WO2020133539A1 - 一种数据调度方法和装置 - Google Patents
一种数据调度方法和装置 Download PDFInfo
- Publication number
- WO2020133539A1 WO2020133539A1 PCT/CN2018/125889 CN2018125889W WO2020133539A1 WO 2020133539 A1 WO2020133539 A1 WO 2020133539A1 CN 2018125889 W CN2018125889 W CN 2018125889W WO 2020133539 A1 WO2020133539 A1 WO 2020133539A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- uplink
- data
- scheduling
- uplink authorization
- authorization
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0044—Arrangements for allocating sub-channels of the transmission path allocation of payload
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
- H04L5/001—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
- H04L5/0094—Indication of how sub-channels of the path are allocated
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/56—Allocation or scheduling criteria for wireless resources based on priority criteria
Definitions
- the present application relates to the field of wireless communication, and in particular, to a data scheduling method and device.
- the terminal before sending uplink data to the base station, the terminal will receive an uplink grant (UL grant) from the base station.
- the uplink grant can be used to indicate the resources and transmission format used for uplink data transmission.
- the resources that the terminal can use are controlled by the base station, but the scheduling of the data transmitted in the resources indicated by the uplink authorization is still the responsibility of the terminal.
- the data scheduling of the resources indicated by the uplink authorization can be implemented at the media access control (MAC) protocol layer.
- the terminal determines which logical channel data is placed in the MAC protocol data unit (protocol data unit) and how much data is placed for each logical channel.
- Each logical channel will be configured with a priority. The smaller the priority value, the higher the priority.
- the terminal may refer to the logical channel priority (logical channel prioritization, LCP) process of the 3GPP technical specifications to select an appropriate logical channel.
- LCP logical channel prioritization
- the terminal After receiving the uplink authorization, the terminal needs some time to prepare the uplink data to be sent. This part of the time can be recorded as the minimum processing delay from the grant reception to the data transmission.
- 4G Long Term Evolution
- LTE Long term evolution
- 5th generation (5 th generation, 5G) new radio (new radio, NR) system to pay more attention to wireless communication service delay.
- the technical specifications of the NR system require that the minimum processing delay baseline of the terminal is less than 1 ms.
- the NR system supports multiple subcarrier spacings. As the subcarrier spacing increases, the minimum processing delay requirement becomes stricter.
- the technical specifications of the NR system provide some improved technical solutions, such as the updated MAC header structure, and the logical channel priority process is also adjusted relative to the LTE system. These improved technical solutions can reduce the minimum processing delay of the terminal from the authorized data transmission.
- the internal scheduling scheme of the terminal including the data scheduling of the resources indicated by the uplink authorization, can be considered as a product implementation problem.
- These product implementation problems also have a significant impact on the processing delay of the terminal, which deserves attention and research.
- Embodiments of the present application provide a data scheduling method and device to reduce the processing delay of a wireless communication device or reduce the cost of a wireless communication device.
- the wireless communication device may be a complete machine of the wireless communication device, or may be a device in the wireless communication device, such as a system chip or a communication chip and other integrated circuit products.
- the wireless communication device may be a computing device that supports wireless communication functions, and the computing device may be a device that can be abstracted as a computer system.
- System chip is also called system on chip (SoC), or SoC chip.
- the communication chip may include a baseband processing chip, which is sometimes referred to as a modem.
- the communication chip may also include a radio frequency processing chip, which is sometimes referred to as a radio frequency transceiver (transceiver).
- the wireless communication device may be a terminal such as a smart phone or a wireless access network device such as a base station.
- some or all of the chips in the communication chip may be integrated inside the SoC chip.
- the baseband processing chip is integrated in the SoC chip, and the radio frequency processing chip is not integrated with the SoC chip.
- an apparatus for data scheduling is provided.
- the apparatus may be the foregoing wireless communication apparatus.
- the device includes: an interface unit for acquiring a first uplink authorization and a second uplink authorization, the resources indicated by the first uplink authorization and the resources indicated by the second uplink authorization overlap in the time domain; the processing unit, It is used to start data scheduling of the resources indicated by the first uplink authorization, and when scheduling some data for the first uplink authorization, start data scheduling of the resources indicated by the second uplink authorization.
- a device for data scheduling is provided.
- the device may also be the above wireless communication device.
- the device includes: an interface unit for acquiring a first uplink authorization and a second uplink authorization, the resources indicated by the first uplink authorization and the resources indicated by the second uplink authorization overlap in the time domain; the processing unit, Is used to schedule data for the first uplink grant and the second uplink grant, where the data scheduled for the first uplink grant includes the first part data and the second part data of the same logical channel, which are the first
- the data of the second uplink authorization schedule contains the third part of the data of the same logical channel, wherein the serial numbers of the logical channels of the first part of the data and the second part of the data are not continuous, and the first part of the data and the third The serial numbers of the logical channels of some data are continuous.
- an apparatus for scheduling a media access control MAC protocol data unit PDU is provided, and the apparatus may also be the above wireless communication apparatus.
- the device includes: a generating unit for generating a first MAC PDU and a second MAC PDU, the first MAC PDU corresponds to a first transmission block, the second MAC PDU corresponds to a second transmission block, and the first transmission block There is an overlap with the time domain resources of the second transport block; a processing unit is used to assemble a MAC service data unit SDU for the first MAC PDU and the second MAC PDU, wherein the MAC assembled for the first MAC PDU
- the SDU includes a first MAC SDU and a second MAC SDU of the same logical channel, and the assembled MAC SDU for the second MAC PDU includes a third MAC SDU of the same logical channel, wherein the first MAC PDU and the first MAC
- the sequence numbers of the logical channels of the two MAC PDUs are not continuous, and the sequence numbers of the logical channels of the first MAC PDU and the third MAC PDU are continuous.
- the serial number of the logical channel may be a PDCP serial number.
- the sequence number of the logical channel may also be an RLC sequence number.
- the working mode of the RLC may be an acknowledged mode (acknowledged mode, AM).
- the processing unit is configured to schedule data or assemble a MAC SDU for the first uplink authorization and the second uplink authorization in a parallel scheduling manner.
- the processing unit is configured to schedule data or assemble a MAC SDU for the first uplink authorization and the second uplink authorization in an interrupt scheduling manner.
- the device can be implemented in hardware.
- the interface unit may correspond to an interface circuit
- the generation unit, and/or the processing unit may correspond to a processor.
- the interface unit may correspond to the pin of the chip or a circuit as an input/output interface
- the generation unit and processing unit may be internal processing of the chip Core or processing circuit.
- the device can also be implemented by a combination of software or software and hardware.
- the interface unit and the processing unit may correspond to different function modules or code modules. These softwares can cooperate with the hardware of the device in the form of program code, or driver software, or firmware.
- the processing unit is configured to perform parallel scheduling of the first uplink authorization and the second uplink authorization.
- data scheduling for the resource indicated by the second uplink authorization is started according to the parallel scheduling; wherein the parallel scheduling includes multiple rounds of data scheduling, where one round of data Partial data can be scheduled separately for the first uplink grant and the second uplink grant during scheduling.
- the processing unit is further configured to trigger when the first uplink authorization and the second uplink authorization have scheduled partial data in a round of data scheduling, respectively. Transmission of the scheduled data of the first uplink grant and the second uplink grant on overlapping time-domain resources.
- the processing unit is configured to start the second uplink authorization office according to the priority of the uplink authorization when the scheduled data is authorized for the first uplink Data scheduling of the indicated resource; wherein, the priority of the second uplink authorization is higher than the priority of the first uplink authorization, and the time to obtain the second uplink authorization is later than the time to obtain the first uplink authorization .
- the processing unit is further configured to trigger the first uplink authorization and the second uplink authorization when some or all of the data has been scheduled for the second uplink The transmission of uplink authorized scheduled data on overlapping time-domain resources.
- the processing unit is further configured to perform physical layer processing on the scheduled data of the first uplink authorization and the second uplink authorization, and the physical layer processing Including modulation and coding operations.
- the processing unit is coupled to a physical layer processor, and sends a trigger signal to the physical layer processor to use the first uplink authorization and the second Transmission of uplink authorized scheduled data on overlapping time-domain resources;
- the physical layer processor is configured to perform physical layer processing on the scheduled data of the first uplink authorization and the second uplink authorization, and the physical layer processing includes modulation and coding operations.
- the resource indicated by the first uplink grant corresponds to a first transport block
- the resource indicated by the second uplink grant corresponds to a second transport block
- the processing unit is used to start the assembly of the media access control MAC protocol data unit PDU for the first transport block, and the When a part of the MAC service data unit SDU has been assembled in the MAC PDU, the assembly of the MAC of the second transport block is started.
- the processing unit is further configured to set a threshold of the number of assembled MAC SDUs in the MAC PDU of the first transport block.
- the priority of the second uplink grant is higher than the priority of the first uplink grant, including: the air interface transmission end time of the second transport block is early At the end time of the air interface transmission of the first transmission block.
- the processing unit is further configured to suspend data on the resource indicated by the first uplink authorization when the scheduled data is authorized for the first uplink Scheduling, and updating the scheduling context of the first uplink grant.
- a method for data scheduling is provided, which may be performed by the above wireless communication device.
- the method includes: obtaining a first uplink authorization and a second uplink authorization, resources indicated by the first uplink authorization overlap with resources indicated by the second uplink authorization in a time domain; and initiating the first uplink authorization Data scheduling of the indicated resource; when granting the scheduled data for the first uplink, start data scheduling of the resource indicated by the second uplink authorization.
- starting data scheduling for the resource indicated by the second uplink authorization includes: executing For the parallel scheduling of the first uplink authorization and the second uplink authorization, when part of the data is scheduled for the first uplink authorization, starting the resource indicated by the second uplink authorization according to the parallel scheduling Data scheduling; wherein, the parallel scheduling includes multiple rounds of data scheduling, in which part of the data is allowed to be scheduled separately for the first uplink grant and the second uplink grant in one round of data scheduling.
- the first uplink authorization and the The second uplink authorized scheduled data is transmitted on overlapping time-domain resources.
- the process of starting data scheduling for the resource indicated by the second uplink authorization when the scheduled data is authorized for the first uplink includes: When part of the data is scheduled for the first uplink authorization, data scheduling for the resource indicated by the second uplink authorization is started according to the priority of the uplink authorization; wherein, the priority of the second uplink authorization is higher than the priority For the priority of the first uplink authorization, the time to obtain the second uplink authorization is later than the time to obtain the first uplink authorization.
- the scheduled data of the first uplink authorization and the second uplink authorization are triggered at Transmission on overlapping time domain resources.
- the transmission of the scheduled data of the first uplink grant and the second uplink grant on overlapping time domain resources includes: The scheduled data of the authorization and the second uplink authorization are processed in the physical layer; the scheduled data of the first uplink authorization and the second uplink authorization processed by the physical layer are sent on the air interface.
- the resource indicated by the first uplink grant corresponds to a first transport block
- the resource indicated by the second uplink grant corresponds to a second transport block
- the data scheduling of the resource indicated by the first uplink authorization is initiated, and when a portion of data scheduled for the first uplink authorization is scheduled, the The data scheduling of the resource indicated by the second uplink grant includes: starting the assembly of the media access control MAC protocol data unit PDU of the first transport block, which has been assembled in the MAC of the first transport block When part of the MAC service data unit SDU, the assembly of the MAC PDU of the second transport block is started.
- a threshold is set for the number of assembled MAC SDUs in the MAC PDU of the first transport block.
- the priority of the second uplink grant is higher than the priority of the first uplink grant, including: the air interface transmission end time of the second transport block is early At the end time of the air interface transmission of the first transmission block.
- the data scheduling of the resource indicated by the first uplink authorization is suspended, and the first A scheduling context for uplink authorization.
- a wireless communication chip including: a storage unit for storing program instructions; a processing unit for executing program instructions in the storage unit to implement any of the data in the foregoing multiple technical solutions Scheduling method.
- the storage unit may be a volatile memory for buffering these program instructions. These program instructions may be loaded into the storage unit from other non-volatile memories when the data scheduling method is running.
- the storage unit may also be a non-volatile memory, which is also integrated inside the chip.
- the processing unit may be one or more processing cores of the chip.
- a wireless communication chip including: a processor and an interface circuit; wherein, the processor is coupled to a memory through the interface circuit, and the processor is used to execute program code in the memory to implement the foregoing multiple Any data scheduling method in the technical solution.
- a terminal including:
- a radio frequency transceiver circuit configured to receive a first uplink authorization and a second uplink authorization, the resources indicated by the first uplink authorization and the resources indicated by the second uplink authorization overlap in the time domain;
- a baseband processor configured to start data scheduling of the resource indicated by the first uplink authorization, and start data of the resource indicated by the second uplink authorization when a part of data has been scheduled for the first uplink authorization Scheduling.
- a computer-readable storage medium in which a program code is stored, and when the program code is executed by a computer or a processor, any one of the data scheduling in the foregoing multiple technical solutions method.
- a computer program product is provided.
- the program code contained in the computer program product is executed by a computer or a processor, any data scheduling method in the foregoing multiple technical solutions is implemented.
- FIG. 1 is a schematic structural diagram of a wireless communication system provided by an embodiment of this application.
- FIG. 2 is a schematic structural diagram of another wireless communication system provided by an embodiment of the present application.
- FIG. 3 is a schematic diagram of a wireless resource provided by an embodiment of this application.
- FIG. 4 is a schematic diagram of a wireless protocol architecture provided by an embodiment of this application.
- FIG. 5 is a schematic structural diagram of a MAC PDU provided by an embodiment of this application.
- FIG. 6 is a schematic diagram of mapping between different types of channels provided by an embodiment of the present application.
- FIG. 7 is a schematic diagram of a parallel uplink authorization provided by an embodiment of this application.
- FIG. 8 is a schematic flowchart of a logical channel scheduling strategy provided by an embodiment of this application.
- FIG. 9 is a schematic diagram of a logical channel multiplexing MAC PDU state provided by an embodiment of the present application.
- FIG. 10 is a schematic diagram of a state of MAC PDU for uplink authorization serial scheduling provided by an embodiment of the present application.
- 11 is a sequence diagram of serial scheduling of uplink authorization provided by an embodiment of the present application.
- 13-1 is a schematic diagram 1 of a MAC PDU state for parallel scheduling of uplink authorization provided by an embodiment of the present application;
- 13-2 is a schematic diagram 2 of a MAC PDU state for parallel scheduling of uplink authorization provided by an embodiment of this application;
- FIG. 14 is a sequence diagram of parallel scheduling of uplink authorization provided by an embodiment of the present application
- 15 is a schematic diagram of a state of a MAC PDU for scheduling uplink authorization interruption provided by an embodiment of the present application
- 16 is a schematic structural diagram of a wireless communication device according to an embodiment of the present application.
- devices can be divided into devices that provide wireless network services and devices that use wireless network services.
- Equipment that provides wireless network services refers to those that constitute a wireless communication network, which may be referred to as network equipment (network equipment), or network elements (network elements).
- Network equipment usually belongs to operators (such as China Mobile and Vodafone) or infrastructure providers (such as Iron Tower), and these manufacturers are responsible for operation or maintenance.
- the network equipment can be further divided into radio access network (radio access network, RAN) equipment and core network (core) network (CN) equipment.
- RAN radio access network
- core core network
- Typical RAN equipment includes base stations (BS).
- the base station may sometimes be called a wireless access point (access point, AP), or a transmission and reception point (transmission reception point, TRP).
- the base station may be a general Node B (generation Node B, gNB) in a 5G NR system, or an Evolution Node B (eNB) in a 4G LTE system.
- the base station can be divided into a macro base station (macro base station) or a micro base station (micro base station).
- Micro base stations are sometimes called small base stations or small cells.
- Terminals Devices that use wireless network services are usually located at the edge of the network, which may be referred to as terminals.
- the terminal can establish a connection with a network device and provide users with specific wireless communication services based on the service of the network device. It should be understood that due to the closer relationship between the terminal and the user, it is sometimes referred to as a user equipment (UE), or a subscriber unit (SU).
- UE user equipment
- SU subscriber unit
- MS mobile station
- some network devices such as relay nodes (RNs) or wireless routers, may be considered as terminals because they have UE identity or belong to users.
- RNs relay nodes
- RNs relay nodes
- wireless routers may be considered as terminals because they have UE identity or belong to users.
- the terminal may be a mobile phone (mobile phone), a tablet computer (tablet computer), a laptop computer (laptop computer), a wearable device (such as a smart watch, smart bracelet, smart helmet, smart glasses), and others Devices with wireless access capabilities, such as various Internet of Things (IoT) devices, including various smart home devices (such as smart meters and smart home appliances) and smart city devices (such as security or monitoring devices, smart road traffic Facilities, smart vehicles), etc.
- IoT Internet of Things
- smart home devices such as smart meters and smart home appliances
- smart city devices such as security or monitoring devices, smart road traffic Facilities, smart vehicles
- FIG. 1 is a schematic structural diagram of a wireless communication system provided by an embodiment of the present application.
- the wireless communication system includes a terminal and a base station.
- the transmission link from the terminal to the base station is recorded as an uplink (uplink, UL)
- the transmission link from the base station to the terminal is recorded as a downlink (downlink, DL).
- uplink uplink
- downlink downlink
- data transmission in the uplink may be abbreviated as uplink data transmission or uplink transmission
- data transmission in the downlink may be abbreviated as downlink data transmission or downlink transmission.
- the base station can provide communication coverage for a specific geographic area through integrated or external antenna devices.
- One or more terminals located within the communication coverage of the base station can access the base station.
- a base station can manage one or more cells. Each cell has an identification, which is also called a cell identity (cell ID). From the perspective of radio resources, a cell is a combination of downlink radio resources and its paired uplink radio resources (optional).
- the wireless communication system may comply with the 3GPP wireless communication standard or other wireless communication standards, such as the 802 series (such as 802.11, 802.15, or 802.20) of the Institute of Electrical and Electronics Engineers (IEEE) Wireless communication standard. Although only one base station and one terminal are shown in FIG. 1, the wireless communication system may also include other numbers of terminals and base stations. In addition, the wireless communication system may also include other network devices, such as core network devices.
- 3GPP wireless communication standard such as the 802 series (such as 802.11, 802.15, or 802.20) of the Institute of Electrical and Electronics Engineers (IEEE) Wireless communication standard.
- IEEE Institute of Electrical and Electronics Engineers
- Terminals and base stations should be aware of the predefined configuration of the wireless communication system, including the radio access technology (RAT) supported by the system, and the wireless resources specified by the system, such as radio frequency bands and carrier waves.
- Carrier is a frequency range that meets the system regulations. This frequency range can be determined by the center frequency of the carrier (denoted as carrier frequency) and the carrier bandwidth.
- the predefined configurations of these systems can be used as part of the standard protocol of the wireless communication system, or can be determined through the interaction between the terminal and the base station.
- the content of the standard protocol of the wireless communication system may be pre-stored in the memory of the terminal and the base station, and/or embodied as the hardware circuit or software code of the terminal and the base station.
- the terminal and the base station support one or more same RATs, such as 5G NR, 4G LTE, or the RAT of the future evolution system.
- the terminal and the base station use the same air interface parameters, coding scheme, and modulation scheme, etc., and communicate with each other based on the wireless resources specified by the system.
- the air interface parameter is a parameter used to describe the characteristics of the air interface. In English, air interface parameters are sometimes called numerology. Air interface parameters may include subcarrier spacing (SC) or cyclic prefix (CP).
- SC subcarrier spacing
- CP cyclic prefix
- the wireless communication system can support a variety of different air interface parameters, which can be used as part of the standard protocol.
- the subcarrier spacing supported by the wireless communication system may include a 15kHz subcarrier spacing, or may include a larger subcarrier spacing, such as 30kHz, 60kHz, 120kHz, or 240kHz .
- the wireless communication system can simultaneously support multiple different subcarrier intervals.
- FIG. 2 is a schematic structural diagram of another wireless communication system provided by an embodiment of the present application.
- the wireless communication system supports carrier aggregation (CA) technology.
- CA carrier aggregation
- the terminal and the base station can aggregate three component carriers (CC), which are denoted as CC1, CC2, and CC3, respectively.
- CC refers to the carriers corresponding to different cells participating in carrier aggregation. It should be understood that the three CCs are for illustrative purposes only. In the embodiment of the present application, the terminal and the base station may also aggregate other numbers of CCs. In the Chinese context, CC is sometimes translated into component carriers.
- Carrier aggregation is to aggregate two or more component carriers together to provide more transmission bandwidth.
- a component carrier may correspond to a serving cell (serving cell) of the terminal, the component carrier may be simply referred to as a carrier, and the serving cell may be simply referred to as a cell.
- the terminal can simultaneously transmit data with multiple cells. This is equivalent to the fact that the radio resources available to the terminal and the base station become more, so the throughput of the terminal can be improved.
- different carriers can be configured with different air interface parameters, corresponding to different wireless resources.
- FIG. 3 is a schematic diagram of a wireless resource provided by an embodiment of the present application.
- FIG. 3 shows a time-frequency resource grid supported by the wireless communication system.
- the time-frequency resource grid may correspond to one or more carriers. It should be understood that different carriers may correspond to different time-frequency resource grids. Different subcarrier intervals may correspond to different time-frequency resource grids. Uplink transmission and downlink transmission can also correspond to different time-frequency resource grids.
- the unit of the time resource is an orthogonal frequency division multiplexing (OFDM) symbol, symbol, and the unit of the frequency resource is a subcarrier (subcarrier) , SC).
- OFDM orthogonal frequency division multiplexing
- SC subcarrier
- frequency domain resources of NR transmission are grouped into multiple subcarriers. 12 consecutive subcarriers can be recorded as 1 resource block (resource block (RB)).
- the time domain resource of NR transmission is composed of multiple radio frames with a duration of 10 ms, and each radio frame can be divided into 10 subframes with a duration of 1 ms.
- Each subframe is divided into multiple slots (slot), each slot includes 14 consecutive OFDM symbols.
- Different subcarrier intervals (denoted as ⁇ f) correspond to different OFDM symbol lengths. Therefore, for subcarrier intervals of different values, the time length of a slot is also different.
- the length of one slot corresponding to a 15 kHz subcarrier interval is 1 ms
- the length of one slot corresponding to a 30 kHz subcarrier interval is 0.5 ms
- the length of one slot corresponding to a 60 kHz subcarrier interval is 0.25 ms.
- the same period of resources may correspond to the frequency domain resources of the same seed carrier interval.
- the same period of time resources can also correspond to multiple frequency domain resources with different subcarrier intervals.
- subcarrier interval 1 is greater than subcarrier interval 2
- subcarrier interval 2 is greater than subcarrier interval 3.
- the OFDM symbol length corresponding to subcarrier interval 1 is less than the OFDM symbol length corresponding to subcarrier interval 2
- the OFDM symbol length of subcarrier interval 2 is less than the OFDM symbol length corresponding to subcarrier interval 3. It should be understood that although there are three types of subcarrier intervals shown in the right half of FIG. 3, the subcarrier intervals simultaneously supported by the wireless communication system may not be limited to three types, or may be two types, or may be four types or more.
- the terminal and the base station in the wireless communication system can use the wireless resources shown in FIG. 3 to transmit to each other.
- the transmission between the terminal and the base station can follow the wireless protocol defined by the relevant standards organization.
- the wireless protocol architecture can correspond to the 3GPP wireless protocol architecture.
- the wireless protocol architecture is divided into user plane protocols and control plane protocols.
- the user plane protocol is mainly responsible for functions related to user data transmission
- the control plane protocol is mainly responsible for functions such as connection establishment, mobility management and security management.
- the user plane protocol and the control plane protocol share many protocols, from the bottom layer protocol to the higher layer protocol, including: physical (PHY) layer protocol, media access control (MAC) protocol, and radio link control (radio link (control, RLC) protocol, packet data convergence protocol (packet data convergence protocol, PDCP).
- the user plane protocol may also include a service data adaptation protocol (service data adaptation protocol, SDAP).
- the control plane protocol also includes radio resource control (RRC) protocol and non-access stratum (NAS) protocol.
- RRC radio resource control
- NAS non-access stratum
- the NAS protocol can be used to perform functions such as authentication, mobility management, and security control.
- the RRC protocol can be used to perform system message broadcasting, paging message sending, RRC connection management, cell selection and reselection, measurement configuration, and reporting.
- the SDAP layer protocol is newly introduced for the 5G NR system and can be used for the quality of service (QoS) processing flow in the 5G NR system.
- QoS quality of service
- the PDCP protocol can be used to perform Internet protocol (IP) packet header compression, encryption, and integrity protection.
- IP Internet protocol
- PDPC protocol can also be used for PDCP data sequence numbering (sequence numbering) and in-order delivery (in-order delivery) and other functions.
- the PDCP protocol can provide radio bearer services to upper layer protocols (such as SDAP). In the terminal, each radio bearer may correspond to a PDCP entity.
- the RLC protocol can be used to perform segmentation and retransmission processing of RLC data.
- the RLC protocol can provide RLC channel services to upper layer protocols (such as the PDCP protocol).
- upper layer protocols such as the PDCP protocol.
- each RLC channel (and each radio bearer) may correspond to one RLC entity.
- the RLC protocol of the 5G NR system no longer supports the sequential delivery of data to high-level protocols to reduce business latency.
- the MAC protocol can be used to perform logical channel multiplexing, hybrid automatic repeat request (HARQ), scheduling and scheduling related functions.
- HARQ hybrid automatic repeat request
- the MAC protocol provides logical channel services to high-level protocols (such as the RLC protocol) and is responsible for the mapping of logical channels to transport channels.
- the PHY protocol can be used to perform encoding/decoding, modulation/demodulation, multi-antenna mapping, signal to time-frequency resource mapping, and other typical physical layer functions.
- the PHY protocol provides transport channel services to higher-level protocols (such as the MAC protocol) and is responsible for handling the mapping of transport channels to physical channels.
- FIG. 5 is a schematic structural diagram of a MAC PDU provided by an embodiment of the present application.
- the MAC PDU can be used as an example of the structure of an upstream MAC PDU of the 5G NR system.
- one MAC PDU may include multiple MAC subPDUs.
- Each MAC subPDU can be used to carry a MAC service data unit (service data unit (SDU), a MAC control element (control element, CE), or padding bits.
- SDU service data unit
- CE control element
- one MAC SDU can carry one RLC SDU and RLC SDU sequence number (SN).
- One RLC SDU can carry one PDCP SDU and one PDCP SDU SN number.
- the SNs of RLC SDU and PDCP SDU can be consecutively numbered in the order of their respective SDUs.
- Each MAC subPDU also includes a MAC header (subheader) corresponding to the content carried.
- the MAC header may contain a logical channel identifier (logical channel identifier, LCID) field, or other fields used to indicate the configuration of the bearer content (such as the length of the MAC SDU).
- the MAC PDU header structure of the 5G NR system has been improved to support lower processing delay.
- all MAC header information is located at the beginning of the MAC PDU, which means that the MAC PDU can only be assembled after the scheduling decision is received.
- the subhead of a MAC SDU is placed immediately before the MAC SDU. This means that the MAC PDU can be pre-processed before the scheduling decision is received.
- the MAC protocol is also responsible for the multiplexing and demultiplexing of data across multiple component carriers.
- the channels of the wireless communication system may include logical channels, transmission channels, and physical channels. Among them, the logical channel is mapped to the corresponding transmission channel, and the transmission channel is mapped to the corresponding physical channel.
- Logical channels are defined by the type of information carried by the channels, and are usually divided into control channels and data channels.
- the control channel carries control and configuration information required for the operation of the wireless communication system
- the data channel carries user data.
- the logical channel may include a broadcast control channel (broadcast control channel, BCCH), a paging control channel (paging control channel, PCCH), a common control channel (common control channel, CCCH), and a dedicated control channel (dedicated control channel, CCCH) ), and dedicated data channel (dedicated traffic channel, DTCH).
- BCCH broadcast control channel
- PCCH paging control channel
- common control channel common control channel
- CCCH dedicated control channel
- dedicated data channel dedicated data channel
- the control channel is defined by the characteristics of the information carried by the channel and how it is transmitted through the air interface.
- the data in the transmission channel can be formed into a transport block (transport block, TB), one transport block corresponds to one MAC PDU.
- the transmission channel may include a broadcast channel (broadcast channel, BCH), a paging channel (PCH), a downlink shared channel (downlink shared channel, DL-SCH), and an uplink shared channel (uplink shared channel, UL-SCH).
- a random access channel random access channel, RACH is also defined as a transmission channel, although it does not carry a transmission block.
- the physical channel corresponds to a set of time-frequency resources for carrying control channels. For these time-frequency resources, reference may be made to the time-frequency resource grid shown in FIG. 3.
- Physical channels may include physical downlink shared channel (PDSCH), physical broadcast channel (PBCH), physical downlink control channel (PDCCH), physical uplink shared channel (physical downlink link shared channel) , PUSCH), physical uplink control channel (PUCCH).
- PDSCH physical downlink shared channel
- PBCH physical broadcast channel
- PDCCH physical downlink control channel
- PUCCH physical uplink shared channel
- PUCCH and PUCCH do not have corresponding control channels, which are used to carry downlink control information (downlink control information, DCI) and uplink control information (uplink control information, UCI).
- DCI or UCI provides configuration information required for downlink data transmission and uplink data transmission.
- DCI has a variety of predefined formats, and these predefined formats will contain some given information elements (IE).
- the information element can be understood as a given field of DCI.
- the value range of this field and the meaning of each value can be pre-defined by the system.
- DCI can be divided into two types, one type is called downlink scheduling assignments (downlink scheduling assignments), used to instruct the terminal to receive, demodulate and decode the information required by a carrier's DL-SCH.
- the other category is referred to as uplink scheduling authorization (uplink scheduling grant), which is used to indicate the terminal's uplink transmission resources and transmission format and other information.
- the technical solution provided by the embodiments of the present application may be applicable to data scheduling of resources indicated by downlink scheduling allocation or uplink scheduling authorization.
- the following uses the upstream scheduling authorization as an example to describe in detail the technical solutions provided by the embodiments of the present application.
- the uplink scheduling authorization may be abbreviated as uplink authorization.
- the uplink authorization can use DCI format 0-1 or DCI format 0-0.
- the terminal can know the resource location, transmission format, multi-antenna configuration, and power control information for uplink data transmission.
- each carrier can be configured with one or two uplink grants.
- Each uplink grant is used to indicate uplink transmission resources on one carrier, and these transmission resources may correspond to one transmission block.
- Different carriers can be configured with different subcarrier intervals.
- the base station can allocate multiple parallel uplink grants to the terminal. Among them, multiple parallel uplink grants can be understood as that resources (corresponding to transport blocks) indicated by these uplink grants overlap in the time domain.
- carrier 0 is denoted as CC0
- carrier 1 is denoted as CC1.
- the time slot lengths of CC0 and CC1 are both 1ms.
- Each of CC0 and CC1 has an upstream authorization, which is represented by transmission block 0 and transmission block 1 corresponding to the upstream authorization, respectively.
- the time slot length of multiple carriers is the same, and the transmission blocks on the two carriers can completely overlap in the time domain.
- the time slot of CC 0 is 1 ms
- the time slot of CC 1 is 0.5 ms.
- the subcarrier spacing of multiple carriers of carrier aggregation is different
- the slot lengths of multiple carriers are different.
- the transmission block on one carrier and the transmission block on the other carrier are in the time domain. Can partially overlap.
- the mapping from the logical channel to the control channel can be performed by the MAC entity in the terminal or the base station. Multiple logical channels with different priorities can be multiplexed into the same transport block. Among them, one transmission block corresponds to one MAC PDU.
- the terminal After receiving an uplink grant, the terminal first determines which logical channels are suitable for using the resources indicated by the uplink grant. After selecting an appropriate logical channel, the terminal determines how many resources are allocated to each logical channel, or how much data is scheduled for each logical channel.
- the terminal may be configured with the following LCP parameters: the set of subcarrier intervals allowed for the logical channel, the duration of the maximum physical uplink shared channel (PUSCH) scheduled for the logical channel (duration), and the set of uplink component carriers that are allowed to transmit the logical channel.
- LCP parameters the set of subcarrier intervals allowed for the logical channel, the duration of the maximum physical uplink shared channel (PUSCH) scheduled for the logical channel (duration), and the set of uplink component carriers that are allowed to transmit the logical channel.
- PUSCH physical uplink shared channel
- duration the duration of the maximum physical uplink shared channel scheduled for the logical channel
- uplink component carriers that are allowed to transmit the logical channel. Only logical channels conforming to these parameter limits will be selected as appropriate logical channels, that is, allowed to use the resources indicated by the uplink grant.
- the selection process of the logical channel can be recorded as the LCP process.
- the terminal needs to determine how many resources are allocated to each logical channel, which can be recorded as the scheduling of the logical channel by the terminal.
- the first scheduling strategy (denoted as strategy one) is to satisfy the priority bit rate (prioritized bit rate, PBR) set by the network side for each logical channel in order of priority.
- the second scheduling strategy (denoted as strategy two) is to send as much logical channel data as possible in order of priority.
- the terminal may first schedule a pair of logical channels according to the strategy, and if the resources indicated by the uplink authorization are still left, they may also schedule the logical channels according to strategy two.
- Strategy one is based on a token bucket algorithm.
- the basic idea of the algorithm is to determine whether to schedule data for a logical channel based on whether there are tokens in the token bucket and how many tokens, and to control the amount of data of the logical channel assembled in MAC PDU.
- FIG. 8 is a schematic flowchart of a logical channel scheduling strategy provided by an embodiment of this application.
- the data in one logical channel can form several MAC SDUs.
- the logical channel can correspond to a token bucket, the depth of the token bucket is BSD, and the maximum capacity can be set to BSD*PBR.
- BSD the depth of the token bucket
- BSD*PBR the maximum capacity
- the English name of BSD is called bucket size and duration.
- the logical channel may be set with a variable Bj, which represents the number of tokens in the token bucket corresponding to the logical channel. Every time T, a token is injected into the token bucket corresponding to the logical channel, that is, Bj is increased by T*PBR. When Bj exceeds the value of BSD*PBR, then Bj no longer increases.
- the terminal can schedule logical channels with Bj>0 in order from high to low priority.
- logical channel data such as MAC SDU
- Bj may be a negative value.
- strategy one after the PBR requirements of the high-priority logical channel are met, the data of the low-priority logical channel can be scheduled. Therefore, strategy one can alleviate the problem that the data of the low priority logical channel is not scheduled for a long time.
- the terminal can schedule all the selected logical channels without considering Bj in the order of priority from high to low.
- the terminal allocates the resources indicated by the uplink grant to a logical channel
- the data allocated to the logical channel becomes empty or the resources indicated by the uplink grant are used up.
- strategy two when the data of all high-priority logical channels are empty and the resources indicated by the uplink authorization have not been used up, the low-priority logical channels can be allocated resources. Therefore, the second strategy can maximize the data scheduling of high-priority logical channels.
- FIG. 9 is a schematic diagram of a logical channel multiplexing MAC PDU state provided by an embodiment of the present application.
- Figure 9 corresponds to an upstream authorization and a MAC PDU of a transport block.
- the terminal selects three logical channels for the uplink authorization, which are respectively denoted as logical channel 1, logical channel 2, and logical channel 3.
- the priority of these three logical channels is denoted as priority 1, priority 2, and priority 3, respectively.
- the terminal when performing strategy one scheduling (marked as P1 in FIG. 9 ), according to the priority order of these logical channels and the Bj size of each logical channel, the terminal sequentially takes the Bj size from each logical channel The data is put into the MAC PDU.
- strategy two scheduling marked as P2 in FIG. 9
- the terminal only takes part of the data from logical channel 1 and puts it in the MAC PDU, and the resources of the uplink authorization indication are used up. After that, the data scheduling for the uplink grant (including logical channel multiplexing here) also ends accordingly.
- a feasible data scheduling scheme is that the terminal (such as a MAC entity) schedules each uplink grant in sequence according to a certain order. Each time the MAC entity schedules an uplink authorization, it generates a MAC PDU. After all the parallel MAC PDU packets including the physical layer protocol entity have been completed, physical layer processing such as encoding and modulation is started. This scheduling method can be recorded as serial scheduling for multiple uplink grants.
- FIG. 10 is a schematic diagram of a MAC scheduling status of an uplink authorization serial scheduling provided by an embodiment of the present application.
- Figure 10 corresponds to two uplink authorizations, which can be recorded as UL Grant 0 and UL Grant 1, respectively.
- These two uplink authorizations correspond to two MAC PDUs.
- the time resources of these two MAC PDUs overlap, which can be recorded as MAC PDU 0 and MAC PDU 1, respectively.
- the MAC SDUs to be scheduled in the two logical channels can be multiplexed into MAC PDUs to form MAC subPDUs.
- the data with the serial number here can be RLC SDU or PDCP SDU.
- the MAC SDU may contain the RLC SN and PDCP SN.
- the MAC entity when scheduling of the uplink authorization is not started, the MAC entity does not start to construct the MAC PDU, and there is no data in both MAC PDUs.
- MAC PDU0 includes 4 MACIDSDUs of LCID1 scheduled according to strategy 1, 3 MACIDSDUs of LCID2, and 1 MACIDSDU of LCID1 scheduled according to strategy 2.
- the MAC PDU 0 group packet has been completed, and there is no data in the MAC PDU 1, so the physical layer cannot be notified to start encoding and modulation.
- the MAC PDU 1 assembly has also been completed, including 4 LCID1 MAC SDUs and 4 LCID2 MAC SDUs.
- the assembly of MAC PDU0 and MAC PDU1 has been completed, and the physical layer can be notified to start encoding and modulation.
- FIG. 11 is a sequence diagram of serial scheduling of uplink authorization provided by an embodiment of the present application.
- Fig. 11 corresponds to two upstream authorizations and two transmission blocks, which are respectively denoted as upstream authorization 0&1 and transmission block 0&1.
- MAC stands for MAC layer entity
- PHY stands for physical layer entity
- AIR air interface processing entity (including radio frequency transceiver).
- the physical layer entity obtains the uplink authorization 0&1 by parsing the DCI, and notifies the MAC.
- the MAC layer entity starts to serialize the uplink authorization 0&1.
- the physical layer entity begins to perform physical layer processing such as modulation and coding on the transport block 0&1.
- the air interface processing entity sends the transport blocks 0&1 processed by the physical layer on the air interface.
- the delay from uplink authorization 0&1 serial scheduling to air interface transmission can be recorded as processing delay. Since it is necessary to wait for the completion of the parallel MAC PDU packet to start the physical layer processing, the processing delay of this serial scheduling for uplink authorization is relatively long. If you want to reduce the processing delay of serial scheduling, the most common way is to improve the software and hardware capabilities, but this will increase costs.
- the MAC layer is processing a low-priority uplink authorization and receives a high-priority uplink authorization, it also needs to wait for the low-priority uplink authorization processing to be completed before processing the newly received high-priority uplink authorization. This may cause high priority upstream authorization to be delayed.
- the high-priority uplink authorization may refer to an uplink authorization whose air transmission time is higher than the uplink authorization currently being processed. If you want to alleviate the problem of delays in high-priority upstream authorization, you also need to reduce processing delays, and ways to improve software and hardware capabilities will still increase costs.
- the MAC entity of the terminal assembles the MAC SDU from the logical channel for the MAC corresponding to the uplink authorization during the scheduling process of the uplink authorization.
- the assembly of other upstream authorized MACs can be started.
- the physical layer processing of the assembled MAC SDUs such as modulation and coding operations, can be started in advance.
- this data scheduling scheme does not need to wait for the completion of the assembly of the parallel MAC, MAC, and SDU of the MAC before starting the subsequent processing, which is helpful to reduce the processing delay or reduce the cost.
- the data scheduling method may be executed by a wireless communication device.
- the wireless communication device may be a complete machine of a wireless communication device, such as a terminal, or a component of a wireless communication device, such as a system chip or a communication chip of the terminal.
- the method includes:
- Step S10 Acquire a first uplink authorization and a second uplink authorization.
- the resources indicated by the first uplink grant overlap with the resources indicated by the second uplink grant in the time domain.
- the resources indicated by the first uplink grant may correspond to the first transport block, and the resources indicated by the second uplink grant may correspond to the second transport block.
- the two uplink grants may be referred to as parallel uplink grants, and the two transmission blocks or corresponding MAC PDUs may be referred to as parallel transmission blocks or parallel MAC PDUs.
- Method 1 The PHY layer parses the DCI message received on the PDCCH to obtain the uplink authorization.
- the uplink authorization obtained by the PHY layer can be sent to the MAC layer again.
- Method 2 The MAC layer parses the MAC message received on the PDCCH, such as a MAC random access response (RAR) message, to obtain an uplink authorization.
- RAR MAC random access response
- Method 3 The RRC layer obtains the semi-statically configured uplink authorization from the RRC configuration message and configures it to the MAC layer.
- Step S20 Start data scheduling of the resource indicated by the first uplink authorization.
- the wireless communication device may be based on the time of acquiring the uplink authorization (the time of acquiring the second uplink authorization is later than the time of acquiring the first uplink authorization) , And/or other factors (such as priority of uplink authorization or random selection, etc.), first choose to serve the first uplink authorization.
- the wireless communication device initiating data scheduling of the resource indicated by the first uplink grant may include:
- the wireless communication device initiates the assembly of the MAC PDU of the first transport block.
- the wireless communication device may use the logical channel priority LCP process in the foregoing embodiment to select an appropriate logical channel first, and then schedule data from these logical channels.
- the wireless communication device may use the above strategy 1, and/or, strategy 2 is the first uplink authorization scheduling data (MAC SDU), which is filled into the MAC PDU of the first transport block.
- MAC SDU first uplink authorization scheduling data
- Step S30 When granting the scheduled data for the first uplink, start data scheduling for the resource indicated by the second uplink grant.
- the wireless communication device initiating data scheduling of the resource indicated by the first uplink grant may include:
- the data scheduling method may further include:
- a threshold is set for the number of assembled MAC SDUs in the MAC PDU of the first transport block.
- the threshold of the number of the partial MAC SDUs may be an upper threshold, that is, the MAC SDUs that have been assembled in the MAC PDU exceeding the upper threshold can start the assembly of the MAC PDU of the second transmission block.
- the MAC SDU that exceeds the upper threshold has been assembled in the MAC PDU, which may be a sufficient condition or a necessary condition.
- the threshold of the number of partial MAC SDUs may also be an upper threshold. The upper threshold should be less than the maximum number of MAC SDUs that the MAC PDU can carry.
- the specific value of the threshold of the number of partial MAC SDUs may be related to the size of the MAC PDU or the size of the transport block.
- the threshold of the number of partial MACs and SDUs for different uplink authorizations may be the same or different.
- the wireless communication device when the wireless communication device authorizes part of the scheduled data for the first uplink, it can start data scheduling for the resource indicated by the second uplink authorization without having to wait for all The first uplink authorization schedules all data, so the processing delay can be accelerated.
- the wireless communication device when there are more parallel uplink authorizations, such as parallel third uplink authorization, the effect is more obvious.
- using this data scheduling method can also reduce the cost of wireless communication devices while maintaining similar processing delays.
- an embodiment of the present application provides a technical solution for parallel processing of multiple uplink authorizations on the one hand.
- the terminal can perform multiple rounds of data scheduling processing on the MAC layer for the received multiple parallel uplink authorizations.
- the logical channel prioritized LCP process in the foregoing embodiment may be used, and scheduling is first performed using strategy one, and then scheduled using strategy two.
- it may be restricted to use only one or more uplink authorized partial resources, or to schedule only part of the data for one or more uplink authorizations.
- multiple MAC PDUs corresponding to multiple uplink authorizations have completed part of the grouping.
- the terminal can allow the physical layer to start the physical layer processing flow such as encoding and modulation in advance. After that, every time a round of scheduling is completed, the physical layer can be notified for processing. In this way, the MAC layer and physical layer processing can form a pipeline, so using this scheme can reduce processing delay or cost.
- This scheme can be recorded as parallel scheduling of multiple uplink grants.
- the start of data scheduling for the resource indicated by the second uplink grant when the scheduled data is authorized for the first uplink may include: performing the first uplink The parallel scheduling of the authorization and the second uplink authorization, when granting scheduled data for the first uplink, starting data scheduling for the resource indicated by the second uplink authorization according to the parallel scheduling; wherein, The parallel scheduling includes multiple rounds of data scheduling, where one round of data scheduling allows partial scheduling of data for the first uplink grant and the second uplink grant, respectively.
- the data scheduling method may further include:
- the scheduled data of the first uplink grant and the second uplink grant are triggered in overlapping time domains Transmission on resources.
- another aspect of the embodiments of the present application further provides a technical solution for interrupt processing of multiple uplink authorizations.
- the logical channel priority LCP process in the foregoing embodiment may be used, and the strategy one is used for scheduling first, and then the strategy two is used for scheduling.
- the MAC layer schedules several (denoted as N, N is a positive integer, the value can be set according to a certain policy) MAC SDU After that, it can be confirmed whether there is a high priority upstream authorization to be processed.
- the MAC layer may suspend processing of the first uplink authorization, save or update the scheduling context of the first uplink authorization, and then start processing the second uplink authorization. After the second uplink authorization process is completed, the MAC layer restores the scheduling context of the first uplink authorization and continues to process the first uplink authorization.
- the low priority uplink authorization can be interrupted by the high priority uplink authorization multiple times during the scheduling process. Using this scheme can increase the processing response speed for high-priority authorization, thereby reducing processing delay or cost. This scheme can be recorded as interrupt scheduling for multiple uplink authorizations.
- the priority of the uplink authorization may be determined based on the time when the transmission block corresponding to the uplink authorization is transmitted on the air interface. For example, the resource indicated by the first uplink grant corresponds to the first transport block, and the resource indicated by the second uplink grant corresponds to the second transport block.
- the priority of the second uplink grant is higher than the priority of the first uplink grant, and may include: the air interface transmission end time of the second transmission block is earlier than the air interface transmission end time of the first transmission block.
- starting data scheduling for the resource indicated by the second uplink authorization may include:
- the data scheduling method may further include:
- the transmission of the scheduled data of the first uplink authorization and the second uplink authorization on overlapping time-domain resources is triggered.
- the transmission of the scheduled data of the first uplink authorization and the second uplink authorization on overlapping time domain resources includes: the scheduled data of the first uplink authorization and the second uplink authorization Physical layer processing;
- the scheduled data of the first uplink grant and the second uplink grant processed by the physical layer are sent at the air interface.
- the data scheduling method may further include:
- the data scheduling of the resource indicated by the first uplink grant is suspended, and the scheduling context of the first uplink grant is updated.
- Embodiment 1 Parallel scheduling of multiple uplink grants.
- the wireless communication device can set a scheduling context for each uplink authorization, and each scheduling context can save the following content: the size of the remaining uplink resources (recorded as ResourceLeft); each round of data scheduling needs to be scheduled Data size (denoted as ScheduleSize); list of selected logical channels.
- the ScheduleSize may be the threshold of the number of partial MAC SDUs mentioned above, or may be an absolute number of bytes.
- the wireless communication device selects multiple uplink authorizations that need to be processed in parallel according to the transmission time on the air interface indicated by the uplink authorization.
- the wireless communication device may sort the uplink grants that need to be processed in parallel according to a certain strategy, for example, refer to the acquisition time of the uplink grants or the priority of the uplink grants.
- Step 2 The wireless communication device initializes the selected scheduling context of each uplink authorization:
- Step 2.1 The remaining resource size is initialized to the uplink authorized resource size.
- Step 2.2 The data size to be scheduled can be set according to a certain strategy.
- Step 2.3 Select the corresponding logical channel for the uplink authorization according to the LCP process and save it in the logical channel list.
- Step 3 The wireless communication device takes one of the uplink grants in sequence, and if the remaining resource size of the uplink grant can also schedule at least one MAC SDU:
- Step 3.1 Set a variable: ResourceUsed, indicating the used resource size, initialized to 0.
- Step 3.2 According to the saved logical channel list, the MAC SDU is taken from the logical channel, and the MAC subheader is added to the MAC SDU to form a MAC subPDU.
- the MAC from the logical channel SDU can refer to the above strategy one, and/or, the above strategy two.
- Step 3.4 Repeat steps 3.2-3.3 until one of the following conditions is met, and select the next upstream authorization:
- Condition 1 The remaining resource size is not enough to schedule a MAC SDU to complete the uplink authorization process.
- Condition 2 The actual used resource size is greater than or equal to the set data size to be scheduled in each round.
- the used resource size in each round of data scheduling may be larger than the set data size to be scheduled in each round of cycles.
- Step 4. Repeat step 3 until each selected uplink authorization is processed once.
- Step 5 Repeat steps 3 and 4 until all the selected upstream authorization processing is completed to form the corresponding MAC PDU.
- step 1 and step 2 are some preparation operations for data scheduling
- step 3 and step 4 implement a round of data scheduling
- step 5 repeats steps 3 and 4 to implement multiple rounds of data scheduling.
- step 3 is data scheduling for one uplink authorization in one round of scheduling
- step 4 is data scheduling for other parallel uplink authorization in one round of scheduling.
- FIG. 13-1 is a schematic diagram 1 of a MAC PDU status for parallel scheduling of uplink authorization provided by an embodiment of the present application.
- FIG. 13-2 is a schematic diagram 2 of a MAC PDU state for parallel scheduling of uplink authorization provided by an embodiment of the present application.
- FIG. 13-1 and FIG. 13-2 also correspond to two uplink grants, which are respectively marked as UL Grant 0 and UL Grant 1.
- These two uplink authorizations correspond to two MAC PDUs, and the time resources of these two MAC PDUs overlap, which are respectively denoted as MAC PDU 0 and MAC PDU 1.
- the MAC SDUs to be scheduled in the two logical channels can be multiplexed into MAC PDUs to form MAC subPDUs.
- the data with the serial number here can be RLC SDU or PDCP SDU.
- the MAC SDU may contain the RLC SN and PDCP SN.
- the lower threshold of the number of partial MACs and SDUs of the two uplink authorizations is two. It should be understood that the lower threshold of the number of some MAC SDUs here is two for example only, and the embodiment of the present application may have other values, and the lower thresholds of the two uplink authorizations may also be different.
- the two MAC SDUs of 1 just schedule the data corresponding to Bj of logical channel 1.
- CB physical layer code blocks
- all the data of logical channel 1 has been scheduled, and there are still resources for uplink authorization, so the data of logical channel 2 can continue to be scheduled.
- FIG. 14 is a sequence diagram of parallel scheduling of uplink authorization provided by an embodiment of the present application.
- Figure 14 also corresponds to two uplink grants, corresponding to two transport blocks, which are respectively denoted as uplink grant 0&1 and transport block 0&1.
- MAC stands for MAC layer entity
- PHY stands for physical layer entity
- AIR air interface processing entity (including radio frequency transceiver).
- the physical layer entity obtains the uplink authorization 0&1 by parsing the DCI, and notifies the MAC.
- time slot n+3 the MAC layer entity starts to grant parallel scheduling of 0&1 for uplink.
- the physical layer entity can start to perform physical layer processing such as modulation and coding on the transport block 0&1.
- the air interface processing entity sends the transport blocks 0&1 processed by the physical layer on the air interface.
- the delay from uplink authorization 0&1 parallel scheduling to air interface transmission can also be recorded as processing delay. Since there is no need to wait for all the parallel MAC PDU packets to complete before starting the physical layer processing, the MAC layer processing and the physical layer processing can form a pipeline. Therefore, the processing delay for this parallel scheduling of uplink authorization is relatively short.
- Embodiment 2 Interrupt scheduling for multiple uplink authorizations.
- the wireless communication device can set a scheduling context for each uplink authorization, and each scheduling context can save the following content: the size of the remaining uplink resources (recorded as ResourceLeft); the size of the scheduled data when the scheduling is interrupted (Denoted as N); list of selected logical channels.
- N can be the threshold of the number of partial MAC SDUs mentioned above.
- the interrupt scheduling algorithm for multiple uplink authorizations can refer to the following steps:
- Step 1 The wireless communication device (such as the MAC layer) initializes the scheduling context of the low-priority uplink grant.
- Step 1.1 The remaining resource size is initialized to the uplink authorized resource size.
- Step 1.2 Set N according to a certain strategy.
- Step 1.3 Select the corresponding logical channel for the uplink authorization according to the LCP rules and save it in the logical channel list.
- Step 2 If the remaining resource size of the low-priority uplink grant can also schedule at least one MAC SDU:
- Step 2.1 Set a variable: n, indicating the number of MAC SDUs scheduled, initialized to 0.
- Step 2.2 According to the stored logical channel list, the MAC SDU is taken from the logical channel, and the MAC subheader is added to the MAC SDU to form a MAC subPDU.
- the MAC from the logical channel SDU can refer to the above strategy one, and/or, the above strategy two.
- Step 2.4 Repeat steps 2.2-2.3 until one of the following conditions is met to confirm whether there is a high priority upstream authorization to be processed:
- Condition 1 The remaining resource size is not enough to schedule a MAC SDU.
- n is greater than or equal to N.
- Step 3 If there is a high priority upstream authorization to be processed:
- Step 3.1 Select the corresponding logical channel for the high-priority upstream authorization according to the LCP rules.
- Step 3.2 According to the selected logical channel list, the MAC SDU is taken from the logical channel, and the MAC subheader is added to the MAC SDU to form a MAC subPDU.
- the MAC from the logical channel SDU can refer to the above strategy one, and/or, the above strategy two.
- Step 3.3 Repeat Step 3.2 until the processing of high-priority upstream authorization is completed to form a MAC PDU;
- Step 4 Repeat steps 2 and 3 until the processing of the low-priority upstream authorization is completed to form the MAC PDU.
- FIG. 15 is a schematic diagram of a MAC PDU state for scheduling uplink authorization interruption provided by an embodiment of the present application.
- Figure 15 starts with an upstream authorization, which is recorded as UL Grant 0.
- UL Grant 1 Another high-priority upstream authorization was received, which was recorded as UL Grant 1.
- the scheduling of UL Grant 0 is suspended, and the scheduling of UL Grant 1 is started.
- the scheduling of UL Grant 0 is resumed.
- MAC PDU 0 and MAC PDU 1 the time resources of these two MAC PDUs partially overlap, and are respectively denoted as MAC PDU 0 and MAC PDU 1.
- the end time of the air interface transmission of MAC PDU1 is earlier than the end time of the air interface transmission of MAC PDU0.
- the MAC SDUs to be scheduled in the two logical channels can be multiplexed into MAC PDUs to form MAC subPDUs.
- the data with the serial number here can be RLC SDU or PDCP SDU.
- the MAC SDU may contain the RLC SN and PDCP SN.
- the scheduled data size N at the time of interrupt scheduling is 3 MAC SDUs. It should be understood that the three MAC SDUs here are only examples, and other values may be used in the embodiments of the present application.
- the wireless communication device taking the MAC entity as an example
- the wireless communication device has not started to assemble the MAC PDU, and there is no data in the MAC PDU 0.
- FIG. 16 is a schematic structural diagram of a wireless communication device according to an embodiment of the present application.
- the wireless communication device or components in the wireless communication device can be used to implement the above data scheduling method.
- the wireless communication device may include an application subsystem, memory, massive storage, baseband subsystem, radio frequency integrated circuit (RFIC), radio frequency front end (radio frequency) Front (end, RFFE) devices and antennas (antenna, ANT), these devices can be coupled through various interconnection buses or other electrical connections.
- RFIC radio frequency integrated circuit
- RFFE radio frequency front end
- antennas antennas
- ANT_1 represents the first antenna
- ANT_N represents the Nth antenna
- Tx indicates the transmission path
- Rx indicates the reception path
- different numbers indicate different paths
- FBRx represents the feedback receiving path
- PRx represents the main receiving path
- DRx represents the diversity receiving path
- BB represents baseband.
- HB means high frequency
- LB means low frequency, both refer to the relative high and low frequency.
- the application subsystem can be used as the main control system or the main computing system of the wireless communication device, used to run the main operating system and application programs, manage the software and hardware resources of the entire wireless communication device, and can provide the user operation interface for the user.
- the application subsystem may include one or more processing cores. The capabilities of different cores can also be different, for example, the main frequency is different. Each core can have its own dedicated cache, and multiple cores can also have shared caches.
- the application subsystem may also include driver software related to other subsystems.
- the baseband processing subsystem may include one or more processing cores, analog-to-digital conversion devices, hardware accelerators (HAC), and caches. Among them, because the physical layer processing is time-consuming, the physical layer processor can be implemented with a relatively independent processor or HAC. It should be understood that the types and numbers of these electronic devices are not limited in the embodiments of the present application.
- Analog-to-digital conversion devices include analog-to-digital converters (ADCs) that convert analog signals to digital font sizes, and digital-to-analog converters (DACs) that convert digital signals to analog signals.
- the baseband processor can be used to extract useful information or data bits from the digital signal originating from the base station, or convert the information or data bits originating from the application subsystem into digital signals to be sent to the base station.
- the information or data bits may be data representing user data or control information such as voice, text, and video.
- the baseband processor can implement baseband signal processing operations such as modulation and demodulation, encoding and decoding.
- baseband signal processing operations such as modulation and demodulation, encoding and decoding.
- different wireless access technologies such as 5G NR and 4G LTE, they often have different baseband signal processing operations. Therefore, in order to support the integration of multiple mobile communication modes, multiple processing cores or multiple HACs may be included at the same time.
- the hardware accelerator can be used to implement some sub-functions with large processing overhead, such as the assembly and parsing of data packets, and the encryption and decryption of data packets. These sub-functions can also be implemented using general-purpose processors, but because of performance or cost considerations, it may be more appropriate to use hardware accelerators. Therefore, the type and number of hardware accelerators can be specifically selected based on requirements. In a specific implementation manner, one or a combination of a field programmable gate array (field programmable gate array (FPGA) and an application specific integrated circuit (ASIC) may be used. Of course, one or more processing cores can also be used in the hardware accelerator.
- FPGA field programmable gate array
- ASIC application specific integrated circuit
- the baseband processor is sometimes also processed by the baseband chip, and the RFIC is sometimes also processed by the radio frequency chip.
- the radio frequency subsystem is mainly used for processing radio frequency signals. It is used to run the communication operating system and communication function software, and manage the software and hardware resources of the communication subsystem to provide users with wireless communication functions.
- the antenna, RFFE, RFIC 1 (and optional RFIC 2) in Fig. 16 can all be considered to belong to the RF processing subsystem.
- the radio frequency subsystem may include an antenna, an antenna switch, an antenna tuner, a low noise amplifier, a power amplifier, a mixer, an oscillator, a filter, a processor, and other electronic devices to provide a receive path and transmit Channel (transmit path).
- the receiving channel is used to receive a radio frequency signal through an antenna, and process the radio frequency signal (such as amplification, filtering, and down conversion) to obtain an intermediate frequency or baseband signal, and pass it to the baseband subsystem.
- the receiving channel is used to receive the intermediate frequency or baseband signal from the baseband subsystem, process the intermediate frequency or baseband signal (such as up-conversion, amplification, and filtering) to obtain an RF signal, and finally radiate the RF signal into the space through the antenna.
- process the intermediate frequency or baseband signal such as up-conversion, amplification, and filtering
- each processing core of the wireless communication device may represent a processor, and the processor may be a general-purpose processor or a processor designed for a specific field.
- the processor may be a CPU or a digital signal processor (DSP).
- DSP digital signal processor
- the processor may also be a microcontroller (micro control unit, MCU), a graphics processor (graphics processing unit, GPU), an image signal processor (ISP), an audio signal processor ( audio signal processor (ASP) and various processors for artificial intelligence (AI) applications, including but not limited to neural network processors (neural neural network processing unit, NPU), tensor processors (tensor processing unit, TPU) and a processor called AI engine.
- neural network processors neural neural network processing unit, NPU
- tensor processors tensor processing unit, TPU
- AI engine a processor called AI engine.
- wireless communication devices may use a combination of different numbers and different types of processing cores.
- the functional division of the radio frequency subsystem and the baseband subsystem in the communication subsystem can also be adjusted. For example, integrating the functions of part of the RF subsystem into the baseband subsystem, or vice versa.
- the radio frequency subsystem may include an independent antenna, an independent radio frequency front-end (RFFE) device, and an independent radio frequency processing chip.
- RF processing chips are sometimes called receivers, transmitters, or transceivers. Antennas, RF front-end devices and RF processing chips can all be manufactured and sold separately.
- the RF subsystem can also use different devices or different integration methods based on power consumption and performance requirements. For example, some of the devices that belong to the RF front-end are integrated into the RF processing chip.
- the baseband subsystem can be used as an independent chip, which can be called a modem.
- the hardware components of the baseband subsystem can be manufactured and sold in units of modems.
- a modem is sometimes called a baseband chip or a baseband processor.
- the baseband subsystem can be further integrated into the SoC chip, and manufactured and sold in units of SoC chips.
- the software components of the baseband subsystem can be built into the hardware components at the factory, or can be imported into the hardware components from other non-volatile memory after the factory, or these software can be updated and upgraded online via the network Components.
- Memory can be divided into volatile memory (volatile memory) and non-volatile memory (non-volatile memory, NVM).
- Volatile memory refers to memory that loses internally stored data when power supply is interrupted.
- volatile memory is mainly random access memory (random access memory, RAM), including static random access memory (static RAM, SRAM) and dynamic random access memory (dynamic RAM, DRAM).
- RAM random access memory
- SRAM static random access memory
- DRAM dynamic random access memory
- Non-volatile memory refers to memory that does not lose data stored internally even if the power supply is interrupted.
- Common non-volatile memory includes read-only memory (read only memory, ROM), optical disks, magnetic disks, and various memories based on flash memory technology. Volatile memory can be used for the memory, and non-volatile memory such as flash memory can be used for the large-capacity memory.
- At least one (a) of a, b, or c can be expressed as: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, c can be a single or multiple.
- all or part may be implemented by software, hardware, firmware, or any combination thereof.
- software When implemented using software, it can be implemented in whole or in part in the form of a computer program product.
- the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, the processes or functions according to the embodiments of the present application are generated in whole or in part.
- the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
- the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmit to another website, computer, server or data center by wired (such as coaxial cable, optical fiber, etc.) or wireless (such as infrared, radio, microwave, etc.).
- the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including a server, a data center, and the like integrated with one or more available media.
- the usable media may be magnetic media, such as floppy disks, hard disks, and magnetic tapes; optical media, such as DVDs; or semiconductor media, such as solid state disks (SSD).
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请实施例公开了一种数据调度方法和装置。该数据调度方法包括:获取第一上行授权和第二上行授权,第一上行授权所指示的资源与第二上行授权所指示的资源在时域上重叠;启动对所述第一上行授权所指示的资源的数据调度,在为所述第一上行授权已调度部分数据时,启动对所述第二上行授权所指示的资源的数据调度。由于不必等到为第一上行授权调度完全部数据,即可执行后续处理,比如物理层编码调制操作,或更快地响应高优先级的上行授权,因此能够降低数据调度的处理时延或减低成本。
Description
本申请涉及无线通信领域,尤其涉及一种数据调度方法和装置。
无线通信系统中,终端向基站发送上行数据之前,会接收来自基站的上行授权(uplink grant,UL grant)。该上行授权可用于指示上行数据传输所使用的资源以及传输格式。对于上行数据传输而言,终端能够使用的资源是由基站控制,但对上行授权所指示的资源中传输的数据的调度仍然是由终端负责。
以第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)的技术规范为例,对上行授权所指示的资源的数据调度可在媒体接入控制(media access control,MAC)协议层实现。终端决定在MAC协议数据单元(protocol data unit,PDU)中放置哪些逻辑信道的数据,以及为每个逻辑信道放置多少数据。每个逻辑信道会被配置一个优先级,优先级的数值越小,表示优先级越高。终端可参考3GPP技术规范的逻辑信道优先(logical channel prioritization,LCP)流程,选择合适的逻辑信道。
终端接收到上行授权后,需要一些时间以准备待发送的上行数据,这部分时间可以记为从授权接收(grant reception)到数据传输(data transmission)的最小处理时延。对于第四代(4
th generation,4G)长期演进(long term evolution,LTE)系统而言,LTE系统的技术规范允许终端的最小处理时延大于3毫秒(ms)。第5代(5
th generation,5G)新无线电(new radio,NR)系统对于无线通信业务的时延更加关注。目前,NR系统的技术规范要求终端的最小处理时延的基线(baseline)小于1ms。此外,NR系统支持多种子载波间隔(subcarrier spacing),随着子载波间隔的增大,最小处理时延的要求更加严格。
NR系统的技术规范提供了一些改进的技术方案,比如更新的MAC的头(header)结构,逻辑信道优先流程相对LTE系统也有调整。这些改进的技术方案可以降低终端从授权接收到数据传输的最小处理时延。但是,终端内部的调度方案,包括对上行授权所指示的资源的数据调度,可以认为是产品实现问题。这些产品实现问题对于终端的处理时延也有明显的影响,值得关注和研究。
发明内容
本申请实施例提供了一种数据调度方法和装置,以降低无线通信装置的处理时延,或者,降低无线通信装置的成本。
应理解,本申请实施例提供的方案中,无线通信装置可以是无线通信设备的整机,也可以是无线通信设备中的器件,如系统芯片或通信芯片等集成电路产品。无线通信设备可 以是支持无线通信功能的计算设备,计算设备可以是能被抽象为计算机系统的设备。系统芯片也称为片上系统(system on chip,SoC),或称为SoC芯片。通信芯片可包括基带处理芯片,基带处理芯片有时也被称为调制解调器(modem)。通信芯片还可包括射频处理芯片,射频处理芯片有时也被称为射频收发机(transceiver)。
具体地,无线通信设备可以是诸如智能手机这样的终端,也可以是诸如基站这样的无线接入网设备。在物理实现中,通信芯片中的部分芯片或者全部芯片可集成在SoC芯片内部。例如,基带处理芯片集成在SoC芯片中,射频处理芯片不与SoC芯片集成。
第一方面,提供了一种数据调度的装置,该装置可以是上述无线通信装置。
该装置包括:接口单元,用于获取第一上行授权和第二上行授权,所述第一上行授权所指示的资源与所述第二上行授权所指示的资源在时域上重叠;处理单元,用于启动对所述第一上行授权所指示的资源的数据调度,在为所述第一上行授权已调度部分数据时,启动对所述第二上行授权所指示的资源的数据调度。
第二方面,提供了一种数据调度的装置,该装置也可以是上述无线通信装置。
该装置包括:接口单元,用于获取第一上行授权和第二上行授权,所述第一上行授权所指示的资源与所述第二上行授权所指示的资源在时域上重叠;处理单元,用于为所述第一上行授权和所述第二上行授权调度数据,其中,为所述第一上行授权调度的数据包含同一个逻辑信道的第一部分数据和第二部分数据,为所述第二上行授权调度的数据包含同一个逻辑信道的第三部分数据,其中,所述第一部分数据和所述第二部分数据的逻辑信道的序列号不连续,所述第一部分数据与所述第三部分数据的逻辑信道的序列号连续。
第三方面,提供了一种调度媒体接入控制MAC协议数据单元PDU的装置,该装置也可以是上述无线通信装置。
该装置包括:生成单元,用于生成第一MAC PDU和第二MAC PDU,所述第一MAC PDU对应第一传输块,所述第二MAC PDU对应第二传输块,所述第一传输块与所述第二传输块的时域资源有重叠;处理单元,用于为所述第一MAC PDU和第二MAC PDU组装MAC业务数据单元SDU,其中,为所述第一MAC PDU组装的MAC SDU包括同一逻辑信道的第一MAC SDU和第二MAC SDU,为所述第二MAC PDU的组装的MAC SDU包括同一逻辑信道的第三MAC SDU,其中,所述第一MAC PDU和所述第二MAC PDU的逻辑信道的序列号不连续,所述第一MAC PDU与所述第三MAC PDU的逻辑信道的序列号连续。
上述技术方案中,所述逻辑信道的序列号可以是PDCP序列号。另外,所述逻辑信道的序列号也可以是RLC序列号,此时RLC的工作模式可以是确认模式(acknowledged mode,AM)。
在一种可选的实现方式中,所述处理单元用于以并行调度方式为所述第一上行授权和所述第二上行授权调度数据或组装MAC SDU。
在另一种可选的实现方式中,所述处理单元用于以中断调度方式为所述第一上行授权和所述第二上行授权调度数据或组装MAC SDU。
上述方案中,该装置可以采用硬件的方式实现。此时,所述接口单元可以对应接口电路,所述生成单元,和/或,处理单元可以对应处理器。例如,当该装置是系统芯片或通信芯片等集成电路产品时,所述接口单元可以对应芯片的管脚,或作为输入/输出接口的电路,所述生成单元和处理单元可以是芯片内部的处理核心或处理电路。
上述方案中,该装置也可以采用软件或软硬件结合的方式实现。此时,所述接口单元和处理单元可以对应不同的功能模块或代码模块。这些软件可以通过程序代码,或驱动软件,或固件的形式与该装置的硬件相互配合。
结合上述多种技术方案中的任一技术方案,在一种可选的实现方式中,所述处理单元用于执行对所述第一上行授权和所述第二上行授权的并行调度,在为所述第一上行授权已调度部分数据时,根据所述并行调度启动对所述第二上行授权所指示的资源的数据调度;其中,所述并行调度包括多轮数据调度,其中,一轮数据调度中允许为所述第一上行授权和所述第二上行授权分别调度部分数据。
结合上述技术方案,在一种可选的实现方式中,所述处理单元还用于在一轮数据调度中为所述第一上行授权和所述第二上行授权已分别调度部分数据时,触发所述第一上行授权和所述第二上行授权的已调度数据在重叠的时域资源上的传输。
结合上述技术方案,在一种可选的实现方式中,所述处理单元用于在为所述第一上行授权已调度部分数据时,根据上行授权的优先级启动对所述第二上行授权所指示的资源的数据调度;其中,所述第二上行授权的优先级高于所述第一上行授权的优先级,获取所述第二上行授权的时间晚于获取所述第一上行授权的时间。
结合上述技术方案,在一种可选的实现方式中,所述处理单元还用于在为所述第二上行授权已调度部分或全部数据时,触发所述第一上行授权和所述第二上行授权的已调度数据在重叠的时域资源上的传输。
结合上述技术方案,在一种可选的实现方式中,所述处理单元还用于对所述第一上行授权和所述第二上行授权的已调度数据作物理层处理,所述物理层处理包括调制和编码操作。
结合上述技术方案,在一种可选的实现方式中,所述处理单元与物理层处理器耦合,并向所述物理层处理器发送触发信号,以所述第一上行授权和所述第二上行授权的已调度数据在重叠的时域资源上的传输;
其中,所述物理层处理器用于对所述第一上行授权和所述第二上行授权的已调度数据 作物理层处理,所述物理层处理包括调制和编码操作。
结合上述技术方案,在一种可选的实现方式中,所述第一上行授权所指示的资源对应第一传输块,所述第二上行授权所指示的资源对应第二传输块。
结合上述技术方案,在一种可选的实现方式中,所述处理单元用于启动对所述第一传输块的媒体接入控制MAC协议数据单元PDU的组装,在所述第一传输块的MAC PDU中已组装了部分MAC业务数据单元SDU时,启动对所述第二传输块的MAC PDU的组装。
结合上述技术方案,在一种可选的实现方式中,所述处理单元还用于设置所述第一传输块的MAC PDU中已组装的部分MAC SDU的个数的门限。
结合上述技术方案,在一种可选的实现方式中,所述第二上行授权的优先级高于所述第一上行授权的优先级,包括:所述第二传输块的空口传输结束时间早于所述第一传输块的空口传输结束时间。
结合上述技术方案,在一种可选的实现方式中,所述处理单元还用于在为所述第一上行授权已调度部分数据时,暂停对所述第一上行授权所指示的资源的数据调度,并更新所述第一上行授权的调度上下文。
第四方面,提供了一种数据调度的方法,该方法可以由上述无线通信装置执行。
该方法包括:获取第一上行授权和第二上行授权,所述第一上行授权所指示的资源与所述第二上行授权所指示的资源在时域上重叠;启动对所述第一上行授权所指示的资源的数据调度;在为所述第一上行授权已调度部分数据时,启动对所述第二上行授权所指示的资源的数据调度。
结合上述技术方案,在一种可选的实现方式中,所述在为所述第一上行授权已调度部分数据时,启动对所述第二上行授权所指示的资源的数据调度,包括:执行对所述第一上行授权和所述第二上行授权的并行调度,在为所述第一上行授权已调度部分数据时,根据所述并行调度启动对所述第二上行授权所指示的资源的数据调度;其中,所述并行调度包括多轮数据调度,其中,一轮数据调度中允许为所述第一上行授权和所述第二上行授权分别调度部分数据。
结合上述技术方案,在一种可选的实现方式中,在一轮数据调度中为所述第一上行授权和所述第二上行授权已分别调度部分数据时,触发所述第一上行授权和所述第二上行授权的已调度数据在重叠的时域资源上的传输。
结合上述技术方案,在一种可选的实现方式中,所述在为所述第一上行授权已调度部 分数据时,启动对所述第二上行授权所指示的资源的数据调度,包括:在为所述第一上行授权已调度部分数据时,根据上行授权的优先级启动对所述第二上行授权所指示的资源的数据调度;其中,所述第二上行授权的优先级高于所述第一上行授权的优先级,获取所述第二上行授权的时间晚于获取所述第一上行授权的时间。
结合上述技术方案,在一种可选的实现方式中,在为所述第二上行授权已调度部分或全部数据时,触发所述第一上行授权和所述第二上行授权的已调度数据在重叠的时域资源上的传输。
结合上述技术方案,在一种可选的实现方式中,所述第一上行授权和所述第二上行授权的已调度数据在重叠的时域资源上的传输,包括:对所述第一上行授权和所述第二上行授权的已调度数据作物理层处理;在空口发送经物理层处理的所述第一上行授权和所述第二上行授权的已调度数据。
结合上述技术方案,在一种可选的实现方式中,所述第一上行授权所指示的资源对应第一传输块,所述第二上行授权所指示的资源对应第二传输块。
结合上述技术方案,在一种可选的实现方式中,所述启动对所述第一上行授权所指示的资源的数据调度,在为所述第一上行授权已调度部分数据时,启动对所述第二上行授权所指示的资源的数据调度,包括:启动对所述第一传输块的媒体接入控制MAC协议数据单元PDU的组装,在所述第一传输块的MAC PDU中已组装了部分MAC业务数据单元SDU时,启动对所述第二传输块的MAC PDU的组装。
结合上述技术方案,在一种可选的实现方式中,设置所述第一传输块的MAC PDU中已组装的部分MAC SDU的个数的门限。
结合上述技术方案,在一种可选的实现方式中,所述第二上行授权的优先级高于所述第一上行授权的优先级,包括:所述第二传输块的空口传输结束时间早于所述第一传输块的空口传输结束时间。
结合上述技术方案,在一种可选的实现方式中,在为所述第一上行授权已调度部分数据时,暂停对所述第一上行授权所指示的资源的数据调度,并更新所述第一上行授权的调度上下文。
第五方面,提供了一种无线通信芯片,包括:存储单元,用于存储程序指令;处理单元,用于执行所述存储单元中的程序指令,以实现前述多种技术方案中的任一数据调度方法。
其中,该存储单元可以是易失性存储器,用于缓存这些程序指令,这些程序指令可以 是所述数据调度方法运行时,从其他非易失性存储器中加载到该存储单元中。当然,所述存储单元也可以是非易失性存储器,也集成在所述芯片内部。该处理单元可以是芯片的一个或多个处理核心。
第六方面,提供了一种无线通信芯片,包括:处理器与接口电路;其中,该处理器通过该接口电路与存储器耦合,该处理器用于执行该存储器中的程序代码,以实现前述多种技术方案中的任一数据调度方法。
第七方面,提供了一种终端,包括:
射频收发电路,用于接收第一上行授权和第二上行授权所述第一上行授权所指示的资源与所述第二上行授权所指示的资源在时域上重叠;
基带处理器,用于启动对所述第一上行授权所指示的资源的数据调度,在为所述第一上行授权已调度部分数据时,启动对所述第二上行授权所指示的资源的数据调度。
第八方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储了程序代码,所述程序代码被计算机或处理器执行时,前述多种技术方案中的任一数据调度方法。
第九方面,提供了一种计算机程序产品,所述计算机程序产品包含的程序代码被计算机或处理器执行时,实现前述多种技术方案中的任一数据调度方法。
采用上述多种技术方案中的任一技术方案,为所述第一上行授权已调度部分数据时,即可启动对所述第二上行授权所指示的资源的数据调度,而不必等到为所述第一上行授权调度完全部数据,因此可以加快处理时延。另一方面,采用这种数据调度方法也可在维持处理时延相近情况下,降低无线通信装置的成本。并且,当并行的上行授权数量更多时,比如还有并行的第三上行授权时,加快处理时延的效果更加明显。其中,并行的上行授权可理解为时域资源有重叠的上行授权。
图1为本申请实施例提供的一种无线通信系统的结构示意图;
图2为本申请实施例提供的另一种无线通信系统的结构示意图;
图3为本申请实施例提供的一种无线资源的示意图;
图4为本申请实施例提供的一种无线协议架构的示意图;
图5为本申请实施例提供的一种MAC PDU的结构示意图;
图6为本申请实施例提供的一种不同类型信道间的映射示意图;
图7为本申请实施例提供的一种并行的上行授权的示意图;
图8为本申请实施例提供的一种逻辑信道的调度策略的流程示意图;
图9为本申请实施例提供的一种逻辑信道复用的MAC PDU状态示意图;
图10为本申请实施例提供的一种上行授权串行调度的MAC PDU状态示意图;
图11为本申请实施例提供的一种对上行授权的串行调度的时序示意图;
图12为本申请实施例提供的一种数据调度的方法的流程示意图;
图13-1为本申请实施例提供的一种对上行授权并行调度的MAC PDU状态示意图一;
图13-2为本申请实施例提供的一种对上行授权并行调度的MAC PDU状态示意图二;
图14为本申请实施例提供的一种对上行授权的并行调度的时序示意图
图15为本申请实施例提供的一种对上行授权中断调度的MAC PDU状态示意图;
图16为本申请实施例提供的一种无线通信设备的结构示意图。
应理解,上述结构示意图中,各框图的尺寸和形态仅供参考,不应构成对本申请实施例的排他性的解读。结构示意图所呈现的各框图间的相对位置和包含关系,仅为示意性地表示各框图间的结构关联,而非限制本申请实施例的物理连接方式。
下面结合附图并举实施例,对本申请提供的技术方案作进一步说明。应理解,本申请实施例中提供的系统结构和业务场景主要是为了解释本申请的技术方案的一些可能的实施方式,不应被解读为对本申请的技术方案的唯一性限定。本领域普通技术人员可以知晓,随着系统的演进,以及更新的业务场景的出现,本申请提供的技术方案对于相同或类似的技术问题仍然可以适用。
应理解,本申请实施例提供的技术方案,包括数据调度的方法和装置。这些技术方案解决问题的原理相同或相似,在以下具体实施例的介绍中,某些重复之处可能不再赘述,但应视为这些具体实施例之间已有相互引用,可以相互结合。
无线通信系统中,设备可分为提供无线网络服务的设备和使用无线网络服务的设备。提供无线网络服务的设备是指那些组成无线通信网络的设备,可简称为网络设备(network equipment),或网络单元(network element)。网络设备通常归属于运营商(如中国移动和Vodafone)或基础设施提供商(如铁塔公司),并由这些厂商负责运营或维护。网络设备还可进一步分为无线接入网(radio access network,RAN)设备以及核心网(core network, CN)设备。典型的RAN设备包括基站(base station,BS)。
应理解,基站有时也可以被称为无线接入点(access point,AP),或发送接收点(transmission reception point,TRP)。具体地,基站可以是5G NR系统中的通用节点B(generation Node B,gNB),4G LTE系统的演进节点B(evolutional Node B,eNB)。根据基站的物理形态或发射功率的不同,基站可被分为宏基站(macro base station)或微基站(micro base station)。微基站有时也被称为小基站或小小区(small cell)。
使用无线网络服务的设备通常位于网络的边缘,可简称为终端(terminal)。终端能够与网络设备建立连接,并基于网络设备的服务为用户提供具体的无线通信业务。应理解,由于终端与用户的关系更加紧密,有时也被称为用户设备(user equipment,UE),或订户单元(subscriber unit,SU)。此外,相对于通常在固定地点放置的基站,终端往往随着用户一起移动,有时也被称为移动台(mobile station,MS)。此外,有些网络设备,例如中继节点(relay node,RN)或者无线路由器等,由于具备UE身份,或者归属于用户,有时也可被认为是终端。
具体地,终端可以是移动电话(mobile phone),平板电脑(tablet computer),膝上型电脑(laptop computer),可穿戴设备(比如智能手表,智能手环,智能头盔,智能眼镜),以及其他具备无线接入能力的设备,如各种物联网(internet of thing,IOT)设备,包括各种智能家居设备(比如智能电表和智能家电)以及智能城市设备(比如安防或监控设备,智能道路交通设施,智能车辆)等。
为了便于表述,下文将以基站和终端为例,详细说明本申请实施例的技术方案。
图1为本申请实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统包括终端和基站。按照传输方向的不同,从终端到基站的传输链路记为上行链路(uplink,UL),从基站到终端的传输链路记为下行链路(downlink,DL)。相类似地,上行链路中的数据传输可简记为上行数据传输或上行传输,下行链路中的数据传输可简记为下行数据传输或下行传输。
该无线通信系统中,基站可通过集成或外接的天线设备,为特定地理区域提供通信覆盖。位于基站的通信覆盖范围内的一个或多个终端,均可以接入基站。一个基站可以管理一个或多个小区(cell)。每个小区具有一个身份证明(identification),该身份证明也被称为小区标识(cell identity,cell ID)。从无线资源的角度看,一个小区是下行无线资源,以及与其配对的上行无线资源(非必需)的组合。
应理解,该无线通信系统可以遵从3GPP的无线通信标准,也可以遵从其他无线通信标准,例如电气电子工程师学会(Institute of Electrical and Electronics Engineers,IEEE)的802系列(如802.11,802.15,或者802.20)的无线通信标准。图1中虽然仅示出了一个基站和一个终端,该无线通信系统也可包括其他数目的终端和基站。此外,该无线通信系统还可包括其他的网络设备,比如核心网设备。
终端和基站应知晓该无线通信系统预定义的配置,包括系统支持的无线电接入技术(radio access technology,RAT),以及系统规定的无线资源,比如无线电频段及载波。载波是符合系统规定的一段频率范围。这段频率范围可由载波的中心频率(记为载频)和载 波的带宽共同确定。这些系统预定义的配置可作为无线通信系统的标准协议的一部分,或者通过终端和基站间的交互确定。无线通信系统的标准协议的内容,可能会预先存储在终端和基站的存储器中,和/或,体现为终端和基站的硬件电路或软件代码。
该无线通信系统中,终端和基站支持一种或多种相同的RAT,例如5G NR,4G LTE,或未来演进系统的RAT。具体地,终端和基站采用相同的空口参数、编码方案和调制方案等,并基于系统规定的无线资源相互通信。其中,空口参数是用于描述空口特征的参数。在英文中,空口参数有时也被称为numerology。空口参数可包括子载波间隔(subcarrier spacing,SC),也可包括循环前缀(cyclic prefix,CP)。
该无线通信系统可支持多种不同空口参数,这些空口参数可作为标准协议的一部分。以子载波间隔为例,本申请实施例中,无线通信系统所支持的子载波间隔,可包括15kHz的子载波间隔,还可包括更大的子载波间隔,比如30kHz,60kHz,120kHz,或者240kHz。并且,该无线通信系统可以同时支持多种不同的子载波间隔。
图2为本申请实施例提供的另一种无线通信系统的结构示意图。该无线通信系统支持载波聚合(carrier aggregation,CA)技术。如图2所示,终端与基站可聚合3个成员载波(component carrier,CC),分别记为CC 1,CC 2和CC 3。其中,CC是指参与载波聚合的不同小区所对应载波。应理解,3个CC仅为示意目的,本申请实施例中终端与基站还可聚合其他数目的CC。在中文语境下,CC有时也被翻译为分量载波。
载波聚合是将两个或更多的成员载波聚合在一起,以提供更多的传输带宽。除非特别说明,一个成员载波可对应终端的一个服务小区(serving cell),成员载波可简称为载波,服务小区可简称为小区。载波聚合场景中,终端可以同时与多个小区传输数据。这相当于终端和基站可使用的无线资源变得更多,因此能够提高终端的吞吐量。其中,不同的载波可以配置不同的空口参数,对应不同的无线资源。
图3为本申请实施例提供的一种无线资源的示意图。图3示出了无线通信系统支持的时频资源网格(grid),该时频资源网格可对应一个或多个载波。应理解,不同的载波,可以对应不同的时频资源网格。不同的子载波间隔,可以对应不同的时频资源网格。上行传输和下行传输,也可以对应不同的时频资源网格。
图3所示的时频资源网格中,时间资源的单位为1个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号(symbol,symb),频率资源的单位为1个子载波(subcarrier,SC)。该时频资源网格中的最小网格,对应1个OFDM符号和1个子载波,在3GPP的技术规范中被称为资源元素(resource element,RE)。
以NR系统为例,NR传输(包括上行传输和下行传输)的频域资源被组成多个子载波。12个连续的子载波可记为1个资源块(resource block,RB)。NR传输的时域资源被组成多个时长为10ms的无线帧(frame),每个无线帧又可被均分为10个时长为1ms的子帧(subframe)。每个子帧又被划分为多个时隙(slot),每个时隙包括14个连续的OFDM符号。不同的子载波间隔(记为Δf),对应不同的OFDM符号长度。因此,对于不同取值的子载波间隔,一个时隙的时间长度也有所不同。例如,对应15kHz子载波间隔的1个时隙 的长度为1ms,对应30kHz子载波间隔的1个时隙的长度为0.5ms,对应60kHz子载波间隔的1个时隙的长度为0.25ms。
如图3左半部分所示,相同的一段时间资源,可对应同一种子载波间隔的频域资源。如图3右半部分所示,相同的一段时间资源,也可对应多种不同子载波间隔的频域资源。频域上,子载波间隔1大于子载波间隔2,子载波间隔2大于子载波间隔3。时域上,子载波间隔1对应的OFDM符号长度小于子载波间隔2对应的OFDM符号长度,子载波间隔2的OFDM符号长度小于子载波间隔3对应的OFDM符号长度。应理解,虽然图3右半部分示出的子载波间隔为3种,该无线通信系统同时支持的子载波间隔可不限于3种,也可以为2种,还可以为4种或以上。
无线通信系统中的终端和基站可以采用图3所示的无线资源相互传输。终端和基站之间的传输可遵循相关标准组织定义的无线协议。
图4为本申请实施例提供的一种无线协议架构的示意图。该无线协议架构可对应3GPP的无线协议架构。
如图4所示,该无线协议架构分为用户面协议和控制面协议。其中,用户面协议主要负责与用户数据传输相关的功能,控制面协议主要负责连接建立,移动性管理和安全性管理等功能。用户面协议和控制面协议共用了很多协议,从底层协议到高层协议,依次包括:物理(physical,PHY)层协议,媒体接入控制(media access control,MAC)协议,无线链路控制(radio link control,RLC)协议,分组数据汇聚协议(packet data convergence protocol,PDCP)。此外,用户面协议还可包括业务数据适配协议(service data adaptation protocol,SDAP)。控制面协议还包括无线资源控制(radio resource control,RRC)协议和非接入层(non-access stratum,NAS)协议。终端和基站内部分别设置了该无线协议架构中各层协议的实体。
NAS协议可用于执行如鉴权(authentiacation),移动性管理(mobility management),安全控制(security control)等功能。
RRC协议可用于执行系统消息广播,寻呼消息发送,RRC连接管理,小区选择和重选,测量配置和上报等功能。
SDAP层协议是为5G NR系统新引入的,可用于5G NR系统中业务质量(quality of service,QoS)处理流程。4G LTE系统的终端和基站,或者连接到4G核心网设备的5G NR系统的终端和基站,可以不使用SDAP层协议。
PDCP协议可用于执行互联网协议(internet protocol,IP)包头压缩,加密和完整性保护等功能。此外,PDPC协议还可用于PDCP数据的序列编号(sequence numbering)以及按序递交(in-order delivery)等功能。PDCP协议可向上层协议(如SDAP)提供无线承载(radio bearer)的服务。终端中,每个无线承载可对应一个PDCP实体。
RLC协议可用于执行RLC数据的分组(segementation)和重传处理。RLC协议可向上层协议(如PDCP协议)提供RLC信道的服务。终端中,每个RLC信道(以及每个无线承载)可对应一个RLC实体。相比较4G LTE系统,5G NR系统的RLC协议不再支持数据按序递交至高层协议,以降低业务时延。
MAC协议可用于执行逻辑信道复用,混合自动重传请求(hybrid automatic repeat request,HARQ),调度及调度相关功能。MAC协议向高层协议(如RLC协议)提供逻辑信道的服务,并负责逻辑信道到传输信道的映射。
PHY协议可用于执行编码/解码,调制/解调,多天线映射,信号到时频资源的映射,以及其他典型的物理层功能。PHY协议向高层协议(如MAC协议)提供传输信道的服务,并负责处理传输信道到物理信道的映射。
图5为本申请实施例提供的一种MAC PDU的结构示意图。该MAC PDU可以作为5G NR系统的一个上行MAC PDU的结构示例。
如图5所示,一个MAC PDU可包括多个MAC subPDU。每个MAC subPDU可用于承载一个MAC业务数据单元(service data unit,SDU),一个MAC控制元素(control element,CE),或者填充比特。其中,一个MAC SDU中可承载一个RLC SDU以及RLC SDU的序列号(sequence number,SN)。一个RLC SDU中可承载一个PDCP SDU以及一个PDCP SDU的SN号。RLC SDU和PDCP SDU的SN可按各自SDU的顺序连续编号。
每个MAC subPDU还包括一个与承载内容对应的MAC字头(subheader)。该MAC字头可以包含逻辑信道标识(logical channel identifier,LCID)字段,或者用于指示承载内容的配置(如MAC SDU的长度)的其他字段。
相比较4G LTE系统,5G NR系统的MAC PDU头结构有所改进,以支持更低的处理时延。4G LTE系统中,所有MAC头信息均位于MAC PDU的起始位置,这意味着在调度决定收到之后才能组装MAC PDU。5G NR系统的MAC协议中,某个MAC SDU的子头被放置紧靠MAC SDU之前的位置。这意味着在调度决定收到之前MAC PDU即可被预处理。此外,在使用载波聚合时,MAC协议还负责跨多个成员载波的数据的复用和解复用。
图6为本申请实施例提供的一种无线通信系统的不同信道间的映射示意图。如图6所示,无线通信系统的信道可包括逻辑信道,传输信道,以及物理信道。其中,逻辑信道被映射到对应的传输信道,传输信道又被映射到对应的物理信道。
逻辑信道是由信道所承载的信息的类型来定义的,通常分为控制信道和数据(traffic)信道。其中,控制信道承载的是无线通信系统工作所需的控制和配置信息,数据信道承载的是用户数据。具体地,逻辑信道可包括广播控制信道(broadcast control channel,BCCH),寻呼控制信道(paging control channel,PCCH),公共控制信道(common control channel,CCCH),专用控制信道(dedicated control channel,CCCH),以及专用数据信道(dedicated traffic channel,DTCH)。
控制信道是由信道所承载的信息以什么特性,以及如何通过空口传递来定义的。传输信道中的数据可被组成传输块(transport block,TB),一个传输块对应一个MAC PDU。传输信道可包括广播信道(broadcast channel,BCH),寻呼信道(paging channel,PCH),下行共享信道(downlink shared channel,DL-SCH),以及上行共享信道(uplink shared channel,UL-SCH)。此外,随机接入信道(random access channel,RACH)也被定义为传输信道,虽然它并不携带传输块。
物理信道对应于一组用于承载控制信道的时频资源,这些时频资源可以参考图3所示的时频资源网格。物理信道可包括物理下行共享信道(physical downlink shared channel,PDSCH),物理广播信道(physical broadcast channel,PBCH),物理下行控制信道(physical downlink control channel,PDCCH),物理上行共享信道(physical uplink shared channel,PUSCH),物理上行控制信道(physical uplink control channel,PUCCH)。其中,PDCCH和PUCCH没有对应的控制信道,分别用于承载下行控制信息(downlink control information,DCI)和上行控制信息(uplink control information,UCI)。DCI或UCI提供的是下行数据传输和上行数据传输所需的配置信息。
以DCI为例,DCI有多种预定义的格式,这些预定义的格式会包含一些给定的信息元素(information element,IE)。信息元素可理解为DCI的给定字段,该字段的取值范围以及每种取值的含义均可由系统预先定义。DCI可以分为两类,一类记为下行调度分配(downlink scheduling assignments),用于指示终端接收,解调和解码某个载波的DL-SCH所需的信息。另一类记为上行调度授权(uplink scheduling grant),用于指示终端上行传输的资源以及传输格式等信息。
本申请实施例提供的技术方案即可适用于对下行调度分配或者对上行调度授权所指示资源的数据调度。下文将以上行调度授权为例,详细说明本申请实施例提供的技术方案。其中,上行调度授权可简记为上行授权。
在5G NR系统中,上行授权可以使用DCI格式0-1或者DCI格式0-0。终端通过接收这些DCI格式的上行授权,并解析该DCI中信息元素的含义,可知晓用于上行数据传输的资源位置,传输格式,多天线配置,以及功率控制等信息。
载波聚合场景中,每个载波可以配置一个或两个上行授权。其中,每个上行授权用于指示一个载波上的上行传输资源,这些传输资源可对应一个传输块。不同的载波可以配置不同的子载波间隔。为了使终端能够在多个载波上同时传输上行数据,基站可以给终端分配多个并行的上行授权。其中,多个并行的上行授权可理解为,这些上行授权所指示的资源(对应传输块)在时域上有重叠。
图7为本申请实施例提供的一种并行的上行授权的示意图。图7中以两个载波为例,载波0记为CC 0,载波1记为CC 1。
图7上半部分中,CC 0和CC 1的时隙长均为1ms。CC 0和CC 1上各自有一个上行授权,分别用该上行授权对应的传输块0和传输块1表示。如图7上半部分所示,当载波聚合的多个载波的子载波间隔相同时,多个载波的时隙长度是相同的,两个载波上的传输块在时域上可以完全重叠。
图7下半部分中,CC 0的时隙长为1ms,CC 1的时隙长为0.5ms。CC 0上有一个上行授权,用该上行授权对应的传输块0表示。在这段时间内,CC 1上有两个上行授权,分别用这两个上行授权对应的传输块1和传输块2表示。如图7下半部分所示,当载波聚合的多个载波的子载波间隔不同时,多个载波的时隙长度是不同的,一个载波上的传输块和另一个载波的传输块在时域可以部分重叠。
如前所述,从逻辑信道到控制信道的映射可由终端或基站中的MAC实体负责。多个不同优先级的逻辑信道可被复用到一个相同的传输块。其中,一个传输块对应一个MAC PDU。终端接收到一个上行授权后,首先确定哪些逻辑信道适合使用该上行授权所指示的资源。在选择出合适的逻辑信道之后,终端再确定为每个逻辑信道分配多少资源,或者说,为每个逻辑信道调度多少数据。
例如,对于每个逻辑信道,终端可以被配置如下LCP参数:该逻辑信道允许使用的子载波间隔的集合,为该逻辑信道调度的最大物理上行共享信道(physical uplink shared channel,PUSCH)的持续时间(duration),以及允许传输该逻辑信道的上行成员载波(component carriers)的集合。只有符合这些参数限定的逻辑信道,才会被选择作为合适的逻辑信道,即被允许使用该上行授权所指示的资源。对逻辑信道的选择过程可记为LCP流程,更多内容可参考3GPP技术规范38.321V15.3.0的5.4.3.1节。
接下来,终端需要确定分配给每个逻辑信道多少资源,可记为终端对逻辑信道的调度。终端对逻辑信道的调度有两种策略。第一种调度策略(记为策略一)是为了按优先级顺序满足网络侧为每个逻辑信道设置的优先比特速率(prioritized bit rate,PBR)。第二种调度策略(记为策略二)是为了按优先级顺序尽可能多的将逻辑信道数据发送出去。终端可先按照策略一对逻辑信道进行调度,如果上行授权所指示的资源还有剩余,还可以再按照策略二对逻辑信道进行调度。
策略一是基于一个令牌桶(bucket)算法。该算法的基本思想是基于令牌桶内是否有令牌以及令牌的多少来确定是否调度某个逻辑信道的数据,并控制组装在MAC PDU中该逻辑信道的数据量。
图8为本申请实施例提供的一种逻辑信道的调度策略的流程示意图。如图8所示,一个逻辑信道中的数据可以组成若干个MAC SDU。该逻辑信道可对应一个令牌桶,该令牌桶深度为BSD,最大容量可设置为BSD*PBR。其中,BSD的英文全称为bucket size duration。该逻辑信道可设置一个变量Bj,表示该逻辑信道对应的令牌桶内的令牌的数量。每隔时间T,向该逻辑信道对应的令牌桶内注入令牌,也就是将Bj增加T*PBR。当Bj超过BSD*PBR,的取值时,则Bj不再增加。
终端在进行策略一的调度时,可按优先级从高到低的顺序,依次对Bj>0的逻辑信道进行调度。每调度一个逻辑信道的数据(如MAC SDU),则从Bj中减去该逻辑信道的数据在MAC PDU中所对应的大小(如MAC subPDU),直至Bj<=0,或该逻辑信道的数据变为空,或该上行授权指示的资源用完。其中,为了避免不必要的RLC分段,Bj可以为负值。策略一中,在满足了高优先级逻辑信道的PBR的要求之后,即可调度低优先级逻辑信道的数据。因此,策略一能够缓解低优先级逻辑信道的数据长期不被调度的问题。
终端在进行策略二的调度时,可按照优先级从高到低的顺序,不再考虑Bj,对选择的所有逻辑信道进行调度。在终端为某个逻辑信道分配上行授权所指示的资源时,会分配到该逻辑信道的数据变为空或该上行授权指示的资源用完。策略二中,当所有高优先级的逻辑信道的数据都已为空,而上行授权指示的资源尚未用完,低优先级的逻辑信道才能被分配资源。因此,策略二的方案能够最大化高优先级逻辑信道的数据调度。
图9为本申请实施例提供的一种逻辑信道复用的MAC PDU状态示意图。图9对应一个上行授权以及一个传输块的MAC PDU。其中,终端为该上行授权选择了三个逻辑信道,分别记为逻辑信道1,逻辑信道2,和逻辑信道3。这三个逻辑信道的优先级分别记为:优先级1,优先级2,和优先级3。
如图9所示,进行策略一调度(图9中记为P1)时,终端根据这些逻辑信道的优先级顺序,以及每个逻辑信道的Bj大小,依次从每个逻辑信道取了Bj大小的数据放入MAC PDU。进行策略二调度时(图9中记为P2),终端仅从逻辑信道l中取了部分数据放入MAC PDU,该上行授权指示的资源就用完了。此后,对于该上行授权的数据调度(包括此处的逻辑信道复用)也相应结束。
当有多个上行授权时,一种可行的数据调度方案是终端(如MAC实体)按照一定顺序依次调度每个上行授权。MAC实体每调度一个上行授权,就生成一个MAC PDU。物理层协议实体等所有并行的MAC PDU组包均已完成后,再开始编码和调制等物理层处理。这种调度方式可记为对多个上行授权的串行调度。
图10为本申请实施例提供的一种上行授权串行调度的MAC PDU状态示意图。其中,图10对应两个上行授权,可分别记为UL Grant 0和UL Grant 1。这两个上行授权对应两个MAC PDU,这两个MAC PDU的时间资源重叠,可分别记为MAC PDU 0和MAC PDU 1。同时,假设也有两个逻辑信道,分别记为LCID=1(或LCID1)和LCID=2(或LCID2),优先级也分别记为优先级1和优先级2。
两个逻辑信道中有待调度的MAC SDU,可被复用到MAC PDU中组成MAC subPDU。其中,LCID1和LCID2的MAC SDU中包含带有序列号(sequence number,SN)的数据,可分别记为SN=1至9。其中,这里带有序列号的数据可以是RLC SDU,也可以是PDCP SDU。相应地,MAC SDU中可以包含RLC的SN和PDCP的SN。
如图10最左部分所示,未开始对上行授权的调度时,MAC实体未开始构造MAC PDU,两个MAC PDU中均没有数据。
如图10中间部分所示,完成对UL Grant 0的调度时,MAC PDU 0组包已完成,MAC PDU 1组包尚未开始。其中,MAC PDU 0包括按策略一调度的4个LCID1的MAC SDU,3个LCID2的MAC SDU,以及1个按策略2调度的1个LCID1的MAC SDU。此时,MAC PDU 0组包已完成,MAC PDU 1中还没有任何数据,因此还不能通知物理层开始编码和调制。
如图10最右部分所示,完成对UL Grant 1的调度时,MAC PDU 1组装也已完成,包括4个LCID1的MAC SDU和4个LCID2的MAC SDU。此时,MAC PDU 0和MAC PDU1的组装均已完成,可以通知物理层开始编码和调制。
MAC PDU 1组装也已完成后,LCID2中还剩余两个MAC SDU(SN=7和SN=8),需要等接收到下一个上行授权,才可能会被复用到其他MAC PDU中。
图11为本申请实施例提供的一种对上行授权的串行调度的时序示意图。图11对应两个上行授权,对应两个传输块,分别记为上行授权0&1和传输块0&1。MAC表示MAC层 实体,PHY表示物理层实体,AIR表示空口处理实体(包括射频收发机)。如图11所示,在时隙n中,物理层实体通过解析DCI获得上行授权0&1,并通知MAC。在时隙n+2中,MAC层实体开始对上行授权0&1串行调度。在时隙n+3中,当MAC层实体完成对上行授权0&1串行调度后,物理层实体开始对传输块0&1进行调制编码等物理层处理。在时隙n+4中,空口处理实体将经过物理层处理的传输块0&1在空口发送。
其中,从上行授权0&1串行调度到空口发送之间的时延可记为处理时延。由于需要等并行的MAC PDU组包完成才能开始物理层处理,这种对上行授权的串行调度的处理时延相对较长。如果希望降低串行调度的处理时延,最常见的方式是提高软件和硬件能力,但是这会增加成本。
此外,如果MAC层正在处理低优先级上行授权时,收到了高优先级上行授权,也需要等低优先级上行授权处理完成后才能处理新收到高优先级上行授权。这可能会造成高优先级的上行授权被延误。其中,高优先级的上行授权可以指空口发送时刻比当前正处理的上行授权更靠前的上行授权。如果希望缓解这种高优先级的上行授权被延误的问题,也需要降低处理时延,而提高软件和硬件能力的方式还是会增加成本。
有鉴于此,本申请实施例中还提供了另一种数据调度方案。这种数据调度方案中,终端在为一个上行授权的调度数据的过程中,也允许为其他上行授权调度数据。
以MAC层处理为例,终端的MAC实体为一个上行授权调度数据过程中,为该上行授权对应的MAC PDU组装来自逻辑信道的MAC SDU。当该上行授权对应的MAC PDU组装已组装了部分MAC业务数据单元SDU时,可启动对其他上行授权的MAC PDU的组装。此后,当多个并行的MAC PDU中都已组装部分MAC SDU时,可提前启动对已组装的这部分MAC SDU的物理层处理,例如调制和编码操作等。
因此,相对于串行调度的方案,这种数据调度方案不需要等并行的MAC PDU的MAC SDU全部组装完成才开始后续处理,有利于降低处理时延,或降低成本。
图12为本申请实施例提供的一种数据调度的方法的流程示意图。该数据调度方法可以由无线通信装置执行,该无线通信装置可以是无线通信设备的整机,比如终端,也可以是无线通信设备的组件,比如终端的系统芯片或通信芯片。
如图12所示,该方法包括:
步骤S10、获取第一上行授权和第二上行授权。
其中,所述第一上行授权所指示的资源与所述第二上行授权所指示的资源在时域上重叠。所述第一上行授权所指示的资源可对应第一传输块,所述第二上行授权所指示的资源可对应第二传输块。这两个上行授权可以称为并行的上行授权,这两个传输块或对应的MAC PDU可以称为并行的传输块或并行的MAC PDU。
无线通信装置获取上行授权可以有如下三种方式:
方式一:PHY层解析PDCCH上收到的DCI消息,从而获取上行授权。PHY层获取的上行授权可再发送给MAC层。
方式二:MAC层解析从PDCCH上收到的MAC消息,比如MAC随机接入响应(random access response,RAR)消息,从而获取上行授权。
方式三:RRC层从RRC配置消息中获取半静态配置的上行授权,并配置到MAC层。
步骤S20、启动对所述第一上行授权所指示的资源的数据调度。
其中,无线通信装置在获取到所述第一上行授权后和第二上行授权,可以根据获取上行授权的时间(获取所述第二上行授权的时间晚于获取所述第一上行授权的时间),和/或其他因素(比如上行授权的优先级或随机选择等),先选择为第一上行授权服务。
无线通信装置启动对所述第一上行授权所指示的资源的数据调度,可包括:
无线通信装置启动对所述第一传输块的MAC PDU的组装。具体地,无线通信装置可以使用前述实施例中的逻辑信道优先LCP流程,先选择合适的逻辑信道,再从这些逻辑信道调度数据。具体地,无线通信装置可以使用上述策略一,和/或,策略二为第一上行授权调度数据(MAC SDU),填充到所述第一传输块的MAC PDU中。
步骤S30、在为所述第一上行授权已调度部分数据时,启动对所述第二上行授权所指示的资源的数据调度。
无线通信装置启动对所述第一上行授权所指示的资源的数据调度,可包括:
在所述第一传输块的MAC PDU中已组装了部分MAC SDU时,启动对所述第二传输块的MAC PDU的组装。
可选地,该数据调度方法还可包括:
设置所述第一传输块的MAC PDU中已组装的部分MAC SDU的个数的门限。其中,所述部分MAC SDU的个数的门限可以是上门限,即在MAC PDU中已组装超过上门限个数的MAC SDU,就可以启动对所述第二传输块的MAC PDU的组装。当然,在MAC PDU中已组装超过上门限个数的MAC SDU,可能是充分条件,也可能是必要条件。所述部分MAC SDU的个数的门限还可以是上门限。该上门限应小于所述MAC PDU最多能承载的的MAC SDU的个数。所述部分MAC SDU的个数的门限的具体取值,可以与所述MAC PDU的大小,或者所述传输块的大小相关。此外,不同上行授权的部分MAC SDU的个数的门限可以相同,也可以不同。
采用图12所示的数据调度方法,无线通信装置在为所述第一上行授权已调度部分数据时,即可启动对所述第二上行授权所指示的资源的数据调度,而不必等到为所述第一上行授权调度完全部数据,因此可以加快处理时延。当并行的上行授权更多时,比如还有并行的第三上行授权时,效果更加明显。另一方面,采用这种数据调度方法也可在维持处理时延相近情况下,降低无线通信装置的成本。
作为一种可选的实现方式,本申请实施例一方面提供了一种对多个上行授权的并行处理的技术方案。其中,终端对收到的多个并行的上行授权,可以在MAC层进行多轮数据调度处理。每轮数据调度中可使用前述实施例中的逻辑信道优先LCP流程,先用策略一调 度,再用策略二调度。但是,本申请实施例的每轮数据调度中可限制只使用一个或多个上行授权的部分资源,或者说只为一个或多个上行授权调度部分数据。在一轮调度完成后,多个上行授权对应的多个MAC PDU均已完成部分组包。此时,终端可以让物理层提前开始编码和调制等物理层处理流程。此后,每完成一轮调度,都可以通知物理层处理。这样MAC层和物理层处理可以形成流水,因此采用这种方案可以降低处理时延或成本。这种方案可记为对多个上行授权的并行调度。
其中,对步骤S30而言,所述在为所述第一上行授权已调度部分数据时,启动对所述第二上行授权所指示的资源的数据调度,可包括:执行对所述第一上行授权和所述第二上行授权的并行调度,在为所述第一上行授权已调度部分数据时,根据所述并行调度启动对所述第二上行授权所指示的资源的数据调度;其中,所述并行调度包括多轮数据调度,其中,一轮数据调度中允许为所述第一上行授权和所述第二上行授权分别调度部分数据。
在此基础上,该数据调度方法还可包括:
在一轮数据调度中为所述第一上行授权和所述第二上行授权已分别调度部分数据时,触发所述第一上行授权和所述第二上行授权的已调度数据在重叠的时域资源上的传输。
作为另一种可选的实现方式,本申请实施例另一方面还提供了一种对多个上行授权的中断处理的技术方案。其中,对于上行授权的调度可使用前述实施例中的逻辑信道优先LCP流程,先用策略一调度,再用策略二调度。但是,本申请实施例中,对于当前正在处理的上行授权(记为第一上行授权),MAC层每调度若干个(记为N,N为正整数,取值可根据一定策略设置)MAC SDU后,可确认是否有高优先级的上行授权要处理。如果有高优先级的上行授权(记为第二上行授权)要处理,MAC层可暂停对第一上行授权的处理,保存或更新第一上行授权的调度上下文,然后开始处理第二上行授权。等到第二上行授权处理完成后,MAC层恢复第一上行授权的调度上下文,并继续处理第一上行授权。低优先级的上行授权在调度处理过程中可被高优先上行授权中断多次。采用这种方案可以提高对高优先级授权的处理响应速度,从而降低处理时延或成本。这种方案可记为对多个上行授权的中断调度。
上行授权的优先级的高低可以基于上行授权对应的传输块在空口传输的时间来确定。比如说,所述第一上行授权所指示的资源对应第一传输块,所述第二上行授权所指示的资源对应第二传输块。所述述第二上行授权的优先级高于所述第一上行授权的优先级,可包括:所述第二传输块的空口传输结束时间早于所述第一传输块的空口传输结束时间。
另外,对步骤S30而言,所述在为所述第一上行授权已调度部分数据时,启动对所述第二上行授权所指示的资源的数据调度,可包括:
在为所述第一上行授权已调度部分数据时,根据上行授权的优先级启动对所述第二上行授权所指示的资源的数据调度;其中,所述第二上行授权的优先级高于所述第一上行授权的优先级,获取所述第二上行授权的时间晚于获取所述第一上行授权的时间。
在上述方案基础上,该数据调度方法还可包括:
在为所述第二上行授权已调度部分或全部数据时,触发所述第一上行授权和所述第二 上行授权的已调度数据在重叠的时域资源上的传输。
其中,所述第一上行授权和所述第二上行授权的已调度数据在重叠的时域资源上的传输,包括:对所述第一上行授权和所述第二上行授权的已调度数据作物理层处理;
在空口发送经物理层处理的所述第一上行授权和所述第二上行授权的已调度数据。
在上述方案基础上,该数据调度方法还可包括:
在为所述第一上行授权已调度部分数据时,暂停对所述第一上行授权所指示的资源的数据调度,并更新所述第一上行授权的调度上下文。
实施例1、对多个上行授权的并行调度。
为了记录调度处理的中间状态,无线通信装置可以为每个上行授权设置一个调度上下文,每个调度上下文中可保存以下内容:剩余上行资源大小(记为ResourceLeft);每轮数据调度中需要调度的数据大小(记为ScheduleSize);选择的逻辑信道列表。其中,该ScheduleSize可以是前述的部分MAC SDU的个数的门限,也可以是绝对的字节数。
对多个上行授权的并行调度算法可以参考以下步骤:
步骤1、无线通信装置(如MAC层)根据上行授权指示的在空口上的发送时间,选择需要并行处理的多个上行授权。无线通信装置可按照一定的策略对这些需要并行处理的上行授权进行排序,比如参考这些上行授权的获取时间,或者这些上行授权的优先级。
步骤2、无线通信装置初始化选择的每个上行授权的调度上下文:
步骤2.1剩余资源大小初始化为上行授权资源大小。
步骤2.2要调度的数据大小可根据一定的策略进行设置。
步骤2.3按照LCP流程为上行授权选择对应的逻辑信道,保存到逻辑信道列表中。
步骤3、无线通信装置按顺序取其中一个上行授权,如果该上行授权的剩余资源大小还可以调度至少一个MAC SDU:
步骤3.1设置一个变量:ResourceUsed,表示已使用的资源大小,初始化为0。
步骤3.2根据保存的逻辑信道列表,从逻辑信道中取MAC SDU,为MAC SDU增加MAC subheader,组成MAC subPDU。
如果剩余资源足够大,应尽可能避免RLC分段。其中,从逻辑信道中取MAC SDU可参考上述策略一,和/或,上述策略二。更多内容也可参考3GPP技术规范38.321的5.4.3.1.3节的记载。
步骤3.3MAC subPDU大小为S,更新剩余资源大小:ResourceLeft=ResourceLeft–S;更新已使用资源大小:ResourceUsed=ResourceUsed+S。
步骤3.4重复步骤3.2-3.3直至满足以下条件之一,选择下一个上行授权:
条件1:剩余资源大小不足以调度一个MAC SDU,完成该上行授权的处理。
条件2:实际已使用资源大小,大于或等于设定的每轮循环要调度的数据大小。
其中,为避免RLC分段,每轮数据调度中已使用资源大小有可能大于设定的每轮循环要调度的数据大小。
步骤4、重复步骤3,直至选择的每个上行授权都被处理一遍。
步骤5、重复步骤3和4,直至完成所有选择的上行授权的处理,组成相应的MAC PDU。
其中,步骤1和步骤2是数据调度的一些准备操作,步骤3和步骤4实现一轮数据调度,步骤5中重复步骤3和4实现多轮数据调度。其中,步骤3是一轮调度中对一个上行授权的数据调度,步骤4是一轮调度中对其他并行的上行授权的数据调度。
图13-1为本申请实施例提供的一种对上行授权并行调度的MAC PDU状态示意图一。图13-2为本申请实施例提供的一种对上行授权并行调度的MAC PDU状态示意图二。
其中,与图10类似,图13-1和图13-2也对应两个上行授权,分别记为UL Grant 0和UL Grant 1。这两个上行授权对应两个MAC PDU,这两个MAC PDU的时间资源重叠,分别记为MAC PDU 0和MAC PDU 1。同时,也假设有两个逻辑信道,分别记为LCID=1(或LCID1)和LCID=2(或LCID2),优先级1和优先级2。
两个逻辑信道中有待调度的MAC SDU,可被复用到MAC PDU中组成MAC subPDU。其中,LCID1和LCID2的MAC SDU中包含带有序列号(sequence number,SN)的数据,分别记为SN=1至9。其中,这里带有序列号的数据可以是RLC SDU,也可以是PDCP SDU。相应地,MAC SDU中可以包含RLC的SN和PDCP的SN。
针对这两个上行授权的并行调度,假设这两个上行授权的部分MAC SDU的个数的下门限都为两个。应理解,此处部分MAC SDU的个数的下门限为两个仅为举例,本申请实施例还可以有其他取值,两个上行授权的下门限也可以不同。
如图13-1最左部分所示,对上行授权的并行调度尚未开始时,无线通信装置(以MAC实体为例)未开始组装MAC PDU,两个MAC PDU中均没有数据。
如图13-1中间部分所示,并行调度的第一轮调度完成时,MAC PDU 0中包括逻辑信道1的两个MAC SDU(SN=0和SN=1),MAC PDU 1中包括逻辑信道1的两个MAC SDU(SN=2和SN=3),正好调度完了逻辑信道1的Bj对应的数据。此时,由于MAC PDU 0和MAC PDU 1中都已经有数据,可以通知物理层进行处理。当然,也可以累积更多的数据,比如足够一个或多个物理层编码块(code block,CB)后再通知物理层进行处理。
如图13-1最右部分所示,并行调度的第二轮调度完成时,MAC PDU 0中还包括逻辑信道2的两个MAC SDU(SN=0和SN=1),MAC PDU 1中包括逻辑信道2的一个MAC SDU(SN=2),以及逻辑信道1的一个MAC SDU(SN=4)。这是因为逻辑信道2的Bj对应的数据只有3个MAC SDU。当调度完这3个MAC SDU后,又开始按照策略一调度逻辑信道1的数据。
如图13-2中间部分所示,并行调度的第三轮调度完成时,MAC PDU 0中还包括逻辑信道1的2个MAC SDU(SN=5和SN=6),MAC PDU 1中还包括逻辑信道1的2个MAC SDU(SN=7和SN=8)。此时,逻辑信道1的全部数据已被调度,上行授权的资源还有剩余,因此可以继续调度逻辑信道2的数据。
如图13-2最右部分所示,并行调度的第四轮调度完成时,MAC PDU 0中还包括逻辑信道2的2个MAC SDU(SN=3和SN=4),MAC PDU 1中还包括逻辑信道2的2个MAC SDU(SN=5和SN=6)。
此时,逻辑信道2的数据还剩余2个MAC SDU(SN=3和SN=4),但是上行授权的资 源已经全部分配,因此并行调度结束。
图14为本申请实施例提供的一种对上行授权的并行调度的时序示意图。图14也对应两个上行授权,对应两个传输块,分别记为上行授权0&1和传输块0&1。MAC表示MAC层实体,PHY表示物理层实体,AIR表示空口处理实体(包括射频收发机)。如图11所示,在时隙n中,物理层实体通过解析DCI获得上行授权0&1,并通知MAC。在时隙n+3中,MAC层实体开始对上行授权0&1并行调度。在时隙n+3中,当MAC层实体完成对上行授权0&1的部分调度时,物理层实体即可开始对传输块0&1进行调制编码等物理层处理。在时隙n+4中,空口处理实体将经过物理层处理的传输块0&1在空口发送。
其中,从上行授权0&1并行调度到空口发送之间的时延也可记为处理时延。由于无需等所有并行的MAC PDU组包完成才开始物理层处理,MAC层处理和物理层处理能够形成流水因此,这种对上行授权的并行调度的处理时延相对较短。
实施例2、对多个上行授权的中断调度。
为了记录调度处理的中间状态,无线通信装置可以为每个上行授权设置一个调度上下文,每个调度上下文中可保存以下内容:剩余上行资源大小(记为ResourceLeft);中断调度时已调度的数据大小(记为N);选择的逻辑信道列表。其中,该N可以是前述的部分MAC SDU的个数的门限。
对多个上行授权的中断调度算法可以参考以下步骤:
步骤1、无线通信装置(如MAC层)初始化低优先级上行授权的调度上下文。
步骤1.1剩余资源大小初始化为上行授权资源大小。
步骤1.2根据一定策略进行设置N。
步骤1.3按照LCP规则为上行授权选择对应的逻辑信道,保存到逻辑信道列表中。
步骤2、如果低优先级上行授权的剩余资源大小还可以调度至少一个MAC SDU:
步骤2.1设置一个变量:n,表示已调度的MAC SDU个数,初始化为0。
步骤2.2根据保存的逻辑信道列表,从逻辑信道中取MAC SDU,为MAC SDU增加MAC subheader,组成MAC subPDU。
如果剩余资源足够大,应尽可能避免RLC分段。其中,从逻辑信道中取MAC SDU可参考上述策略一,和/或,上述策略二。更多内容也可参考3GPP技术规范38.321的5.4.3.1.3节的记载。
步骤2.3MAC subPDU大小为S,更新剩余资源大小:ResourceLeft=ResourceLeft–S;更新已调度的MAC SDU个数:n=n+1。
步骤2.4重复步骤2.2-2.3直至满足以下条件之一,确认是否有高优先级的上行授权要处理:
条件1:剩余资源大小不足以调度一个MAC SDU。
条件2:n大于或等于N。
步骤3、如果有高优先级的上行授权要处理:
步骤3.1:按照LCP规则为高优先级上行授权选择对应的逻辑信道。
步骤3.2:根据选择的逻辑信道列表,从逻辑信道中取MAC SDU,为MAC SDU增加MAC subheader,组成MAC subPDU。
如果剩余资源足够大,应尽可能避免RLC分段。其中,从逻辑信道中取MAC SDU可参考上述策略一,和/或,上述策略二。更多内容也可参考3GPP技术规范38.321的5.4.3.1.3节的记载。
步骤3.3:重复步骤3.2,直至完成高优先级上行授权的处理,组成MAC PDU;
步骤4、重复步骤2和3,直至完成低优先级上行授权的处理,组成MAC PDU。
图15为本申请实施例提供的一种对上行授权中断调度的MAC PDU状态示意图。图15开始有一个上行授权,记为UL Grant 0。在对UL Grant 0的调度过程中,收到另一个高优先的上行授权,记为UL Grant 1。此后,暂停UL Grant 0的调度,启动UL Grant 1的调度。在完成了UL Grant 1的调度后,恢复UL Grant 0的调度。
这两个上行授权对应两个MAC PDU,这两个MAC PDU的时间资源部分重叠,分别记为MAC PDU 0和MAC PDU 1。其中,MAC PDU 1的空口传输结束时间早于MAC PDU0的空口传输结束时间。同时,也假设有两个逻辑信道,分别记为LCID=1(或LCID1)和LCID=2(或LCID2),优先级1和优先级2。
两个逻辑信道中有待调度的MAC SDU,可被复用到MAC PDU中组成MAC subPDU。其中,LCID1和LCID2的MAC SDU中包含带有序列号(sequence number,SN)的数据,分别记为SN=1至9。其中,这里带有序列号的数据可以是RLC SDU,也可以是PDCP SDU。相应地,MAC SDU中可以包含RLC的SN和PDCP的SN。
针对上行授权的中断调度,假设中断调度时已调度的数据大小N为3个MAC SDU。应理解,此处3个MAC SDU仅为举例,本申请实施例还可以有其他取值。
如图15第一部分所示,只有一个上行授权,中断调度尚未开始时,无线通信装置(以MAC实体为例)未开始组装MAC PDU,MAC PDU 0中没有数据。
如图15第二部分所示,为UL Grant 0已调度了3个MAC SDU时,暂停对UL Grant 0的调度。由于在UL Grant 0的调度过程中,又收到了高优先级的上行授权UL Grant 1,则启动UL Grant 1的调度。此时,MAC PDU 0中包括逻辑信道1的MAC SDU(SN=0,SN=1和SN=2),MAC PDU 1中尚无数据。
如图15第三部分所示,完成UL Grant 1的调度时,MAC PDU 1中包括逻辑信道1的1个MAC SDU(SN=3)和逻辑信道2的3个MAC SDU(SN=0,SN=1和SN=2)。此后,恢复对UL Grant 0的调度。
如图15第四部分所示,在恢复UL Grant 0的调度之后,MAC PDU还可以包括逻辑信道1的5个MAC SDU(SN=4至SN=8)。此时,逻辑信道2的数据还剩余6个MAC SDU(SN=3至SN=8),但是上行授权的资源已经全部分配,因此调度结束。
图16为本申请实施例提供的一种无线通信设备的结构示意图。该无线通信设备或无线通信设备中的组件(例如通信芯片或系统芯片)可用于实现上述数据调度方法。
如图16所示,该无线通信设备可包括应用子系统,内存(memory),大容量存储器 (massive storge),基带子系统,射频集成电路(radio frequency intergreted circuit,RFIC),射频前端(radio frequency front end,RFFE)器件以及天线(antenna,ANT),这些器件可以通过各种互联总线或其他电连接方式耦合。
图16中,ANT_1表示第一天线,ANT_N表示第N天线。Tx表示发送路径,Rx表示接收路径,不同的数字表示不同的路径。FBRx表示反馈接收路径,PRx表示主接收路径,DRx表示分集接收路径。BB表示基带。HB表示高频,LB表示低频,两者是指频率的相对高低。应理解,图16中的标记和组件仅为示意目的,仅作为一种可能的实现方式,本申请实施例还包括其他的实现方式。
其中,应用子系统可作为无线通信设备的主控制系统或主计算系统,用于运行主操作系统和应用程序,管理整个无线通信设备的软硬件资源,并可为用户提供用户操作界面。应用子系统可包括一个或多个处理核心。不同核的能力也可以有差异,例如主频不同。每个核内可以有各自的专用缓存,多个核之间也可以有共享缓存。此外,应用子系统中也可包括其他子系统相关的驱动软件。
基带处理子系统可包括以及一个或多个处理核心,模数转换器件,硬件加速器(hardware accelerator,HAC)和缓存等。其中,由于物理层处理比较耗时,物理层处理器可以用相对独立的处理器或HAC来实现。应理解,本申请实施例中并不限定这些电子器件的种类和数目。模数转换器件包括将模拟信号转换为数字字号的模数转换器(analog to digital converter,ADC)和将数字信号转换为模拟信号的(digital to analog converter,DAC)。
基带处理器可用于从源自基站的数字信号中提取有用的信息或数据比特,或将源自应用子系统的信息或数据比特转换为待发送给基站的数字信号。这些信息或数据比特可以是表示语音、文本、视频等用户数据或控制信息的数据。具体地,基带处理器可以实现诸如调制和解调,编码和解码等基带信号处理操作。并且,对于不同的无线接入技术,例如5G NR和4G LTE,往往具有不完全相同的基带信号处理操作。因此,为了支持多种移动通信模式的融合,可同时包括多个处理核心,或者多个HAC。
硬件加速器可用于实现一些处理开销较大的子功能,如数据包(data packet)的组装和解析,数据包的加解密等。这些子功能采用通用功能的处理器也可以实现,但是因为性能或成本的考量,采用硬件加速器可能更加合适。因此,硬件加速器的种类和数目可以基于需求来具体选择。在具体的实现方式中,可以使用现场可编程门阵列(field programmable gate array,FPGA)和专用集成电路(application specified intergated circuit,ASIC)中的一种或组合来实现。当然,硬件加速器中也可以使用一个或多个处理核心。
基带处理器有时也被基带处理芯片,RFIC有时也被射频处理芯片,两者共同组成通信子系统。其中,射频子系统主要用于处理射频信号。用于运行通信操作系统和通信功能软件,管理通信子系统的软硬件资源,以为用户提供无线通信功能。
图16中的天线,RFFE,RFIC 1(以及可选的RFIC 2)都可以认为属于射频处理子系统。具体地,射频子系统可包括天线,天线开关,天线调谐器,低噪声放大器,功率放大器,混频器,振荡器、滤波器和处理器等电子器件,以提供接收通道(receive path)和发射通道(transmit path)。接收通道用于通过天线接收射频信号,对该射频信号进行处理(如放大、滤波和下变频)以得到中频或基带信号,并传递给基带子系统。接收通道用于接收 来自基带子系统的中频或基带信号,对中频或基带信号进行处理(如上变频、放大和滤波)以得到射频信号,并最终通过天线将该射频信号辐射到空间中。
应理解,本申请实施例中,无线通信设备的每个处理核心均可表示一个处理器,该处理器可以是通用处理器,也可以是为特定领域设计的处理器。例如,该处理器可以是CPU,也可以是数字信号处理器(digital signal processor,DSP)。当有需要时,该处理器也可以是微控制器(micro control unit,MCU),图形处理器(graphics processing unit,GPU)、图像信号处理器(image signal processing,ISP),音频信号处理器(audio signal processor,ASP)以及各种用于人工智能(artificial intelligence,AI)应用的处理器,包括但不限于神经网络处理器(neural network processing unit,NPU),张量处理器(tensor processing unit,TPU)以及被称为AI引擎的处理器。
在实际应用中,基于应用场景的需要,无线通信设备可采用不同数目和不同类型的处理核心的组合。此外,通信子系统中射频子系统和基带子系统的功能划分也可以有调整。例如,将部分射频子系统的功能集成到基带子系统中,或者相反。
在一种实现方式中,射频子系统可包括独立的天线,独立的射频前端(RF front end,RFFE)器件,以及独立的射频处理芯片。射频处理芯片有时也被称为接收机(receiver)、发射机(transmitter)或收发机(transceiver)。天线、射频前端器件和射频处理芯片都可以单独制造和销售。当然,射频子系统也可以基于功耗和性能的需求,采用不同的器件或者不同的集成方式。例如,将属于射频前端的部分器件集成在射频处理芯片。
在另一种实现方式中,基带子系统可以作为独立的芯片,该芯片可被称调制解调器(modem)。其中,基带子系统的硬件组件可以按照modem为单位来制造和销售。由于基带处理器是无线通信的核心器件,调制解调器(modem)有时也被称为基带芯片或基带处理器。在另一种实现方式中,基带子系统还可以进一步集成在SoC芯片中,以SoC芯片为单位来制造和销售。此外,基带子系统的软件组件可以在出厂时内置在硬件组件中,也可以在出厂后从其他非易失性存储器中导入到硬件组件中,或者还可以通过网络以在线方式更新和升级这些软件组件。
存储器可分为易失性存储器(volatile memory)和非易失性存储器(non-volatile memory,NVM)。易失性存储器是指当电源供应中断后,内部存放的数据便会丢失的存储器。目前,易失性存储器主要是随机存取存储器(random access memory,RAM),包括静态随机存取存储器(static RAM,SRAM)和动态随机存取存储器(dynamic RAM,DRAM)。非易失性存储器是指即使电源供应中断,内部存放的数据也不会因此丢失的存储器。常见的非易失性存储器包括只读存储器(read only memory,ROM)、光盘、磁盘以及基于闪存(flash memory)技术的各种存储器等。内存可以选用易失性存储器,大容量存储器可以选用非易失性存储器,例如闪存。
本申请实施例及附图中的术语“第一”,“第二”以及“第三”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于表示不排他的包含,例如,包含了一系列步骤或单元。方法、系统、产品或设备不必仅限于字面列出的那些步骤或单元,而是可包括没有字面列出的或对于这 些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。本申请提到的“耦合”一词,用于表达不同组件之间的互通或互相作用,可以包括直接相连或通过其他组件间接相连。
在本申请的上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤等)或无线(例如红外、无线电、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘和磁带;可以是光介质,例如DVD;也可以是半导体介质,例如固态硬盘(Solid State Disk,SSD)等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。
Claims (25)
- 一种数据调度的装置,其特征在于,包括:接口单元,用于获取第一上行授权和第二上行授权,所述第一上行授权所指示的资源与所述第二上行授权所指示的资源在时域上重叠;处理单元,用于启动对所述第一上行授权所指示的资源的数据调度,在为所述第一上行授权已调度部分数据时,启动对所述第二上行授权所指示的资源的数据调度。
- 根据权利要求1所述的装置,其特征在于:所述处理单元用于执行对所述第一上行授权和所述第二上行授权的并行调度,在为所述第一上行授权已调度部分数据时,根据所述并行调度启动对所述第二上行授权所指示的资源的数据调度;其中,所述并行调度包括多轮数据调度,其中,一轮数据调度中允许为所述第一上行授权和所述第二上行授权分别调度部分数据。
- 根据权利要求2所述的装置,其特征在于:所述处理单元还用于在一轮数据调度中为所述第一上行授权和所述第二上行授权已分别调度部分数据时,触发所述第一上行授权和所述第二上行授权的已调度数据在重叠的时域资源上的传输。
- 根据权利要求1所述的装置,其特征在于:所述处理单元用于在为所述第一上行授权已调度部分数据时,根据上行授权的优先级启动对所述第二上行授权所指示的资源的数据调度;其中,所述第二上行授权的优先级高于所述第一上行授权的优先级,获取所述第二上行授权的时间晚于获取所述第一上行授权的时间。
- 根据权利要求4所述的装置,其特征在于:所述处理单元还用于在为所述第二上行授权已调度部分或全部数据时,触发所述第一上行授权和所述第二上行授权的已调度数据在重叠的时域资源上的传输。
- 根据权利要求3或5所述的装置,其特征在于:所述处理单元还用于对所述第一上行授权和所述第二上行授权的已调度数据作物理层处理,所述物理层处理包括调制和编码操作。
- 根据权利要求3或5所述的装置,其特征在于:所述处理单元与物理层处理器耦合,并向所述物理层处理器发送触发信号,以所述第一上行授权和所述第二上行授权的已调度数据在重叠的时域资源上的传输;其中,所述物理层处理器用于对所述第一上行授权和所述第二上行授权的已调度数据 作物理层处理,所述物理层处理包括调制和编码操作。
- 根据权利要求1至7中任一项所述的装置,其特征在于:所述第一上行授权所指示的资源对应第一传输块,所述第二上行授权所指示的资源对应第二传输块。
- 根据权利要求8所述的装置,其特征在于:所述处理单元用于启动对所述第一传输块的媒体接入控制MAC协议数据单元PDU的组装,在所述第一传输块的MAC PDU中已组装了部分MAC业务数据单元SDU时,启动对所述第二传输块的MAC PDU的组装。
- 根据权利要求9所述的装置,其特征在于:所述处理单元还用于设置所述第一传输块的MAC PDU中已组装的部分MAC SDU的个数的门限。
- 根据权利要求8所述的装置,其特征在于:所述第二上行授权的优先级高于所述第一上行授权的优先级,包括:所述第二传输块的空口传输结束时间早于所述第一传输块的空口传输结束时间。
- 根据权利要求1至11中任一所述的装置,其特征在于:所述处理单元还用于在为所述第一上行授权已调度部分数据时,暂停对所述第一上行授权所指示的资源的数据调度,并更新所述第一上行授权的调度上下文。
- 一种数据调度的方法,其特征在于,包括:获取第一上行授权和第二上行授权,所述第一上行授权所指示的资源与所述第二上行授权所指示的资源在时域上重叠;启动对所述第一上行授权所指示的资源的数据调度;在为所述第一上行授权已调度部分数据时,启动对所述第二上行授权所指示的资源的数据调度。
- 根据权利要求13所述的方法,其特征在于:所述在为所述第一上行授权已调度部分数据时,启动对所述第二上行授权所指示的资源的数据调度,包括:执行对所述第一上行授权和所述第二上行授权的并行调度,在为所述第一上行授权已调度部分数据时,根据所述并行调度启动对所述第二上行授权所指示的资源的数据调度;其中,所述并行调度包括多轮数据调度,其中,一轮数据调度中允许为所述第一上行授权和所述第二上行授权分别调度部分数据。
- 根据权利要求14所述的方法,其特征在于,还包括:在一轮数据调度中为所述第一上行授权和所述第二上行授权已分别调度部分数据时,触发所述第一上行授权和所述第二上行授权的已调度数据在重叠的时域资源上的传输。
- 根据权利要求13所述的方法,其特征在于,还包括:所述在为所述第一上行授权已调度部分数据时,启动对所述第二上行授权所指示的资源的数据调度,包括:在为所述第一上行授权已调度部分数据时,根据上行授权的优先级启动对所述第二上行授权所指示的资源的数据调度;其中,所述第二上行授权的优先级高于所述第一上行授权的优先级,获取所述第二上行授权的时间晚于获取所述第一上行授权的时间。
- 根据权利要求16所述的方法,其特征在于,还包括:在为所述第二上行授权已调度部分或全部数据时,触发所述第一上行授权和所述第二上行授权的已调度数据在重叠的时域资源上的传输。
- 根据权利要求15或17所述的方法,其特征在于:所述第一上行授权和所述第二上行授权的已调度数据在重叠的时域资源上的传输,包括:对所述第一上行授权和所述第二上行授权的已调度数据作物理层处理;在空口发送经物理层处理的所述第一上行授权和所述第二上行授权的已调度数据。
- 根据权利要求13至18中任一项所述的方法,其特征在于:所述第一上行授权所指示的资源对应第一传输块,所述第二上行授权所指示的资源对应第二传输块。
- 根据权利要求19所述的方法,其特征在于:所述启动对所述第一上行授权所指示的资源的数据调度,在为所述第一上行授权已调度部分数据时,启动对所述第二上行授权所指示的资源的数据调度,包括:启动对所述第一传输块的媒体接入控制MAC协议数据单元PDU的组装,在所述第一传输块的MAC PDU中已组装了部分MAC业务数据单元SDU时,启动对所述第二传输块的MAC PDU的组装。
- 根据权利要求20所述的方法,其特征在于,还包括:设置所述第一传输块的MAC PDU中已组装的部分MAC SDU的个数的门限。
- 根据权利要求19所述的方法,其特征在于:所述第二上行授权的优先级高于所述第一上行授权的优先级,包括:所述第二传输块的空口传输结束时间早于所述第一传输块的空口传输结束时间。
- 根据权利要求13至22中任一项所述的方法,其特征在于,还包括:在为所述第一上行授权已调度部分数据时,暂停对所述第一上行授权所指示的资源的数据调度,并更新所述第一上行授权的调度上下文。
- 一种计算机可读存储介质,其特征在于:所述计算机可读存储介质中存储了程序代码,所述程序代码被处理器执行时,实现权利要求13至23中任一项所述的方法。
- 一种计算机程序产品,其特征在于:所述计算机程序产品包含的程序代码被处理器执行时,实现权利要求13至23中任一项所述的方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/125889 WO2020133539A1 (zh) | 2018-12-29 | 2018-12-29 | 一种数据调度方法和装置 |
EP18944960.6A EP3897030B1 (en) | 2018-12-29 | 2018-12-29 | Data scheduling method and device |
CN201880100551.1A CN113228732B (zh) | 2018-12-29 | 2018-12-29 | 一种数据调度方法和装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/125889 WO2020133539A1 (zh) | 2018-12-29 | 2018-12-29 | 一种数据调度方法和装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020133539A1 true WO2020133539A1 (zh) | 2020-07-02 |
Family
ID=71127494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/125889 WO2020133539A1 (zh) | 2018-12-29 | 2018-12-29 | 一种数据调度方法和装置 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3897030B1 (zh) |
CN (1) | CN113228732B (zh) |
WO (1) | WO2020133539A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114040513A (zh) * | 2021-12-13 | 2022-02-11 | 哲库科技(北京)有限公司 | 链路建立方法、装置、终端设备和计算机可读存储介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107396394A (zh) * | 2016-05-12 | 2017-11-24 | 华硕电脑股份有限公司 | 短传输时间间隔的上行链路传输的方法及装置 |
WO2018026205A1 (ko) * | 2016-08-05 | 2018-02-08 | 엘지전자 주식회사 | 무선 통신 시스템에서, 상향링크 제어 정보를 전송하는 방법 및 이를 위한 장치 |
CN108924945A (zh) * | 2015-12-25 | 2018-11-30 | 华为技术有限公司 | 一种接入方法及装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102970761A (zh) * | 2011-09-01 | 2013-03-13 | 华为技术有限公司 | 数据发送方法和用户设备 |
EP2966918B1 (en) * | 2013-03-29 | 2017-12-27 | Huawei Technologies Co., Ltd. | Method for controlling request on uplink authorization resource, user equipment and base station |
EP3244680B1 (en) * | 2015-01-29 | 2019-12-04 | Huawei Technologies Co., Ltd. | Data transmission method and device |
US10849125B2 (en) * | 2015-01-30 | 2020-11-24 | Qualcomm Incorporated | Joint control for enhanced carrier aggregation |
JP6743160B2 (ja) * | 2016-02-04 | 2020-08-19 | 華為技術有限公司Huawei Technologies Co.,Ltd. | データ送信方法、データ受信方法、ユーザー装置および基地局 |
-
2018
- 2018-12-29 CN CN201880100551.1A patent/CN113228732B/zh active Active
- 2018-12-29 WO PCT/CN2018/125889 patent/WO2020133539A1/zh unknown
- 2018-12-29 EP EP18944960.6A patent/EP3897030B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108924945A (zh) * | 2015-12-25 | 2018-11-30 | 华为技术有限公司 | 一种接入方法及装置 |
CN107396394A (zh) * | 2016-05-12 | 2017-11-24 | 华硕电脑股份有限公司 | 短传输时间间隔的上行链路传输的方法及装置 |
WO2018026205A1 (ko) * | 2016-08-05 | 2018-02-08 | 엘지전자 주식회사 | 무선 통신 시스템에서, 상향링크 제어 정보를 전송하는 방법 및 이를 위한 장치 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3897030A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114040513A (zh) * | 2021-12-13 | 2022-02-11 | 哲库科技(北京)有限公司 | 链路建立方法、装置、终端设备和计算机可读存储介质 |
CN114040513B (zh) * | 2021-12-13 | 2023-08-11 | 哲库科技(北京)有限公司 | 链路建立方法、装置、终端设备和计算机可读存储介质 |
Also Published As
Publication number | Publication date |
---|---|
EP3897030A4 (en) | 2022-01-05 |
CN113228732B (zh) | 2023-02-14 |
EP3897030B1 (en) | 2024-01-24 |
EP3897030A1 (en) | 2021-10-20 |
CN113228732A (zh) | 2021-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI712326B (zh) | 用於無線通訊中使用載波聚合的功率控制的技術 | |
TWI824086B (zh) | 用於具有不同頻寬能力的ue的控制資源集合 | |
US20220039140A1 (en) | Control Channel Repetition Using Multiple Coresets | |
EP4131838B1 (en) | Multi-subframe uplink scheduling in unlicensed spectrum | |
US20170099664A1 (en) | Method, apparatus and computer program for transmission scheduling | |
CN113038621B (zh) | 在多个分量载波上对缓冲区状态报告的传输 | |
TW202102035A (zh) | 選擇性監視用於補充上行鏈路和非補充上行鏈路載波的上行鏈路搶佔指示的方法和裝置 | |
JP2017530648A (ja) | 共有無線周波数スペクトル帯域上で送信されるアップリンクコンポーネントキャリア上の電力を管理するための技法 | |
TW201924455A (zh) | 用於nr中prach和pusch分離的不同方法 | |
CA3126568A1 (en) | Channel access for wireless communication | |
CN114731575B (zh) | 对用于非公共网络(npn)的系统信息块(sib)有效性校验的增强 | |
TW202015473A (zh) | 針對無線通訊的回饋優先順序排序 | |
US20210067265A1 (en) | Jammer Detection and Mitigation | |
JP2023535682A (ja) | ユーザ機器および基地局 | |
WO2017055309A1 (en) | Method, system and apparatus | |
CN115943710A (zh) | Sps和ulcg增强 | |
TW202126096A (zh) | 用於新無線電超可靠低延遲通信的寬鬆控制通道元素與盲解碼的超額預定及丟棄 | |
CN114731725A (zh) | 用户设备、调度节点、用于用户设备的方法和用于调度节点的方法 | |
KR20220167316A (ko) | 무선 통신에서의 향상된 업링크 송신 | |
CN115552834A (zh) | 针对附加srs的srs载波切换 | |
TW202127943A (zh) | 用於配置用於補充上行鏈路載波的上行鏈路取消指示的方法 | |
WO2020133539A1 (zh) | 一种数据调度方法和装置 | |
JP2023514018A (ja) | プライマリセルクロスキャリアスケジューリングの管理 | |
US12035334B2 (en) | Interaction of multicast band width part (BWP) with multiple BWP | |
CN114128368B (zh) | 由无线设备管理寻呼监测 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18944960 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018944960 Country of ref document: EP Effective date: 20210714 |