的出液口22连通,第一过冷出口62与节流元件3的进口连通,第二过冷出口63与压缩机1的排气口11连通。
如图1和图2所示,在空调系统工作时,经过冷凝器2的制冷剂从出液口22流出的制冷剂分成两部分(状态点4→5→6),第一部分在过冷单元的作用下以节流热膨胀的方式进行冷却,并且以热交换的方式降低第二部分的温度,热交换后的第一部分制冷剂通过第二过冷口来到压缩机1的排气口11(状态点6→3);第二部分制冷剂在于第一部分制冷剂热交换后以通过节流元件3的进一步节流进入蒸发器4进行蒸发(状态点6→7→1),蒸发后的制冷剂进入压缩机1进行一次增压后与通过压缩机1的排气口11排出(状态点1→2),并与来到压缩机1排气口11的第一部分制冷剂相混合(状态点2→3),混合后的制冷剂进入增压单元,增压单元通过将自然能转换为机械能的方式对该混合的制冷剂进行二次增压后(状态点3→4),制冷剂再次进入冷凝器2,从而完成一次循环。
从上述描述可以看出,通过增压单元设置成能够将自然能转化为机械能从而对压缩机1排出的制冷剂进行二次增压,本发明的具有双级压缩的空调系统能够利用自然能实现两级压缩的同时,提高双级压缩的能效。具体而言,在空调系统运行时,压缩机1首先对制冷剂进行一次增压,在压缩机1排出一次增压的制冷剂并与过冷单元的部分制冷剂混合后,增压单元通过利用自然能提供二次增压的驱动力,将自然能转化为机械能并使用该机械能对一次增压后的制冷剂进行二次增压,使 得本发明的空调系统无需额外的能耗即可实现二次增压,不仅提高了空调系统的性能,而且还实现了二次增压的零能耗。
进一步地,通过在空调系统中设置过冷单元,本发明的空调系统还能够实现制冷剂的过冷,使得蒸发温度降低的同时,提高制冷量和制冷效率。具体而言,通过将过冷单元的过冷入口61与冷凝器2的出液口22连通、第一过冷出口62与节流元件3的进口连通、以及第二过冷出口63与压缩机1的排气口11连通,在空调系统运行时,冷凝器2的出液口22排出的制冷剂被过冷单元分为两部分,一部分通过节流蒸发为气态制冷剂的方式进行冷却,去降低另一部分的温度,令其过冷而降低制冷剂温度,过冷后的液态制冷剂从第一过冷出口62流出,并通过节流元件3后进入蒸发器4进行蒸发制冷,从而实现更低的蒸发温度和压缩机1的排气温度;而未冷却的气态制冷剂通过第二过冷出口63排出至压缩机1的排气口11,然后随压缩机1排出的制冷剂一同进入增压单元进行二次增压,以提高制冷量和制冷效率。
下面进一步参照图1,对本发明的具有双级压缩的空调系统进行详细阐述。
如图1所示,在一种可能的实施方式中,自然能为海洋能,如江、河、湖、海等任何能够流动的水源。增压单元包括接收器51,转换器52和增压器53,接收器51与转换器52连接,转换器52与增压器53连接,增压器53设置于压缩机1的排气口11与冷凝器2的进气口21之间。接收器51能够接收海洋能并将海洋能转化为机械能,转换器52能够将该机械能传递至增压器53,从而增压器53利用该机械能对制冷剂进行二次增压。具体地,接收器51可以为水轮机,其具有叶轮和轮轴;转换器52可以为锥齿轮换向器,其具有输入轴和输出轴;增压器53可以为聚能增压器,聚能增压器具有吸入端口531、排出端口532、涡旋盘和转轴。水轮机的轮轴与锥齿轮换向器的输入轴连接,如焊接、键连接或联轴器连接等;锥齿轮换向器的输出轴与聚能增压器的转轴连接,如同样通过焊接、键连接或联轴器连接等;聚能增压器的吸入端口531与压缩机1的排气口11连通,涡旋压缩机的排出端口532与冷凝器2的进气口21连通。从而,水流在流动时(如海水在涨潮退潮时)推动水轮机 的叶轮转动,叶轮转动带动锥齿轮换向器的输入轴转动,锥齿轮换向器的输入轴带动其输出轴转动,输出轴进一步带动聚能增压器的涡旋盘转动,在涡旋盘转动时,制冷剂从吸入端口531被吸入并压缩后从排出端口532排出。
继续参照图1,在一种可能的实施方式中,过冷单元可以为经济器,经济器的入口与冷凝器2的出液口22连接,经济器的第一出口与节流元件3连接,第二出口连接至压缩机1的排气口11与吸入端口531之间。在空调系统运行时,冷凝器2的出液口22排出的制冷剂经过经济器时被分为两部分,一部分通过节流蒸发为气态制冷剂的方式进行冷却,去降低另一部分的温度,令其过冷而降低制冷剂温度,过冷后的液态制冷剂从经济器的第一出口流出,并通过节流元件3后进入蒸发器4进行蒸发制冷;而未冷却的气态制冷剂通过经济器的第二出口排出至压缩机1的排气口11,然后与压缩机1排出的制冷剂混合后一同进入聚能增压器进行二次增压。
上述优选的实施方式,通过利用海洋能转换为机械能,即利用海洋能为增压器53提供驱动力,使得本发明的空调器能够充分利用自然资源、尤其是临海城市的流动水资源对制冷剂进行二次增压,这种方式不仅增压效果显著,而且由于增压过程无需外接动力电源,因此还大大节约了能耗。此外,相比于多级压缩机1,本发明的增压单元的各零部件都是标准件,组装方式简单可靠,因此还相对降低了购置成本,提高了产品的竞争力。通过经济器的配置,使得本发明还能够实现更低的蒸发温度和压缩机1的排气温度,以提高空调系统制冷量和制冷效率。聚能增压器的选用,相比于其他压缩机1来说,由于没有往复运动机构,只靠涡旋盘旋转即可增压,因此其结构简单、体积小、重量轻、可靠性高。此外,在其适应的制冷量范围内具有较高的效率,并且噪音低,能够提高用户的使用体验。水轮机和锥齿轮换向器的选用,不仅结构简单,而且耐用性高,能够提高空调系统的运行稳定性。
需要说明的是,上述优选的实施方式仅仅用于阐述本发明的原理,并非旨在于限制本发明的保护范围。在不偏离本发明原理的前提 下,本领域技术人员可以对上述设置方式进行调整,以便本发明能够适用于更加具体的应用场景。
例如,在一种可替换的实施方式中,增压单元的设置方式并非唯一,在不偏离本发明原理的条件下,本领域技术人员可以对其调整,以便其适用于更加具体的应用场景。如,增压单元可以不包括转换器52,而是有接收器51直接与增压器53进行连接。
再如,在另一种可替换的实施方式中,增压器53的形式也并非一成不变,只要该设置形式能够在无需外接电源的情况下利用自然能提供的驱动力对制冷剂进行有效的增压即可。如,聚能增压器还可以选用柱塞式结构,通过转换器52带动柱塞往复运动从而实现对制冷剂的增压;又或者增压器还可以通过对现有的压缩机进行改装而实现,如通过对涡旋压缩机进行改装,将其驱动部分和电力部分拆解,只保留涡旋腔室和涡旋盘,将涡旋盘的转轴与锥齿轮换向器的输出轴连接,从而实现利用海洋能为涡旋盘提供驱动力的目的,以对制冷剂进行二次增压。同样地,接收器51除了水轮机以外,任何形式的能够将海洋能转换为机械能的设备均可以应用于本发明。
再如,在另一种可替换的实施方式中,除了锥齿轮换向器外,转换器52还可以采用蜗轮蜗杆换向器,此时,蜗轮蜗杆换向器的输入轴与水轮机的轮轴连接,蜗轮蜗杆换向器的输出轴与聚能增压器的转轴连接。
再如,在另一种可替换的实施方式中,过冷单元的设置形式也可进行调整,如过冷单元还可以为闪发器、过冷器等。或者空调系统中可以省略过冷单元的设置,这些改变都未偏离本发明的原理,因此都应落入本发明的保护范围之内。
再如,在另一种可替换的实施方式中,自然能除海洋能外,还可以为自然界中其他可以采集的能量,如风能。相应地,在自然能为风能时,接收器51可以为风轮,风轮的轮轴与聚能增压器的转轴直接连接或通过转换器52等连接,同样可以实现在无需外接动力源的条件下为增压器53提供驱动力的目的,进而实现对制冷剂的二级增压。
利用风能作为自然能,大大拓展了本发明的应用场景,使得本发明的空调系统除应用于海洋能外,还能够应用于风能丰富的地区,从而提高了本发明产品的竞争力。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种具有双级压缩的空调系统,所述空调系统包括依次连接的压缩机、冷凝器、节流元件和蒸发器,其特征在于,所述空调系统还包括设置于所述压缩机与所述冷凝器之间增压单元,所述增压单元设置成能够将自然能转化为机械能从而对压缩机排出的制冷剂进行二次增压。
  2. 根据权利要求1所述的具有双级压缩的空调系统,其特征在于,在所述增压单元包括接收器和增压器,所述增压器与所述接收器连接,所述接收器能够接收所述自然能并将所述自然能转化为机械能后将所述机械能传递给所述增压器,从而所述增压器对所述制冷剂进行二次增压。
  3. 根据权利要求2所述的具有双级压缩的空调系统,其特征在于,所述增压器为聚能增压器,所述聚能增压器的转轴与所述接收器连接,所述聚能增压器的吸入端口与所述压缩机的排气口连通,所述聚能增压器的排出端口与所述冷凝器的进气口连通。
  4. 根据权利要求2所述的具有双级压缩的空调系统,其特征在于,所述自然能为海洋能,所述接收器为水轮机,所述水轮机的轮轴与所述增压器连接。
  5. 根据权利要求2所述的具有双级压缩的空调系统,其特征在于,所述自然能为风能,所述接收器为风轮,所述风轮的轮轴与所述增压器连接。
  6. 根据权利要求2至5中任一项所述的具有双级压缩的空调系统,其特征在于,所述接收器还包括转换器,所述增压器通过所述转换器与所述接收器连接,从而所述转换器将所述接收器转化的机械能传递给所述增压器。
  7. 根据权利要求6所述的具有双级压缩的空调系统,其特征在于,所述转换器为锥齿轮换向器,所述锥齿轮换向器的输入轴与所述接收器连接,所述锥齿轮换向器的输出轴与所述增压器连接。
  8. 根据权利要求6所述的具有双级压缩的空调系统,其特征在于,所述转换器为蜗轮蜗杆换向器,所述蜗轮蜗杆换向器的输入轴与所述接收器连接,所述蜗轮蜗杆换向器的输出轴与所述增压器连接。
  9. 根据权利要求1所述的具有双级压缩的空调系统,其特征在于,所述空调系统还包括过冷单元,所述过冷单元包括过冷入口、第一过冷出口和第二过冷出口,所述过冷入口与所述冷凝器的出液口连通,所述第一过冷出口与所述节流元件的进口连通,所述第二过冷出口与所述压缩机的排气口连通。
  10. 根据权利要求1所述的具有双级压缩的空调系统,其特征在于,所述空调系统还包括经济器、闪发器或过冷器。
PCT/CN2019/079659 2018-12-28 2019-03-26 具有双级压缩的空调系统 WO2020133758A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/764,522 US20210222917A1 (en) 2018-12-28 2019-03-26 Air conditioning system with two-stage compression

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811627012.1A CN111380240A (zh) 2018-12-28 2018-12-28 具有双级压缩的空调系统
CN201811627012.1 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020133758A1 true WO2020133758A1 (zh) 2020-07-02

Family

ID=71128991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079659 WO2020133758A1 (zh) 2018-12-28 2019-03-26 具有双级压缩的空调系统

Country Status (3)

Country Link
US (1) US20210222917A1 (zh)
CN (1) CN111380240A (zh)
WO (1) WO2020133758A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102042721A (zh) * 2010-12-10 2011-05-04 西安交通大学 一种喷射器增效型蒸气压缩式热泵循环系统
CN102287963A (zh) * 2010-06-17 2011-12-21 王正德 储能式风能发电制冷制热系统
CN103043737A (zh) * 2013-01-23 2013-04-17 林贤华 热泵全天候海水淡化系统
CN105180492A (zh) * 2015-09-04 2015-12-23 大连理工大学 一种气波增压辅助双级蒸汽压缩制冷系统及其工作方法
CN106152582A (zh) * 2016-07-11 2016-11-23 格力电器(芜湖)有限公司 一种空调系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7631510B2 (en) * 2005-02-28 2009-12-15 Thermal Analysis Partners, LLC. Multi-stage refrigeration system including sub-cycle control characteristics
JP4973872B2 (ja) * 2005-10-17 2012-07-11 株式会社前川製作所 Co2冷凍機
JP2007263390A (ja) * 2006-03-27 2007-10-11 Sanyo Electric Co Ltd 冷凍サイクル装置
JP2008249209A (ja) * 2007-03-29 2008-10-16 Sanyo Electric Co Ltd 冷凍装置
CN101382324A (zh) * 2007-09-04 2009-03-11 丛兴陆 风能空调
JP5355016B2 (ja) * 2008-10-01 2013-11-27 三菱電機株式会社 冷凍装置及び熱源機
CN102287936A (zh) * 2010-06-17 2011-12-21 杨丽 一种自身清洁的集热管
CN204880849U (zh) * 2015-07-21 2015-12-16 中国科学院工程热物理研究所 一种带机械储能的直驱式风能热泵系统
CN106894941A (zh) * 2017-01-17 2017-06-27 集美大学 一种波浪能直驱式蒸汽压缩机组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102287963A (zh) * 2010-06-17 2011-12-21 王正德 储能式风能发电制冷制热系统
CN102042721A (zh) * 2010-12-10 2011-05-04 西安交通大学 一种喷射器增效型蒸气压缩式热泵循环系统
CN103043737A (zh) * 2013-01-23 2013-04-17 林贤华 热泵全天候海水淡化系统
CN105180492A (zh) * 2015-09-04 2015-12-23 大连理工大学 一种气波增压辅助双级蒸汽压缩制冷系统及其工作方法
CN106152582A (zh) * 2016-07-11 2016-11-23 格力电器(芜湖)有限公司 一种空调系统

Also Published As

Publication number Publication date
US20210222917A1 (en) 2021-07-22
CN111380240A (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
CN106440511B (zh) 第一类热驱动压缩式热泵
CN201463389U (zh) 高压级补气的两级压缩蒸气式制冷系统
JP2009270745A (ja) 冷凍システム
CN105180492A (zh) 一种气波增压辅助双级蒸汽压缩制冷系统及其工作方法
CN101625171A (zh) 高压级补气准三级蒸气压缩式制冷系统
CN201582913U (zh) 喷液增焓热泵装置
CN201155886Y (zh) 高温热泵专用取热装置
CN201463387U (zh) 一种双循环工业冷水机组
CN108019974B (zh) 中间补气的一次节流中间不完全冷却热泵系统
CN215062958U (zh) 高效直流变频复叠热水机组
WO2019119739A1 (zh) 一种压缩机及制冷循环装置
CN211290619U (zh) 一种紧凑式微型制冷机组
WO2020133758A1 (zh) 具有双级压缩的空调系统
CN112710041A (zh) 一种双泵混驱复合型热管节能空调系统
CN106225281B (zh) 第一类热驱动压缩式热泵
CN111076421A (zh) 直流变频复叠热水机组
CN103043737B (zh) 热泵全天候海水淡化系统
CN215570906U (zh) 一种双泵混驱复合型热管节能空调系统
CN213984106U (zh) 一种二氧化碳制冷空调系统
CN213238005U (zh) 一种补气增焓冷媒系统及冷水机组
WO2018076734A1 (zh) 空调系统
CN211011981U (zh) 制冷系统及螺杆热泵机组
CN110057126B (zh) 一种耦合热泵换热器
CN202350370U (zh) 一种满液式压缩机组集成模块冷凝器
CN207515298U (zh) 一种制冷系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905101

Country of ref document: EP

Kind code of ref document: A1