WO2020133480A1 - 移动监护测量方法、移动监护设备、系统和存储介质 - Google Patents

移动监护测量方法、移动监护设备、系统和存储介质 Download PDF

Info

Publication number
WO2020133480A1
WO2020133480A1 PCT/CN2018/125789 CN2018125789W WO2020133480A1 WO 2020133480 A1 WO2020133480 A1 WO 2020133480A1 CN 2018125789 W CN2018125789 W CN 2018125789W WO 2020133480 A1 WO2020133480 A1 WO 2020133480A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitored object
measurement mode
monitoring device
mobile monitoring
posture
Prior art date
Application number
PCT/CN2018/125789
Other languages
English (en)
French (fr)
Inventor
金星亮
刘三超
何先梁
孙泽辉
姚绍威
罗汉源
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
深圳迈瑞科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司, 深圳迈瑞科技有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to CN201880098625.2A priority Critical patent/CN112911989A/zh
Priority to PCT/CN2018/125789 priority patent/WO2020133480A1/zh
Publication of WO2020133480A1 publication Critical patent/WO2020133480A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons

Definitions

  • This application relates to the field of medical treatment and detection, but not limited to mobile monitoring measurement methods, mobile monitoring equipment, systems and storage media.
  • the mobile monitoring and bedside monitor When the patient stays indoors, the mobile monitoring and bedside monitor are connected through Wireless Medical Telemetry Services (WMTS); when the patient is outdoors, the mobile monitoring and bedside monitor will be wireless fidelity ( Wireless (Fidelity, WiFi) connection, so the current mobile monitoring by detecting the connection status with the bedside monitor to determine whether the patient is indoors or outdoors.
  • WMTS Wireless Medical Telemetry Services
  • the measurement mode of the mobile monitoring device when the patient is indoors, the measurement mode of the mobile monitoring device is a continuous measurement mode; when the patient is outdoor, the measurement mode of the mobile monitoring device is a discrete measurement mode. In some scenarios, this method will cause incorrect measurement mode switching, resulting in insufficient timely monitoring of the patient's physiological state.
  • the patient does not actively walk out of the room, but is pushed out in a wheelchair or lifted out on a stretcher, the patient’s physical condition is still poor at this time, and the measurement mode of the mobile monitoring device should still be in continuous measurement Model, pay close attention to the physiological state of the patient.
  • the embodiments of the present application are expected to provide a mobile monitoring measurement method, mobile monitoring equipment, system, and storage medium.
  • a mobile monitoring measurement method By judging the motion state of the patient and combining it with the connection status of the mobile monitoring and the bedside monitor, In the field of mobile monitoring, the intelligent switching of measurement modes is realized to meet the usage requirements in multiple scenarios.
  • An embodiment of the present application provides a mobile monitoring measurement method, which is applied to a mobile monitoring device.
  • the method includes:
  • the physiological sign parameters include at least one of blood pressure parameter, blood oxygen parameter, electrocardiogram parameter and respiratory parameter;
  • An embodiment of the present application provides a mobile monitoring device.
  • the mobile monitoring device includes a host, and the host is used for:
  • the physiological sign parameters include at least one of blood pressure parameter, blood oxygen parameter, electrocardiogram parameter and respiratory parameter;
  • An embodiment of the present application provides a mobile monitoring system.
  • the system includes:
  • the mobile monitoring device is used to measure the physiological sign parameters and/or non-physiological sign parameters of the monitored object;
  • the mobile monitoring device includes a host, the host is used for
  • the physiological sign parameters include at least one of blood pressure parameters, blood oxygen parameters, electrocardiographic parameters and respiratory parameters;
  • An embodiment of the present application provides a storage medium in which a program is stored, and when the program is executed by a processor, the steps of the mobile monitoring measurement method described above are implemented.
  • the embodiments of the present application provide a mobile monitoring measurement method, a mobile monitoring device, a system, and a storage medium, wherein, first, the physiological sign parameters of the monitored object are measured, and the physiological sign parameters include at least blood pressure parameters, blood oxygen parameters, electrocardiographic parameters, and respiratory parameters One; then, obtain the motion parameters of the monitored object; determine the posture of the monitored object according to the motion parameters; finally, adjust the measurement mode of the mobile monitoring device according to the posture of the monitored object; control
  • the mobile monitoring device performs measurement of the monitored object according to the measurement mode; thus, by judging the motion state of the patient and combining it with the connection status of the mobile monitoring and the bedside monitor, it can be realized in the field of mobile monitoring
  • the intelligent switching of measurement modes can meet the needs of use in multiple scenarios.
  • FIG. 1 is a schematic structural diagram of a mobile monitoring device in an embodiment of this application.
  • FIG. 2 is a schematic structural diagram of a mobile monitoring device in an embodiment of this application.
  • FIG. 3 is a schematic structural diagram of a mobile monitoring system according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an implementation process of a mobile monitoring measurement method according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another implementation of a measurement method of a mobile monitoring device according to an embodiment of the present application.
  • the mobile monitoring device 10 includes: a first parameter measurement module 11 for measuring physiological sign parameters of the monitored object, the physiological sign parameters at least including blood pressure parameters, blood oxygen parameters, electrocardiographic parameters, and respiratory parameters One; the second parameter measurement module 12 is used to obtain the motion parameters of the monitored object; the processor 13 is used to determine the posture of the monitored object according to the motion parameters; according to the posture of the monitored object Adjust the measurement mode of the mobile monitoring device; control the mobile monitoring device to perform measurement on the monitored object according to the measurement mode.
  • the processor 13 is respectively connected to the first parameter measurement module 11 and the second parameter measurement module 12, and the physiological characteristic parameters and the motion parameters are directly sent to the processor 13.
  • the first parameter measurement module 11 includes a parameter measurement cable 120, a pre-sampling circuit 130, at least three electrode pad connectors 140, and an electrode pad connector 140
  • the ECG electrode pad 150 and the blood oxygen probe 160 are provided in one-to-one correspondence.
  • the electrode pad connector 140 is used to hold the ECG electrode pads 150, and each ECG electrode pad 150 is used to attach to a certain part of the patient's body to measure the ECG signal at that part.
  • the pre-sampling circuit 130 includes an anti-defibrillation circuit 132 and a body temperature measurement circuit.
  • the anti-defibrillation circuit 132 is a protection circuit for avoiding damage to the ECG detection system when necessary to defibrillate the patient's heart to restore normal heart beat.
  • the second parameter measurement module 12 includes an accelerometer 131, which is built into the pre-sampling circuit 130.
  • the pre-sampling circuit 133 with the accelerometer 131 built-in can be clipped on the collar of the patient.
  • the physiological characteristic parameters measured by the electrocardiogram electrode 150 and the blood oxygen probe 160, and the motion parameters measured by the accelerometer 131 are respectively transmitted to the processor 13, and the processor 13 determines the posture of the monitored object according to the motion parameters; Adjusting the measurement mode of the mobile monitoring device according to the posture of the monitored object; controlling the mobile monitoring device to perform measurement on the monitored object according to the measurement mode.
  • the processor 13 is located in the wearable physiological parameter monitoring device 110 or connected to the wearable physiological parameter monitoring device 110.
  • the wearable physiological parameter monitoring device 110 is connected to one end of the parameter measurement cable 120 and connected to the blood oxygen probe 160.
  • the parameter measurement cable 120 is provided with the anti-defibrillation circuit 132 and the at least three electrodes in series from an end close to the wearable physiological parameter monitoring device 110 to an end far from the wearable physiological parameter monitoring device 110 ⁇ Connector 140.
  • the processor 13 may also be located in an external device that is communicatively connected to the wearable physiological parameter monitoring apparatus 110, and is configured to receive physiological sign parameters and exercise parameters transmitted from the wearable physiological parameter monitoring apparatus 110.
  • the external device includes But not limited to bedside monitors or central stations.
  • the accelerometer 131 may also be another motion sensor, for example, a speed sensor, as long as it can acquire parameters for determining the motion state, which is not limited herein.
  • FIG. 3 is a schematic structural diagram of a mobile monitoring system according to an embodiment of the present application.
  • the mobile monitoring device 10 is connected to the bedside monitor 32 through WMTS or Wifi, and the information of the bedside monitor 32 It can be collected and displayed at the central monitoring station 33.
  • the mobile monitoring device 10 When the patient is indoors, the mobile monitoring device 10 sends the collected physiological parameters such as blood oxygen, blood pressure, and electrocardiogram to the bedside monitor 32; if the patient is outdoors, the mobile monitoring device 10 gives priority to the collected patient The blood oxygen, blood pressure, ECG and other parameters are sent to the bedside monitor 32, but if the transmission fails, the collected blood oxygen, blood pressure, ECG and other parameters are sent to the central monitoring station 33, in this case At this time, physiological parameters such as blood oxygen, blood pressure, and electrocardiogram of the patient to be collected by the mobile monitoring device 10 at this moment will not appear on the bedside monitor 32.
  • physiological parameters such as blood oxygen, blood pressure, and electrocardiogram of the patient to be collected by the mobile monitoring device 10 at this moment will not appear on the bedside monitor 32.
  • the mobile monitoring device 10 returns the measured physiological sign parameters to the bedside monitor 32 in real time, if the mobile monitoring device 10 sends the measured physiological sign parameters to the bed
  • the mobile monitoring device 10 feeds back the measured physiological sign parameters to the central monitoring station 33; this ensures that the patient's physiological sign parameters are saved for subsequent review
  • the mobile monitoring device 10 is used to measure the physiological sign parameters and/or non-physiological sign parameters of the monitored object.
  • the monitored object may be a patient or any person who needs to be monitored; the physiological sign parameters include at least blood pressure parameters, blood pressure One of oxygen parameters, ECG parameters and breathing parameters.
  • the exercise parameters are included in the non-physiological sign parameters.
  • the non-physiological sign parameters include at least: sleep parameters, pain parameters, and exercise parameters.
  • the exercise parameters may be the movement acceleration of the monitored object. Obtain the acceleration of the monitored object from the accelerometer 131 located in the mobile monitoring device 10; the number of the accelerometer 131 may be several, when the number of the accelerometer 131 is one, the The torso, for example, is clamped on the collar of the subject to be monitored.
  • the number of accelerometers 131 is multiple, and they are located on the torso and limbs of the monitoring object. When the number of accelerometers 131 is multiple, the motion parameters of more parts can be collected, so that the subsequent determination result is more accurate. Understandably, since the accelerometer 131 is installed on the upper body of the monitored object, the upright state in this application is used to characterize that the upper body of the monitored object is in the upright state.
  • the upright state in this application includes a standing state and a sitting state .
  • the processor 13 adjusting the measurement mode of the mobile monitoring device 10 according to the attitude of the monitored object includes: acquiring the measurement frequency according to the attitude of the monitored object, querying the corresponding measurement mode according to the measurement frequency, and adjusting the corresponding measurement mode to mobile Measurement mode of monitoring equipment.
  • the measurement mode is set according to different measurement frequencies.
  • the measurement mode of the mobile monitoring device 10 includes at least: a continuous measurement mode and a discrete measurement mode, wherein: the continuous measurement mode is that the mobile monitoring device measures the monitored object at a preset first measurement frequency; discrete measurement The mode is that the mobile monitoring device measures the monitored object at a preset second measurement frequency; the first measurement frequency is greater than the second measurement frequency.
  • the continuous measurement mode is that the mobile monitoring device measures the monitored object at a preset first measurement frequency; the discrete measurement mode is the mobile monitoring device A preset second measurement frequency measures the electrocardiogram and/or blood oxygen of the monitored object, and a third measurement frequency measures the respiration and/or blood pressure of the monitored object; wherein, the first The measurement frequency is greater than the second measurement frequency, and the third measurement frequency is zero. Understandably, in the discrete measurement mode in this embodiment, mobile monitoring will reduce the measurement frequency of the electrocardiogram signal and the blood oxygen signal, and stop the measurement of parameters such as respiration and noninvasive blood pressure. At the same time, the electrocardiogram (ECG) alarm threshold and blood oxygen alarm threshold of the mobile monitoring equipment will be relaxed accordingly.
  • ECG electrocardiogram
  • the mobile monitoring device can select the measurement frequency according to the posture of the monitored object, and then find the corresponding measurement mode according to the measurement frequency, and then adjust the mobile monitoring device to this mode to measure the physiological parameters, so that the mobile
  • the monitoring equipment can adaptively adjust the measurement frequency according to the posture of the monitored object, and reflect the patient's state through the posture, so that when the patient's state is better, the discrete measurement mode can be used, and when the patient's state is poor, the patient's physiological state can be measured in time. real-time monitoring.
  • the processor 13 determines the posture of the monitored object according to motion parameters.
  • the posture of the monitored object includes standing, lying down, and lying down.
  • the processor 13 determines whether the monitored object is lying down, lying down, or standing upright according to motion parameters, such as acceleration.
  • the motion parameter is acceleration.
  • the processor 13 determines the body posture of the monitored object according to the acceleration.
  • the accelerometer is a three-axis accelerometer, where x, y, and z are the acceleration magnitudes in the three axis directions of the accelerometer, respectively.
  • the acceleration measured by the accelerometer is a three-dimensional vector parameter
  • the positive x-axis direction of the three-dimensional vector parameter is the direction perpendicular to the forward direction of the coronal face of the monitored object 501
  • the y-axis of the three-dimensional vector parameter The positive direction is the direction perpendicular to the sagittal direction of the monitored object 501
  • the positive direction of the z-axis of the three-dimensional vector parameter is the direction perpendicular to the horizontal direction.
  • x, y, z are the acceleration magnitudes in the three axis directions of the accelerometer, respectively.
  • a second angle is determined according to the second acceleration and the amplitude of the acceleration, the second angle is an angle between the direction of the acceleration and the y-axis direction; according to the third acceleration and The amplitude of the acceleration determines the third included angle, which is the included angle between the direction of the acceleration and the z-axis direction; determined according to the first included angle, the second included angle, and the third included angle
  • the body posture of the monitored object is the body posture of the monitored object.
  • a first angle is determined, the first angle is the angle between the direction of the acceleration and the x-axis direction (ie Angle ⁇ x ); according to the second acceleration and the amplitude of the acceleration, determine a second angle, the second angle is the angle between the direction of the acceleration and the y-axis direction (ie, the angle ⁇ y ); according to the third acceleration and the amplitude of the acceleration, determine a third angle, the third angle is the angle between the direction of the acceleration and the z-axis direction (that is, the angle ⁇ z ); Then, determine which of the first, second, and third included angles is the smallest.
  • the first included angle is the smallest of the first included angle, the second included angle, and the third included angle
  • determine the The body posture of the monitored object is lying down; if the second included angle is the smallest angle among the first included angle, the second included angle, and the third included angle, it is determined that the body posture of the monitored object is Lying on the side; if the third included angle is the smallest included among the first included angle, the second included angle, and the third included angle, the body posture of the monitored object is determined to be upright; thus, the patient is determined Whether you are in an upright state, lying on your side or lying down.
  • the processor 13 further adjusts the measurement mode of the mobile monitoring device according to the posture of the monitored object.
  • the processor 13 when it is determined that the body posture is upright, the processor 13 adjusts the measurement mode of the mobile monitoring device 10 to a discrete measurement mode; when it is determined that the body posture is lying sideways or lying down, the processor 13 Adjust the measurement mode of the mobile monitoring device 10 to a continuous measurement mode.
  • the mobile monitoring device 10 can directly adjust the measurement mode according to whether the monitored object is lying on its side, lying down, or upright.
  • the monitored object is in an upright state, the monitored object is in good condition, and the measurement mode is adjusted to a discrete measurement mode; when the monitored object is lying on its side or lying down, it indicates that the monitored object is in a poor state or falls, etc.
  • adjust the measurement mode to continuous measurement mode.
  • the posture of the monitored object includes the body posture and body dynamics of the monitored object; wherein, the body posture includes standing upright, lying on the side, and lying down; and body motion includes the motion state and the rest state.
  • the processor 13 is further used to determine whether the monitored object is moving according to motion parameters, such as acceleration, and determine whether the monitored object is lying on its side, lying down, or upright.
  • the processor 13 is further used to determine the body posture and body dynamics of the monitored object.
  • the method for determining whether the body posture of the monitored object is lying sideways, lying down, or upright is the same as that described in Embodiment 1, and will not be repeated here. The following describes the method of determining body dynamics.
  • the amplitude of the acceleration can be calculated in the processor 13 using formula (1).
  • the amplitude is greater than the set threshold, the patient can be judged to be in a moving state, otherwise it is in a stationary state .
  • the preset threshold is 1.2. If the amplitude of the acceleration is greater than 1.2, it means that the monitored object is in motion, that is, in a state of motion; if the amplitude of the acceleration is less than 1.2, and close to 0, it means that the monitored object basically has no Movement, that is, in a stationary state; in this embodiment, the so-called stationary state may also be that the monitored object has a small movement amplitude, such as slight shaking.
  • a preset time period may also be set. When the duration of the acceleration amplitude greater than the threshold exceeds the preset time period, it is determined that the monitored object is in a moving state.
  • the acceleration amplitude is greater than the threshold, but its duration is less than the preset time period, it is still determined that the monitored object is in a stationary state.
  • the body dynamics of the monitored object are determined by the amplitude of the acceleration, and the body posture of the monitored object is determined by the first included angle, the second included angle, and the third included angle as described in the first embodiment.
  • the order of determining the body posture and body state of the monitored object is not limited.
  • the processor 13 is further configured to: when the body dynamics of the monitored object is stationary, adjust the measurement mode of the mobile monitoring device to a continuous measurement mode; when the body dynamics of the monitored object is During the exercise state, the measurement mode of the mobile monitoring device is adjusted in conjunction with the body posture.
  • adjusting the measurement mode of the mobile monitoring device in combination with the body posture includes: when determining that the body posture is upright, The measurement mode is adjusted to a discrete measurement mode; when it is determined that the body posture is lying sideways or lying down, the measurement mode of the mobile monitoring device is adjusted to a continuous measurement mode.
  • the detected object is in a moving state and is in an upright posture, it means that the monitored object is in good physical condition, can perform upright activities autonomously, and does not require continuous detection, so the measurement mode is adjusted to a discrete measurement mode.
  • the processor 13 is used to adjust the measurement mode of the mobile monitoring device to a continuous measurement mode when the body posture of the monitored object is in a side lying state or a lying down state; when the monitored object When the body posture is upright, the measurement mode is determined in combination with the body dynamics of the monitored object.
  • determining the measurement mode in combination with the body dynamics of the monitored object includes: when the body dynamics of the monitored object are in a motion state, determining the measurement mode as discrete Measurement mode; when the body dynamics of the monitored object is at rest, it is determined that the measurement mode is a continuous measurement mode.
  • the body posture and body dynamics of the monitored object are determined at the same time.
  • the processor 13 is used to: when the body dynamics of the monitored object is in a moving state and the body posture is upright, adjust the measurement mode of the mobile monitoring device to a discrete measurement mode; when the monitored object When the body dynamics is at rest or the body posture is lying on the side or lying down, the measurement mode of the mobile monitoring device is adjusted to a continuous measurement mode.
  • this embodiment uses the accelerometer on the torso of the monitored object to determine the movement amplitude and then determine the monitored object. Whether the subject is in motion can be used to identify the autonomous movement of the monitored object.
  • the effect achieved by this embodiment is that when the monitored object is in a state of autonomous movement and the body posture is in an upright state, it means that the monitored object is moving vertically and autonomously, therefore, the state of the monitored object is good,
  • the measurement mode can be adjusted to a discrete measurement mode, and the measured object is measured at a lower measurement frequency.
  • the monitored object it is also possible to stop measuring certain physiological signs of the monitored object or raise the heartbeat alarm threshold, etc.
  • the monitored object is in the recovery period of surgery, but the blood pressure has been Normal, then when the monitored object performs normal outdoor activities, the blood pressure measurement can be temporarily stopped, which can not only ensure the monitoring of the monitored object, but also save power consumption.
  • the monitored object may not be able to move autonomously, or an unexpected situation occurs during the exercise, causing the monitored object to stop moving or sit down. At this time, The measurement mode needs to be adjusted to a continuous measurement mode, and real-time attention is paid to changes in physiological parameters of the monitored object.
  • the measurement mode of the mobile monitoring device is automatically adjusted according to the actual situation of the detected object.
  • Embodiment 2 The difference between this embodiment and Embodiment 2 is that this embodiment also adjusts the measurement mode of the mobile monitoring device according to the position of the monitored object and the posture of the monitored object.
  • the processor 13 is further configured to: obtain the position of the monitored object, and adjust the position of the mobile monitoring device according to the position of the monitored object and the posture of the monitored object Measurement mode.
  • the continuous measurement mode is used to measure it.
  • the measurement mode is further adjusted according to the posture of the monitored object.
  • the processor 13 is further configured to: acquire the link signal strength of the wireless connection of the mobile monitoring device, and determine and determine the location of the monitored object according to the link signal strength.
  • the wireless connection of the mobile monitoring device is a WMTS connection.
  • the link signal strength of the WMTS is less than the preset threshold, the position of the monitored object is determined to be outside the ward; when the link signal strength of the WMTS is greater than or equal to the preset threshold, the position of the monitored object is determined to be within the ward.
  • connection mode of the mobile monitoring device can also be set by comparing the signal strength of different links.
  • the processor 13 is further configured to: acquire the first link signal strength of the mobile monitoring device and the second link signal strength of the mobile monitoring device; compare the first link signal strength and the first The signal strength of the second link is used to obtain a comparison result; according to the comparison result, a wireless connection mode is set and the location of the monitored object is determined.
  • the first link signal is an indoor link signal
  • the second link signal is an outdoor link signal.
  • the processor 13 is further configured to: when the first link signal is greater than the second link signal, set the wireless connection mode of the mobile monitoring device to an indoor communication connection, and determine that the monitored object is indoors, adjust The measurement mode is a continuity measurement mode; when the first link signal is smaller than the second link signal, the wireless connection mode of the mobile monitoring device is set to an outdoor communication connection, and it is determined that the monitored object is outdoors, combined The posture of the monitored object adjusts the measurement mode of the mobile monitoring mode.
  • the determination of the connection method between the mobile monitoring device and the parameter display monitoring device is to determine whether the patient is in the ward, which can be implemented in two ways: the first way, the first link signal is a WMTS signal , The second link signal is a Wifi signal.
  • the Wifi signal is greater than the WMTS signal, set the wireless connection method of the mobile monitoring device to Wifi connection and determine that the patient is outside the ward; when the Wifi signal is less than the WMTS signal, set the wireless connection method of the mobile monitoring device to WMTS connection and set the mobile monitoring
  • the wireless connection of the device is WMTS and the patient is in the ward.
  • the first link signal is an indoor Wifi signal
  • the second link signal is an outdoor Wifi signal.
  • the router corresponding to the indoor Wifi signal is located in the ward. If the indoor Wifi signal is greater than the outdoor Wifi signal, set the wireless of the mobile monitoring device
  • the connection method is indoor Wifi signal connection, and make sure that the patient is in the ward; if the indoor Wifi signal is smaller than the outdoor Wifi signal, set the wireless connection method of the mobile monitoring device to outdoor Wifi signal connection, and make sure that the patient is outside the ward.
  • the mobile monitoring device adopts the continuous measurement mode to measure the patient.
  • connection between the mobile monitoring device and the parameter display monitoring device is an outdoor connection
  • the monitored object is wearing a mobile monitoring device to move outdoors
  • the patient in the recovery period of surgery needs to be properly outside the ward Activities
  • the patient when the patient is outside the ward, further determine his body posture, when the body is in an upright state, it indicates that the monitored object is performing autonomous upright movement outdoors.
  • the measurement mode is switched to the discrete measurement mode, which can not only ensure close attention to the physiological signs of the patient, but also save the measurement power consumption.
  • connection mode of the mobile monitoring device and the parameter display monitoring device is determined by the link signal strength; the location of the monitored object is determined according to the connection mode.
  • the indoor communication connection is a WMTS connection
  • the outdoor communication connection is a Wifi connection.
  • the posture of the monitored object includes body posture and body dynamics. According to the different order of determining the body posture and body dynamics, the following three cases will be described.
  • the processor 13 is configured to: set the wireless connection mode of the mobile monitoring device to Wifi connection, determine that the monitored object is outdoors, and combine the monitored object Adjust the measurement mode of the mobile monitoring mode.
  • adjusting the measurement mode of the mobile monitoring mode in conjunction with the posture of the monitored object includes: when the body dynamics of the monitored object is at rest, adjusting the measurement mode of the mobile monitoring device to a continuous measurement mode ; When the body dynamics of the monitored object is in a motion state, adjust the measurement mode of the mobile monitoring device in combination with the body posture.
  • adjusting the measurement mode of the mobile monitoring device in combination with the body posture includes: when determining that the body posture is upright, The measurement mode is adjusted to a discrete measurement mode; when it is determined that the body posture is lying sideways or lying down, the measurement mode of the mobile monitoring device is adjusted to a continuous measurement mode.
  • the processor 13 is used to adjust the measurement mode of the mobile monitoring mode in combination with the posture of the monitored object.
  • the measuring mode for adjusting the mobile monitoring mode in combination with the posture of the monitored object further includes: when the body posture of the monitored object is in a side lying state or a lying state, the The measurement mode is adjusted to a continuous measurement mode; when the body posture of the monitored object is in an upright state, the measurement mode is determined in conjunction with the body dynamics of the monitored object.
  • determining the measurement mode in combination with the body dynamics of the monitored object includes: when the body dynamics of the monitored object are in a motion state, determining the measurement mode as discrete Sex measurement mode; when the body dynamics of the monitored object is at rest, it is determined that the measurement mode is a continuous measurement mode.
  • the body dynamics and body posture are determined simultaneously.
  • the processor 13 is used to adjust the measurement mode of the mobile monitoring device to a discrete measurement mode when the body dynamics of the monitored object are in a moving state and the body posture is upright; when the body dynamics of the monitored object When it is in a static state or the body posture is lying on its side or lying down, the measurement mode of the mobile monitoring device is adjusted to a continuous measurement mode.
  • this embodiment further adjusts the measurement mode of the mobile monitoring device in combination with the position of the monitored object and the posture of the monitored object. By judging the location or place of the patient and the patient's movement status, it is determined whether to switch the measurement mode of the mobile monitoring device, so that the intelligent switching of the measurement mode can be realized in the field of mobile monitoring to meet the usage requirements in multiple scenarios.
  • This embodiment can further distinguish the situation that the monitored object is located indoors for rehabilitation exercise and the like, and when the monitored object is exercising indoors, perform a continuous measurement mode on the physiological parameters of the monitored object. Similar to the second embodiment, the method of this embodiment is used to determine the movement state.
  • the movement state in this application is Yu characterizes the upright movement of the monitored object autonomously.
  • the purpose achieved by this embodiment is that when the monitored object is in an outdoor state of autonomous exercise and the body posture is in an upright state, it means that the monitored object can perform an autonomous exercise outdoors in an upright state.
  • the measurement mode is adjusted to discrete measurement mode. In addition to other situations, for example, the monitored object is indoors, regardless of its body posture and body dynamics, a continuity measurement mode is required.
  • the measurement mode needs to be adjusted to continuous Sexual measurement mode, real-time attention to changes in physiological parameters of the monitored object. Further, if the monitored object is lying or lying down outdoors, it is also possible that the monitored object may not be able to exercise autonomously, or the patient falls due to an unexpected situation during the exercise. The mode is adjusted to a continuous measurement mode, and real-time attention is paid to changes in physiological parameters of the monitored object. Through the above method, the measurement mode of the mobile monitoring device is automatically adjusted more accurately according to the actual situation of the detected object.
  • the mobile monitor and the bedside monitor are connected by WMTS, so the mobile monitor at this time It is in continuous measurement mode; when the patient walks out of the room and walks outdoors or fetches water for meals, the connection between mobile monitoring and bedside monitor changes from WMTS connection to WiFi connection, and the patient is detected to be in motion and the body In the upright state, the measurement mode of the mobile monitoring device is switched from continuous measurement to discrete measurement mode. If the patient is pushed out from the room to the outside by the medical staff or family members in a wheelchair, the processor will determine that the patient is at rest.
  • the measurement mode of the mobile monitoring device is also the continuous measurement mode because the processor determines that the patient's posture is not upright.
  • the processor determines that the patient's posture is not upright.
  • the mobile monitoring device can provide effective physiological state monitoring during the patient's gradual recovery without affecting the patient's daily activities. And for different patient usage scenarios, mobile monitoring equipment can intelligently switch between different measurement modes to achieve the goal of low power consumption and low false alarm.
  • the above mobile monitoring measurement method is implemented in the form of a software functional module and sold or used as an independent product, it can also be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium and includes several instructions for A computer device (which may be a personal computer, server, or network device, etc.) executes all or part of the methods described in the embodiments of the present application.
  • the foregoing storage media include various media that can store program codes, such as a U disk, a mobile hard disk, a read-only memory (ROM, Read Only Memory), a magnetic disk, or an optical disk. In this way, the embodiments of the present application are not limited to any specific combination of hardware and software.
  • an embodiment of the present application further provides a computer storage medium on which computer-executable instructions are stored.
  • the computer-executable instructions are executed by a processor, the mobile monitoring measurement method provided in the above embodiments is implemented A step of.
  • FIG. 5 is a schematic flowchart of an implementation of a mobile monitoring measurement method according to an embodiment of the present application. As shown in FIG. 5, the method is applied to a mobile monitoring device, and the mobile monitoring device is used to To measure the physiological sign parameters and/or non-physiological sign parameters of the monitored object, the method includes the following steps:
  • Step S501 Measure the physiological signs of the monitored object.
  • the mobile monitoring device is used to measure the physiological sign parameters and/or non-physiological sign parameters of the monitored object.
  • the monitored object can be a patient or anyone who needs to be monitored;
  • the physiological sign parameters include at least blood pressure parameters and blood oxygen One of parameters, ECG parameters and breathing parameters.
  • Step S502 Obtain the motion parameters of the monitored object.
  • the exercise parameters are included in the non-physiological sign parameters.
  • the non-physiological sign parameters include at least: sleep parameters, pain parameters, and exercise parameters.
  • the exercise parameters may be the movement acceleration of the monitored object.
  • the step S502 can be understood as: acquiring the acceleration of the monitored object from an accelerometer located in the mobile monitoring device; in one embodiment, the accelerometer is built into the pre-sampling circuit.
  • the number of accelerometers may be several. When the number of accelerometers is one, it is located on the torso of the monitored object, for example, clamped on the collar of the monitored object. There are multiple accelerometers, which are located on the torso and limbs of the monitoring object.
  • the motion parameters of more parts can be collected, so that the subsequent judgment result is more accurate.
  • placing an accelerometer on the wrist of the monitored object, a neck, a waist, etc. through multiple accelerometers to perform integrated calculations, to more accurately determine the motion state of the monitored object; thus the acceleration on the patient's torso
  • the gage is used to monitor body posture and dynamics.
  • the accelerometer on the patient's limbs is mainly used to monitor body dynamics, which helps to determine body dynamics, thereby improving the accuracy of body dynamics judgment. Understandably, since the accelerometer is installed on the upper body of the monitored object, the upright state in this application is used to characterize that the upper body of the monitored object is in the upright state.
  • the upright state in this application includes a standing state and a sitting state.
  • Step S503 Determine the posture of the monitored object according to the motion parameter.
  • Step S504 Adjust the measurement mode of the mobile monitoring device according to the posture of the monitored object.
  • adjusting the measurement mode of the mobile monitoring device according to the posture of the monitored object includes obtaining a measurement frequency according to the posture of the monitored object, querying the corresponding measurement mode by the measurement frequency, and adjusting the corresponding measurement mode to The measurement mode of the mobile monitoring device; or the measurement mode is directly obtained by the posture of the monitored object, and the measurement mode is divided according to different measurement frequencies.
  • Step S505 Control the mobile monitoring device to perform measurement on the monitored object according to the measurement mode.
  • steps S503 and S504 according to different embodiments.
  • Step S503 Determine the posture of the monitored object according to the motion parameter.
  • the posture of the monitored object includes standing, lying down, and lying down.
  • the step S503 can be understood as determining whether the monitored object is lying down, lying down, or standing upright according to motion parameters, such as acceleration.
  • Step S504 Adjust the measurement mode of the mobile monitoring device according to the posture of the monitored object.
  • step S504 further includes: when it is determined that the body posture is upright, adjusting the measurement mode of the mobile monitoring device to a discrete measurement mode; when it is determined that the body posture is lying sideways or lying down, Adjusting the measurement mode of the mobile monitoring device to a continuous measurement mode.
  • the mobile monitoring device can directly adjust the measurement mode according to whether the monitored object is lying on its side, lying down, or upright.
  • the monitored object is in an upright state, the monitored object is in good condition, and the measurement mode is adjusted to the discrete measurement mode.
  • the posture of the monitored object includes the body posture and body dynamics of the monitored object; wherein, the body posture includes standing, lying down, and lying down; and the body dynamics include the motion state and the resting state.
  • the step S503 may be understood as: judging whether the monitored object is moving according to motion parameters, such as acceleration, and determining whether the monitored object is lying on its side, lying down, or upright.
  • step S503 further includes determining the body posture and body dynamics of the monitored object.
  • the method for determining the body posture of the monitored object is the same as that described in Embodiment 1, and will not be repeated here. The following describes the method of determining body dynamics.
  • the amplitude of the acceleration can be calculated using formula (1).
  • the patient can be judged to be in a moving state, otherwise it is in a stationary state.
  • the order of determining the body posture and body state of the monitored object is not limited.
  • step S504 further includes: when the body dynamics of the monitored object are in a motion state, adjusting the body position of the mobile monitoring device in conjunction with the body posture Measurement mode; when the body dynamics of the monitored object is at rest, adjust the measurement mode of the mobile monitoring device to a continuous measurement mode.
  • adjusting the measurement mode of the mobile monitoring device in combination with the body posture includes: when determining that the body posture is upright, The measurement mode is adjusted to a discrete measurement mode; when it is determined that the body posture is lying sideways or lying down, the measurement mode of the mobile monitoring device is adjusted to a continuous measurement mode.
  • the measurement mode is adjusted to a continuous measurement mode.
  • the detected object is in a moving state and is in an upright posture, it means that the detected object is in good physical condition and does not require continuous detection, so the measurement mode is adjusted to a discrete measurement mode.
  • step S504 further includes: when the body posture of the monitored object is in a side lying state or a lying state, Adjusting the measurement mode of the mobile monitoring device to a continuous measurement mode; when the body posture of the monitored object is in an upright state, the measurement mode is determined in conjunction with the body dynamics of the monitored object.
  • determining the measurement mode in combination with the body dynamics of the monitored object includes: when the body dynamics of the monitored object are in a motion state, determining the measurement mode as discrete Measurement mode; when the body dynamics of the monitored object is at rest, it is determined that the measurement mode is a continuous measurement mode.
  • step S504 further includes: when the body motion of the monitored object is in a motion state and the body posture is upright, the mobile monitoring device The measurement mode of is adjusted to a discrete measurement mode; when the body dynamics of the monitored object is at rest or the body posture is lying sideways or lying down, the measurement mode of the mobile monitoring device is adjusted to a continuous measurement mode.
  • the measurement mode of the mobile monitoring device is automatically adjusted according to the actual situation of the detected object.
  • the measurement mode of the mobile monitoring device is also adjusted according to the position of the monitored object and the posture of the monitored object.
  • step S504 further includes: acquiring the position of the monitored object, and adjusting the measurement mode of the mobile monitoring device according to the position of the monitored object and the posture of the monitored object.
  • the continuous measurement mode is used to measure it.
  • the measurement mode is further adjusted according to the posture of the monitored object.
  • step S504 further includes: acquiring the link signal strength of the wireless connection of the mobile monitoring device, and judging and determining the location of the monitored object according to the link signal strength.
  • the wireless connection of the mobile monitoring device is a WMTS connection. At this time, it is determined whether the monitored object is outdoor or indoor according to the link signal strength of the WMTS. When the link signal strength of the WMTS is less than the preset threshold, it is determined that the position of the monitored object is outside the ward.
  • connection mode of the mobile monitoring device can also be determined through the comparison of different link signal strengths.
  • Step S504 further includes: acquiring the first link signal strength of the mobile monitoring device and the second link signal strength of the mobile monitoring device; comparing the first link signal strength and the second link signal Intensity, obtain the comparison result; set the wireless connection mode according to the comparison result; determine the location of the monitored object according to the wireless connection mode.
  • the first link signal is an indoor link signal
  • the second link signal is an outdoor link signal.
  • the wireless connection mode of the mobile monitoring device When the first link signal is greater than the second link signal, set the wireless connection mode of the mobile monitoring device to indoor communication connection, determine that the monitored object is indoors, and adjust the measurement mode to a continuous measurement mode; When the first link signal is smaller than the second link signal, the wireless connection mode of the mobile monitoring device is set to outdoor communication connection, and it is determined that the monitored object is outdoors, and adjusted according to the posture of the monitored object Measurement mode for mobile monitoring mode.
  • the judgment of the connection method between the mobile monitoring device and the parameter display monitoring device is to determine whether the patient is in the ward, and can be implemented in two ways: First, the first link signal is a WMTS signal, and The second link signal is a Wifi signal. When the Wifi signal is greater than the WMTS signal, set the wireless connection method of the mobile monitoring device to Wifi connection and determine that the patient is outside the ward; when the Wifi signal is less than the WMTS signal, set the wireless connection method of the mobile monitoring device to WMTS connection and set the mobile monitoring The wireless connection of the device is WMTS and the patient is in the ward.
  • the first link signal is a WMTS signal
  • the second link signal is a Wifi signal.
  • the second is: the first link signal is the indoor Wifi signal, the second link signal is the outdoor Wifi signal, the router corresponding to the indoor Wifi signal is located in the ward, if the indoor Wifi signal is greater than the outdoor Wifi signal, the wireless connection method of the mobile monitoring device is set For indoor Wifi signal connection, make sure that the patient is in the ward; if the indoor Wifi signal is smaller than the outdoor Wifi signal, set the wireless connection method of the mobile monitoring device to be the outdoor Wifi signal connection, then the patient is outside the ward.
  • the mobile monitoring device adopts the continuous measurement mode to measure the patient.
  • connection between the mobile monitoring device and the parameter display monitoring device is an outdoor connection
  • the monitored object is wearing a mobile monitoring device to move outdoors, for example, the patient in the recovery period of surgery needs to be properly outside the ward Activities
  • the mobile monitoring device is switched from the original continuous measurement mode to the discrete measurement mode, this way, both Can ensure close attention to the patient's physiological signs parameters, and can also save measurement power consumption.
  • connection mode of the mobile monitoring device and the parameter display monitoring device is determined by the link signal strength; the location of the monitored object is determined according to the connection mode.
  • the indoor communication connection is a WMTS connection
  • the outdoor communication connection is a Wifi connection.
  • the posture of the monitored object includes body posture and body dynamics.
  • the wireless connection mode is a WIFI connection, and it is determined that the monitored object is outdoors, and the measurement mode of the mobile monitoring mode is adjusted according to the posture of the monitored object, further including: when the body dynamics of the monitored object is in a motion state , The measurement mode of the mobile monitoring device is adjusted in conjunction with the body posture; when the body dynamics of the monitored object is at rest, the measurement mode of the mobile monitoring device is adjusted to a continuous measurement mode.
  • adjusting the measurement mode of the mobile monitoring device in combination with the body posture includes: when determining that the body posture is upright, The measurement mode is adjusted to a discrete measurement mode; when it is determined that the body posture is lying sideways or lying down, the measurement mode of the mobile monitoring device is adjusted to a continuous measurement mode.
  • adjusting the measurement mode of the mobile monitoring mode in combination with the posture of the monitored object includes: when the monitored When the body posture of the subject is lying sideways or lying down, the measurement mode of the mobile monitoring device is adjusted to a continuous measurement mode; when the body posture of the monitored subject is upright, then the monitored The subject's body dynamics determines the measurement mode.
  • determining the measurement mode in combination with the body dynamics of the monitored object includes: determining the measurement mode when the body dynamics of the monitored object is in a sports state It is a discrete measurement mode; when the body dynamics of the monitored object is at rest, it is determined that the measurement mode is a continuous measurement mode.
  • the wireless connection mode of the mobile monitoring device is a WIFI connection
  • the monitored object is outdoors
  • the measurement mode of the mobile monitoring device is adjusted according to the posture of the monitored object, including: When the body dynamics of the monitored object are in a motion state and the body posture is upright, adjust the measurement mode of the mobile monitoring device to a discrete measurement mode; when the body dynamics of the monitored object are in a stationary state or the body posture is When lying sideways or lying down, the measurement mode of the mobile monitoring device is adjusted to a continuous measurement mode.
  • FIG. 6 is a schematic flowchart of another implementation of a measurement method of a mobile monitoring device according to an embodiment of the present application. As shown in FIG. 6, the method includes the following steps:
  • Step S601 Determine whether the mobile monitor and the bedside monitor are connected via WiFi
  • step S905 if the mobile monitoring and the bedside monitor are not connected via WiFi, proceed to step S905; if the mobile monitoring and the bedside monitor are connected via WiFi, proceed to step S902.
  • Step S602 Determine whether the patient is in motion according to the amplitude of the acceleration measured by the accelerometer.
  • the amplitude of the acceleration in formula (1) is greater than the set threshold, it is determined that the patient is in a moving state, otherwise the patient is in a stationary state. If the patient is in motion, go to step S903; if the patient is not in motion, go to step S905.
  • step S603 according to the angle between the acceleration direction and the x-axis, y-axis, and z-axis directions, it is determined whether the patient is in an upright posture.
  • step S904 when the angle between the acceleration direction in the formula (2) and the positive direction of the z-axis is the smallest, it is determined that the patient is in an upright state. If the patient's body posture is in an upright posture, go to step S904; if the patient's body posture is not in an upright posture, go to step S905.
  • Step S604 Switch the measurement mode of the mobile monitoring device to the discrete measurement mode.
  • ECG electrocardiogram
  • Step S605 Switch the measurement mode of the mobile monitoring device to the continuity measurement mode.
  • the continuous measurement mode refers to real-time measurement and monitoring of the patient's physiological state, and at the same time, the alarm threshold and alarm strategy are set by the medical staff or the system default threshold and strategy.
  • the mobile monitoring is in the continuous measurement mode, the measured parameters are returned to the bedside monitor in real time.
  • the mobile monitoring device can provide effective physiological state monitoring during the patient's gradual recovery without affecting the patient's daily activities. And for different patient usage scenarios, mobile monitoring equipment can intelligently switch between different measurement modes to achieve the goal of low power consumption and low false alarm.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a division of logical functions.
  • the displayed or discussed components are coupled to each other, or directly coupled, or the communication connection may be through some interfaces, and the indirect coupling or communication connection of the device or unit may be electrical, mechanical, or other forms of.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units; they may be located in one place or distributed to multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.

Abstract

一种移动监护测量方法,应用于移动监护设备,包括:测量被监测对象的生理体征参数(S501),生理体征参数至少包括血压参数、血氧参数、心电参数和呼吸参数之一;获取所述被监测对象的运动参数(S502);根据所述运动参数确定所述被监测对象的姿态(S503);根据所述被监测对象的姿态调整所述移动监护设备的测量模式(S504);控制所述移动监护设备执行根据所述测量模式对被监测对象进行测量(S505)。

Description

移动监护测量方法、移动监护设备、系统和存储介质 技术领域
本申请涉及医疗和检测领域,涉及但不限于移动监护测量方法、移动监护设备、系统和存储介质。
背景技术
在一些科室,病人不需要一直呆在室内,而是可以进行适当的室外活动,如散步、打水打饭等。在这种情况下,为了实现对病人生理状态的检测,移动监护被广泛应用。为了适应病人在室内室外等不同的使用场景,移动监护需要根据情况调整生理信号测量模式,以达到降低功耗、降低误报警的目的。
当病人呆在室内时,移动监护与床边监护仪通过无线医疗遥测服务(Wireless Medical Telemetry Services,WMTS)方式连接;而当病人处于室外时,移动监护与床边监护仪将通过无线保真(Wireless Fidelity,WiFi)的方式连接,因此目前的移动监护通过检测与床边监护仪的连接状态来确定病人是处于室内还是室外。在相关技术中,当病人处于室内时,移动监护设备的测量模式为连续测量模式;当病人处于室外时,移动监护设备的测量模式为离散性测量模式。这种方法在某些情景下,将会发生错误的测量模式切换,导致对病人生理状态监测不够及时。比如,当病人不是主动的走出房间,而是坐在轮椅上被推出去或者躺在担架上被抬出去时,此时病人的身体状态仍然较差,移动监护设备的测量模式仍然应该处于连续测量模式,密切关注病人生理状态。
发明内容
有鉴于此,本申请实施例期望提供移动监护测量方法、移动监护设备、 系统和存储介质,通过对病人运动状态进行判断,并与移动监护和床边监护仪的连接状态相结合,从而可以在移动监护领域实现测量模式的智能化切换,满足多场景下的使用需求。
本申请实施例的技术方案是这样实现的:
本申请实施例提供一种移动监护测量方法,应用于移动监护设备,所述方法包括:
测量被监测对象的生理体征参数,生理体征参数至少包括血压参数、血氧参数、心电参数和呼吸参数之一;
获取所述被监测对象的运动参数;
根据所述运动参数确定所述被监测对象的姿态;
根据所述被监测对象的姿态调整所述移动监护设备的测量模式;
控制所述移动监护设备执行根据所述测量模式对被监测对象进行测量。
本申请实施例提供一种移动监护设备,所述移动监护设备包括主机,所述主机用于:
测量被监测对象的生理体征参数,生理体征参数至少包括血压参数、血氧参数、心电参数和呼吸参数之一;
获取所述被监测对象的运动参数;
根据所述运动参数确定所述被监测对象的姿态;
根据所述被监测对象的姿态调整所述移动监护设备的测量模式;
控制所述移动监护设备执行根据所述测量模式对被监测对象进行测量。
本申请实施例提供一种移动监护系统,所述系统包括:
移动监护设备、参数显示监护设备和中央监护站,其中,
所述移动监护设备,用于测量被监测对象的生理体征参数和/或非生理体征参数;
所述移动监护设备包括主机,所述主机用于
测量被监测对象的生理体征参数,生理体征参数至少包括血压参数、 血氧参数、心电参数和呼吸参数之一;
获取所述被监测对象的运动参数;
根据所述运动参数确定所述被监测对象的姿态;
根据所述被监测对象的姿态调整所述移动监护设备的测量模式;
控制所述移动监护设备执行根据所述测量模式对被监测对象进行测量。
本申请实施例提供一种存储介质,所述存储介质中存储有程序,所述程序被处理器执行时实现如上所述的移动监护测量方法的步骤。
本申请实施例提供移动监护测量方法、移动监护设备、系统和存储介质,其中,首先,测量被监测对象的生理体征参数,生理体征参数至少包括血压参数、血氧参数、心电参数和呼吸参数之一;然后,获取所述被监测对象的运动参数;根据所述运动参数确定所述被监测对象的姿态;最后,根据所述被监测对象的姿态调整所述移动监护设备的测量模式;控制所述移动监护设备执行根据所述测量模式对被监测对象进行测量;如此,通过对病人运动状态进行判断,并与移动监护和床边监护仪的连接状态相结合,从而可以在移动监护领域实现测量模式的智能化切换,满足多场景下的使用需求。
附图说明
图1为本申请实施例中移动监护设备的结构示意图;
图2为本申请实施例中移动监护设备的结构示意图;
图3为本申请实施例移动监护系统结构示意图;
图4为本申请实施例三维矢量加速度的方向图;
图5为本申请实施例移动监护测量方法的实现流程示意图;
图6为本申请实施例移动监护设备的测量方法的另一实现流程示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对发明的具体技术方案做进一步详细描述。以下实施例用于说明本申请,但不用来限制本申请的范围。
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”等是用于区别不同对象,而非用于描述特定顺序。此外,术语“包括”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
说明书后续描述为实施本申请的较佳实施例,然所述描述乃以说明本申请的一般原则为目的,并非用以限定本申请的范围。本申请的保护范围当视所附权利要求所界定者为准。
本申请实施例提供一种移动监护设备,所述移动监护设备用于测量被监测对象的生理体征参数和/或非生理体征参数;为了更好的理解本发明,本实施例对移动监护设备进行解释,如图1所示,移动监护设备10包括:第一参数测量模块11,用于测量被监测对象的生理体征参数,生理体征参数至少包括血压参数、血氧参数、心电参数和呼吸参数之一;第二参数测量模块12,用于获取所述被监测对象的运动参数;处理器13,用于根据所述运动参数确定所述被监测对象的姿态;根据所述被监测对象的姿态调整所述移动监护设备的测量模式;控制所述移动监护设备执行根据所述测量模式对被监测对象进行测量。其中,处理器13分别与第一参数测量模块11和第二参数测量模块12连接,生理特征参数和运动参数均直接发给处理器13。
在本实施例中,结合图1,参见图2所示,第一参数测量模块11包括 参数测量线缆120、前置采样电路130、至少三个电极片连接器140、与电极片连接器140一一对应设置的心电电极片150和血氧探头160。所述电极片连接器140用于夹持心电电极片150,每个心电电极片150用来贴到病人身体的某一部位以测量该部位的心电信号。前置采样电路130包括抗除颤电路132和体温测量电路。抗除颤电路132用于在必要时为病人心脏除颤以恢复正常的心脏跳动时避免ECG检测系统受损的保护电路。第二参数测量模块12包括加速度计131,加速度计131内置于所述前置采样电路130中,内置有加速度计131的前置采样电路133可夹在病人的衣领上。心电电极片150和血氧探头160测量到的生理特征参数,以及加速度计131测量到的运动参数分别传输到处理器13,处理器13根据所述运动参数确定所述被监测对象的姿态;根据所述被监测对象的姿态调整所述移动监护设备的测量模式;控制所述移动监护设备执行根据所述测量模式对被监测对象进行测量。处理器13位于穿戴式生理参数监测装置110内,或连接在穿戴式生理参数监测装置110上。穿戴式生理参数监测装置110连接于所述参数测量线缆120的一端,并与血氧探头160相连接。参数测量线缆120从靠近所述穿戴式生理参数监测装置110的一端到远离所述穿戴式生理参数监测装置110的一端上依次串设有所述抗除颤电路132和所述至少三个电极片连接器140。可以理解地,处理器13还可以位于与穿戴式生理参数监测装置110通信连接的外部设备中,用于接收从穿戴式生理参数监测装置110处传输来的生理体征参数和运动参数,外部设备包括但不限于床边监护仪或中央站。可以理解地,在本申请的其他实施例中,加速度计131还可以为其他运动传感器,例如,速度传感器,只要其可以获取用于判断运动状态的参数即可,在此不做限定。
图3为本申请实施例移动监护系统结构示意图,结合图1、图2,参见图3所示,移动监护设备10通过WMTS或Wifi方式与床边监护仪32相连,床边监护仪32的信息能够集中在中央监护站33进行汇总和显示。当病人 在室内的时候,移动监护设备10将采集到的病人的血氧、血压、心电等生理体征参数发送给床边监护仪32;如果病人在室外,移动监护设备10优先采集到的病人的血氧、血压、心电等参数发送给床边监护仪32,但是如果发送失败,那么将采集到的病人的血氧、血压、心电等参数发送给中央监护站33,这种情况下,床边监护仪32上将不会出现这一时刻移动监护设备10将采集到的病人的血氧、血压、心电等生理体征参数。这里,无论移动监护设备10处于哪种测量模式,移动监护设备10均将测量到的生理体征参数实时的返回给床边监护仪32,如果移动监护设备10将测量到的生理体征参数发送给床边监护仪32时,床边监护仪32接收失败,那么移动监护设备10将测量到的生理体征参数反馈给中央监护站33;这样保证了病人的生理体征参数得以保存,以供后续查看
这里,移动监护设备10用于测量被监测对象的生理体征参数和/或非生理体征参数,被监测对象可以是病人,也可以是任何需要被监测的人;生理体征参数至少包括血压参数、血氧参数、心电参数和呼吸参数之一。运动参数包含于非生理体征参数,非生理体征参数至少包括:睡眠参数、疼痛参数和运动参数等,运动参数可以是被监测对象的运动加速度等。从位于移动监护设备10中的加速度计131上获取所述被监测对象的加速度;加速度计131的个数可以为若干个,当加速度计131的个数为一个时,位于所述被监测对象的躯干上,例如,夹在被监测对象的衣领上。加速度计131的个数为多个,位于所述监测对象的躯干和四肢上。当加速度计131的个数为多个时,可以采集更多部位的运动参数,使得后续判定结果更加准确。可以理解地,由于加速度计131安装在被监测对象的上半身上,因此,本申请中的直立状态用于表征被监测对象的上半身处于直立状态,本申请中的直立状态包括站立状态和坐立状态。
具体地,处理器13根据被监测对象的姿态调整移动监护设备10的测量模式包括:根据被监测对象的姿态获取测量频率,根据测量频率查询对 应的测量模式,将该对应的测量模式调整为移动监护设备的测量模式。其中,测量模式根据不同测量频率设置。移动监护设备10的测量模式至少包括:连续性测量模式和离散性测量模式,其中:连续性测量模式为所述移动监护设备以预设的第一测量频率对被监测对象进行测量;离散性测量模式为移动监护设备以预设的第二测量频率对被监测对象进行测量;第一测量频率大于所述第二测量频率。在本申请的另一实施例中,连续性测量模式为所述移动监护设备以预设的第一测量频率对所述被监测对象进行测量;所述离散性测量模式为所述移动监护设备以预设的第二测量频率对所述被监测对象的心电和/或血氧进行测量,以第三测量频率对所述被监测对象的呼吸和/或血压进行测量;其中,所述第一测量频率大于所述第二测量频率,所述第三测量频率为零。可以理解地,在该实施例中的离散性测量模式下,移动监护将降低心电信号和血氧信号的测量频率,并停止呼吸、无创血压等参数的测量。同时,移动监护设备的心电图(electrocardiogram,ECG)报警阈值和血氧报警阈值也会进行相应的放宽。通过以上设置,使得移动监护设备可以根据被监测对象的姿态对应地选择测量频率,然后根据测量频率查到对应的测量模式,再将移动监护设备调整到该模式下对生理参数进行测量,使得移动监护设备可以根据被监测对象的姿态自适应地调整测量频率,通过姿态反应病人状态,从而可以在病人状态较好时,采用离散性测量模式,在病人状态较差时,及时对病人生理状态进行实时监测。
实施例一
结合图1所示,在本实施例中,处理器13根据运动参数确定所述被监测对象的姿态。
在本实施例中,被监测对象的姿态包括站立、侧躺和平躺,处理器13根据运动参数,比如加速度,判断被监测对象是侧躺、平躺还是直立状态。
在本实施例中,所述运动参数为加速度。对应地,处理器13根据加速度确定所述被监测对象的身体姿势。具体地,由于加速度计为三轴加速度 计,其中,x,y,z分别是加速度计三个轴方向的加速度大小。结合图1,如图4所示,加速度计测量得到的加速度为三维矢量参数,三维矢量参数的x轴正方向为垂直于所述被监测对象501冠状面向前的方向,三维矢量参数的y轴正方向为垂直于所述被监测对象501的矢状面向右的方向,三维矢量参数的z轴正方向为垂直于水平面向下的方向,利用公式(1)对加速度计的幅值进行计算:
Figure PCTCN2018125789-appb-000001
这里,其中,x,y,z分别是加速度计三个轴方向的加速度大小。进一步地,根据所述第二加速度和所述加速度的幅值,确定第二夹角,所述第二夹角为所述加速度的方向与y轴方向的夹角;根据所述第三加速度和所述加速度的幅值,确定第三夹角,第三夹角为所述加速度的方向与z轴方向的夹角;根据所述第一夹角、第二夹角和第三夹角,确定所述被监测对象的身体姿势。
如公式(2)所示,可以计算出加速度计的加速度方向与三个轴向的夹角:
Figure PCTCN2018125789-appb-000002
在公式(2)中,首先,根据所述第一加速度和所述加速度的幅值,确定第一夹角,所述第一夹角为所述加速度的方向与x轴方向的夹角(即夹角θ x);根据所述第二加速度和所述加速度的幅值,确定第二夹角,所述第二夹角为所述加速度的方向与y轴方向的夹角(即夹角θ y);根据所述第三加速度和所述加速度的幅值,确定第三夹角,所述第三夹角为所述加速度的方向与z轴方向的夹角(即夹角θ z);然后,判断第一夹角、第二夹角和 第三夹角谁最小,如果第一夹角为所述第一夹角、第二夹角和第三夹角中最小的夹角,确定所述被监测对象的身体姿态为平躺状态;如果第二夹角为所述第一夹角、第二夹角和第三夹角中最小的夹角,确定所述被监测对象的身体姿态为侧躺状态;如果第三夹角为所述第一夹角、第二夹角和第三夹角中最小的夹角,确定所述被监测对象的身体姿态为直立状态;如此,判断出病人是处于直立状态、侧躺状态还是平躺状态。
处理器13进一步根据所述被监测对象的姿态调整所述移动监护设备的测量模式。
在本实施例中,当确定身体姿态为直立时,处理器13调整所述移动监护设备10的测量模式为离散性测量模式;当确定所述身体姿态为侧躺或平躺时,处理器13调整所述移动监护设备10的测量模式为连续性测量模式。
在本实施例中,移动监护设备10可以直接根据被监测对象处于侧躺、平躺还是直立状态调整测量模式。当被监测对象处于直立状态时,被监测对象状态良好,调整测量模式为离散性测量模式;当被监测对象处于侧躺或平躺状态的时候,表明被监测对象状态较差或者出现摔倒等情况,调整测量模式为连续性测量模式。
实施例二
在本实施例中,被监测对象的姿态包括所述被监测对象的身体姿势和身体动态;其中,身体姿势包括直立、侧躺和平躺;身体动态包括运动状态和静止状态。
结合图1所示,处理器13进一步用于根据运动参数,比如加速度,判断被监测对象是否正在运动以及判断被监测对象是侧躺、平躺还是直立状态。
具体地,处理器13进一步用于确定被监测对象的身体姿势和身体动态。在本实施例中,确定被监测对象的身体姿势是侧躺、平躺还是直立的方法 与实施例一中介绍的相同,在此不再赘述。下面对确定身体动态的方法进行介绍。
由于加速度计为三轴加速度计,因此在处理器13中可以利用公式(1)对加速度的幅值进行计算,当幅值大于设定的阈值时,可以判断病人处于运动状态,否则处于静止状态。
Figure PCTCN2018125789-appb-000003
比如,预设阈值是1.2,如果该加速度的幅值大于1.2,说明该被监测对象正在运动,即处于运动状态;如果该加速度的幅值小于1.2,且接近0,说明该被监测对象基本没有运动,即处于静止状态;在本实施例中,所谓静止状态也可以是被监测对象运动幅度很小,比如微微晃动等。优选地,还可以设定预设时间段,加速度幅值大于阈值的持续时间长度超过预设时间段时,判定被监测对象处于运动状态。在这种情况下,加速度幅值虽然大于阈值,但是其持续时间长度小于预设时间段时,仍然判定被监测对象处于静止状态。在本实施例中,通过加速度的幅值确定被监测对象的身体动态,通过如实施例一中所描述的第一夹角、第二夹角和第三夹角确定被监测对象的身体姿势。
确定被监测对象的身体姿势和身体状态的顺序不做限定。
第一种情况,先确定被监测对象的身体动态,后判断被监测对象的身体姿势。此时,处理器13进一步用于:当所述被监测对象的身体动态为静止状态时,将所述移动监护设备的测量模式调整为连续性测量模式;当所述被监测对象的身体动态为运动状态时,结合所述身体姿势调整所述移动监护设备的测量模式。其中,当所述被监测对象的身体动态为运动状态时,结合所述身体姿势调整所述移动监护设备的测量模式,包括:当确定所述身体姿态为直立时,将所述移动监护设备的测量模式调整为离散性测量模式;当确定所述身体姿态为侧躺或平躺时,将所述移动监护设备的测量模 式调整为连续性测量模式。这里,如果被检测对象是处于运动状态且为直立姿势,说明被监测对象的身体状况较好,能够自主进行直立活动,不需要连续性的检测,所以将测量模式调整为离散性测量模式。
第二种情况,先确定被监测对象的身体姿势,后判断被监测对象的身体动态。此时,处理器13用于:当所述被监测对象的身体姿势为侧躺状态或者平躺状态时,将所述移动监护设备的测量模式调整为连续性测量模式;当所述被监测对象的身体姿势为直立状态时,结合所述被监测对象的身体动态确定测量模式。其中,当所述被监测对象的身体姿势为直立状态时,结合所述被监测对象的身体动态确定测量模式包括:当所述被监测对象的身体动态为运动状态时,确定测量模式为离散性测量模式;当所述监测对象的身体动态为静止状态时,确定测量模式为连续性测量模式。
第三种情况,同时确定被监测对象的身体姿势和身体动态。此时,处理器13用于:当所述被监测对象的身体动态为运动状态且身体姿态为直立时,将所述移动监护设备的测量模式调整为离散性测量模式;当所述被监测对象的身体动态为静止状态或身体姿态为侧躺或平躺时,将所述移动监护设备的测量模式调整为连续性测量模式。
可以理解地,当被监测对象被动被推出病房时,其躯干不会出现明显地加速度幅值的波动,因此,本实施例通过位于被监测对象躯干上的加速度计来判断运动幅度进而判定被监测对象是否处于运动状态的方式可以用于鉴别被监测对象的自主运动。本实施例所达到的效果是,当被监测对象处于自主运动状态且身体姿势当被监测对象处于直立状态的时候,说明被监测对象是直立地自主运动的,因此,被监测对象的状态良好,可以将测量模式调整为离散性测量模式,以较低的测量频率为被监测对象进行测量。进一步地,还可以根据该被监测对象的具体情况,停止对该被监测对象的某些生理体征参数的测量或者提高心跳报警阈值等,比如,该被监测对象处于手术恢复期,但是血压一直是正常的,那么当该被监测对象进行室外 正常活动时,就可以暂时停止对血压的测量,这样既可以保证对被监测对象的监护,还可以节省功耗。除此之外的其他情况,例如,被监测对象处于静止状态,则被监测对象也许还不能自主运动,或是运动过程中发生突发情况,造成被监测对象停止运动或者坐下,此时,测量模式需要调整成连续性测量模式,实时关注被监测对象的生理参数变化。若被监测对象为侧躺或平躺,也同样的可能是被监测对象也许还不能自主运动,或是运动过程中发生突发情况造成病人摔倒等情况,也需要将测量模式调整成连续性测量模式,实时关注被监测对象的生理参数变化。通过以上方法,实现了移动监护设备的测量模式根据被检测对象的实际情况进行自动调整。
实施例三
本实施例与实施例二的区别在于本实施例还根据被监测对象所处的位置和被监测对象的姿态调整移动监护设备的测量模式。
进一步地,结合图1所示,处理器13还用于:获取被监测对象所处的位置,根据所述被监测对象所处的位置和所述被监测对象的姿态调整所述移动监护设备的测量模式。当被监测对象处于病房内的时候,采用连续性测量模式对其进行测量。当被监测对象处于病房外的时候,进一步结合被监测对象的姿态调整测量模式。
在本实施例中,处理器13进一步用于:获取所述移动监护设备的无线连接的链路信号强度,根据所述链路信号强度判定判定被监测对象所处的位置。例如,在病房内,移动监护设备的无线连接连接为WMTS连接,此时,根据WMTS的链路信号强度来判断被监测对象位于室外还是室内。当WMTS的链路信号强度小于预设阈值时,判定被监测对象的位置位于病房外;当WMTS的链路信号强度大于或等于预设阈值时,判定被监测对象的位置位于病房内。
进一步地,本申请还可以通过不同的链路信号强度的对比设置移动监护设备的连接方式。此时,处理器13进一步用于:获取所述移动监护设备 的第一链路信号强度和所述移动监护设备的第二链路信号强度;比较所述第一链路信号强度和所述第二链路信号强度,获取比较结果;根据所述比较结果,设置无线连接方式并确定被监测对象所处的位置。其中,所述第一链路信号为室内链路信号,所述第二链路信号为室外链路信号。此时,处理器13进一步用于:当第一链路信号大于第二链路信号时,设置所述移动监护设备的无线连接方式为室内通信连接,并确定所述被监测对象处于室内,调整所述测量模式为连续性测量模式;当第一链路信号小于第二链路信号时,设置所述移动监护设备的无线连接方式为室外通信连接,并确定所述被监测对象处于室外,结合所述被监测对象的姿态调整所述移动监护模式的测量模式。
在本实施例中,对移动监护设备与参数显示监护设备的连接方式的判断是为了判断病人是否在病房内,其可以通过两种方式实现:第一种方式,第一链路信号为WMTS信号,第二链路信号为Wifi信号。当Wifi信号大于WMTS信号时,设置移动监护设备的无线连接方式为Wifi连接,并确定病人在病房外;当Wifi信号小于WMTS信号时,设置移动监护设备的无线连接方式为WMTS连接,设置移动监护设备的无线连接方式为WMTS并确定病人在病房内。第二种方式,第一链路信号为室内Wifi信号,第二链路信号为室外Wifi信号,室内Wifi信号对应的路由器位于病房内,若室内Wifi信号大于室外Wifi信号,设置移动监护设备的无线连接方式为室内Wifi信号连接,确定病人在病房内;若室内Wifi信号小于室外Wifi信号,设置移动监护设备的无线连接方式为是室外Wifi信号连接,确定病人在病房外。当病人在病房内时,无论病人是否在运动,也无论病人的身体姿态如何,移动监护设备均采用连续性测量模式对病人进行测量。
如上所述,当所述移动监护设备与参数显示监护设备的连接方式为室外连接方式时,意味着被监测对象戴着移动监护设备在室外活动,比如,手术恢复期的病人需要在病房外适当的活动,这种情况下,当病人在病房 外,进一步判断其身体姿势,当身体处于身体直立状态时,表明被监测对象正在室外进行自主直立运动,此时,将移动监护设备从原来的连续测量模式切换为离散性测量模式,这样,既可以保证对病人生理体征参数的密切关注,还可以节省测量功耗。
本实施例中,通过链路信号强度确定移动监护设备与参数显示监护设备的连接方式;根据所述连接方式判定被监测对象所处的位置。
将室内通信连接为WMTS连接,室外通信连接为Wifi连接作为优选实施例。与实施例二类似地,被监测对象的姿态包括身体姿势和身体动态,根据确定身体姿势和身体动态的顺序不同,分成以下三种情况进行说明。
第一种情况,先确定身体动态再确定身体姿势。当第一链路信号小于第二链路信号时,处理器13用于:设置所述移动监护设备的无线连接方式为Wifi连接,确定所述被监测对象处于室外,并结合所述被监测对象的姿态调整所述移动监护模式的测量模式。其中,结合所述被监测对象的姿态调整所述移动监护模式的测量模式包括:当所述被监测对象的身体动态为静止状态时,将所述移动监护设备的测量模式调整为连续性测量模式;当所述被监测对象的身体动态为运动状态时,结合所述身体姿势调整所述移动监护设备的测量模式。其中,当所述被监测对象的身体动态为运动状态时,结合所述身体姿势调整所述移动监护设备的测量模式,包括:当确定所述身体姿态为直立时,将所述移动监护设备的测量模式调整为离散性测量模式;当确定所述身体姿态为侧躺或平躺时,将所述移动监护设备的测量模式调整为连续性测量模式。
第二种情况,先确定身体姿势后判断身体动态。当第一链路信号小于第二链路信号时,处理器13用于结合所述被监测对象的姿态调整所述移动监护模式的测量模式。其中,所述结合所述被监测对象的姿态调整所述移动监护模式的测量模式进一步包括:当所述被监测对象的身体姿势为侧躺状态或者平躺状态时,将所述移动监护设备的测量模式调整为连续性测量 模式;当所述被监测对象的身体姿势为直立状态时,则结合所述被监测对象的身体动态确定测量模式。其中,当所述被监测对象的身体姿势为直立状态时,则结合所述被监测对象的身体动态确定测量模式包括:当所述被监测对象的身体动态为运动状态时,确定测量模式为离散性测量模式;当所述监测对象的身体动态为静止状态时,确定测量模式为连续性测量模式。
第三种情况,同时确定身体动态和身体姿势。处理器13用于:当所述被监测对象的身体动态为运动状态且身体姿态为直立时,将所述移动监护设备的测量模式调整为离散性测量模式;当所述被监测对象的身体动态为静止状态或身体姿态为侧躺或平躺时,将所述移动监护设备的测量模式调整为连续性测量模式。
可以理解地,本实施例进一步结合被监测对象所处的位置和被监测对象的姿态对移动监护设备的测量模式进行调节。通过判断病人所处的位置或场所,以及病人的运动状态,确定是否切换移动监护设备的测量模式,从而可以在移动监护领域实现测量模式的智能化切换,满足多场景下的使用需求。本实施例可以进一步区分被监测对象位于室内进行康复运动等情况,并在被监测对象在室内进行运动时,对被监测对象的生理参数进行连续性测量模式。与实施例二类似地,采用本实施例的方法来判断运动状态,当被监测对象被动被推出病房时,其躯干不会出现明显地加速度幅值的波动,因此,本申请中的运动状态用于表征被监测对象自主的直立运动。本实施例所达到的目的是,当被监测对象处于室外进行自主运动状态且身体姿势处于直立状态的时候,说明被监测对象能够直立地在室外进行自主运动,被监测对象的状态良好,可以将测量模式调整为离散性测量模式。除此之外的其他情况,例如,被监测对象处于室内,无论其身体姿势和身体动态如何,都要进行连续性测量模式。当被监测对象处于室外且处于静止状态,则被监测对象也许还不能自主运动,或是运动过程中发生突发情况,造成被监测对象停止运动或者坐下,此时,测量模式需要调整成连续性测 量模式,实时关注被监测对象的生理参数变化。进一步地,若被监测对象处于室外为侧躺或平躺,也同样的可能是被监测对象也许还不能自主运动,或是运动过程中发生突发情况造成病人摔倒等情况,也需要将测量模式调整成连续性测量模式,实时关注被监测对象的生理参数变化。通过以上方法,实现了移动监护设备的测量模式更精确地根据被检测对象的实际情况进行自动调整。
在本实施例中,病人在室内时,无论其坐在床上,或在室内运动,或是病人做何种动作,移动监护与床旁监护仪都是通过WMTS方式连接,因此此时的移动监护处于连续性测量模式;当病人走出室内时,并在室外散步或去打水打饭时,移动监护与床旁监护仪的连接方式从WMTS连接变为WiFi连接,同时检测到病人处于运动状态,身体为直立状态,那么移动监护设备的测量模式便从连续测量切换为离散性测量模式。倘若病人是坐在轮椅上被医护人员或家属从室内推出到室外的,那么处理器将会认定病人处于静止状态,此时虽然移动监护与床旁监护仪的连接方式发生了改变,但其测量模式仍应保持连续测量不变。如果病人是躺在担架上或者床上被医护人员推出去的,那么由于处理器判定的病人身体姿态为非直立状态,因此移动监护设备的测量模式也为连续测量模式。当病人从室外回到室内时,无论先前移动监护设备的测量模式为何种模式,都将随着移动监护与床旁监护仪的连接状态转为WMTS而变为连续测量模式。
在本实施例中,移动监护设备能够在病人逐渐康复的过程中提供有效的生理状态监测,同时又不影响病人的日常活动。而且针对不同的病人使用场景,移动监护设备能够智能的切换不同的测量模式,以达到低功耗、低误报警的目标。
需要说明的是,如果以软件功能模块的形式实现上述的移动监护测量方法,并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对 现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本申请各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read Only Memory)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本申请实施例不限制于任何特定的硬件和软件结合。
相应地,本申请实施例再提供一种计算机存储介质,所述计算机存储介质上存储有计算机可执行指令,所述该计算机可执行指令被处理器执行时实现上述实施例提供的移动监护测量方法的步骤。
以上移动监护系统和计算机存储介质实施例的描述,与上述方法实施例的描述是类似的,具有同方法实施例相似的有益效果。对于本申请移动监护系统和计算机存储介质实施例中未披露的技术细节,请参照本申请方法实施例的描述而理解。
本申请还提供了一种移动监护测量方法,图5为本申请实施例移动监护测量方法的实现流程示意图,如图5所示,所述方法应用于移动监护设备,所述移动监护设备用于测量被监测对象的生理体征参数和/或非生理体征参数,所述方法包括以下步骤:
步骤S501,测量被监测对象的生理体征参数。
这里,移动监护设备用于测量被监测对象的生理体征参数和/或非生理体征参数,被监测对象可以是病人,也可以是任何需要被监测的人;生理体征参数至少包括血压参数、血氧参数、心电参数和呼吸参数之一。
步骤S502,获取所述被监测对象的运动参数。
运动参数包含于非生理体征参数,非生理体征参数至少包括:睡眠参数、疼痛参数和运动参数等,运动参数可以是被监测对象的运动加速度等。所述步骤S502可以理解为是,从位于所述移动监护设备中加速度计上,获取所述被监测对象的加速度;在一实施例中,该加速度计内置于前置采样 电路中。加速度计的个数可以为若干个,当加速度计的个数为一个时,位于所述被监测对象的躯干上,例如,夹在被监测对象的衣领上。加速度计的个数为多个,位于所述监测对象的躯干和四肢上。当加速度计的个数为多个时,可以采集更多部位的运动参数,使得后续判定结果更加准确。比如,将加速度计放置在被监测对象的手腕上一个,颈部一个、腰部一个等,通过多个加速度计做整合运算,更加精确的判断被监测对象的运动状态;这样在病人躯干上的加速度计用于监测身体姿势和动态,在病人四肢上的加速度计主要用于监测身体的动态,起到辅助判定身体动态,从而提高身体动态判断准确率的效果。可以理解地,由于加速度计安装在被监测对象的上半身上,因此,本申请中的直立状态用于表征被监测对象的上半身处于直立状态,本申请中的直立状态包括站立状态和坐立状态。
步骤S503,根据所述运动参数确定所述被监测对象的姿态。
步骤S504,根据被监测对象的姿态调整所述移动监护设备的测量模式。
具体地,根据所述被监测对象的姿态调整所述移动监护设备的测量模式包括:根据被监测对象的姿态获取测量频率,所述测量频率查询对应的测量模式,将该对应的测量模式调整为移动监护设备的测量模式;或者直接通过被监测对象的姿态获取测量模式,测量模式根据不同测量频率划分。
步骤S505,控制所述移动监护设备执行根据所述测量模式对被监测对象进行测量。
下面根据不同的实施例,对步骤S503和步骤S504进行解释。
步骤S503,根据所述运动参数确定所述被监测对象的姿态。
在本实施例中,被监测对象的姿态包括站立、侧躺和平躺,所述步骤S503可以理解为,根据运动参数,比如加速度,判断被监测对象是侧躺、平躺还是直立状态。
步骤S504,根据所述被监测对象的姿态调整所述移动监护设备的测量模式。
在本实施例中,步骤S504进一步包括:当确定所述身体姿态为直立时,调整所述移动监护设备的测量模式为离散性测量模式;当确定所述身体姿态为侧躺或平躺时,调整所述移动监护设备的测量模式为连续性测量模式。
在本实施例中,移动监护设备可以直接根据被监测对象处于侧躺、平躺还是直立状态调整测量模式。当被监测对象处于直立状态时,被监测对象状态良好,调整测量模式为离散性测量模式。
在本申请一实施例中,被监测对象的姿态包括所述被监测对象的身体姿势和身体动态;其中,身体姿势包括直立、侧躺和平躺;身体动态包括运动状态和静止状态。
所述步骤S503可以理解为,根据运动参数,比如加速度,判断被监测对象是否正在运动以及判断被监测对象是侧躺、平躺还是直立状态。
具体地,步骤S503进一步包括确定被监测对象的身体姿势和身体动态。在本实施例中,确定被监测对象的身体姿势的方法与实施例一中介绍的相同,在此不再赘述。下面对确定身体动态的方法进行介绍。
由于加速度计为三轴加速度计,因此在步骤S503中可以利用公式(1)对加速度的幅值进行计算,当幅值大于设定的阈值时,可以判断病人处于运动状态,否则处于静止状态。
确定被监测对象的身体姿势和身体状态的顺序不做限定。
先确定被监测对象的身体动态,后判断被监测对象的身体姿势时,步骤S504进一步包括:当所述被监测对象的身体动态为运动状态时,结合所述身体姿势调整所述移动监护设备的测量模式;当所述被监测对象的身体动态为静止状态时,将所述移动监护设备的测量模式调整为连续性测量模式。其中,当所述被监测对象的身体动态为运动状态时,结合所述身体姿势调整所述移动监护设备的测量模式,包括:当确定所述身体姿态为直立时,将所述移动监护设备的测量模式调整为离散性测量模式;当确定所述身体姿态为侧躺或平躺时,将所述移动监护设备的测量模式调整为连续性 测量模式。当所述被监测对象的身体动态为静止状态时,测量模式调整为连续性测量模式。这里,如果被检测对象是处于运动状态且为直立姿势,说明被检测对象身体状况不错,不需要连续性的检测,所以将测量模式调整为离散性测量模式。
类似地,还可以先确定被监测对象的身体姿势,后判断被监测对象的身体动态,此时,步骤S504进一步包括:当所述被监测对象的身体姿势为侧躺状态或者平躺状态时,将所述移动监护设备的测量模式调整为连续性测量模式;当所述被监测对象的身体姿势为直立状态时,结合所述被监测对象的身体动态确定测量模式。其中,当所述被监测对象的身体姿势为直立状态时,结合所述被监测对象的身体动态确定测量模式包括:当所述被监测对象的身体动态为运动状态时,确定测量模式为离散性测量模式;当所述监测对象的身体动态为静止状态时,确定测量模式为连续性测量模式。
类似地,还可以同时确定被监测对象的身体姿势和身体动态,此时,步骤S504进一步包括:当所述被监测对象的身体动态为运动状态且身体姿态为直立时,将所述移动监护设备的测量模式调整为离散性测量模式;当所述被监测对象的身体动态为静止状态或身体姿态为侧躺或平躺时,将所述移动监护设备的测量模式调整为连续性测量模式。通过以上方法,实现了移动监护设备的测量模式根据被检测对象的实际情况进行自动调整。
在本申请另一实施例中,还根据被监测对象所处的位置和被监测对象的姿态调整移动监护设备的测量模式。
进一步地,步骤S504还包括:获取被监测对象所处的位置,根据所述被监测对象所处的位置和所述被监测对象的姿态调整所述移动监护设备的测量模式。当被监测对象处于病房内的时候,采用连续性测量模式对其进行测量。当被监测对象处于病房外的时候,进一步结合被监测对象的姿态调整测量模式。
在本实施例中,步骤S504进一步包括:获取所述移动监护设备的无线 连接的链路信号强度,根据所述链路信号强度判定判定被监测对象所处的位置。例如,在病房内,移动监护设备的无线连接连接为WMTS连接,此时,根据WMTS的链路信号强度来判断被监测对象位于室外还是室内。当WMTS的链路信号强度小于预设阈值时,判定被监测对象的位置位于病房外。
进一步地,本申请还可以通过不同的链路信号强度的对比判定移动监护设备的连接方式。则步骤S504进一步包括:获取所述移动监护设备的第一链路信号强度和所述移动监护设备的第二链路信号强度;比较所述第一链路信号强度和所述第二链路信号强度,获取比较结果;根据所述比较结果,设置无线连接方式;根据无线连接方式确定被监测对象所处的位置。其中,所述第一链路信号为室内链路信号,所述第二链路信号为室外链路信号。当第一链路信号大于第二链路信号时,设置所述移动监护设备的无线连接方式为室内通信连接,并确定所述被监测对象处于室内,调整所述测量模式为连续性测量模式;当第一链路信号小于第二链路信号时,设置所述移动监护设备的无线连接方式为室外通信连接,并确定所述被监测对象处于室外,结合所述被监测对象的姿态调整所述移动监护模式的测量模式。
在本实施例中,对于移动监护设备与参数显示监护设备的连接方式的判断,是为了判断病人是否在病房内,可以通过两种方式实现:一是:第一链路信号为WMTS信号,第二链路信号为Wifi信号。当Wifi信号大于WMTS信号时,设置移动监护设备的无线连接方式为Wifi连接,并确定病人在病房外;当Wifi信号小于WMTS信号时,设置移动监护设备的无线连接方式为WMTS连接,设置移动监护设备的无线连接方式为WMTS并确定病人在病房内。二是:第一链路信号为室内Wifi信号,第二链路信号为室外Wifi信号,室内Wifi信号对应的路由器位于病房内,若室内Wifi信号大于室外Wifi信号,设置移动监护设备的无线连接方式为室内Wifi信号连 接,确定病人在病房内;若室内Wifi信号小于室外Wifi信号,设置移动监护设备的无线连接方式为是室外Wifi信号连接,那么病人在病房外。当病人在病房内时,无论病人是否在运动,无论病人的身体姿态如何,移动监护设备均采用连续性测量模式对病人进行测量。
如上所述,当所述移动监护设备与参数显示监护设备的连接方式为室外连接方式时,意味着被监测对象戴着移动监护设备在室外活动,比如,手术恢复期的病人需要在病房外适当的活动,这种情况下,当病人在病房外,进一步判断其身体姿势,当身体处于身体直立状态正在运动时,将移动监护设备从原来的连续测量模式切换为离散性测量模式,这样,既可以保证对病人生理体征参数的密切关注,还可以节省测量功耗。
本实施例中,通过链路信号强度确定移动监护设备与参数显示监护设备的连接方式;根据所述连接方式判定被监测对象所处的位置。
将室内通信连接为WMTS连接,室外通信连接为Wifi连接作为优选实施例。与实施例二类似地,被监测对象的姿态包括身体姿势和身体动态,当先确定身体动态再确定身体姿势时,当第一链路信号小于第二链路信号时,设置所述移动监护设备的无线连接方式为WIFI连接,并确定所述被监测对象处于室外,结合所述被监测对象的姿态调整所述移动监护模式的测量模式,进一步包括:当所述被监测对象的身体动态为运动状态时,结合所述身体姿势调整所述移动监护设备的测量模式;当所述被监测对象的身体动态为静止状态时,将所述移动监护设备的测量模式调整为连续性测量模式。其中,当所述被监测对象的身体动态为运动状态时,结合所述身体姿势调整所述移动监护设备的测量模式,包括:当确定所述身体姿态为直立时,将所述移动监护设备的测量模式调整为离散性测量模式;当确定所述身体姿态为侧躺或平躺时,将所述移动监护设备的测量模式调整为连续性测量模式。
当先确定身体姿势后判断身体动态时,所述当第一链路信号小于第二 链路信号时,结合所述被监测对象的姿态调整所述移动监护模式的测量模式包括:当所述被监测对象的身体姿势为侧躺状态或者平躺状态时,将所述移动监护设备的测量模式调整为连续性测量模式;当所述被监测对象的身体姿势为直立状态时,则结合所述被监测对象的身体动态确定测量模式。其中,所述当所述被监测对象的身体姿势为直立状态时,则结合所述被监测对象的身体动态确定测量模式包括:当所述被监测对象的身体动态为运动状态时,确定测量模式为离散性测量模式;当所述监测对象的身体动态为静止状态时,确定测量模式为连续性测量模式。
当同时确定身体动态和身体姿势时,移动监护设备的无线连接方式为WIFI连接,所述被监测对象处于室外,根据所述被监测对象的姿态调整所述移动监护设备的测量模式,包括:当所述被监测对象的身体动态为运动状态且身体姿态为直立时,将所述移动监护设备的测量模式调整为离散性测量模式;当所述被监测对象的身体动态为静止状态或身体姿态为侧躺或平躺时,将所述移动监护设备的测量模式调整为连续性测量模式。
下面对上述过程举例说明。
图6为本申请实施例移动监护设备的测量方法的另一实现流程示意图,如图6所示,所述方法包括以下步骤:
步骤S601,判断移动监护与床边监护仪是否通过WiFi连接;
这里,如果移动监护与床边监护仪不是通过WiFi连接,进入步骤S905;如果移动监护与床边监护仪是通过WiFi连接,进入步骤S902。
步骤S602,根据加速度计测量的加速度的幅值,判断病人是否处于运动状态。
这里,当公式(1)加速度的幅值大于设定的阈值时,确定病人处于运动状态,否则病人处于静止状态。如果病人是处于运动状态,进入步骤S903;如果病人不是处于运动状态,进入步骤S905。
步骤S603,根据加速度方向与x轴、y轴和z轴方向的夹角,判断病 人是否为直立姿态。
这里,当公式(2)中的加速度方向与z轴正方向夹角最小时,确定病人处于直立状态。如果病人的身体姿态是处于直立姿态,进入步骤S904;如果病人的身体姿态不是处于直立姿态,进入步骤S905。
步骤S604,将移动监护设备的测量模式切换为离散性测量模式。
在离散性测量模式下,移动监护将降低心电信号和血氧信号的测量频率,并停止呼吸、无创血压等参数的测量。同时,移动监护设备的心电图(electrocardiogram,ECG)报警阈值和血氧报警阈值也会进行相应的放宽。
步骤S605,将移动监护设备的测量模式切换为连续性测量模式。
这里,连续测量模式是指对病人的生理状态进行实时测量监测,同时报警阈值和报警策略为医护人员设定或系统默认的阈值和策略。当移动监护处于连续测量模式时,实时的将测量到的参数返回给床边监护仪。
在本实施例中,移动监护设备能够在病人逐渐康复的过程中提供有效的生理状态监测,同时又不影响病人的日常活动。而且针对不同的病人使用场景,移动监护设备能够智能的切换不同的测量模式,以达到低功耗、低误报警的目标。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”或“实施例一”等意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法, 可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元;既可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
以上所述,仅为本申请的实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (67)

  1. 一种移动监护测量方法,应用于移动监护设备,其特征在于,所述方法包括:
    测量被监测对象的生理体征参数,生理体征参数至少包括血压参数、血氧参数、心电参数和呼吸参数之一;
    获取所述被监测对象的运动参数;
    根据所述运动参数确定所述被监测对象的姿态;
    根据所述被监测对象的姿态调整所述移动监护设备的测量模式;
    控制所述移动监护设备执行根据所述测量模式对被监测对象进行测量。
  2. 根据权利要求1中所述的方法,其特征在于,所述根据所述被监测对象的姿态调整所述移动监护设备的测量模式包括:根据所述被监测对象的姿态获取测量频率,根据所述测量频率查询对应的测量模式,将所述对应的测量模式调整为所述移动监护设备的测量模式。
  3. 根据权利要求1中所述的方法,其特征在于,所述移动监护设备的测量模式至少包括:连续性测量模式和离散性测量模式。
  4. 根据权利要求3中所述的方法,其特征在于,所述连续性测量模式为所述移动监护设备以预设的第一测量频率对所述被监测对象进行测量;所述离散性测量模式为所述移动监护设备以预设的第二测量频率对所述被监测对象进行测量;所述第一测量频率大于所述第二测量频率;或
    所述连续性测量模式为所述移动监护设备以预设的第一测量频率对所述被监测对象进行测量;所述离散性测量模式为所述移动监护设备以预设的第二测量频率对所述被监测对象的心电和/或血氧进行测量,以第三测量频率对所述被监测对象的呼吸和/或血压进行测量;其中,所述第一测量频率大于所述第二测量频率,所述第三测量频率为零。
  5. 根据权利要求4中所述的方法,其特征在于,所述被监测对象的姿 态包括所述被监测对象的身体姿势和身体动态。
  6. 根据权利要求5中所述的方法,其特征在于,所述身体姿势至少包括直立、侧躺和平躺的其中之一;所述身体动态包括运动状态和/或静止状态。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述被监测对象的姿态调整所述移动监护设备的测量模式,包括:
    当所述被监测对象的身体动态为运动状态时,结合所述身体姿势调整所述移动监护设备的测量模式;
    当所述被监测对象的身体动态为静止状态时,将所述移动监护设备的测量模式调整为连续性测量模式。
  8. 根据权利要求7所述的方法,其特征在于,当所述被监测对象的身体动态为运动状态时,结合所述身体姿势调整所述移动监护设备的测量模式,包括:
    当确定所述身体姿态为直立时,将所述移动监护设备的测量模式调整为离散性测量模式;
    当确定所述身体姿态为侧躺或平躺时,将所述移动监护设备的测量模式调整为连续性测量模式。
  9. 根据权利要求6所述的方法,其特征在于,所述根据所述被监测对象的姿态调整所述移动监护设备的测量模式,包括:
    当所述被监测对象的身体动态为运动状态且身体姿态为直立时,将所述移动监护设备的测量模式调整为离散性测量模式;
    当所述被监测对象的身体动态为静止状态或身体姿态为侧躺或平躺时,将所述移动监护设备的测量模式调整为连续性测量模式。
  10. 根据权利要求6所述的方法,其特征在于,所述根据所述被监测对象的姿态调整所述移动监护设备的测量模式,包括:当所述被监测对象的身体姿势为侧躺状态或者平躺状态时,将所述移动监护设备的测量模式 调整为连续性测量模式;
    当所述被监测对象的身体姿势为直立状态时,结合所述被监测对象的身体动态确定测量模式。
  11. 根据权利要求10所述的方法,其特征在于,所述当所述被监测对象的身体姿势为直立状态时,结合所述被监测对象的身体动态确定测量模式包括:
    当所述被监测对象的身体动态为运动状态时,确定测量模式为离散性测量模式;当所述监测对象的身体动态为静止状态时,确定测量模式为连续性测量模式。
  12. 根据权利要求1所述的方法,其特征在于,所述根据所述被监测对象的姿态调整所述移动监护设备的测量模式之前,包括:获取被监测对象所处的位置;
    所述根据所述被监测对象的姿态调整所述移动监护设备的测量模式还包括:
    根据所述被监测对象所处的位置和所述被监测对象的姿态调整所述移动监护设备的测量模式。
  13. 根据权利要求12中所述的方法,其特征在于,所述获取被监测对象所处的位置包括:获取所述移动监护设备的无线连接的链路信号强度,根据所述链路信号强度判定判定被监测对象所处的位置。
  14. 根据权利要求13所述的方法,其特征在于,所述获取所述移动监护设备的无线连接的链路信号强度,根据所述链路信号强度判定被监测对象所处的位置包括:
    获取所述移动监护设备的第一链路信号强度和所述移动监护设备的第二链路信号强度;
    比较所述第一链路信号强度和所述第二链路信号强度,获取比较结果;
    根据所述比较结果,设置无线连接方式并确定被监测对象所处的位置;
    其中,所述第一链路信号为室内链路信号,所述第二链路信号为室外链路信号。
  15. 根据权利要求14中所述的方法,其特征在于,所述移动监护设备的测量模式至少包括:连续性测量模式和离散性测量模式。
  16. 根据权利要求15中所述的方法,其特征在于,所述连续性测量模式为所述移动监护设备以预设的第一测量频率对所述被监测对象进行测量;所述离散性测量模式为所述移动监护设备以预设的第二测量频率对所述被监测对象进行测量;所述第一测量频率大于所述第二测量频率;或
    所述连续性测量模式为所述移动监护设备以预设的第一测量频率对所述被监测对象进行测量;所述离散性测量模式为所述移动监护设备以预设的第二测量频率对所述被监测对象的心电和/或血氧进行测量,以第三测量频率对所述被监测对象的呼吸和/或血压进行测量;其中,所述第一测量频率大于所述第二测量频率,所述第三测量频率为零。
  17. 根据权利要求16中所述的方法,其特征在于,所述根据所述比较结果,设置无线连接方式并确定被监测对象所处的位置包括:
    当第一链路信号大于第二链路信号时,设置所述移动监护设备的无线连接方式为WMTS连接,并确定所述被监测对象处于室内,调整所述测量模式为连续性测量模式;
    当第一链路信号小于第二链路信号时,设置所述移动监护设备的无线连接方式为WIFI连接,确定所述被监测对象处于室外,并结合所述被监测对象的姿态调整所述移动监护模式的测量模式。
  18. 根据权利要求17所述的方法,其特征在于,所述被监测对象的姿态包括身体姿势和身体动态。
  19. 根据权利要求18中所述的方法,其特征在于,所述身体姿势至少包括直立、侧躺和平躺的其中之一;所述身体动态包括运动状态和/或静止状态。
  20. 根据权利要求19中所述的方法,其特征在于,所述当第一链路信号小于第二链路信号时,设置所述移动监护设备的无线连接方式为WIFI连接,确定所述被监测对象处于室外,并结合所述被监测对象的姿态调整所述移动监护模式的测量模式包括:
    当所述被监测对象的身体动态为静止状态时,将所述移动监护设备的测量模式调整为连续性测量模式;
    当所述被监测对象的身体动态为运动状态时,结合所述身体姿势调整所述移动监护设备的测量模式。
  21. 根据权利要求20所述的方法,其特征在于,当所述被监测对象的身体动态为运动状态时,结合所述身体姿势调整所述移动监护设备的测量模式,包括:
    当确定所述身体姿态为直立时,将所述移动监护设备的测量模式调整为离散性测量模式;
    当确定所述身体姿态为侧躺或平躺时,将所述移动监护设备的测量模式调整为连续性测量模式。
  22. 根据权利要求19所述的方法,其特征在于,所述当第一链路信号小于第二链路信号时,设置所述移动监护设备的无线连接方式为WIFI连接,确定所述被监测对象处于室外,并结合所述被监测对象的姿态调整所述移动监护模式的测量模式,包括:
    当所述被监测对象的身体动态为运动状态且身体姿态为直立时,将所述移动监护设备的测量模式调整为离散性测量模式;
    当所述被监测对象的身体动态为静止状态或身体姿态为侧躺或平躺时,将所述移动监护设备的测量模式调整为连续性测量模式。
  23. 根据权利要求19所述的方法,其特征在于,所述当第一链路信号小于第二链路信号时,设置所述移动监护设备的无线连接方式为WIFI连接,确定所述被监测对象处于室外,并结合所述被监测对象的姿态调整所述移 动监护模式的测量模式包括包括:当所述被监测对象的身体姿势为侧躺状态或者平躺状态时,将所述移动监护设备的测量模式调整为连续性测量模式;
    当所述被监测对象的身体姿势为直立状态时,则结合所述被监测对象的身体动态确定测量模式。
  24. 根据权利要求23所述的方法,其特征在于,所述当所述被监测对象的身体姿势为直立状态时,则结合所述被监测对象的身体动态确定测量模式包括:
    当所述被监测对象的身体动态为运动状态时,确定测量模式为离散性测量模式;当所述监测对象的身体动态为静止状态时,确定测量模式为连续性测量模式。
  25. 根据权利要求1所述的方法,其特征在于,所述身体姿态至少包括直立、侧躺和平躺的其中之一;
    所述据所述被监测对象的姿态调整所述移动监护设备的测量模式包括:
    当确定所述身体姿态为直立时,调整所述移动监护设备的测量模式为离散性测量模式;
    当确定所述身体姿态为侧躺或平躺时,调整所述移动监护设备的测量模式为连续性测量模式。
  26. 根据权利要求1中所述的方法,其特征在于,所述获取所述被监测对象的运动参数,包括:
    从位于所述移动监护设备中加速度计上,获取所述被监测对象的加速度;
    对应地,所述根据所述运动参数确定所述被监测对象的姿态,包括:
    根据所述加速度确定所述被监测对象的身体姿势和身体动态。
  27. 根据权利要求26中所述的方法,其特征在于,所述加速度计的个数为一个,位于所述被监测对象的躯干上。
  28. 根据权利要求26中所述的方法,其特征在于,所述加速度计的个数为多个,位于所述监测对象的躯干和四肢上。
  29. 根据权利要求26中所述的方法,其特征在于,根据所述加速度确定所述被监测对象的身体动态,包括:
    确定所述加速度的幅值;
    如果所述加速度的幅值在预设时间段内均大于等于预设阈值,确定所述被监测对象处于运动状态;
    如果所述加速度的幅值在预设时间段内均小于预设阈值,确定所述被监测对象处于静止状态。
  30. 根据权利要求29中所述的方法,其特征在于,所述加速度为三维矢量参数,其中,所述三维矢量参数的x轴正方向为垂直于所述被监测对象冠状面向前的方向,所述三维矢量参数的y轴正方向为垂直于所述被监测对象的矢状面向右的方向,所述三维矢量参数的z轴正方向为垂直于水平面向下的方向;所述确定所述加速度的幅值,包括:
    将所述加速度在x轴方向的加速度值确定为第一加速度;
    将加速度在y轴方向的加速度值确定为第二加速度;
    将所述加速度在z轴方向的加速度值确定为第三加速度;
    根据所述第一加速度、第二加速度和所述第三加速度,确定所述加速度的幅值。
  31. 根据权利要求30中所述的方法,其特征在于,根据所述加速度确定所述被监测对象的身体姿势,包括:
    根据所述第一加速度和所述加速度的幅值,确定第一夹角,所述第一夹角为所述加速度的方向与x轴方向的夹角;
    根据所述第二加速度和所述加速度的幅值,确定第二夹角,所述第二夹角为所述加速度的方向与y轴方向的夹角;
    根据所述第三加速度和所述加速度的幅值,确定第三夹角,所述第三 夹角为所述加速度的方向与z轴方向的夹角;
    根据所述第一夹角、第二夹角和第三夹角,确定所述被监测对象的身体姿势。
  32. 根据权利要31中所述的方法,其特征在于,所述根据所述第一夹角、第二夹角和第三夹角,确定所述被监测对象的身体姿势,包括:
    如果第一夹角为所述第一夹角、第二夹角和第三夹角中最小的夹角,确定所述被监测对象的身体姿态为平躺状态;
    如果第二夹角为所述第一夹角、第二夹角和第三夹角中最小的夹角,确定所述被监测对象的身体姿态为侧躺状态;
    如果第三夹角为所述第一夹角、第二夹角和第三夹角中最小的夹角,确定所述被监测对象的身体姿态为直立状态。
  33. 根据权利要求1中所述的方法,其特征在于,在所述控制所述移动监护设备执行根据所述测量模式对被监测对象进行测量之后,所述方法还包括:
    将所述移动监护设备在所述测量模式下测量获得的生理体征参数,发送给外部设备。
  34. 一种移动监护设备,其特征在于,所述移动监护设备包括:
    第一参数测量模块,用于测量被监测对象的生理体征参数,生理体征参数至少包括血压参数、血氧参数、心电参数和呼吸参数之一;
    第二参数测量模块,用于获取所述被监测对象的运动参数;
    处理器,用于根据所述运动参数确定所述被监测对象的姿态;
    根据所述被监测对象的姿态调整所述移动监护设备的测量模式;
    控制所述移动监护设备执行根据所述测量模式对被监测对象进行测量。
  35. 根据权利要求34中所述的移动监护设备,其特征在于,所述测量模式根据不同测量频率设置所述根据所述被监测对象的姿态调整所述移动监护设备的测量模式包括:根据所述被监测对象的姿态获取测量频率,根 据所述测量频率查询对应的测量模式,将所述对应的测量模式调整为所述移动监护设备的测量模式。
  36. 根据权利要求34中所述的移动监护设备,其特征在于,所述移动监护设备的测量模式至少包括:连续性测量模式和离散性测量模式,其中:所述连续性测量模式为所述移动监护设备以预设的第一测量频率对所述被监测对象进行测量;所述离散性测量模式为所述移动监护设备以预设的第二测量频率对所述被监测对象进行测量;所述第一测量频率大于所述第二测量频率;或
    所述连续性测量模式为所述移动监护设备以预设的第一测量频率对所述被监测对象进行测量;所述离散性测量模式为所述移动监护设备以预设的第二测量频率对所述被监测对象的心电和/或血氧进行测量,以第三测量频率对所述被监测对象的呼吸和/或血压进行测量;其中,所述第一测量频率大于所述第二测量频率,所述第三测量频率为零。
  37. 根据权利要求36中所述的移动监护设备,其特征在于,所述被监测对象的姿态包括所述被监测对象的身体姿势和身体动态。
  38. 根据权利要求37中所述的移动监护设备,其特征在于,所述身体姿势至少包括直立、侧躺和平躺的其中之一;所述身体动态包括运动状态和/或静止状态。
  39. 根据权利要求38所述的移动监护设备,其特征在于,所述根据所述被监测对象的姿态调整所述移动监护设备的测量模式,包括:
    当所述被监测对象的身体动态为运动状态时,结合所述身体姿势调整所述移动监护设备的测量模式;
    当所述被监测对象的身体动态为静止状态时,将所述移动监护设备的测量模式调整为连续性测量模式。
  40. 根据权利要求39所述的移动监护设备,其特征在于,当所述被监测对象的身体动态为运动状态时,结合所述身体姿势调整所述移动监护设 备的测量模式,包括:
    当确定所述身体姿态为直立时,将所述移动监护设备的测量模式调整为离散性测量模式;
    当确定所述身体姿态为侧躺或平躺时,将所述移动监护设备的测量模式调整为连续性测量模式。
  41. 根据权利要求38所述的移动监护设备,其特征在于,所述根据所述被监测对象的姿态调整所述移动监护设备的测量模式,包括:
    当所述被监测对象的身体动态为运动状态且身体姿态为直立时,将所述移动监护设备的测量模式调整为离散性测量模式;
    当所述被监测对象的身体动态为静止状态或身体姿态为侧躺或平躺时,将所述移动监护设备的测量模式调整为连续性测量模式。
  42. 根据权利要求38所述的移动监护设备,其特征在于,所述根据所述被监测对象的姿态调整所述移动监护设备的测量模式,包括:
    当所述被监测对象的身体姿势为侧躺状态或者平躺状态时,将所述移动监护设备的测量模式调整为连续性测量模式;
    当所述被监测对象的身体姿势为直立状态时,结合所述被监测对象的身体动态确定测量模式。
  43. 根据权利要求42所述的移动监护设备,其特征在于,所述当所述被监测对象的身体姿势为直立状态时,结合所述被监测对象的身体动态确定测量模式包括:
    当所述被监测对象的身体动态为运动状态时,确定测量模式为离散性测量模式;当所述监测对象的身体动态为静止状态时,确定测量模式为连续性测量模式。
  44. 根据权利要求34所述的移动监护设备,其特征在于,所述根据所述被监测对象的姿态调整所述移动监护设备的测量模式之前,所述处理器还用于:获取被监测对象所处的位置;
    所述根据所述被监测对象的姿态调整所述移动监护设备的测量模式还包括:
    根据所述被监测对象所处的位置和所述被监测对象的姿态调整所述移动监护设备的测量模式。
  45. 根据权利要求44中所述的移动监护设备,其特征在于,所述获取被监测对象所处的位置包括:获取所述移动监护设备的无线连接的链路信号强度,根据所述链路信号强度判定判定被监测对象所处的位置。
  46. 根据权利要求45所述的移动监护设备,其特征在于,所述获取所述移动监护设备的无线连接的链路信号强度,根据所述链路信号强度判定被监测对象所处的位置包括:
    获取所述移动监护设备的第一链路信号强度和所述移动监护设备的第二链路信号强度;
    比较所述第一链路信号强度和所述第二链路信号强度,获取比较结果;
    根据所述比较结果,设置无线连接方式并确定被监测对象所处的位置;
    所述第一链路信号为室内链路信号,所述第二链路信号为室外链路信号。
  47. 根据权利要求46中所述的移动监护设备,其特征在于,所述移动监护设备的测量模式至少包括:连续性测量模式和离散性测量模式。
  48. 根据权利要求47中所述的方法,其特征在于,所述连续性测量模式为所述移动监护设备以预设的第一测量频率对所述被监测对象进行测量;所述离散性测量模式为所述移动监护设备以预设的第二测量频率对所述被监测对象进行测量;所述第一测量频率大于所述第二测量频率;或
    所述连续性测量模式为所述移动监护设备以预设的第一测量频率对所述被监测对象进行测量;所述离散性测量模式为所述移动监护设备以预设的第二测量频率对所述被监测对象的心电和/或血氧进行测量,以第三测量频率对所述被监测对象的呼吸和/或血压进行测量;其中,所述第一测量频 率大于所述第二测量频率,所述第三测量频率为零。
  49. 根据权利要求48中所述的移动监护设备,其特征在于,所述根据所述比较结果,设置无线连接方式并确定被监测对象所处的位置包括:
    当第一链路信号大于第二链路信号时,设置所述移动监护设备的无线连接方式为WMTS连接,并确定所述被监测对象处于室内,调整所述测量模式为连续性测量模式;
    当第一链路信号小于第二链路信号时,设置所述移动监护设备的无线连接方式为WIFI连接,并确定所述被监测对象处于室外,结合所述被监测对象的姿态调整所述移动监护模式的测量模式。
  50. 根据权利要求49所述的移动监护设备,其特征在于,所述被监测对象的姿态包括身体姿势和身体动态。
  51. 根据权利要求50中所述的移动监护设备,其特征在于,所述身体姿势至少包括直立、侧躺和平躺的其中之一;所述身体动态包括运动状态和/或静止状态。
  52. 根据权利要求51中所述的移动监护设备,其特征在于,所述当第一链路信号小于第二链路信号时,设置所述移动监护设备的无线连接方式为WIFI连接,确定所述被监测对象处于室外,并结合所述被监测对象的姿态调整所述移动监护模式的测量模式包括:
    当所述被监测对象的身体动态为静止状态时,将所述移动监护设备的测量模式调整为连续性测量模式;
    当所述被监测对象的身体动态为运动状态时,结合所述身体姿势调整所述移动监护设备的测量模式。
  53. 根据权利要求52所述的移动监护设备,其特征在于,当所述被监测对象的身体动态为运动状态时,结合所述身体姿势调整所述移动监护设备的测量模式,包括:
    当确定所述身体姿态为直立时,将所述移动监护设备的测量模式调整 为离散性测量模式;
    当确定所述身体姿态为侧躺或平躺时,将所述移动监护设备的测量模式调整为连续性测量模式。
  54. 根据权利要求51所述的移动监护设备,其特征在于,所述当第一链路信号小于第二链路信号时,设置所述移动监护设备的无线连接方式为WIFI连接,确定所述被监测对象处于室外,并结合所述被监测对象的姿态调整所述移动监护模式的测量模式,包括:
    当所述被监测对象的身体动态为运动状态且身体姿态为直立时,将所述移动监护设备的测量模式调整为离散性测量模式;
    当所述被监测对象的身体动态为静止状态或身体姿态为侧躺或平躺时,将所述移动监护设备的测量模式调整为连续性测量模式。
  55. 根据权利要求51所述的移动监护设备,其特征在于,所述当第一链路信号小于第二链路信号时,结合所述被监测对象的姿态调整所述移动监护模式的测量模式包括:
    当所述被监测对象的身体姿势为侧躺状态或者平躺状态时,将所述移动监护设备的测量模式调整为连续性测量模式;
    当所述被监测对象的身体姿势为直立状态时,则结合所述被监测对象的身体动态确定测量模式。
  56. 根据权利要求55所述的移动监护设备,其特征在于,所述当所述被监测对象的身体姿势为直立状态时,则结合所述被监测对象的身体动态确定测量模式包括:
    当所述被监测对象的身体动态为运动状态时,确定测量模式为离散性测量模式;当所述监测对象的身体动态为静止状态时,确定测量模式为连续性测量模式。
  57. 根据权利要求34所述的移动监护设备,其特征在于,所述身体姿态至少包括直立、侧躺和平躺的其中之一;
    所述据所述被监测对象的姿态调整所述移动监护设备的测量模式包括:
    当确定所述身体姿态为直立时,调整所述移动监护设备的测量模式为离散性测量模式;
    当确定所述身体姿态为侧躺或平躺时,调整所述移动监护设备的测量模式为连续性测量模式。
  58. 根据权利要求34中所述的移动监护设备,其特征在于,所述获取所述被监测对象的运动参数,包括:
    所述第二参数测量模块包括加速度计,所述加速度计用于获取所述被监测对象的加速度;
    对应地,所述根据所述运动参数确定所述被监测对象的姿态,包括:根据所述加速度确定所述被监测对象的身体姿势和身体动态。
  59. 根据权利要求58中所述的移动监护设备,其特征在于,所述加速度计的个数为一个,位于所述被监测对象的躯干上。
  60. 根据权利要求58中所述的移动监护设备,其特征在于,所述加速度计的个数为多个,位于所述监测对象的躯干和四肢上。
  61. 根据权利要求58中所述的移动监护设备,其特征在于,根据所述加速度确定所述被监测对象的身体动态,包括:
    确定所述加速度的幅值;
    如果所述加速度的幅值在预设时间段内均大于等于预设阈值,确定所述被监测对象处于运动状态;
    如果所述加速度的幅值在预设时间段内均小于预设阈值,确定所述被监测对象处于静止状态。
  62. 根据权利要求61中所述的移动监护设备,其特征在于,所述加速度为三维矢量参数,其中,所述三维矢量参数的x轴正方向为垂直于所述被监测对象冠状面向前的方向,所述三维矢量参数的y轴正方向为垂直于所述被监测对象的矢状面向右的方向,所述三维矢量参数的z轴 正方向为垂直于水平面向下的方向;所述确定所述加速度的幅值,包括:
    将所述加速度在x轴方向的加速度值确定为第一加速度;
    将加速度在y轴方向的加速度值确定为第二加速度;
    将所述加速度在z轴方向的加速度值确定为第三加速度;
    根据所述第一加速度、第二加速度和所述第三加速度,确定所述加速度的幅值。
  63. 根据权利要求62中所述的移动监护设备,其特征在于,根据所述加速度确定所述被监测对象的身体姿势,包括:
    根据所述第一加速度和所述加速度的幅值,确定第一夹角,所述第一夹角为所述加速度的方向与x轴方向的夹角;
    根据所述第二加速度和所述加速度的幅值,确定第二夹角,所述第二夹角为所述加速度的方向与y轴方向的夹角;
    根据所述第三加速度和所述加速度的幅值,确定第三夹角,所述第三夹角为所述加速度的方向与z轴方向的夹角;
    根据所述第一夹角、第二夹角和第三夹角,确定所述被监测对象的身体姿势。
  64. 根据权利要63中所述的移动监护设备,其特征在于,所述根据所述第一夹角、第二夹角和第三夹角,确定所述被监测对象的身体姿势,包括:
    如果第一夹角为所述第一夹角、第二夹角和第三夹角中最小的夹角,确定所述被监测对象的身体姿态为平躺状态;
    如果第二夹角为所述第一夹角、第二夹角和第三夹角中最小的夹角,确定所述被监测对象的身体姿态为侧躺状态;
    如果第三夹角为所述第一夹角、第二夹角和第三夹角中最小的夹角,确定所述被监测对象的身体姿态为直立状态。
  65. 根据权利要求34中所述的移动监护设备,其特征在于,在所述控 制所述移动监护设备执行根据所述测量模式对被监测对象进行测量之后,所述方法还包括:
    将所述移动监护设备在所述测量模式下测量获得的生理体征参数,发送给外部设备。
  66. 一种移动监护系统,其特征在于,包括:如权利要求29-59所述的移动监护设备、参数显示监护设备和/或中央监护站,其中,所述参数显示监护设备和/或所述中央监护站用于接收所述移动监护设备在所述测量模式下测量到的所述生理体征参数。
  67. 一种计算机存储介质,其特征在于,所述计算机存储介质中存储有程序,所述程序被处理器执行时实现权利要求1至33中任一项所述的方法。
PCT/CN2018/125789 2018-12-29 2018-12-29 移动监护测量方法、移动监护设备、系统和存储介质 WO2020133480A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880098625.2A CN112911989A (zh) 2018-12-29 2018-12-29 移动监护测量方法、移动监护设备、系统和存储介质
PCT/CN2018/125789 WO2020133480A1 (zh) 2018-12-29 2018-12-29 移动监护测量方法、移动监护设备、系统和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/125789 WO2020133480A1 (zh) 2018-12-29 2018-12-29 移动监护测量方法、移动监护设备、系统和存储介质

Publications (1)

Publication Number Publication Date
WO2020133480A1 true WO2020133480A1 (zh) 2020-07-02

Family

ID=71126031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/125789 WO2020133480A1 (zh) 2018-12-29 2018-12-29 移动监护测量方法、移动监护设备、系统和存储介质

Country Status (2)

Country Link
CN (1) CN112911989A (zh)
WO (1) WO2020133480A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022143867A1 (zh) * 2020-12-30 2022-07-07 深圳迈瑞生物医疗电子股份有限公司 界面显示方法、监护仪及计算机存储介质
WO2023036272A1 (zh) * 2021-09-08 2023-03-16 深圳迈瑞生物医疗电子股份有限公司 一种用于术后康复的监护方法和监护系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014176071A1 (en) * 2013-04-24 2014-10-30 Covidien Lp System and method for determining hemodynamic status through a blood pressure related index
CN205019040U (zh) * 2015-08-24 2016-02-10 浙江大学 一种采样频率可变的人体参数测量系统
CN105380593A (zh) * 2014-08-22 2016-03-09 深圳迈瑞生物医疗电子股份有限公司 用于患者活动监测的方法和系统以及便携式遥测装置
CN105662356A (zh) * 2014-11-20 2016-06-15 中兴通讯股份有限公司 一种生理体征监测方法及装置
CN107788960A (zh) * 2017-11-19 2018-03-13 成都漫程科技有限公司 一种多功能便携式心电监护系统
CN108882847A (zh) * 2015-11-06 2018-11-23 生命Q 全球有限公司 用于生理监测的节能系统和方法
CN208208347U (zh) * 2017-11-10 2018-12-07 深圳市天工测控技术有限公司 一种病人监护装置和系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI356357B (en) * 2007-12-24 2012-01-11 Univ Nat Chiao Tung A method for estimating a body pose
CN101474066A (zh) * 2009-01-07 2009-07-08 上海大学 带有加速度传感器的血压实时监测远程适时服务的方法与系统
CN101732041B (zh) * 2009-12-14 2012-05-02 北京航空航天大学 一种医疗监护系统
CN107080527B (zh) * 2017-02-23 2020-02-07 东南大学 一种基于可穿戴生命体征监测装置的精神状态监测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014176071A1 (en) * 2013-04-24 2014-10-30 Covidien Lp System and method for determining hemodynamic status through a blood pressure related index
CN105380593A (zh) * 2014-08-22 2016-03-09 深圳迈瑞生物医疗电子股份有限公司 用于患者活动监测的方法和系统以及便携式遥测装置
CN105662356A (zh) * 2014-11-20 2016-06-15 中兴通讯股份有限公司 一种生理体征监测方法及装置
CN205019040U (zh) * 2015-08-24 2016-02-10 浙江大学 一种采样频率可变的人体参数测量系统
CN108882847A (zh) * 2015-11-06 2018-11-23 生命Q 全球有限公司 用于生理监测的节能系统和方法
CN208208347U (zh) * 2017-11-10 2018-12-07 深圳市天工测控技术有限公司 一种病人监护装置和系统
CN107788960A (zh) * 2017-11-19 2018-03-13 成都漫程科技有限公司 一种多功能便携式心电监护系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022143867A1 (zh) * 2020-12-30 2022-07-07 深圳迈瑞生物医疗电子股份有限公司 界面显示方法、监护仪及计算机存储介质
WO2023036272A1 (zh) * 2021-09-08 2023-03-16 深圳迈瑞生物医疗电子股份有限公司 一种用于术后康复的监护方法和监护系统

Also Published As

Publication number Publication date
CN112911989A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
JP6806864B2 (ja) 自動向き変更管理のシステム
US11058320B2 (en) Method and apparatus for determining at least one of a position and an orientation of a wearable device on a subject
JP5841320B2 (ja) 生理学的特性および運動パフォーマンスをモニタリングするための非侵襲的方法およびシステム
JP2023002595A (ja) 患者の動きを追跡するシステムおよび方法
JP2011120871A (ja) 被験者の生理学的特性および運動パフォーマンス特性をモニタリングするための方法およびシステム
JP2016518893A (ja) 生理学的特徴をモニタリングするシステム及び方法
WO2015153676A1 (en) Accelerometer and wireless notification system
CN109222909A (zh) 一种可穿戴式智能监测装置及监测运动、脊椎弯曲和关节磨损的方法
CN110236555B (zh) 姿势和深呼吸改善装置、系统和方法
CN108056765A (zh) 可自动监测人体健康状态的智能枕、垫
WO2020133480A1 (zh) 移动监护测量方法、移动监护设备、系统和存储介质
JP7059206B2 (ja) 向き変更プロトコルを管理するシステム
CN206777315U (zh) 可自动监测人体健康状态的智能枕、垫
US20210022621A1 (en) Heart failure decompensation monitoring
EP3488778A1 (en) Device for electromagnetic structural characterization
US20220211282A1 (en) Hemodynamic monitoring system and method and harness for same
US20230128620A1 (en) A portable automated life-saving system with dynamic adaptation
CN110338805A (zh) 孕妇姿态实时监测系统
KR20050010885A (ko) 생리 기능 상태 모니터링 장치와 그 장치의 모니터링 및처리 방법
TW202143247A (zh) 醫護輪床感測器之結構
TWM604481U (zh) 醫護輪床感測器之結構
CN104755016A (zh) 用于呼吸率测量的系统和方法
CN113520804A (zh) 一种用于髋部骨折术后的康复及并发症监测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18945135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM1205 DATED 10.11.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18945135

Country of ref document: EP

Kind code of ref document: A1