WO2020133393A1 - 通信链路的自适应切换方法、可移动平台和控制装置 - Google Patents

通信链路的自适应切换方法、可移动平台和控制装置 Download PDF

Info

Publication number
WO2020133393A1
WO2020133393A1 PCT/CN2018/125543 CN2018125543W WO2020133393A1 WO 2020133393 A1 WO2020133393 A1 WO 2020133393A1 CN 2018125543 W CN2018125543 W CN 2018125543W WO 2020133393 A1 WO2020133393 A1 WO 2020133393A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication link
switching
communication
available
notification
Prior art date
Application number
PCT/CN2018/125543
Other languages
English (en)
French (fr)
Inventor
孟凡淦
饶雄斌
尹小俊
郑德恩
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880068861.XA priority Critical patent/CN111279748B/zh
Priority to PCT/CN2018/125543 priority patent/WO2020133393A1/zh
Publication of WO2020133393A1 publication Critical patent/WO2020133393A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • the present invention generally relates to the field of communications, and in particular to an adaptive switching method of a communication link, a movable platform, and a control device.
  • the mobile platform In the field of mobile platforms (such as drones), the mobile platform often needs to transmit the captured images back to the control terminal, and the control terminal also sends control signals to the mobile platform.
  • Most existing UAVs use a single communication link, such as a dedicated communication link, to transmit control signals and images.
  • drones may need to work in multiple occlusion environments and strong interference environments. Using a single communication link may cause the control terminal to be unable to control the drone, and the image transmission data sent by the drone to the control terminal may be lost.
  • an adaptive switching method for a communication link is provided.
  • the method is applied to a mobile platform and includes: periodically generating and sending a test data packet to determine whether the second communication link Available; determining whether the communication quality of the first communication link meets the requirement based on the signal quality parameter of the first communication link; and when the communication quality of the first communication link does not meet the requirement and the second communication link When a road is available, the communication link is switched from the first communication link to the second communication link.
  • a movable platform includes a first switching circuit for adaptively switching communication links of the movable platform, the first switching circuit includes : The first generation module is used to periodically generate test data packets; the first sending and receiving module is used to send the generated test data packets and receive the returned test data packets; the first judgment module is used to determine the second Whether the communication link is available, and whether the communication quality of the first communication link meets the requirements is determined based on the signal quality parameter of the first communication link; and the first switching module is used for communication of the first communication link When the quality does not meet the requirements and the second communication link is available, the communication link is switched from the first communication link to the second communication link.
  • a removable platform includes: a memory and a processor connected to the memory, wherein: the memory is used to store program code; the processing It is used to call the program code for execution, and when the program code is executed, execute the adaptive switching method of the communication link as described above.
  • a computer-readable medium having a computer program stored on the computer-readable medium, and the computer program executes the adaptive switching method of the communication link as described above when running .
  • an adaptive switching method for a communication link is provided.
  • the method is applied to a control device of a mobile platform and includes: periodically generating and sending test data packets to determine a second Whether a communication link is available; obtaining a handover notification, the handover notification including a first handover notification or a second handover notification; and when the second communication link is available and the first handover notification is obtained, the communication The link is switched from the first communication link to the second communication link.
  • a control device for a movable platform includes a second switching circuit for adaptively switching a communication link of the control device, the second switching circuit
  • the method includes: a second generation module for periodically generating test data packets; a second sending and receiving module for sending the generated test data packets and receiving the returned test data packets, and obtaining a switching notification, wherein the switching The notification includes a first handover notification or a second handover notification; a second judgment module is used to determine whether the second communication link is available; and a second handover module is used when the second communication link is available and the At the first switching notification, the communication link is switched from the first communication link to the second communication link.
  • a control device for a movable platform includes: a memory and a processor connected to the memory, wherein: the memory is used to store program code; The processor is configured to call the program code for execution, and when the program code is executed, execute the adaptive switching method of the communication link as described above.
  • a computer-readable medium having a computer program stored on the computer-readable medium, and the computer program executes the adaptive switching method of the communication link as described above when running .
  • the adaptive switching method of the communication link, the movable platform, the control device, and the computer-readable medium provided by the embodiments of the present invention increase the backup communication link, so that the communication link can be between the dedicated communication link and the backup communication link
  • Self-adaptive switching can take advantage of the low latency and no additional cost of the dedicated communication link, and can effectively avoid the loss of control of the mobile platform and the loss of image transmission data.
  • FIG. 1 shows a flowchart of steps of an adaptive switching method of a communication link according to an embodiment of the present invention
  • FIG. 2 shows a structural block diagram of a movable platform according to an embodiment of the present invention
  • FIG. 3 shows a structural block diagram of a movable platform according to yet another embodiment of the present invention.
  • FIG. 4 shows a flowchart of steps of an adaptive switching method of a communication link according to yet another embodiment of the present invention
  • FIG. 5 shows a structural block diagram of a control device of a movable platform according to yet another embodiment of the present invention.
  • FIG. 6 shows a structural block diagram of a control device of a movable platform according to still another embodiment of the present invention.
  • the present invention provides an adaptive switching method for a communication link.
  • the method is applied to a mobile platform and includes: periodically generating and sending test data packets to determine whether a second communication link is available Determining whether the communication quality of the first communication link meets the requirements based on the signal quality parameters of the first communication link; and when the communication quality of the first communication link does not meet the requirements and the second communication link When available, the communication link is switched from the first communication link to the second communication link.
  • the adaptive switching method, movable platform, control device and computer-readable medium of the communication link of the present invention add a backup communication link, so that the communication link can perform self-service between the dedicated communication link and the backup communication link Adapting to the switch, while taking full advantage of the low latency and no additional cost of the dedicated communication link, it can effectively avoid the loss of control of the mobile platform and the loss of image transmission data.
  • FIG. 1 shows a flowchart of steps of an adaptive switching method 100 of a communication link according to an embodiment of the present invention.
  • the method 100 may be applied to a movable platform.
  • the method 100 may be applied to a control device of a movable platform.
  • the movable platform may include a drone, an unmanned vehicle, a movable robot, etc.
  • the control device may include a remote controller, a ground station, etc.
  • the present invention does not limit the types of the movable platform and the control device .
  • the control device may include a single remote controller, a main remote controller + auxiliary remote controller, a main remote controller + RTK base station, and the like.
  • the movable platform is described by taking the drone as an example, and the control device is described by taking the remote controller as an example.
  • the method 100 includes the following steps:
  • Step S110 Test data packets are periodically generated and sent to determine whether the second communication link is available.
  • the second communication link may be a public communication link. Since the cellular network has a very wide coverage range and is not easily interfered with, in one embodiment, the second communication link may be a cellular network. Optionally, the second communication link may be one of a 3G, 4G, or 5G cellular network.
  • the drone after the drone is powered on and powered on, it starts to periodically generate test data packets, and sends the test data packets through the second communication link.
  • test data packets may generate test data packets every 1s.
  • test data packets can also be generated every 2s, 3s, 0.5s, etc. as needed, and the present invention does not limit this.
  • the step of determining whether the second communication link is available may include: if the returned test data packet is received within the first predetermined time, the second communication link is available, otherwise it is not available.
  • the first predetermined time may be 5s.
  • other values of the first predetermined time can also be selected according to the test data or the simulation data, for example, 3s, 4s, 6s, etc., which is not limited in the present invention.
  • Step S120 Determine whether the communication quality of the first communication link meets the requirements based on the signal quality parameter of the first communication link.
  • the first communication link may be a dedicated communication link between the drone and the remote controller.
  • the dedicated communication link may be a lightbridge or OcuSync communication link. Because the dedicated communication link has low latency and no additional cost, the dedicated communication link can be used first after the drone is powered on.
  • the signal quality parameter is used to determine whether the communication quality of the first communication link is good or bad, and it may include an uplink signal quality parameter and a downlink signal quality parameter.
  • the uplink signal quality parameters may include one or more of uplink MCS (modulation and coding scheme), the number of uplink error packets, the uplink signal-to-noise ratio, and so on.
  • the downlink signal quality parameters may include downlink signal-to-noise ratio and the like. Among them, the above upstream MCS, the number of upstream error packets, and the upstream signal-to-noise ratio are mutually dependent. When one of the parameters changes, the other two parameters usually also change. It should be understood that the above uplink signal quality parameters and downlink signal quality parameters are only exemplary, and those skilled in the art may select other uplink signal quality parameters and downlink signal quality parameters according to needs, which is not limited in the present invention.
  • the signal quality parameter has a signal threshold to determine whether the communication quality of the first communication link meets the requirement based on the relationship between the size of the signal quality parameter and the signal threshold.
  • Step S130 When the communication quality of the first communication link does not meet the requirements and the second communication link is available, the communication link is switched from the first communication link to the second communication link.
  • the communication quality of the first communication link does not meet the requirements and the second communication link is available, and then the communication link is switched from the first communication link to the second communication link.
  • the first communication link is adopted regardless of whether the second communication link is available.
  • the purpose of this is to use the first communication link (ie the dedicated communication link) as much as possible.
  • the method 100 may further include the step of switching the communication link from the second communication link to the first communication link when the communication quality of the first communication link meets requirements or the second communication link is unavailable.
  • the communication link is switched from the second communication link to the first communication link.
  • the purpose of this is also to use the first communication link (that is, the dedicated communication link) as much as possible.
  • the method 100 further includes sending a handover notification.
  • the switching notification is sent by the drone to the remote controller to notify the remote controller to switch the communication link.
  • the handover notification is sent through both the first communication link and the second communication link.
  • the handover notification may include a first handover notification or a second handover notification.
  • the first switching notification is used to notify the switching of the communication link from the first communication link to the second communication link
  • the second switching notification is used to notify the switching of the communication link from the second communication link to the first communication link road.
  • the switching threshold of the communication link may be set, that is, the signal threshold of the signal quality parameter is set to include a first signal threshold and a second signal threshold, wherein the second signal threshold is greater than the first signal threshold .
  • the first signal threshold ie, low threshold
  • the first signal threshold ie, low threshold
  • the drone when it is detected that the upstream MCS ⁇ 4, the upstream signal to noise ratio ⁇ -6, the downstream signal to noise ratio ⁇ -12, and the number of error packets ⁇ 50, it can be determined that the communication quality of the first communication link is poor to a certain extent, At this time, if the drone detects that the second communication link is available by actively sending test data packets and receiving the returned test data packets, the drone switches the communication link from the first communication link to the second communication link road.
  • the value of the first signal threshold is only exemplary and not limiting, and those skilled in the art can select other suitable values according to test data or simulation data.
  • the second signal threshold ie, high threshold
  • the communication link is switched from the second communication link to the first communication link.
  • a first time threshold may be set, at this time only when the first communication link Only when the signal quality parameter is higher than the second signal threshold and the communication hold time on the second communication link is greater than the first time threshold, the communication link is switched from the second communication link to the first communication link.
  • the first time threshold may be set according to needs, for example, the first time threshold may be 3s, 4s, 5s, etc., which is not limited in the present invention.
  • the uplink signal-to-noise ratio>-4 and the downlink signal-to-noise ratio>-8 it can be determined that the communication quality of the first communication link is sufficiently good. If the hold time exceeds the first time threshold (for example, 3s), the communication link is switched to the first communication link regardless of whether the second communication link is available.
  • the first time threshold for example, 3s
  • the values of the above-mentioned second signal threshold and the values of the first time threshold are only exemplary and not limiting, and those skilled in the art may select other suitable values according to test data or simulation data.
  • the drone may receive the public communication link at the same time in the time slot when the public communication link is switched to the dedicated communication link Communication data with both dedicated communication links.
  • the method 100 may further include: The communication signal of both a communication link and the second communication link is set to a second predetermined time so that the communication signal from the second communication link is discarded within the second predetermined time. In this way, it can be ensured that the UAV end mainly receives the communication data of the dedicated communication link.
  • the second predetermined time may be 1s, 2s, etc. It should be understood that those skilled in the art may select other suitable values for the second predetermined time based on the test data or simulation data, which is not limited in the present invention.
  • the method 100 may further include the step of: if the communication quality of the first communication link does not meet the requirements and the second communication link is unavailable, controlling the movable platform to stop moving or return home. The purpose of this step is to prevent the UAV from crashing due to loss of control when neither the dedicated communication link nor the public communication link is available.
  • FIG. 2 shows a structural block diagram of a movable platform 200 according to an embodiment of the present invention.
  • the movable platform may include a drone, an unmanned vehicle, a movable robot, and the like.
  • the movable platform 200 has a control device, and the control device may include a remote controller, a ground station, etc.
  • the present invention does not limit the types of the movable platform and the control device.
  • the control device may include a single remote controller, a main remote controller + auxiliary remote controller, a main remote controller + RTK base station, and the like.
  • the mobile platform 200 is described by taking an unmanned aerial vehicle as an example, and the control device of the mobile platform is described by using a remote controller as an example.
  • the mobile platform 200 may include a first switching circuit 210.
  • the first switching circuit 210 is used to adaptively switch the communication link of the mobile platform 200, that is, to switch the communication link from the first communication link to the first Two communication links or switching from the second communication link to the first communication link.
  • the first communication link may be a dedicated communication link between the drone and the remote controller.
  • the dedicated communication link may be a lightbridge or OcuSync communication link. Due to the low latency of the dedicated communication link and no additional cost, the dedicated communication link is used first after the drone is powered on.
  • the second communication link may be a public communication link. Since the cellular network has a very wide coverage area and is not susceptible to interference, in one embodiment, the second communication link may be a cellular network. Optionally, the second communication link may be one of 3G, 4G, or 5G cellular networks.
  • the first switching circuit 210 may include a first generating module 220, a first sending and receiving module 240, a first determining module 260, and a first switching module 280. It should be understood that, according to actual needs, the first switching circuit 210 may further include other suitable modules, which is not limited in the present invention.
  • the first generation module 220 is used to periodically generate test data packets.
  • the periodically generating test data packets may generate test data packets every 1s.
  • test data packets can also be generated every 2s, 3s, 0.5s, etc. as needed, and the present invention does not limit this.
  • the first sending and receiving module 240 is used to send the generated test data packet and receive the returned test data packet. Further, the first sending and receiving module 240 is also used to send a handover notification. Exemplarily, in the case where the movable platform 200 is a drone, the first sending and receiving module 240 of the drone sends a switching notification to its control device to notify the control device to switch the communication link.
  • the first sending and receiving module 240 sends a handover notification through both the first communication link and the second communication link.
  • the handover notification includes a first handover notification or a second handover notification.
  • the first switching notification is used to notify the switching of the communication link from the first communication link to the second communication link;
  • the second switching notification is used to notify the switching of the communication link from the second communication link to the first Communication link.
  • the first judgment module 260 is used to determine whether the second communication link is available, and determine whether the communication quality of the first communication link meets the requirements based on the signal quality parameter of the first communication link.
  • the first judgment module 260 determines whether the second communication link is available based on the following: if the returned test data packet is received within the first predetermined time, the second communication link is available, otherwise it is not available.
  • the first predetermined time may be 5s.
  • other values of the first predetermined time can also be selected according to the test data or the simulation data, for example, 3s, 4s, 6s, etc., which is not limited in the present invention.
  • the signal quality parameter is used to determine whether the communication quality of the first communication link is good or bad, and it may include an uplink signal quality parameter and a downlink signal quality parameter.
  • the uplink signal quality parameters may include one or more of uplink MCS (modulation and coding scheme), the number of uplink error packets, the uplink signal-to-noise ratio, and so on.
  • the downlink signal quality parameters may include downlink signal-to-noise ratio and the like. Among them, the above upstream MCS, the number of upstream error packets, and the upstream signal-to-noise ratio are mutually dependent. When one of the parameters changes, the other two parameters usually also change. It should be understood that the above uplink signal quality parameters and downlink signal quality parameters are only exemplary, and those skilled in the art may select other uplink signal quality parameters and downlink signal quality parameters according to needs, which is not limited in the present invention.
  • the signal quality parameter has a signal threshold, so as to determine whether the communication quality of the first communication link meets the requirement based on the relationship between the size of the signal quality parameter and the signal threshold.
  • the first switching module 280 is used to switch the communication link from the first communication link to the second communication link when the communication quality of the first communication link does not meet the requirements and the second communication link is available.
  • the first switching module 280 switches the communication link from the first communication link to the second communication link.
  • the first communication link is adopted regardless of whether the second communication link is available.
  • the purpose of this is to use the first communication link (ie the dedicated communication link) as much as possible.
  • the first switching module 280 is further configured to switch the communication link from the second communication link to the first communication link when the communication quality of the first communication link meets requirements or the second communication link is unavailable.
  • the first switching module 280 switches the communication link from the second communication link to the first communication link .
  • the purpose of this is also to use the first communication link (that is, the dedicated communication link) as much as possible.
  • the switching threshold of the communication link may be set, that is, the signal threshold of the signal quality parameter is set to include a first signal threshold and a second signal threshold, wherein the second signal threshold is greater than the first signal threshold .
  • the first switching module 280 uses the first signal threshold (ie, low threshold), that is, when the signal quality parameter of the first communication link is lower than When the first signal threshold and the second communication link are available, the first switching module 280 switches the communication link from the first communication link to the second communication link.
  • the first signal threshold ie, low threshold
  • the first judgment module 260 may determine the communication quality of the first communication link when it is detected that the upstream MCS ⁇ 4, the upstream signal-to-noise ratio ⁇ -6, the downstream signal-to-noise ratio ⁇ -12, and the number of error packets ⁇ 50.
  • the first judgment module 260 may determine the communication quality of the first communication link when the first judgment module 260 determines that the second communication link is available, the first switching module 280 transfers the communication link from the first communication link. Switch to the second communication link.
  • the value of the first signal threshold is only exemplary and not limiting, and those skilled in the art can select other suitable values according to test data or simulation data.
  • the first switching module 280 uses the second signal threshold (ie, high threshold), that is, when the signal quality parameter of the first communication link is higher than When the second signal threshold or the second communication link is not available, the first switching module 280 switches the communication link from the second communication link to the first communication link.
  • the second signal threshold ie, high threshold
  • a first time threshold may be set, at this time only when the first communication link.
  • the first time threshold may be set according to needs, for example, the first time threshold may be 3s, 4s, 5s, etc., which is not limited in the present invention.
  • the first judgment module 260 may determine that the communication quality of the first communication link is good enough. If the communication holding time on the link exceeds the first time threshold (for example, 3s), then regardless of whether the second communication link is available, the first switching module 280 switches the communication link to the first communication link.
  • the first time threshold for example, 3s
  • the first switching module 280 switches the communication link to the first communication link.
  • the drone may receive the public communication link at the same time in the time slot when the public communication link is switched to the dedicated communication link Communication data with both dedicated communication links.
  • the first switching circuit 210 may further include an arbitration module 290, It is used to start a timer to set a second predetermined time when receiving communication signals from both the first communication link and the second communication link at the same time so that the second communication link is discarded within the second predetermined time Communication signal.
  • the UAV end mainly receives the communication data of the dedicated communication link.
  • the second predetermined time may be 1s, 2s, etc. It should be understood that those skilled in the art may select other suitable values for the second predetermined time based on the test data or simulation data, which is not limited in the present invention.
  • FIG. 3 shows a structural block diagram of a movable platform 300 according to yet another embodiment of the present invention.
  • the movable platform may include a drone, an unmanned vehicle, a movable robot, and the like.
  • the movable platform 300 has a control device, and the control device may include a remote controller, a ground station, etc.
  • the present invention does not limit the types of the movable platform and the control device.
  • the control device may include a single remote controller, a main remote controller + auxiliary remote controller, a main remote controller + RTK base station, and the like.
  • the mobile platform 300 includes a memory 310 and a processor 320 connected to the memory 310.
  • the memory 310 is used to store the program code;
  • the processor 320 is used to call the program code for execution, and when the program code is executed, execute the adaptive switching method of the communication link as described above.
  • the movable platform 300 may be implemented by the movable platform 200 in FIG. 2.
  • a computer-readable medium having a computer program stored on the computer-readable medium, the computer program performs the adaptive switching method of the communication link as described above when running.
  • a method 400 for adaptively switching communication links is provided.
  • the adaptive switching method 400 of the communication link will be described in detail with reference to FIG. 4.
  • FIG. 4 shows a flowchart of steps of an adaptive switching method 400 of a communication link according to yet another embodiment of the present invention.
  • the method 400 may be applied to a control device of a movable platform.
  • the method 400 may be applied to a movable platform.
  • the movable platform may include a drone, an unmanned vehicle, a movable robot, etc.
  • the control device may include a remote controller, a ground station, etc.
  • the present invention does not limit the types of the movable platform and the control device .
  • the control device may include a single remote controller, a main remote controller + auxiliary remote controller, a main remote controller + RTK base station, and the like.
  • the movable platform is described by taking the drone as an example, and the control device is described by taking the remote controller as an example.
  • the method 400 includes the following steps:
  • Step S410 periodically generate and send a test data packet to determine whether the second communication link is available.
  • the second communication link may be a public communication link. Since the cellular network has a very wide coverage area and is not susceptible to interference, in one embodiment, the second communication link may be a cellular network. Optionally, the second communication link may be one of 3G, 4G, or 5G cellular networks.
  • the remote controller After the remote controller is turned on and powered on, it starts to periodically generate test data packets and sends the test data packets through the second communication link.
  • test data packets may generate test data packets once every 1s.
  • test data packets can also be generated every 2s, 3s, 0.5s, etc. as needed, and the present invention does not limit this.
  • the step of determining whether the second communication link is available may include: if the returned test data packet is received within the first predetermined time, the second communication link is available, otherwise it is not available.
  • the first predetermined time may be 5s.
  • other values of the first predetermined time can also be selected according to the test data or the simulation data, for example, 3s, 4s, 6s, etc., which is not limited in the present invention.
  • Step S420 Obtain a handover notification, where the handover notification includes the first handover notification or the second handover notification.
  • the first switching notification is used to notify the switching of the communication link from the first communication link to the second communication link
  • the second switching notification is used to notify the switching of the communication link from the second communication link to the first communication link road.
  • the first communication link may be a dedicated communication link between the drone and the remote controller.
  • the dedicated communication link may be a lightbridge or OcuSync communication link. Because the dedicated communication link has low delay and no additional cost, the dedicated communication link is used first after the remote controller is powered on.
  • the drone sends a switching notification, and the remote controller obtains the switching notification from the drone.
  • the handover notification is obtained through the first communication link and/or the second communication link. Specifically, when both the first communication link and the second communication link are clear, a handover notification is obtained from both the first communication link and the second communication link; when the first communication link and the second communication link When one of the two is unblocked, the handover notification is obtained from the unblocked communication link.
  • Step S430 When the second communication link is available and the first switching notification is obtained, the communication link is switched from the first communication link to the second communication link.
  • the second communication link is available and the first switching notification is obtained before the communication link is switched from the first communication link to the second communication link.
  • the first communication link is adopted.
  • the purpose of this is to use the first communication link (ie the dedicated communication link) as much as possible.
  • the method 400 may further include the step of switching the communication link from the second communication link to the first communication link when the second communication link is unavailable or the second switching notification is obtained.
  • the communication link is switched from the second communication link to the first communication link.
  • the purpose of this is also to use the first communication link (that is, the dedicated communication link) as much as possible.
  • the method 400 may further include the step of: when the communication quality of the first communication link does not meet the requirements and the second communication link is unavailable, control the movable platform to stop moving or return home. The purpose of this step is to prevent the UAV from crashing due to loss of control when neither the dedicated communication link nor the public communication link is available.
  • FIG. 5 shows a structural block diagram of a control apparatus 500 of a movable platform according to still another embodiment of the present invention.
  • the movable platform may include a drone, an unmanned vehicle, etc.
  • the control device may include a remote controller, a ground station, etc.
  • the present invention does not limit the types of the movable platform and the control device.
  • the control device may include a single remote controller, a main remote controller + auxiliary remote controller, a main remote controller + RTK base station, and the like.
  • control device 500 will be described by taking the remote control of the drone as an example.
  • control device 500 may include a second switching circuit 510 for adaptively switching the communication link of the control device 500, that is, switching the communication link from the first communication link to the second communication Link or switch from the second communication link to the first communication link.
  • the first communication link may be a dedicated communication link between the drone and the remote controller.
  • the dedicated communication link may be a lightbridge or OcuSync communication link. Because the dedicated communication link has low delay and no additional cost, the dedicated communication link is used first after the remote controller is powered on.
  • the second communication link may be a public communication link. Due to the very wide coverage of the cellular network, in one embodiment, the second communication link may be a cellular network. Optionally, the second communication link may be one of 3G, 4G, or 5G cellular networks.
  • the second switching circuit 510 includes a second generating module 520, a second sending and receiving module 540, a second determining module 560, and a second switching module 580. It should be understood that, according to actual needs, the second switching circuit 510 may further include other suitable modules, which is not limited in the present invention.
  • the second generation module 520 is used to periodically generate test data packets.
  • the periodically generating test data packets may generate test data packets once every 1s.
  • test data packets can also be generated every 2s, 3s, 0.5s, etc. as needed, and the present invention does not limit this.
  • the second sending and receiving module 540 is used to send the generated test data packet and receive the returned test data packet, and obtain the switching notification.
  • the control device 500 is a remote control of the drone
  • the drone sends a switching notification, and the remote control obtains the switching notification from the drone.
  • the second sending and receiving module 540 obtains the switching notification through the first communication link and/or the second communication link. Specifically, when both the first communication link and the second communication link are clear, the second sending and receiving module 540 obtains a handover notification from both the first communication link and the second communication link; when the first communication link When one of the second communication links is clear, the second sending and receiving module 540 obtains the handover notification from the clear communication link.
  • the handover notification includes a first handover notification or a second handover notification.
  • the first switching notification is used to notify the switching of the communication link from the first communication link to the second communication link
  • the second switching notification is used to notify the switching of the communication link from the second communication link to the first communication link road.
  • the second judgment module 560 is used to determine whether the second communication link is available.
  • the second judgment module 560 determines whether the second communication link is available based on the following: if the returned test data packet is received within the first predetermined time, the second communication link is available, otherwise it is not available.
  • the first predetermined time may be 5s.
  • other values of the first predetermined time can also be selected according to the test data or the simulation data, for example, 3s, 4s, 6s, etc. The present invention does not limit this.
  • the second switching module 580 is used to switch the communication link from the first communication link to the second communication link when the second communication link is available and the first switch notification is obtained.
  • the second communication link is available and the first switching notification is obtained, and then the second switching module 580 switches the communication link from the first communication link to the second communication link.
  • the first communication link is adopted. The purpose of this is to use the first communication link (ie the dedicated communication link) as much as possible.
  • the second switching module 580 is further configured to switch the communication link from the second communication link to the first communication link when the second communication link is unavailable or the second switch notification is obtained.
  • the second switching module 580 switches the communication link from the second communication link to the first communication link.
  • the purpose of this is also to use the first communication link (that is, the dedicated communication link) as much as possible.
  • FIG. 6 shows a structural block diagram of a control device 600 of a movable platform according to still another embodiment of the present invention.
  • the movable platform may include a drone, an unmanned vehicle, etc.
  • the control device may include a remote controller, a ground station, etc.
  • the present invention does not limit the types of the movable platform and the control device.
  • the control device may include a single remote controller, a main remote controller + auxiliary remote controller, a main remote controller + RTK base station, and the like.
  • the control device 600 includes a memory 610 and a processor 620 connected to the memory 610.
  • the memory 610 is used to store the program code; the processor 620 is used to call the program code for execution, and when the program code is executed, execute the adaptive switching method of the communication link as described above.
  • the control device 600 may be implemented by the control device 500 in FIG. 5.
  • a computer-readable medium having a computer program stored on the computer-readable medium, the computer program performs the adaptive switching method of the communication link as described above when running.
  • the adaptive switching method, movable platform, control device, and computer-readable medium of the communication link of the present invention add a backup communication link, which can be a public communication with wide coverage and less susceptible to interference
  • the link can effectively avoid the loss of control of the mobile platform and the loss of image transmission data.
  • the communication link can be adaptively switched between the dedicated communication link and the backup communication link, which ensures the full use of the advantages of the low latency and no additional cost of the dedicated communication link, and also ensures the data transmission Reliability.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division, and in actual implementation, there may be another division manner, for example, multiple units or components may be combined or Can be integrated into another device, or some features can be ignored, or not implemented.
  • the various component embodiments of the present invention may be implemented in hardware, or implemented in software modules running on one or more processors, or implemented in a combination thereof.
  • a microprocessor or a digital signal processor (DSP) may be used to implement some or all functions of some modules in the article analysis device according to the embodiments of the present invention.
  • DSP digital signal processor
  • the present invention can also be implemented as a device program (for example, a computer program and a computer program product) for performing a part or all of the method described herein.
  • a program implementing the present invention may be stored on a computer-readable medium, or may have the form of one or more signals.
  • Such a signal can be downloaded from an Internet website, or provided on a carrier signal, or provided in any other form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种通信链路的自适应切换方法、可移动平台、控制装置和计算机可读介质。其中,所述方法应用于可移动平台,包括:周期性地生成并发送测试数据包,以确定第二通信链路是否可用;基于第一通信链路的信号质量参数来确定所述第一通信链路的通信质量是否满足要求;以及当所述第一通信链路的通信质量不满足要求且所述第二通信链路可用时,将所述通信链路从所述第一通信链路切换至所述第二通信链路。本发明的通信链路的自适应切换方法增加了备用通信链路,使得通信链路能够在专用通信链路和备用通信链路之间进行自适应切换,在充分利用专用通信链路的低延时、无额外费用的优势的同时,能够有效避免可移动平台的失控和丢失图传数据现象。

Description

通信链路的自适应切换方法、可移动平台和控制装置 技术领域
本发明总地涉及通信领域,具体而言涉及一种通信链路的自适应切换方法、可移动平台和控制装置。
背景技术
在可移动平台(例如无人机)领域中,可移动平台常常需要将拍摄得到的图像传送回控制端,并且控制端也要向可移动平台发送控制信号。现有无人机大多使用单一的通信链路,例如专用通信链路进行控制信号和图像的传输。然而,无人机可能需要在多重遮挡环境、强干扰环境下工作,采用单一的通信链路可能会导致控制端不能控制无人机,无人机发送给控制端的图传数据丢失。
发明内容
在发明内容部分中引入了一系列简化形式的概念,这将在具体实施方式部分中进一步详细说明。本发明的发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
鉴于上述技术问题的存在,有必要提出一种通信链路的自适应切换方法、可移动平台、控制装置和计算机可读介质,以解决采用单一的通信链路可能会导致控制端不能控制无人机,无人机发送给控制端的图传数据丢失的问题。
根据本发明实施例的一方面提供了一种通信链路的自适应切换方法,所述方法应用于可移动平台,包括:周期性地生成并发送测试数据包,以确定第二通信链路是否可用;基于第一通信链路的信号质量参数来确定所述第一通信链路的通信质量是否满足要求;以及当所述第一通信链路的通信质量不满足要求且所述第二通信链路可用时,将所述通信链路从所述第一通信链路切换至所述第二通信链路。
根据本发明实施例的另一方面提供了一种可移动平台,所述可移动平台包括第一切换电路,用于自适应切换所述可移动平台的通信链路,所述第一切换电路包括:第一生成模块,用于周期性地生成测试数据包;第一发送和接收模块,用于发送所生成的测试数据包并接收返回的测试数据包;第一判断模块,用于确定第二通信链路是否可用,以及基于第一通信链路的信号质量参数确定所述第一通信链路的通信质量是否满足要求;以及第一切换模块,用于当所述第一通信链路的通信质量不满足要求且所述第二通信链路可用时,将所述通信链路从所述第一通信链路切换至所述第二通信链路。
根据本发明实施例的又一方面提供了一种可移动平台,所述可移动平台包括:存储器和连接至所述存储器的处理器,其中:所述存储器,用于存储程序代码;所述处理器,用于调用所述程序代码以执行,当所述程序代码被执行时,执行如上所述的通信链路的自适应切换方法。
根据本发明实施例的再一方面提供了一种计算机可读介质,所述计算机可读介质上存储有计算机程序,所述计算机程序在运行时执行如上所述的通信链路的自适应切换方法。
根据本发明实施例的再一方面提供了一种通信链路的自适应切换方法,所述方法应用于可移动平台的控制装置,包括:周期性地生成并发送测试数据包,以确定第二通信链路是否可用;获取切换通知,所述切换通知包括第一切换通知或第二切换通知;以及当所述第二通信链路可用且获取到所述第一切换通知时,将所述通信链路从第一通信链路切换至所述第二通信链路。
根据本发明实施例的再一方面提供了一种可移动平台的控制装置,所述控制装置包括第二切换电路,用于自适应切换所述控制装置的通信链路,所述第二切换电路包括:第二生成模块,用于周期性地生成测试数据包;第二发送和接收模块,用于发送所生成的测试数据包并接收返回的测试数据包,以及获取切换通知,其中所述切换通知包括第一切换通知或第二切换通知;第二判断模块,用于确定第二通信链路是否可用;以及第二切换模块,用于当所述第二通信链路可用且获取到所述第一切换通知时,将所述通信链路从第一通信链路切换 至所述第二通信链路。
根据本发明实施例的再一方面提供了一种可移动平台的控制装置,所述控制装置包括:存储器和连接至所述存储器的处理器,其中:所述存储器,用于存储程序代码;所述处理器,用于调用所述程序代码以执行,当所述程序代码被执行时,执行如上所述的通信链路的自适应切换方法。
根据本发明实施例的再一方面提供了一种计算机可读介质,所述计算机可读介质上存储有计算机程序,所述计算机程序在运行时执行如上所述的通信链路的自适应切换方法。
本发明实施例提供的通信链路的自适应切换方法、可移动平台、控制装置和计算机可读介质,增加了备用通信链路,使得通信链路能够在专用通信链路和备用通信链路之间进行自适应切换,在充分利用专用通信链路的低延时、无额外费用的优势的同时,能够有效避免可移动平台的失控和丢失图传数据现象。
附图说明
本发明的下列附图在此作为本发明的一部分用于理解本发明。附图中示出了本发明的实施例及其描述,用来解释本发明的原理。
附图中:
图1示出了根据本发明的一个实施例的、通信链路的自适应切换方法的步骤流程图;
图2示出了根据本发明的一个实施例的可移动平台的结构框图;
图3示出了根据本发明的又一实施例的可移动平台的结构框图;
图4示出了根据本发明的再一实施例的、通信链路的自适应切换方法的步骤流程图;
图5示出了根据本发明的再一实施例的可移动平台的控制装置的结构框图;以及
图6示出了根据本发明的再一实施例的可移动平台的控制装置的结构框图。
具体实施方式
为了使得本发明的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本发明的示例实施例。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是本发明的全部实施例,应理解,本发明不受这里描述的示例实施例的限制。基于本发明中描述的本发明实施例,本领域技术人员在没有付出创造性劳动的情况下所得到的所有其它实施例都应落入本发明的保护范围之内。
为了解决上述技术问题,本发明提供一种通信链路的自适应切换方法,所述方法应用于可移动平台,包括:周期性地生成并发送测试数据包,以确定第二通信链路是否可用;基于第一通信链路的信号质量参数来确定所述第一通信链路的通信质量是否满足要求;以及当所述第一通信链路的通信质量不满足要求且所述第二通信链路可用时,将所述通信链路从所述第一通信链路切换至所述第二通信链路。
本发明的通信链路的自适应切换方法、可移动平台、控制装置和计算机可读介质,增加了备用通信链路,使得通信链路能够在专用通信链路和备用通信链路之间进行自适应切换,在充分利用专用通信链路的低延时、无额外费用的优势的同时,能够有效避免可移动平台的失控和丢失图传数据现象。
下面,参考图1详细描述根据本发明的一个实施例的通信链路的自适应切换方法。
图1示出了根据本发明的一个实施例的、通信链路的自适应切换方法100的步骤流程图。在一个实施例中,方法100可以应用于可移动平台。在另一个实施例中,方法100可以应用于可移动平台的控制装置。
在一个实施例中,可移动平台可以包括无人机、无人车、可移动机器人等,控制装置可以包括遥控器、地面站等,本发明对可移动平台和控制装置的类型并不进行限定。在一个实施例中,控制装置可包括单遥控器、主遥控器+辅遥控器、主遥控器+RTK基站等形式。
以下实施例中,可移动平台均以无人机为例进行说明,控制装置均以遥控器为例进行说明。
如图1所示,方法100包括如下步骤:
步骤S110:周期性地生成并发送测试数据包,以确定第二通信 链路是否可用。
其中,第二通信链路可以为公共通信链路。由于蜂窝网络覆盖范围非常广、不易受干扰,在一个实施例中,第二通信链路可以为蜂窝网络,可选的,第二通信链路可以为3G、4G或5G蜂窝网络之一。
示例的,在无人机开机上电后,即开始周期性地生成测试数据包,并通过第二通信链路发送所述测试数据包。
示例性地,该周期性地生成测试数据包可以为每1s生成一次测试数据包。当然,还可以根据需要每2s、3s、0.5s等生成一次测试数据包,本发明对此不进行限定。
进一步地,确定第二通信链路是否可用的步骤可以包括:如果在第一预定时间内接收到返回的测试数据包,则第二通信链路可用,否则不可用。在一个实施例中,该第一预定时间可以为5s。当然,还可以根据测试数据或仿真数据选择其他第一预定时间的数值,例如3s、4s、6s等,本发明对此不进行限定。
步骤S120:基于第一通信链路的信号质量参数来确定第一通信链路的通信质量是否满足要求。
其中,第一通信链路可以为无人机与遥控器的专用通信链路。示例的,该专用通信链路可以为lightbridge或OcuSync通信链路。由于专用通信链路延时低、无额外费用,因此在无人机开机上电后,可首先使用该专用通信链路。
其中,信号质量参数用于判断第一通信链路的通信质量好坏,其可以包括上行信号质量参数和下行信号质量参数。
在一个实施例中,上行信号质量参数可以包括上行MCS(modulation and coding scheme,调制与编码策略)、上行错包数、上行信噪比等中的一个或更多个。在一个实施例中,下行信号质量参数可以包括下行信噪比等。其中,上述上行MCS、上行错包数、上行信噪比彼此相互依赖,其中一个参数发生变化时,另外两个参数通常也会发生变化。应理解,上述上行信号质量参数和下行信号质量参数仅仅是示例性的,本领域技术人员可根据需要选择其他上行信号质量参数和下行信号质量参数,本发明对此不进行限定。
进一步地,该信号质量参数具有信号阈值,以基于信号质量参数 大小与信号阈值的关系来确定第一通信链路的通信质量是否满足要求。
步骤S130:当第一通信链路的通信质量不满足要求且第二通信链路可用时,将通信链路从第一通信链路切换至第二通信链路。
此时必须同时满足两个条件,即第一通信链路的通信质量不满足要求和第二通信链路可用,才将通信链路从第一通信链路切换至第二通信链路。这样,只要第一通信链路的通信质量满足要求,则无论第二通信链路是否可用,均采用第一通信链路。这样做的目的是尽可能采用第一通信链路(即专用通信链路)。
进一步地,方法100还可以包括步骤:当第一通信链路的通信质量满足要求或第二通信链路不可用时,将通信链路从第二通信链路切换至第一通信链路。
此时只要满足一个条件,即第一通信链路的通信质量满足要求或者第二通信链路不可用,就将通信链路从第二通信链路切换至第一通信链路。这样做的目的同样是尽可能采用第一通信链路(即专用通信链路)。
进一步地,方法100还包括发送切换通知。示例性地,在方法100由无人机执行的情况下,切换通知由无人机发送给遥控器,以通知遥控器进行通信链路的切换。
示例性地,通过第一通信链路和第二通信链路两者发送切换通知。
进一步地,切换通知可以包括第一切换通知或第二切换通知。其中,第一切换通知用于通知将通信链路从第一通信链路切换至第二通信链路,第二切换通知用于通知将通信链路从第二通信链路切换至第一通信链路。
由于专用通信链路有时不稳定、会时断时连,这时两个通信链路将频繁切换,而第二通信链路为公共通信链路,其延时不稳定,少则数十毫秒,多则数秒,无人机端做出频繁切换的动作后,遥控器端不一定能够及时收到切换通知。因此,为了避免通信链路的频繁切换,可以设置通信链路的切换门限,即将信号质量参数的信号阈值设置为包括第一信号阈值和第二信号阈值,其中第二信号阈值大于第一信号 阈值。
在一个实施例中,当第一通信链路切换至第二通信链路时,使用第一信号阈值(即低门限),即当第一通信链路的信号质量参数低于该第一信号阈值且第二通信链路可用时,将通信链路从第一通信链路切换至第二通信链路。
示例性地,当检测到上行MCS≤4,上行信噪比≤-6,下行信噪比≤-12,错包数≥50,则可以确定第一通信链路的通信质量差到一定程度,此时若无人机通过主动发送测试数据包和接收返回的测试数据包的情况检测到第二通信链路可用,则无人机将通信链路从第一通信链路切换为第二通信链路。本领域技术人员应理解,上述第一信号阈值的数值仅仅是示例性地,并不是限制,本领域技术人员可根据测试数据或仿真数据等选择其他合适的数值。
在一个实施例中,当第二通信链路切换至第一通信链路时,使用第二信号阈值(即高门限),即当第一通信链路的信号质量参数高于第二信号阈值或所述第二通信链路不可用时,将通信链路从第二通信链路切换至第一通信链路。
在一个实施例中,当第二通信链路切换至第一通信链路时,为了避免由于通信延迟而导致通信链路频繁切换,可设置第一时间阈值,此时只有当第一通信链路的信号质量参数高于第二信号阈值且在第二通信链路上的通信保持时间大于第一时间阈值时,才将通信链路从第二通信链路切换至第一通信链路。
其中,第一时间阈值可以根据需要进行设置,例如,第一时间阈值可以为3s、4s、5s等,本发明对此并不进行限定。
示例性地,当检测到上行信噪比>-4,下行信噪比>-8时,则可以确定第一通信链路的通信质量足够好,此时若在第二通信链路上的通信保持时间超过第一时间阈值(例如,3s),则无论第二通信链路是否可用,都将通信链路切换至第一通信链路。本领域技术人员应理解,上述第二信号阈值的数值和第一时间阈值的数值仅仅是示例性地,并不是限制,本领域技术人员可根据测试数据或仿真数据等选择其他合适的数值。
由于公共通信链路的延时不稳定,少则数十毫秒,多则数秒,因 此在公共通信链路切换至专用通信链路的时隙中,无人机可能同时收到来自公共通信链路和专用通信链路两者的通信数据。为了保证无人机使用最新的通信数据,避免由于使用接收到的两份数据导致无人机的受控状态不符合预期,在一个实施例中,方法100还可以包括:在同时接收到来自第一通信链路和第二通信链路两者的通信信号时设置第二预定时间,使得在第二预定时间内,丢弃来自第二通信链路的通信信号。这样可以保证无人机端以收到的专用通信链路的通信数据为主。其中,示例性地,第二预定时间可以为1s、2s等。应理解,本领域技术人员可以根据测试数据或仿真数据来选择第二预定时间的其他合适的数值,本发明对此并不进行限定。
进一步地,方法100还可以包括步骤:如果所述第一通信链路的通信质量不满足要求且第二通信链路不可用,则控制可移动平台停止移动或返航。该步骤的目的是在专用通信链路和公共通信链路均不可用时,避免无人机因失控而撞毁。
下面,参考图2详细描述根据本发明的一个实施例的可移动平台。如图2示出了根据本发明的一个实施例的可移动平台200的结构框图。
在一个实施例中,可移动平台可以包括无人机、无人车、可移动机器人等。可移动平台200具有控制装置,控制装置可以包括遥控器、地面站等,本发明对可移动平台和控制装置的类型并不进行限定。在一个实施例中,控制装置可包括单遥控器、主遥控器+辅遥控器、主遥控器+RTK基站等形式。
以下实施例中,可移动平台200以无人机为例进行说明,可移动平台的控制装置以遥控器为例进行说明。
如图2所示,可移动平台200可以包括第一切换电路210,第一切换电路210用于自适应切换可移动平台200的通信链路,即将通信链路从第一通信链路切换至第二通信链路或者从第二通信链路切换至第一通信链路。
其中,第一通信链路可以为无人机与遥控器的专用通信链路。示例的,该专用通信链路可为lightbridge或OcuSync通信链路。由于专用通信链路延时低、无额外费用,因此在无人机开机上电后,首先使 用该专用通信链路。
其中,第二通信链路可以为公共通信链路。由于蜂窝网络覆盖范围非常广、不易受干扰,在一个实施例中,第二通信链路可以为蜂窝网络。可选的,第二通信链路可以为3G、4G或5G蜂窝网络之一。
继续参考图2,第一切换电路210可以包括第一生成模块220、第一发送和接收模块240、第一判断模块260和第一切换模块280。应理解,根据实际需要,第一切换电路210还可以包括其他合适的模块,本发明对此不进行限定。
其中,第一生成模块220用于周期性地生成测试数据包。示例性地,该周期性地生成测试数据包可以为每1s生成一次测试数据包。当然,还可以根据需要每2s、3s、0.5s等生成一次测试数据包,本发明对此不进行限定。
其中,第一发送和接收模块240用于发送所生成的测试数据包并接收返回的测试数据包。进一步地,第一发送和接收模块240还用于发送切换通知。示例性地,在可移动平台200为无人机的情况下,无人机的第一发送和接收模块240向其控制装置发送切换通知,以通知控制装置进行通信链路的切换。
示例性地,第一发送和接收模块240通过第一通信链路和第二通信链路两者发送切换通知。
进一步地,切换通知包括第一切换通知或第二切换通知。其中,第一切换通知用于通知将通信链路从第一通信链路切换至所述第二通信链路;第二切换通知用于通知将通信链路从第二通信链路切换至第一通信链路。
其中,第一判断模块260用于确定第二通信链路是否可用,以及基于第一通信链路的信号质量参数确定所述第一通信链路的通信质量是否满足要求。
进一步地,第一判断模块260基于以下来确定第二通信链路是否可用:如果在第一预定时间内接收到返回的测试数据包,则第二通信链路可用,否则不可用。在一个实施例中,该第一预定时间可以为5s。当然,还可以根据测试数据或仿真数据选择其他第一预定时间的数值,例如3s、4s、6s等,本发明对此不进行限定。
其中,信号质量参数用于判断第一通信链路的通信质量好坏,其可以包括上行信号质量参数和下行信号质量参数。
在一个实施例中,上行信号质量参数可以包括上行MCS(modulation and coding scheme,调制与编码策略)、上行错包数、上行信噪比等中的一个或更多个。在一个实施例中,下行信号质量参数可以包括下行信噪比等。其中,上述上行MCS、上行错包数、上行信噪比彼此相互依赖,其中一个参数发生变化时,另外两个参数通常也会发生变化。应理解,上述上行信号质量参数和下行信号质量参数仅仅是示例性的,本领域技术人员可根据需要选择其他上行信号质量参数和下行信号质量参数,本发明对此不进行限定。
进一步地,该信号质量参数具有信号阈值,以基于信号质量参数大小与信号阈值的关系来确定第一通信链路的通信质量是否满足要求。
其中,第一切换模块280用于当第一通信链路的通信质量不满足要求且第二通信链路可用时,将通信链路从第一通信链路切换至第二通信链路。
此时必须同时满足两个条件,即第一通信链路的通信质量不满足要求和第二通信链路可用,第一切换模块280才将通信链路从第一通信链路切换至第二通信链路。这样,只要第一通信链路的通信质量满足要求,则无论第二通信链路是否可用,均采用第一通信链路。这样做的目的是尽可能采用第一通信链路(即专用通信链路)。
进一步地,第一切换模块280还用于当第一通信链路的通信质量满足要求或第二通信链路不可用时,将通信链路从第二通信链路切换至第一通信链路。
此时只要满足一个条件,即第一通信链路的通信质量满足要求或者第二通信链路不可用,第一切换模块280就将通信链路从第二通信链路切换至第一通信链路。这样做的目的同样是尽可能采用第一通信链路(即专用通信链路)。
由于专用通信链路有时不稳定、会时断时连,这时两个通信链路将频繁切换,而第二通信链路为公共通信链路,其延时不稳定,少则数十毫秒,多则数秒,无人机端做出频繁切换的动作后,遥控器端不 一定能够及时收到切换通知。因此,为了避免通信链路的频繁切换,可以设置通信链路的切换门限,即将信号质量参数的信号阈值设置为包括第一信号阈值和第二信号阈值,其中第二信号阈值大于第一信号阈值。
在一个实施例中,当第一通信链路切换至第二通信链路时,第一切换模块280使用第一信号阈值(即低门限),即当第一通信链路的信号质量参数低于该第一信号阈值且第二通信链路可用时,第一切换模块280将通信链路从第一通信链路切换至第二通信链路。
示例性地,当检测到上行MCS≤4,上行信噪比≤-6,下行信噪比≤-12,错包数≥50,则第一判断模块260可以确定第一通信链路的通信质量差到一定程度,此时若通过主动发送测试数据包和接收返回的测试数据包,第一判断模块260确定第二通信链路可用,则第一切换模块280将通信链路从第一通信链路切换为第二通信链路。本领域技术人员应理解,上述第一信号阈值的数值仅仅是示例性地,并不是限制,本领域技术人员可根据测试数据或仿真数据等选择其他合适的数值。
在一个实施例中,当第二通信链路切换至第一通信链路时,第一切换模块280使用第二信号阈值(即高门限),即当第一通信链路的信号质量参数高于第二信号阈值或所述第二通信链路不可用时,第一切换模块280将通信链路从第二通信链路切换至第一通信链路。
在一个实施例中,当第二通信链路切换至第一通信链路时,为了避免由于通信延迟而导致通信链路频繁切换,可设置第一时间阈值,此时只有当第一通信链路的信号质量参数高于第二信号阈值且在第二通信链路上的通信保持时间大于第一时间阈值时,第一切换模块280才将通信链路从第二通信链路切换至第一通信链路。
其中,第一时间阈值可以根据需要进行设置,例如,第一时间阈值可以为3s、4s、5s等,本发明对此并不进行限定。
示例性地,当检测到上行信噪比>-4,下行信噪比>-8时,则第一判断模块260可以确定第一通信链路的通信质量足够好,此时若在第二通信链路上的通信保持时间超过第一时间阈值(例如,3s),则无论第二通信链路是否可用,第一切换模块280都将通信链路切换至 第一通信链路。本领域技术人员应理解,上述第二信号阈值的数值和第一时间阈值的数值仅仅是示例性地,并不是限制,本领域技术人员可根据测试数据或仿真数据等选择其他合适的数值。
由于公共通信链路的延时不稳定,少则数十毫秒,多则数秒,因此在公共通信链路切换至专用通信链路的时隙中,无人机可能同时收到来自公共通信链路和专用通信链路两者的通信数据。为了保证无人机使用最新的通信数据,避免由于使用接收到的两份数据导致无人机的受控状态不符合预期,在一个实施例中,第一切换电路210还可以包括仲裁模块290,其用于在同时接收到来自第一通信链路和第二通信链路两者的通信信号时启动定时器以设置第二预定时间,使得在第二预定时间内,丢弃来自第二通信链路的通信信号。这样可以保证无人机端以收到的专用通信链路的通信数据为主。其中,示例性地,第二预定时间可以为1s、2s等。应理解,本领域技术人员可以根据测试数据或仿真数据来选择第二预定时间的其他合适的数值,本发明对此并不进行限定。
下面,参考图3描述根据本发明的又一实施例的可移动平台300。如图3示出了根据本发明的又一实施例的可移动平台300的结构框图。
在一个实施例中,可移动平台可以包括无人机、无人车、可移动机器人等。可移动平台300具有控制装置,控制装置可以包括遥控器、地面站等,本发明对可移动平台和控制装置的类型并不进行限定。在一个实施例中,控制装置可包括单遥控器、主遥控器+辅遥控器、主遥控器+RTK基站等形式。
如图3所示,可移动平台300包括存储器310和连接至存储器310的处理器320。其中,存储器310用于存储程序代码;处理器320用于调用该程序代码以执行,当该程序代码被执行时,执行如上所述的通信链路的自适应切换方法。在一个实施例中,可移动平台300可以由图2中的可移动平台200实现。
根据本发明的再一实施例提供了一种计算机可读介质,该计算机可读介质上存储有计算机程序,该计算机程序在运行时执行如上所述的通信链路的自适应切换方法。
根据本发明的再一实施例提供了一种通信链路的自适应切换方法400。下面,参考图4详细描述通信链路的自适应切换方法400。
图4示出了根据本发明的再一实施例的、通信链路的自适应切换方法400的步骤流程图。在一个实施例中,方法400可以应用于可移动平台的控制装置。在另一个实施例中,方法400可以应用于可移动平台。
在一个实施例中,可移动平台可以包括无人机、无人车、可移动机器人等,控制装置可以包括遥控器、地面站等,本发明对可移动平台和控制装置的类型并不进行限定。在一个实施例中,控制装置可包括单遥控器、主遥控器+辅遥控器、主遥控器+RTK基站等形式。
以下实施例中,可移动平台均以无人机为例进行说明,控制装置均以遥控器为例进行说明。
如图4所示,方法400包括如下步骤:
步骤S410:周期性地生成并发送测试数据包,以确定第二通信链路是否可用。
其中,第二通信链路可以为公共通信链路。由于蜂窝网络覆盖范围非常广、不易受干扰,在一个实施例中,第二通信链路可以为蜂窝网络。可选的,第二通信链路可以为3G、4G或5G蜂窝网络之一。
其中,在遥控器开机上电后,即开始周期性地生成测试数据包,并通过第二通信链路发送所述测试数据包。
其中,该周期性地生成测试数据包可以为每1s生成一次测试数据包。当然,还可以根据需要每2s、3s、0.5s等生成一次测试数据包,本发明对此不进行限定。
进一步地,确定第二通信链路是否可用的步骤可以包括:如果在第一预定时间内接收到返回的测试数据包,则第二通信链路可用,否则不可用。在一个实施例中,该第一预定时间可以为5s。当然,还可以根据测试数据或仿真数据选择其他第一预定时间的数值,例如3s、4s、6s等,本发明对此不进行限定。
步骤S420:获取切换通知,该切换通知包括第一切换通知或第二切换通知。
其中,第一切换通知用于通知将通信链路从第一通信链路切换至 第二通信链路,第二切换通知用于通知将通信链路从第二通信链路切换至第一通信链路。
其中,第一通信链路可以为无人机与遥控器的专用通信链路。示例的,该专用通信链路可为lightbridge或OcuSync通信链路。由于专用通信链路延时低、无额外费用,因此在遥控器开机上电后,首先使用该专用通信链路。
示例性地,在方法400由遥控器执行的情况下,由无人机发送切换通知,遥控器从无人机获取切换通知。
示例性地,通过第一通信链路和/或第二通信链路获取切换通知。具体地,当第一通信链路和第二通信链路均畅通时,从第一通信链路和第二通信链路均获取到切换通知;当第一通信链路和第二通信链路中的一个畅通时,从畅通的通信链路获取到切换通知。
步骤S430:当第二通信链路可用且获取到第一切换通知时,将通信链路从第一通信链路切换至第二通信链路。
此时必须同时满足两个条件,即第二通信链路可用和获取到第一切换通知,才将通信链路从第一通信链路切换至第二通信链路。这样可以使得只要第二通信链路不可用或者没有接收到第一切换通知,均采用第一通信链路。这样做的目的是尽可能采用第一通信链路(即专用通信链路)。
方法400可以进一步包括步骤:当第二通信链路不可用或获取到第二切换通知时,将通信链路从第二通信链路切换至第一通信链路。
此时只要满足一个条件,即第二通信链路不可用或者获取到第二切换通知,就将通信链路从第二通信链路切换至第一通信链路。这样做的目的同样是尽可能采用第一通信链路(即专用通信链路)。
进一步地,方法400还可以包括步骤:当第一通信链路的通信质量不满足要求且第二通信链路不可用时,控制可移动平台停止移动或返航。该步骤的目的是在专用通信链路和公共通信链路均不可用时,避免无人机因失控而撞毁。
下面,参考图5详细描述根据本发明的再一实施例的可移动平台的控制装置500。如图5示出了根据本发明的再一实施例的可移动平台的控制装置500的结构框图。
在一个实施例中,可移动平台可以包括无人机、无人车等,控制装置可以包括遥控器、地面站等,本发明对可移动平台和控制装置的类型并不进行限定。在一个实施例中,控制装置可包括单遥控器、主遥控器+辅遥控器、主遥控器+RTK基站等形式。
以下实施例中,控制装置500以无人机的遥控器为例进行说明。
如图5所示,控制装置500可以包括第二切换电路510,第二切换电路510用于自适应切换控制装置500的通信链路,即将通信链路从第一通信链路切换至第二通信链路或者从第二通信链路切换至第一通信链路。
其中,第一通信链路可以为无人机与遥控器的专用通信链路。示例的,该专用通信链路可为lightbridge或OcuSync通信链路。由于专用通信链路延时低、无额外费用,因此在遥控器开机上电后,首先使用该专用通信链路。
其中,第二通信链路可以为公共通信链路。由于蜂窝网络覆盖范围非常广,在一个实施例中,第二通信链路可以为蜂窝网络。可选的,第二通信链路可以为3G、4G或5G蜂窝网络之一。
在一个实施例中,第二切换电路510包括第二生成模块520、第二发送和接收模块540、第二判断模块560和第二切换模块580。应理解,根据实际需要,第二切换电路510还可以包括其他合适的模块,本发明对此不进行限定。
其中,第二生成模块520用于周期性地生成测试数据包。其中,该周期性地生成测试数据包可以为每1s生成一次测试数据包。当然,还可以根据需要每2s、3s、0.5s等生成一次测试数据包,本发明对此不进行限定。
其中,第二发送和接收模块540用于发送所生成的测试数据包并接收返回的测试数据包,以及获取切换通知。示例性地,在控制装置500为无人机的遥控器的情况下,由无人机发送切换通知,遥控器从无人机获取切换通知。
示例性地,第二发送和接收模块540通过第一通信链路和/或第二通信链路获取切换通知。具体地,当第一通信链路和第二通信链路均畅通时,第二发送和接收模块540从第一通信链路和第二通信链路 均获取到切换通知;当第一通信链路和第二通信链路中的一个畅通时,第二发送和接收模块540从畅通的通信链路获取到切换通知。
进一步地,切换通知包括第一切换通知或第二切换通知。其中,第一切换通知用于通知将通信链路从第一通信链路切换至第二通信链路,第二切换通知用于通知将通信链路从第二通信链路切换至第一通信链路。
其中,第二判断模块560用于确定第二通信链路是否可用。
进一步地,第二判断模块560基于以下来确定第二通信链路是否可用:如果在第一预定时间内接收到返回的测试数据包,则第二通信链路可用,否则不可用。在一个实施例中,该第一预定时间可以为5s。当然,还可以根据测试数据或仿真数据选择其他第一预定时间的数值,例如3s、4s、6s等,本发明对此不进行限定。
其中,第二切换模块580用于当第二通信链路可用且获取到第一切换通知时,将通信链路从第一通信链路切换至第二通信链路。
此时必须同时满足两个条件,即第二通信链路可用和获取到第一切换通知,第二切换模块580才将通信链路从第一通信链路切换至第二通信链路。这样可以使得只要第二通信链路不可用或者没有接收到第一切换通知,均采用第一通信链路。这样做的目的是尽可能采用第一通信链路(即专用通信链路)。
进一步地,第二切换模块580还用于当第二通信链路不可用或获取到第二切换通知时,将通信链路从第二通信链路切换至第一通信链路。
此时只要满足一个条件,即第二通信链路不可用或者获取到第二切换通知,第二切换模块580就将通信链路从第二通信链路切换至第一通信链路。这样做的目的同样是尽可能采用第一通信链路(即专用通信链路)。
下面,参考图6描述根据本发明的再一实施例的可移动平台的控制装置600。如图6示出了根据本发明的再一实施例的可移动平台的控制装置600的结构框图。
在一个实施例中,可移动平台可以包括无人机、无人车等,控制装置可以包括遥控器、地面站等,本发明对可移动平台和控制装置的 类型并不进行限定。在一个实施例中,控制装置可包括单遥控器、主遥控器+辅遥控器、主遥控器+RTK基站等形式。
如图6所示,控制装置600包括存储器610和连接至存储器610的处理器620。其中,存储器610用于存储程序代码;处理器620用于调用该程序代码以执行,当该程序代码被执行时,执行如上所述的通信链路的自适应切换方法。在一个实施例中,控制装置600可以由图5中的控制装置500实现。
根据本发明的再一实施例提供了一种计算机可读介质,该计算机可读介质上存储有计算机程序,该计算机程序在运行时执行如上所述的通信链路的自适应切换方法。
本发明的有益效果:
(1)本发明的通信链路的自适应切换方法、可移动平台、控制装置和计算机可读介质,增加了备用通信链路,该备用通信链路可为覆盖面广、不易受干扰的公共通信链路,能够有效避免可移动平台的失控和丢失图传数据现象。
(2)通信链路能够在专用通信链路和备用通信链路之间进行自适应切换,保证了充分利用专用通信链路的低延时、无额外费用的优势的同时,还保证了数据传输的可靠性。
(3)增加了仲裁机制,能够有效解决由于公共通信链路本身的延时较大而带来的无人机收到“双份通信数据”的问题,避免无人机作出与遥控预期不一致行为的现象。
尽管这里已经参考附图描述了示例实施例,应理解上述示例实施例仅仅是示例性的,并且不意图将本发明的范围限制于此。本领域普通技术人员可以在其中进行各种改变和修改,而不偏离本发明的范围和精神。所有这些改变和修改意在被包括在所附权利要求所要求的本发明的范围之内。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不 应认为超出本发明的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个设备,或一些特征可以忽略,或不执行。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本发明并帮助理解各个发明方面中的一个或多个,在对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该本发明的方法解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如相应的权利要求书所反映的那样,其发明点在于可以用少于某个公开的单个实施例的所有特征的特征来解决相应的技术问题。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。
本领域的技术人员可以理解,除了特征之间相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本发明的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本发明实施例的物品分析设备中的一些模块的一些或者全部功能。本发明还可以实现为用于执行这里所描述的方法的一部分或者全部的装置程序(例如,计算机程序和计算机程序产品)。这样的实现本发明的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
以上所述,仅为本发明的具体实施方式或对具体实施方式的说明,本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。本发明的保护范围应以权利要求的保护范围为准。

Claims (45)

  1. 一种通信链路的自适应切换方法,其特征在于,所述方法应用于可移动平台,包括:
    周期性地生成并发送测试数据包,以确定第二通信链路是否可用;
    基于第一通信链路的信号质量参数来确定所述第一通信链路的通信质量是否满足要求;以及
    当所述第一通信链路的通信质量不满足要求且所述第二通信链路可用时,将所述通信链路从所述第一通信链路切换至所述第二通信链路。
  2. 如权利要求1所述的方法,其特征在于,其中所述信号质量参数具有第一信号阈值;
    所述当所述第一通信链路的通信质量不满足要求且所述第二通信链路可用时,将所述通信链路从所述第一通信链路切换至所述第二通信链路包括:
    当所述第一通信链路的所述信号质量参数低于所述第一信号阈值且所述第二通信链路可用时,将所述通信链路从所述第一通信链路切换至所述第二通信链路。
  3. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    当所述第一通信链路的通信质量满足要求或所述第二通信链路不可用时,将所述通信链路从所述第二通信链路切换至所述第一通信链路。
  4. 如权利要求3所述的方法,其特征在于,其中所述信号质量参数具有第二信号阈值,所述第二信号阈值大于第一信号阈值;
    所述当所述第一通信链路的通信质量满足要求或所述第二通信链路不可用时,将所述通信链路从所述第二通信链路切换至所述第一通信链路包括:
    当所述第一通信链路的所述信号质量参数高于所述第二信号阈 值或所述第二通信链路不可用时,将所述通信链路从所述第二通信链路切换至所述第一通信链路。
  5. 如权利要求4所述的方法,其特征在于,
    所述当所述第一通信链路的通信质量满足要求或所述第二通信链路不可用时,将所述通信链路从所述第二通信链路切换至所述第一通信链路还包括:
    当所述第一通信链路的所述信号质量参数高于所述第二信号阈值且在所述第二通信链路上的通信保持时间大于第一时间阈值时,将所述通信链路从所述第二通信链路切换至所述第一通信链路。
  6. 如权利要求1所述的方法,其特征在于,所述方法还包括:发送切换通知,所述切换通知包括第一切换通知或第二切换通知,其中,
    所述第一切换通知用于通知将所述通信链路从所述第一通信链路切换至所述第二通信链路;
    所述第二切换通知用于通知将所述通信链路从所述第二通信链路切换至所述第一通信链路。
  7. 如权利要求6所述的方法,其特征在于,所述发送切换通知包括:
    通过所述第一通信链路和所述第二通信链路发送切换通知。
  8. 如权利要求1所述的方法,其特征在于,其中所述确定第二通信链路是否可用包括:如果在第一预定时间内接收到返回的测试数据包,则所述第二通信链路可用,否则不可用。
  9. 如权利要求1所述的方法,其特征在于,所述方法还包括:在同时接收到来自所述第一通信链路和所述第二通信链路两者的通信信号时设置第二预定时间,使得在所述第二预定时间内,丢弃来自所述第二通信链路的通信信号。
  10. 如权利要求1所述的方法,其特征在于,其中所述信号质量参数包括上行信号质量参数和下行信号质量参数。
  11. 如权利要求10所述的方法,其特征在于,其中所述上行信号质量参数包括上行MCS、上行错包数、上行信噪比中的至少一个,所述下行信号质量参数包括下行信噪比。
  12. 如权利要求1所述的方法,其特征在于,其中所述第一通信链路为专用通信链路,所述第二通信链路为公共通信链路。
  13. 如权利要求12所述的方法,其特征在于,其中所述第二通信链路包括蜂窝网络。
  14. 如权利要求13所述的方法,其特征在于,其中所述第二通信链路包括3G、4G或5G蜂窝网络之一。
  15. 如权利要求1所述的方法,其特征在于,所述可移动平台包括无人机、无人车或可移动机器人。
  16. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    当所述第一通信链路的通信质量不满足要求且所述第二通信链路不可用时,控制所述可移动平台停止移动或返航。
  17. 一种可移动平台,其特征在于,所述可移动平台包括第一切换电路,用于自适应切换所述可移动平台的通信链路,所述第一切换电路包括:
    第一生成模块,用于周期性地生成测试数据包;
    第一发送和接收模块,用于发送所生成的测试数据包并接收返回的测试数据包;
    第一判断模块,用于确定第二通信链路是否可用,以及基于第一 通信链路的信号质量参数确定所述第一通信链路的通信质量是否满足要求;以及
    第一切换模块,用于当所述第一通信链路的通信质量不满足要求且所述第二通信链路可用时,将所述通信链路从所述第一通信链路切换至所述第二通信链路。
  18. 如权利要求17所述的可移动平台,其特征在于,其中所述信号质量参数具有第一信号阈值,其中所述第一切换模块还用于:当所述第一通信链路的所述信号质量参数低于所述第一信号阈值且所述第二通信链路可用时,将所述通信链路从所述第一通信链路切换至所述第二通信链路
  19. 如权利要求17所述的可移动平台,其特征在于,其中所述第一切换模块还用于:当所述第一通信链路的通信质量满足要求或所述第二通信链路不可用时,将所述通信链路从所述第二通信链路切换至所述第一通信链路。
  20. 如权利要求19所述的可移动平台,其特征在于,其中所述信号质量参数具有第二信号阈值,所述第二信号阈值大于第一信号阈值,
    其中所述第一切换模块还用于:当所述第一通信链路的所述信号质量参数高于所述第二信号阈值或所述第二通信链路不可用时,将所述通信链路从所述第二通信链路切换至所述第一通信链路。
  21. 如权利要求20所述的可移动平台,其特征在于,所述第一切换模块还用于:当所述第一通信链路的所述信号质量参数高于所述第二信号阈值且在所述第二通信链路上的通信保持时间大于第一时间阈值时,将所述通信链路从所述第二通信链路切换至所述第一通信链路。
  22. 如权利要求17所述的可移动平台,其特征在于,所述第一 发送和接收模块还用于发送切换通知,所述切换通知包括第一切换通知或第二切换通知,其中,
    所述第一切换通知用于通知将所述通信链路从所述第一通信链路切换至所述第二通信链路;
    所述第二切换通知用于通知将所述通信链路从所述第二通信链路切换至所述第一通信链路。
  23. 如权利要求22所述的可移动平台,其特征在于,其中所述切换通知为通过所述第一通信链路和所述第二通信链路发送的。
  24. 如权利要求17所述的可移动平台,其特征在于,所述第一判断模块还用于在第一预定时间内接收到返回的测试数据包时,则确定所述第二通信链路可用,否则不可用。
  25. 如权利要求17所述的可移动平台,其特征在于,所述第一切换电路还包括仲裁模块,所述仲裁模块用于在同时接收到来自所述第一通信链路和所述第二通信链路两者的通信信号时启动定时器以设置第二预定时间,使得在所述第二预定时间内,丢弃来自所述第二通信链路的通信信号。
  26. 如权利要求17所述的可移动平台,其特征在于,其中所述信号质量参数包括上行信号质量参数和下行信号质量参数,其中所述上行信号质量参数包括上行MCS、上行错包数、上行信噪比中的至少一个,所述下行信号质量参数包括下行信噪比。
  27. 如权利要求17所述的可移动平台,其特征在于,其中所述第一通信链路为专用通信链路,所述第二通信链路为公共通信链路。
  28. 如权利要求27所述的可移动平台,其特征在于,其中所述第二通信链路包括蜂窝网络。
  29. 如权利要求28所述的可移动平台,其特征在于,其中所述第二通信链路包括3G、4G或5G蜂窝网络之一。
  30. 如权利要求17所述的可移动平台,其特征在于,所述可移动平台包括无人机、无人车或可移动机器人。
  31. 一种可移动平台,其特征在于,所述可移动平台包括:存储器和连接至所述存储器的处理器,其中:
    所述存储器,用于存储程序代码;
    所述处理器,用于调用所述程序代码以执行,当所述程序代码被执行时,执行如权利要求1-16中任一项所述的通信链路的自适应切换方法。
  32. 一种计算机可读介质,其特征在于,所述计算机可读介质上存储有计算机程序,所述计算机程序在运行时执行如权利要求1-16中的任一项所述的通信链路的自适应切换方法。
  33. 一种通信链路的自适应切换方法,其特征在于,所述方法应用于可移动平台的控制装置,包括:
    周期性地生成并发送测试数据包,以确定第二通信链路是否可用;
    获取切换通知,所述切换通知包括第一切换通知或第二切换通知;以及
    当所述第二通信链路可用且获取到所述第一切换通知时,将所述通信链路从第一通信链路切换至所述第二通信链路。
  34. 如权利要求33所述的方法,其特征在于,所述方法还包括:
    当所述第二通信链路不可用或获取到所述第二切换通知时,将所述通信链路从所述第二通信链路切换至第一通信链路。
  35. 如权利要求33所述的方法,其特征在于,其中所述确定第 二通信链路是否可用包括:如果在第一预定时间内接收到返回的测试数据包,则所述第二通信链路可用,否则不可用。
  36. 如权利要求33所述的方法,其特征在于,所述获取切换通知包括:
    通过所述第一通信链路和/或所述第二通信链路获取切换通知。
  37. 如权利要求33所述的方法,其特征在于,所述控制装置包括遥控器或地面站。
  38. 如权利要求33所述的方法,其特征在于,所述方法还包括:当所述第一通信链路的通信质量不满足要求且所述第二通信链路不可用时,控制可移动平台停止移动或返航。
  39. 一种可移动平台的控制装置,其特征在于,所述控制装置包括第二切换电路,用于自适应切换所述控制装置的通信链路,所述第二切换电路包括:
    第二生成模块,用于周期性地生成测试数据包;
    第二发送和接收模块,用于发送所生成的测试数据包并接收返回的测试数据包,以及获取切换通知,其中所述切换通知包括第一切换通知或第二切换通知;
    第二判断模块,用于确定第二通信链路是否可用;以及
    第二切换模块,用于当所述第二通信链路可用且获取到所述第一切换通知时,将所述通信链路从第一通信链路切换至所述第二通信链路。
  40. 如权利要求39所述的控制装置,其特征在于,所述第二切换模块还用于当所述第二通信链路不可用或获取到所述第二切换通知时,将所述通信链路从所述第二通信链路切换至第一通信链路。
  41. 如权利要求39所述的控制装置,其特征在于,其中所述确定第二通信链路是否可用包括:如果在第一预定时间内接收到返回的 测试数据包,则所述第二通信链路可用,否则不可用。
  42. 如权利要求39所述的控制装置,其特征在于,其中所述切换通知为通过所述第一通信链路和/或所述第二通信链路获取的。
  43. 如权利要求39所述的控制装置,其特征在于,所述控制装置包括遥控器或地面站。
  44. 一种可移动平台的控制装置,其特征在于,所述控制装置包括:存储器和连接至所述存储器的处理器,其中:
    所述存储器,用于存储程序代码;
    所述处理器,用于调用所述程序代码以执行,当所述程序代码被执行时,执行如权利要求33-38中任一项所述的通信链路的自适应切换方法。
  45. 一种计算机可读介质,其特征在于,所述计算机可读介质上存储有计算机程序,所述计算机程序在运行时执行如权利要求33-38中任一项所述的通信链路的自适应切换方法。
PCT/CN2018/125543 2018-12-29 2018-12-29 通信链路的自适应切换方法、可移动平台和控制装置 WO2020133393A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880068861.XA CN111279748B (zh) 2018-12-29 2018-12-29 通信链路的自适应切换方法、可移动平台和控制装置
PCT/CN2018/125543 WO2020133393A1 (zh) 2018-12-29 2018-12-29 通信链路的自适应切换方法、可移动平台和控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/125543 WO2020133393A1 (zh) 2018-12-29 2018-12-29 通信链路的自适应切换方法、可移动平台和控制装置

Publications (1)

Publication Number Publication Date
WO2020133393A1 true WO2020133393A1 (zh) 2020-07-02

Family

ID=71004134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/125543 WO2020133393A1 (zh) 2018-12-29 2018-12-29 通信链路的自适应切换方法、可移动平台和控制装置

Country Status (2)

Country Link
CN (1) CN111279748B (zh)
WO (1) WO2020133393A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022204997A1 (zh) * 2021-03-30 2022-10-06 深圳市大疆创新科技有限公司 无线通信方法、可移动平台、系统及计算机可读存储介质
CN113949489B (zh) * 2021-10-20 2022-12-13 中国船舶工业系统工程研究院 无人机双链路综合调度系统的调度方法
CN116996852A (zh) * 2022-04-24 2023-11-03 索尼集团公司 用于快速切换通信模式的设备、方法和介质
CN115474254A (zh) * 2022-09-15 2022-12-13 中国人民解放军总参谋部第六十研究所 一种面向无人机的双通讯链路智能选择方法及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105070017A (zh) * 2015-08-13 2015-11-18 杭州若联科技有限公司 一种无人机无线通信方法和系统
WO2016119064A1 (en) * 2015-01-29 2016-08-04 Rocky Mountain Equipment Canada Ltd. Communications system for use with unmanned aerial vehicles
CN106056875A (zh) * 2016-05-26 2016-10-26 深圳市天鼎微波科技有限公司 一种多天线无人机系统的实现方法
CN106716871A (zh) * 2016-11-28 2017-05-24 深圳市大疆创新科技有限公司 控制方法、遥控器及无人机
CN108886667A (zh) * 2017-12-15 2018-11-23 深圳市大疆创新科技有限公司 无线通信方法、设备及系统
CN108965124A (zh) * 2018-07-31 2018-12-07 合肥职业技术学院 一种无人机控制系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101415199B (zh) * 2007-10-15 2010-07-07 中兴通讯股份有限公司 一种模拟无线信道的切换测试系统及其方法
CN105472678B (zh) * 2014-07-31 2020-06-26 腾讯科技(深圳)有限公司 无线网络切换方法、装置及终端设备
CN104780573B (zh) * 2015-04-15 2018-12-25 新华三技术有限公司 一种链路切换方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016119064A1 (en) * 2015-01-29 2016-08-04 Rocky Mountain Equipment Canada Ltd. Communications system for use with unmanned aerial vehicles
CN105070017A (zh) * 2015-08-13 2015-11-18 杭州若联科技有限公司 一种无人机无线通信方法和系统
CN106056875A (zh) * 2016-05-26 2016-10-26 深圳市天鼎微波科技有限公司 一种多天线无人机系统的实现方法
CN106716871A (zh) * 2016-11-28 2017-05-24 深圳市大疆创新科技有限公司 控制方法、遥控器及无人机
CN108886667A (zh) * 2017-12-15 2018-11-23 深圳市大疆创新科技有限公司 无线通信方法、设备及系统
CN108965124A (zh) * 2018-07-31 2018-12-07 合肥职业技术学院 一种无人机控制系统

Also Published As

Publication number Publication date
CN111279748B (zh) 2022-06-28
CN111279748A (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
WO2020133393A1 (zh) 通信链路的自适应切换方法、可移动平台和控制装置
US11991770B2 (en) Method for detecting link failure of sidelink and terminal
JP7288458B2 (ja) 装置、方法及びコンピュータープログラム
US9516646B2 (en) Control method of frequency band switching and wireless communication apparatus
US20240030999A1 (en) Beam failure recovery for secondary cell
US11304081B2 (en) Data transmission method and data transmission apparatus
US11770871B2 (en) Radio link recovery method and terminal
US8761845B2 (en) Communication apparatus and handover control method
WO2019223696A1 (zh) 通信方法及装置
WO2022268068A1 (zh) 无线通信方法、装置、电子设备及可读存储介质
CN112218312A (zh) 上行链路数据复制的灵活网络控制
US8305976B1 (en) Efficient wireless communication network entry for wireless communication devices
RU2763281C1 (ru) Способ восстановления соединения и связанное с ним устройство
CN111294765B (zh) 一种数据传输链路的维护、维护触发方法及装置
US20220394813A1 (en) Information reporting method, user equipment, and network side device
KR20240047394A (ko) 이중 연결을 이용한 복제를 위한 생존 시간 상태 트리거링 및 폴백 기법
US20210352500A1 (en) Method for pucch transmission, method for pucch reception, terminal, and network-side device
US10206124B1 (en) Method and apparatus for bidirectional modem
US20230413357A1 (en) Communication method, aerial vehicle, and user device
EP3021611B1 (en) Terminal information reporting method and related device
KR102621593B1 (ko) 전자 장치 및 통신 네트워크와 연결된 전자 장치에서 전류 소모를 줄이는 방법
US20220247522A1 (en) Link monitoring method and terminal
WO2023051446A1 (zh) 辅小区组异常处理方法、装置及相关设备
US10652389B2 (en) Call hold method and mobile terminal
CN117279051A (zh) 中断影响的确定方法、网络侧设备和终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944578

Country of ref document: EP

Kind code of ref document: A1