WO2020133173A1 - 耦合器及耦合系统 - Google Patents
耦合器及耦合系统 Download PDFInfo
- Publication number
- WO2020133173A1 WO2020133173A1 PCT/CN2018/124732 CN2018124732W WO2020133173A1 WO 2020133173 A1 WO2020133173 A1 WO 2020133173A1 CN 2018124732 W CN2018124732 W CN 2018124732W WO 2020133173 A1 WO2020133173 A1 WO 2020133173A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- component
- coupler
- surface wave
- concave
- coupling line
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/12—Coupling devices having more than two ports
- H01P5/16—Conjugate devices, i.e. devices having at least one port decoupled from one other port
- H01P5/18—Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
Definitions
- the invention relates to the field of data communication, and in particular to a surface wave coupler and coupling system.
- the surface wave transmission method is a method of transmitting signals in the form of surface waves. Compared with the traditional wireless transmission method, the surface wave transmission method has good directivity, is not easy to spread, and can reduce radiation loss. Compared with the metal cavity waveguide transmission method, the conductor loss of the surface wave transmission method is smaller. Therefore, the surface wave transmission method has the characteristics of large bandwidth and low loss transmission.
- the related art provides a communication method that uses wires (such as power lines) to achieve surface wave transmission.
- a surface wave exciter is provided at the signal transmitting end to convert the signal emitted by the transmitting end from a transverse electromagnetic (TEM) mode Transverse magnetic (TM) mode, which transmits signals on the surface of the wire through surface wave transmission.
- TEM transverse electromagnetic
- TM Transverse magnetic
- Embodiments of the present invention provide a coupler and a coupling system to efficiently couple surface waves from one transmission line to another transmission line.
- an embodiment of the present invention provides a surface wave coupler, the coupler includes two components that are snapped together by a snap component, namely a first component and a second component.
- a snap component namely a first component and a second component.
- the inside of the first part and the second part are respectively in the form of a hollow tube along the horizontal axis, which is used for inserting the cable; the biting parts of the first part and the second part have a concave-convex periodic structure.
- the concave-convex positions of the first component and the second component are alternately engaged; the engaging component is used to fix the positions of the first component and the second component.
- the surface wave coupling further includes a coupling line, and the second end of the second component is connected to one end of the coupling line; the outer surface of the coupling line is provided with a dielectric package The layer is used to restrict the electric field radiation.
- the other end of the coupling line is connected to a trumpet-shaped conical housing, and the trumpet sleeve of the conical housing On the coupling line and toward the first end of the coupling line.
- the first possible implementation manner of the first aspect, or the second possible implementation manner, in a third possible implementation manner the first component in the coupler is engaged by the upper and lower parts Together, the hollow tube is formed.
- the second component in the coupler is also
- the hollow tube may be formed by buckling the upper and lower parts together.
- the length of any concave-convex position of a part is any length between 1/4 and 1/8 of the surface wave wavelength.
- the height of any concave and convex positions of the first component and the second component is equal to half the diameter of the hollow tube.
- the height h1 of any concave and convex positions of the first component and the second component is less than 1/4 surface wave wavelength.
- the materials of the first component and the second component are metals, alloys, or other non-conductive materials that can propagate electromagnetic waves on the surface.
- the material of the trumpet-shaped conical housing is metal.
- an embodiment of the present invention provides a signal transmission system.
- the system includes two cables and two couplers as described above. One cable is inserted into the first component of a coupler. In the hollow tube, another cable is inserted into the hollow tube of the second part of the other coupler.
- Figure 1 is a schematic diagram of surface wave transmission on a cable
- FIG. 2A is a schematic diagram of a scenario where the transmission direction of the surface wave is switched
- FIG. 2B is a schematic diagram of another scene in which the transmission direction of the surface wave is switched;
- FIG. 3 is a schematic structural diagram of a coupler according to an embodiment of the present invention.
- FIG. 5 is a schematic diagram of an equivalent circuit model of a coupler provided by an embodiment of the present invention.
- FIG. 6 is a schematic structural diagram of a coupler in another embodiment provided by an embodiment of the present invention.
- FIG. 1 is a schematic diagram of surface wave transmission on a cable provided by the related art.
- surface wave is a type of electromagnetic wave formed by the electromagnetic field E propagating in a circle in the air outside the cable L along the cable L.
- This transmission mode is TM mode.
- the cable only plays the role of guiding the electromagnetic field transmission, and there is no current transmission inside the cable.
- the surface wave transmission method has the characteristics of large bandwidth and low loss transmission.
- studies have shown that when a surface wave with a frequency of 10 gigahertz (GHz) is transmitted in a straight line on a cable with a diameter of 2 cm, the loss per 100 feet (about 30.48 meters) is only 0.2 decibels (dB).
- GHz gigahertz
- dB decibels
- a surface wave coupler couples the signal on one transmission line 1 to another transmission line 2 for transmission.
- the coupling line 2 and the transmission lines 1 and 3 are generally in direct contact coupling, or the coupling line and the transmission line are in close proximity, but the coupling efficiency of this scheme is low.
- the coupler includes a first component 301, a second component 302, and a snap component 303, wherein the first component 301 and the second component 302 are respectively hollow in the horizontal axis direction for inserting a wire cable;
- the lower surface of the first component 301 has an uneven periodic structure, and the upper surface of the second component 302 also has an uneven periodic structure;
- the concave and convex positions of the lower surface of the first component 301 and the upper surface of the second component 302 are alternately engaged.
- the engaging component 303 is provided at the first ends of the first component 301 and the second component 302, and/or at the second ends of the first component 301 and the second component 302 The positions of the one part 301 and the second part 302 are fixed.
- the materials of the first component 301 and the second component 302 may be metals, alloys, or other materials that are not conductive but can transmit electromagnetic waves on the surface.
- the coupler further includes a coupling line, and the second end of the second component 302 is connected to one end of the coupling line, and a dielectric cladding is provided on the outer surface of the coupling line to restrict electric field radiation.
- the material can be metal.
- the other end of the coupling line is connected to a trumpet-shaped conical shell, and the bell mouth of the conical shell is sleeved on the coupling line and faces the first end of the coupling line.
- the switching direction of the surface wave transmission can be realized by two couplers, respectively.
- the first coupler is sleeved on the transmission line 1 through the hollow pipe of the first component 301, and then the coupling line 2 is coupled through the connection of the second component 302; thus the surface waves transmitted along the line 1 can pass through the coupler Switch to coupling line 2.
- the coupling line 2 is connected to the first component 301 of the second coupler, and the hollow tube of the second component 302 of the second coupler is sheathed on the transmission line 3; thus the surface wave transmitted along the coupling line 2, It can be switched to the transmission line 3 via the second coupler.
- the new coupler of this embodiment is used in the coupling area, and the energy value of the surface wave on line 1 is 0dB, and the energy value switched to line 3 is from -12dB. Raised to -9dB, the energy transmission efficiency has been significantly improved.
- first part 301 in the coupler may be formed by the upper and lower parts being fastened together to form the hollow tube; the outer surfaces of the upper and lower parts may be mutually symmetrical or asymmetrical.
- second part 302 of the coupler may be formed by the upper and lower parts being fastened together to form the hollow tube; the outer surfaces of the upper and lower parts may be symmetrical to each other or asymmetrical.
- the engaging part 303 provided at the first ends of the first part 301 and the second part 302 is a trumpet-shaped conical shell, and the trumpet opening of the conical shell faces the first part 301 The second end. It is used to reduce the divergent reflection of electromagnetic waves and confine the surface wave energy to the first component 301.
- the coupler includes two components on the left and right, and both components have a concave-convex periodic structure, and the concave-convex positions are staggered and engaged.
- the left part is sheathed on a transmission line, and the upper part of the right part extends a curved coupling line for changing the reverse transmission of surface waves.
- the other end of the coupling line is provided with a trumpet-shaped conical shell with an opening to the left.
- FIG. 5 is a schematic diagram of an equivalent circuit model of a coupler provided by an embodiment of the present invention.
- the convex position in the coupler is equivalent to a capacitor C1, and the concave position is equivalent to an inductor L1.
- the periodic structure of the concave-convex position is equivalent to the series structure of the capacitor C1 and the inductor L1.
- the coupling zone is equivalent to a capacitor C3 and an inductor L2, and each group of C1, L1, C2, C3 and L2 constitutes a directional coupling circuit network unit.
- each part of the network unit passing through a coupling circuit has a part of energy forming resonance in the unit, and this part of the energy will be transmitted to the coupling line where C3 and L2 are located; the surface wave on the transmission line continues Passed to the next directional coupling circuit network unit, in the next directional coupling circuit network unit, there is also a part of energy forming resonance in this unit, and this part of energy will be superimposed on the coupling line where C3 and L2 are located, In this way, the surface wave energy on the transmission line is getting smaller and smaller, while the surface wave energy on the coupling line is getting bigger and bigger.
- each part of a coupling circuit network unit has a part of energy in the unit to form a resonance to transfer the surface wave energy to the coupling line, and what proportion of the energy forms a resonance in the unit and each group
- the parameter sizes of C1, L1, C2, C3, and L2 are related, and the size of these parameters depends on the length of the projections and depressions in the staggered bite zone and the bite gap of the first part 301 and the second part 302 in the coupler.
- FIG. 6 is a schematic diagram of a coupler in an embodiment provided by an embodiment of the present invention, and the specific parameters of each component are shown in the figure.
- d1 can be used to transmit the surface wave extending the first component 301 forward
- d2 can be used to transfer the surface wave energy transmitted by the first component 301 to the second component 302.
- An embodiment of the present application provides a signal transmission system.
- the system includes: two cables and two couplers as shown in FIG. 3, and one cable is inserted into the hollow tube of the first part 301 of the coupler , Another cable is inserted into the hollow tube of the second part 302 of the other coupler. Used to efficiently transfer surface waves transmitted on one cable to another cable for transmission.
Landscapes
- Near-Field Transmission Systems (AREA)
Abstract
本发明实施例提供了一种表面波耦合器,所述耦合器包含第一部件、第二部件和扣合部件,其中所述第一部件和所述第二部件内部沿水平轴线方向分别呈中空管状,用于插入线缆;所述第一部件的下表面具有凹凸周期性结构,所述第二部件的上表面也具有凹凸周期性结构;所述第一部件的下表面和第二部件的上表面的凹凸位置交错扣合;所述扣合部件设置在所述第一部件和第二部件的第一端,和/或在所述第一部件和第二部件的第二端,用于将所述第一部件和第二部件的位置固定;以高效率地将一根线缆上传输的表面波转移到另一根线缆上传输。
Description
本发明涉及数据通讯领域,具体地说,涉及一种表面波耦合器及耦合系统。
表面波传输方式是一种以表面波的形式传输信号的方式,与传统的无线传输方式相比,表面波传输方式的方向性好,不易扩散,可以减小辐射损耗;与同轴传输方式或金属腔波导传输方式相比,表面波传输方式的导体损耗较小。因此,表面波传输方式具有大带宽和低损耗的传输特点。
相关技术中提供了一种利用导线(比如电力线)实现表面波传输的通信方式,在信号的发射端设置表面波激励器,将发射端发出的信号从横电磁(transverse electric magnetic,TEM)模式转换为横磁场(transverse magnetic,TM)模式,在导线表面通过表面波传输方式传输信号。由于表面波是电磁场在导体线缆外部呈圈状传输的波,导体线缆只起到引导电磁场传输的作用,表面波沿着导线方向传输,传输方向性好。但是如果导线不是直线,在弯折处,表面波就不能很好地沿着导线传输,造成很大损耗。
发明内容
本发明实施例提供一种耦合器及耦合系统,以实现将表面波高效率地从一条传输线上耦合另一条传输线上。
第一方面,本发明实施例提供一种表面波耦合器,所述耦合器包含两个通过扣合部件咬合在一起的部件,即第一部件和第二部件。其中所述第一部件和所述第二部件内部沿水平轴线方向分别呈中空管状,用于插入线缆;所述第一部件和所述第二部件咬合部位都呈凹凸周期性结构,这样所述第一部件和第二部件的凹凸位置交错扣合;所述扣合部件用于将所述第一部件和第二部件的位置固定。
在第一方面的第一种可能的实现方式中,所述表面波耦合还包括耦合线,所述第二部件的第二端连接所述耦合线一端;所述耦合线外表面设置有介质包层,用于约束电场辐射。
结合第一方面的第一种可能实现的方式,在第二种可能实现的方式中,所述耦合线的另一端连接一个喇叭状的锥形壳体,所述锥形壳体的喇叭口套在所述耦合线上,并且朝向所述耦合线的第一端。
结合第一方面、第一方面的第一种可能实现方式或第二种可能实现方式,在第三种可能实现的方式中,所述耦合器中的第一部件是由上下两部分扣合在一起形成所述中空管状。
结合第一方面、第一方面的第一种可能实现方式、第二种可能实现方式或第三种可能实现方式,在第四种可能实现的方式中,所述耦合器中的第二部件也可以是由上下两部分扣合在一起形成所述中空管状。
结合第一方面、第一方面的第一种可能实现方式、第二种可能实现方式、第三种可能实现方式或第四种可能实现方式,在第五种可能实现的方式中,所述第一部件的任一凹凸位置的长度为1/4到1/8表面波波长之间的任意长度。
结合第一方面、第一方面的第一种可能实现方式、第二种可能实现方式、第三种可能实现方式、第四种可能实现方式或第五种可能实现方式,在第六种可能实现的方式中,所述第一部件和第二部件的任一凹凸位置的高度等于中空管体直径的一半。
结合第一方面、第一方面的第一种可能实现方式、第二种可能实现方式、第三种可能实现方式、第四种可能实现方式、第五种可能实现方式或第六种可能实现方式,在第七种可能实现的方式中,所述第一部件和第二部件的任一凹凸位置的高度h1要小于1/4表面波波长。
结合第一方面、第一方面的第一种可能实现方式、第二种可能实现方式、第三种可能实现方式、第四种可能实现方式、第五种可能实现方式、第六种可能实现方式或第七种可能实现方式,在第八种可能实现的方式中,所述第一部件和第二部件的材质是金属、合金或其他不导电但在表面上能传播电磁波的材料。
结合第一方面的第二种可能实现的方式,在第九种可能实现的方式中,所述喇叭状的锥形壳体的材质是金属。
第二方面,本发明实施例提供一种信号传输系统,所述系统包括两根线缆和两个如前述任一所述的耦合器,一根线缆插入到一个耦合器的第一部件的中空管中,另一根线缆插入到另一个耦合器的第二部件的中空管中。
采用本实施例所述的方案,就可以实现表面波高效率从一根传输线到另一根传输上传输方向的切换。
图1为表面波在线缆上的传输示意图;
图2A为表面波传输方向发生切换的一个场景示意图;
图2B为表面波传输方向发生切换的又一场景示意图;
图3为本发明实施例提供的一种耦合器结构示意图;
图4为本发明实施例仿真结果示意图;
图5为本发明实施例提供的耦合器的等效电路模型示意图;
图6为本发明实施例提供的又一个实施例中耦合器结构示意图;
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述。
图1是相关技术提供的表面波在线缆上的传输示意图,如图1所示,表面波是电磁场E沿线缆L在线缆L外部的空气中呈圈状传输形成的一种电磁波,这种传输模式为TM模式。其中,线缆仅起到引导电磁场传输的作用,线缆内部并无电流传输。表面波传输方式具有大带宽和低损耗的传输特点。示例的,研究表明,频率为10千兆赫兹(GHz)的表面 波在线径为2厘米的线缆上沿直线传输时,每100英尺(约30.48米)的损耗仅为0.2分贝(dB)。需要说明的是,在本申请实施例中,线缆的线径均指线缆的直径;线缆也称为传输线。
因为,线缆表面损坏、线缆上有障碍物等因素,当传输表面波的线缆需要切换走向,如图2A所示,或者切换到同向的其他线路,如图2B所示,就需要表面波耦合器(coupler)将一根传输线1上的信号耦合到另一根传输线2上传输。现有一般采用耦合线2和传输线1、3直接接触耦合,或者耦合线与传输线紧密靠近,但是此种方案耦合效率较低。
本发明实施例提供了一种耦合器。如图3所示,所述耦合器包含第一部件301、第二部件302和扣合部件303,其中第一部件301和第二部件302内部沿水平轴线方向分别呈中空管状,用于插入线缆;
所述第一部件301的下表面具有凹凸周期性结构,所述第二部件302的上表面也具有凹凸周期性结构;
所述第一部件301的下表面和第二部件302的上表面的凹凸位置交错扣合。
所述扣合部件303设置在所述第一部件301和第二部件302的第一端,和/或在所述第一部件301和第二部件302的第二端,用于将所述第一部件301和第二部件302的位置固定。
所述第一部件301和第二部件302的材质可以是金属、合金或其他不导电但在表面上能传播电磁波的材料。
进一步地,所述耦合器还包括耦合线,所述第二部件302的第二端连接耦合线一端,所述耦合线外表面设置有介质包层,用于约束电场辐射。其材质可以是金属。
可选地,所述耦合线的另一端连接一个喇叭状的锥形壳体,所述锥形壳体的喇叭口套在所述耦合线上,并且朝向所述耦合线的第一端。用于减小电磁波的聚拢,增大接收能量。
利用本实施例的方案,图2A和2B两个场景中分别通过两个耦合器就可以实现表面波传输方向的切换。具体为,第一个耦合器通过第一部件301的中空管道套在传输线路1上,然后通过第二部件302的连接耦合线路2;这样沿着线路1传输的表面波,通过耦合器就能切换到耦合线路2上。同理,耦合线路2连接第二个耦合器的第一部件301,第二个耦合器的第二部件302的中空管套在传输线路3上;这样沿着耦合线路2传输的表面波,通过第二耦合器就能切换到传输线路3上。
实际测试,相对图2A的线路直接耦合,在耦合区采用本实施例的新型耦合器,线路1上的表面波能量值为0dB的情况下,切换到线路3上的能量值的大小从-12dB提升到了-9dB,能量传输效率有明显的提升。
进一步地,所述耦合器中的第一部件301可以是由上下两部分扣合在一起形成所述中空管状;上下两部分的外表面可以是互相对称结构,也可以是不对称的。同样的,所述耦合器中的第二部件302也可以是由上下两部分扣合在一起形成所述中空管状;其上下两部分的外表面可以是互相对称结构,也可以是不对称的。
可选地,设置在所述第一部件301和第二部件302的第一端的扣合部件303呈喇叭状的锥形壳体,所述锥形壳体的喇叭开口朝向第一部件301的第二端。用于减小电磁波的发散反射,将表面波能量约束在第一部件301上。
使用本实施例的方案,如图4所示,耦合器包含左右两个部件,该两部件上都有凹凸周期性结构,并且凹凸位置交错扣合。左边部件套在一根传输线上,右边部件上部延伸出一根弯曲耦合线,用于改变表面波的传输反向,耦合线的另外一端设置有一个开口朝左的喇叭状的锥形壳体。当表面波通过耦合区后,从仿真软件可以清晰的看到大部分的能量场(光晕波纹)在耦合区从传输线转移到耦合线;弯曲部分为金属转弯导体,在弯曲导体外部增加有介质层,结尾处采用了喇叭状的锥形壳体结构。仿真结果显示耦合能量损耗仅为2-3dB,耦合效果明显。
图5为本发明实施例提供的耦合器的等效电路模型示意图。耦合器中凸起位置相当于一个电容C1,凹陷位置相当于一个电感L1,凹凸位置的周期结构等效为电容C1和电感L1的串联结构,上下两部分凹凸位置咬合空隙等效为电容C2,耦合区等效为电容C3和电感L2,每组C1、L1、C2、C3和L2构成的定向耦合电路网络单元。当表面波沿传输线传导至耦合区,每经过一个耦合电路网络单元都有一部分能量在该单元内形成谐振,这部分能量就会传递到C3和L2所在的耦合线路上;传输线路上的表面波继续传递至下一个定向耦合电路网络单元,在所述下一个定向耦合电路网络单元内,同样又有一部分能量在该单元内形成谐振,这部分能量又会叠加到C3和L2所在的耦合线路上,如此传递下去,传输线路上的表面波能量越来越小,而耦合线路上的表面波能量越来越大。
从上面描述的过程可知,每通过一个耦合电路网络单元,都有一部分能量在该单元内形成谐振将表面波能量传递到耦合线路上,而有多少比例的能量在该单元内形成谐振和每组C1、L1、C2、C3及L2的参数大小有关系,而这些参数大小取决于耦合器中第一部件301和第二部件302的凹凸位置交错咬合区中的凹凸长度以及咬合间隙。
图6为本发明实施例提供的一个实施例中耦合器示意图,图中示出了各部件的具体参数。如图6所示,第一部件301的任一凹凸位置的长度(如L1和L2)最好是1/4到1/8表面波波长之间的任意长度,本实施例选取到1/8表面波波长;凹凸位置的高度h1要小于1/4表面波波长,作为一个例子可以采用1/24表面波波长;第一部件301的中空管体直径D1与h1有对应关系,采用D1=2h;对应地,耦合器中第二部件302的中空管体直径D1可以等于d1,任一凹下位置的长度可以稍微大于1/8表面波波长,任一凸起位置的长度可以稍微小于1/8表面波波长,这样可以保证第一部件301和第二部件302能将凹凸位置交叉扣合在一起,并存在间隔d1和d2。d1能用于将表面波延第一部件301向前传输,d2能用于将延第一部件301传输的表面波能量向第二部件302传递。需要说明的是,如上列出的具体参数只是一个例子,在该例子基础上将参数进行小幅增大或减少都能达到本实施例的目的,只是在性能上会有一些差异。
本申请实施例提供了一种信号传输系统,该系统包括:两根线缆和两个如图3所示的耦合器,一根线缆插入到一个耦合器的第一部件301的中空管中,另一根线缆插入到另一个耦合器的第二部件302的中空管中。用于高效率地将一根线缆上传输的表面波转移到另一根线缆上传输。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
Claims (11)
- 一种表面波耦合器,其特征在于,所述耦合器包含第一部件301、第二部件302和扣合部件303,其中所述第一部件301和所述第二部件302内部沿水平轴线方向分别呈中空管状,用于插入线缆;所述第一部件301的下表面具有凹凸周期性结构,所述第二部件302的上表面也具有凹凸周期性结构;所述第一部件301的下表面和第二部件302的上表面的凹凸位置交错扣合;所述扣合部件303设置在所述第一部件301和第二部件302的第一端,和/或在所述第一部件301和第二部件302的第二端,用于将所述第一部件301和第二部件302的位置固定。
- 根据权利要求1所述的耦合器,其特征在于,还包括耦合线,所述第二部件302的第二端连接所述耦合线一端;所述耦合线外表面设置有介质包层,用于约束电场辐射。
- 如权利要求2所述的耦合器,其特征在于,所述耦合线的另一端连接一个喇叭状的锥形壳体,所述锥形壳体的喇叭口套在所述耦合线上,并且朝向所述耦合线的第一端。
- 如权利要求1至3任一所述的耦合器,其特征在于,所述耦合器中的第一部件301是由上下两部分扣合在一起形成所述中空管状。
- 如权利要求1至4任一所述的耦合器,其特征在于,所述耦合器中的第二部件302是由上下两部分扣合在一起形成所述中空管状。
- 如权利要求1至5任一所述的耦合器,其特征在于,所述第一部件301的任一凹凸位置的长度为1/4到1/8表面波波长之间的任意长度。
- 如权利要求1至6任一所述的耦合器,其特征在于,所述第一部件301和第二部件302的任一凹凸位置的高度等于中空管体直径的一半。
- 如权利要求1至7任一所述的耦合器,其特征在于,所述第一部件301和第二部件302的任一凹凸位置的高度h1要小于1/4表面波波长。
- 如权利要求1至8任一所述的耦合器,其特征在于,所述第一部件301和第二部件302的材质是金属、合金或其他不导电但在表面上能传播电磁波的材料。
- 如权利要求3所述的耦合器,其特征在于,所述喇叭状的锥形壳体的材质是金属。
- 一种信号传输系统,其特征在于,所述系统包括两根线缆和两个如权利要求1至10任一所述的耦合器,一根线缆插入到一个耦合器的第一部件301的中空管中,另一根线缆插入到另一个耦合器的第二部件302的中空管中。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/124732 WO2020133173A1 (zh) | 2018-12-28 | 2018-12-28 | 耦合器及耦合系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/124732 WO2020133173A1 (zh) | 2018-12-28 | 2018-12-28 | 耦合器及耦合系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020133173A1 true WO2020133173A1 (zh) | 2020-07-02 |
Family
ID=71126723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/124732 WO2020133173A1 (zh) | 2018-12-28 | 2018-12-28 | 耦合器及耦合系统 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020133173A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03188423A (ja) * | 1989-12-18 | 1991-08-16 | Nec Corp | 光方向性結合器及びその製造方法 |
JP2004157192A (ja) * | 2002-11-01 | 2004-06-03 | Nippon Telegr & Teleph Corp <Ntt> | 光モジュール |
CN201478429U (zh) * | 2009-07-22 | 2010-05-19 | 中兴通讯股份有限公司 | 一种微带线定向耦合器 |
CN104749706A (zh) * | 2015-03-13 | 2015-07-01 | 华为技术有限公司 | 一种硅光隔离器 |
CN205246935U (zh) * | 2015-12-10 | 2016-05-18 | 北京大学 | 一种方向耦合器 |
US20180040938A1 (en) * | 2016-08-08 | 2018-02-08 | Rohde & Schwarz Gmbh & Co. Kg | Directional coupler and a combiner |
-
2018
- 2018-12-28 WO PCT/CN2018/124732 patent/WO2020133173A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03188423A (ja) * | 1989-12-18 | 1991-08-16 | Nec Corp | 光方向性結合器及びその製造方法 |
JP2004157192A (ja) * | 2002-11-01 | 2004-06-03 | Nippon Telegr & Teleph Corp <Ntt> | 光モジュール |
CN201478429U (zh) * | 2009-07-22 | 2010-05-19 | 中兴通讯股份有限公司 | 一种微带线定向耦合器 |
CN104749706A (zh) * | 2015-03-13 | 2015-07-01 | 华为技术有限公司 | 一种硅光隔离器 |
CN205246935U (zh) * | 2015-12-10 | 2016-05-18 | 北京大学 | 一种方向耦合器 |
US20180040938A1 (en) * | 2016-08-08 | 2018-02-08 | Rohde & Schwarz Gmbh & Co. Kg | Directional coupler and a combiner |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2867776A (en) | Surface waveguide transition section | |
CA2378506A1 (en) | Low-loss inductive couplers for use in wired pipe strings | |
US6583693B2 (en) | Method of and apparatus for connecting waveguides | |
JP2007013809A (ja) | 高周波用のバラン | |
JP2011024176A (ja) | 誘電体導波路の電磁波伝達部 | |
WO2020133173A1 (zh) | 耦合器及耦合系统 | |
US11605870B2 (en) | Surface wave excitation device having a multi-layer PCB construction with closed regions therein | |
US4785268A (en) | Dielectric waveguide delay line | |
US20070013457A1 (en) | Mode transducer structure | |
JP6219324B2 (ja) | 平面伝送線路導波管変換器 | |
TWI424611B (zh) | 相互隔離之雙模轉換器及其應用 | |
JP2008271074A (ja) | 高周波結合器 | |
WO2020041968A1 (zh) | 表面波转换耦合装置和表面波通信系统 | |
CN107039714A (zh) | 一种斜面耦合宽带旋转关节 | |
CN114094297A (zh) | 一种紧凑型双脊波导同轴转换器 | |
JP2007281712A (ja) | 水媒体使用の電力終端器 | |
KR101264768B1 (ko) | 고차모드 억압구조를 갖는 이중 리지 혼 안테나 | |
KR101590317B1 (ko) | 트랜지션 장치 및 그에 사용되는 부재 | |
JPH0235801A (ja) | 小形リッジ導波管/同軸線路変換器 | |
CN107026299B (zh) | 过模圆波导tm01模转弯结构 | |
CN211578965U (zh) | 一种改进的5gnr的全频段天线 | |
JP2006038393A (ja) | 空気調和機器、信号伝送方法および空気調和機器の信号伝送方法 | |
CN114121576B (zh) | 一种适用于余弦栅加载折叠波导慢波结构的能量耦合器 | |
CN113097675A (zh) | 一种表面波传输装置 | |
CN113097724B (zh) | 一种介质谐振天线 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18945257 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18945257 Country of ref document: EP Kind code of ref document: A1 |