WO2020132998A1 - 一种柔性体声波滤波器 - Google Patents

一种柔性体声波滤波器 Download PDF

Info

Publication number
WO2020132998A1
WO2020132998A1 PCT/CN2018/124079 CN2018124079W WO2020132998A1 WO 2020132998 A1 WO2020132998 A1 WO 2020132998A1 CN 2018124079 W CN2018124079 W CN 2018124079W WO 2020132998 A1 WO2020132998 A1 WO 2020132998A1
Authority
WO
WIPO (PCT)
Prior art keywords
acoustic wave
bulk acoustic
wave filter
resonator
flexible
Prior art date
Application number
PCT/CN2018/124079
Other languages
English (en)
French (fr)
Inventor
庞慰
高传海
张孟伦
Original Assignee
天津大学
诺思(天津)微系统有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学, 诺思(天津)微系统有限责任公司 filed Critical 天津大学
Priority to PCT/CN2018/124079 priority Critical patent/WO2020132998A1/zh
Publication of WO2020132998A1 publication Critical patent/WO2020132998A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/58Multiple crystal filters

Definitions

  • the present invention relates to the field of semiconductor technology, and particularly to a flexible bulk acoustic wave filter.
  • Flexible electronics has developed rapidly in the fields of display, sensing, communication, etc., and wearable flexible electronic consumption has attracted more and more interest.
  • Flexible electronics is generally considered to be an electronic or electronic system built on a flexible substrate. The system has the characteristics of being bendable, stretchable, or twisted. Compared with conventional electronic systems on hard substrates, flexible electronics need to retain a certain working capacity when flexible deformation occurs. Further, in applications with high communication efficiency, building a flexible radio frequency system can further expand the flexible application field.
  • the filter is a typical two-port electrical network, and there are multiple classifications in the form of composition, of which the ladder topology is a more common one.
  • the resonator includes two resonance points: a series resonance point with a lower frequency and a parallel resonance point with a higher frequency.
  • a series resonance point with a lower frequency a parallel resonance point with a higher frequency.
  • the parallel resonance point of the parallel resonator and the series resonance point of the series resonator are often equal to obtain a filter with better performance, as shown in FIG. 2.
  • lattice structure there is also a common filter basic topology structure is a lattice structure, as shown in Figure 3.
  • the lattice structure and the trapezoidal structure are similar in layout, and both can use the same layout design method.
  • the mixed layout structure with both trapezoidal topology and lattice topology can also use the same layout design method.
  • BAW Bulk Acoustic Wave
  • a mechanical resonance can be generated under the signal, and an electrical resonance signal can be generated by the piezoelectric effect.
  • an electrical resonance signal can be generated by the piezoelectric effect.
  • the present invention provides a flexible bulk acoustic wave filter and improves processing efficiency.
  • the flexible bulk acoustic wave filter of the present invention includes: a flexible substrate, a plurality of resonators, port electrodes, and connection bands, wherein: the material of the flexible substrate includes: polyterephthalate plastic, polyacetimide, polynaphthalene Ethylene glycol dicarboxylate, polyetherimide, metal or inorganic materials.
  • the pattern of the resonator is a polygon, an ellipse, or a special shape composed of multiple arcs and straight lines.
  • the pattern of the resonator satisfies the conditions: any two sides are not parallel to each other, the internal angle in the pattern is ⁇ 60°, and the number of resonance groups of the series resonator and the parallel resonator is ⁇ 2.
  • the topology structure of the flexible bulk acoustic wave filter is a trapezoidal structure, a lattice structure, or a mixture of a trapezoidal and lattice structure.
  • it also includes an independent additional attachment area structure that is in contact with the substrate, but the independent additional attachment area structure is neither electrically connected to the resonator nor electrically connected to the port electrode connection.
  • the port electrode has an additional electrode attachment area.
  • the resonator and the port electrode have an edge-constrained structure.
  • At least one end of the edge constraining structure is located above the constrained edge and establishes a connection, and at least the other end has an attachment relationship with the substrate.
  • the edge constraining structure is provided at the edge of the port electrode.
  • the edge constraining structure is a part of the constrained edge or other independent layers.
  • the flexible bulk acoustic wave filter of the present invention can suppress the parasitic mode of the resonator, which is beneficial to improve the overall performance of the filter, so that the filter is applied to the transfer process to the flexible substrate, and has structural stability after the transfer.
  • the structure of the working area is also stabilized by adding an edge constraint structure, and the attachment ability of the filter on a flexible substrate is increased by adding an additional attachment area area.
  • Figure 1 is a schematic diagram of a ladder topology filter
  • Figure 2 is a schematic diagram of the electrical performance of the resonator
  • Figure 3 is a schematic diagram of a lattice topology filter
  • FIG. 4 is a layout design of a topology of a flexible bulk acoustic wave filter according to the first embodiment of the present invention
  • FIG. 5(a) is a layout design of a topology structure of a flexible bulk acoustic wave filter according to a second embodiment of the present invention
  • FIG. 5(b) is a cross-sectional view at A-A' of the structure shown in FIG. 5(a);
  • FIG. 6(a) is a layout design of a port electrode in a prior art filter
  • FIG. 6(b) is a layout design of a port electrode in a flexible bulk acoustic wave filter according to a third embodiment of the present invention
  • FIG. 7(a) is a layout design of a topology of a flexible bulk acoustic wave filter according to a fourth embodiment of the present invention
  • FIG. 7(b) is a cross-sectional view at B-B' of the structure shown in FIG. 7(a).
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include one or more of the features.
  • the meaning of “plurality” is two or more, unless otherwise specifically limited.
  • connection In the present invention, unless otherwise clearly specified and defined, the terms “installation”, “connection”, “connection”, “fixation” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , Or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected, or it can be indirectly connected through an intermediary, or it can be the connection between two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention according to specific situations.
  • the first feature “above” or “below” the second feature may include the first and second features in direct contact, or may include the first and second features Not direct contact but contact through another feature between them.
  • the first feature is “above”, “above” and “above” the second feature includes that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • the first feature is “below”, “below”, and “below” the second feature includes that the first feature is directly below and obliquely below the second feature, or simply means that the first feature is less horizontal than the second feature.
  • the flexible bulk acoustic wave filter includes: a flexible substrate, a plurality of resonators, port electrodes, and connection bands, wherein: the material of the flexible substrate includes but is not limited to: polyethylene terephthalate plastics, polyethyleneimide , Polyethylene naphthalate, polyetherimide, metal or inorganic materials.
  • the shape of the resonator is a polygon, an ellipse, or a special shape composed of multiple arcs and straight lines.
  • the pattern of the resonator satisfies the conditions: any two sides are not parallel to each other, the internal angle in the pattern is ⁇ 60°, and the number of resonance groups of the series resonator and the parallel resonator is ⁇ 2.
  • the core structure of the bulk acoustic wave resonator is a sandwich structure composed of electrodes on both sides and a piezoelectric layer between the electrodes.
  • the electrode material may include but is not limited to: osmium, magnesium, gold, tungsten, molybdenum, platinum, ruthenium, iridium, germanium, copper, titanium, titanium tungsten, aluminum, chromium, arsenic doped gold.
  • the material of the FBAR piezoelectric layer is any one of the following: aluminum nitride, zinc oxide, lead zirconate titanate, lithium niobate, quartz, potassium niobate, and lithium tantalate.
  • the material of the piezoelectric layer is aluminum nitride doped with rare earth elements.
  • the above-mentioned materials are piezoelectric thin films with a thickness of less than 10 microns.
  • the aluminum nitride film is in a polycrystalline or single crystal form, and the growth method is thin film sputtering (sputtering) or organic metal chemical vapor deposition (MOCVD).
  • the topology of the flexible bulk acoustic wave filter is a trapezoidal structure, a lattice structure, or a mixture of a trapezoidal and lattice structure.
  • an independent additional attachment area structure is also included, which is in contact with the substrate, but the independent additional attachment area structure is neither electrically connected to the resonator nor to the port electrode.
  • the port electrode has an additional electrode attachment area.
  • the independent additional attachment area is not electrically connected to any resonator or port electrode, which can increase the adhesion (adhesion) between the device and the flexible substrate , But the structural robustness is lower than the structure of the additional attachment area on the electrode.
  • the additional area directly added to the port electrode can also increase the adhesion (adhesion) between the device and the flexible substrate, but it will introduce weak electromagnetic interference, which will affect the electrical performance of the device.
  • the resonator and the port electrode have an edge constrained structure, at least one end of the edge constrained structure is located above the constrained edge and establishes a connection, and at least the other end has an attachment relationship with the substrate.
  • the edge restraint structure is provided at the edge of the port electrode.
  • the edge constrained structure is part of the constrained edge, or is an independent other layer.
  • the flexible bulk acoustic wave filter of the present invention can suppress the parasitic mode of the resonator, which is advantageous for improving the overall performance of the filter, so that the filter is applied to the transfer process on the flexible substrate, and has structural robustness after the transfer.
  • the structure of the working area is also stabilized by adding an edge constraint structure, and the attachment ability of the filter on a flexible substrate is increased by adding an additional attachment area area.
  • FIG. 4 is a schematic diagram of a filter layout of a trapezoid topology including 2.5 resonance groups.
  • the filter body includes series resonators 400, 410, and 420, parallel resonators 450 and 470, and port electrodes 440 and 460. ,480 ⁇ 430.
  • the parallel resonator and the series resonator are basic resonators
  • the port electrode is used to establish an electrical connection with an external electrical system
  • the connection band is used to establish an electrical connection between the resonator and the resonator, and between the resonator and the port electrode.
  • the resonator pattern is not limited to a quadrilateral, but also includes but is not limited to a general polygon, an ellipse, or a special shape composed of multiple arcs and straight lines.
  • the resonator graphic design should also satisfy that: any two sides are not parallel to each other, and the internal angle in the graphic is not less than 60 degrees.
  • the number of resonance groups (trapezoidal units) formed by series resonators and parallel resonators should be not less than 2.
  • the filter topology is not limited to a trapezoidal structure, but can also be a lattice structure or a mixed structure composed of a ladder structure and a lattice structure.
  • Example 2 the layout improvement of adding independent additional attachment area
  • FIG. 5(a) is a schematic diagram of a filter layout of a trapezoid topology including 2.5 resonance groups.
  • the filter body includes series resonators 500, 510, and 520, parallel resonators 550 and 570, and port electrodes. 540, 560, 590, connecting belt 530 and independent additional attachment area 580.
  • the parallel resonator and the series resonator are basic resonators
  • the port electrode is used to establish an electrical connection with an external electrical system
  • the connection band is used to establish an electrical connection between the resonator and the resonator, and between the resonator and the port electrode.
  • Fig. 5(b) is a cross-sectional view along AA' in Fig. 5(a).
  • the structure includes two port electrodes 1500 and 1520, an independent additional attachment area 1510, a bottom connection layer 1530 and a flexible substrate 1540.
  • 1500, 1510, 1520, and 1530 belong to the filter layout structure, and 1500, 1510, and 1520 have a bottom-layer connection through 1530 and are integrated.
  • the independent additional attachment area has the characteristic that there is no direct electrical connection with the port electrode and the resonator to avoid electromagnetic parasitics; there is a bottom connection layer between the port electrode and the resonator, which is integrated in the overall structure of.
  • the resonator pattern is not limited to a quadrilateral, but also includes but is not limited to a general polygon, an ellipse, or a special shape composed of multiple arcs and straight lines.
  • the resonator graphic design should also satisfy that any two sides are not parallel to each other, and the internal angle in the graphic is not less than 60 degrees.
  • the number of resonance groups (trapezoidal units) formed by series resonators and parallel resonators should be not less than 2.
  • the filter topology is not limited to a trapezoidal structure, but can also be a lattice structure or a mixed structure composed of a ladder structure and a lattice structure.
  • the independent additional attachment area pattern is not limited to the position in the illustration, and the number of patterns is not less than 1.
  • FIG. 6 is a schematic diagram of a partial layout of a filter, wherein FIG. 6(a) is a layout before improvement, and FIG. 6(b) is a layout after adding an additional electrode attachment area.
  • the structure in FIG. 6 includes port electrodes 600, 601, connection bands 610, 611, and resonators 620, 621.
  • FIG. 6(a) and FIG. 6(b) are different from the port electrode design.
  • the total area of the port electrode in FIG. 6(b) is larger than the port electrode in FIG. 6(a), which has a better filter Adhesion between the whole and the flexible substrate.
  • the additional electrode attachment area can also make the flexible filter and its surrounding structure obtain a more uniform stress distribution when bending, to a large extent avoid the filter caused by uneven bending force Local cracking and other mechanical and electrical failures.
  • the resonator pattern is not limited to a quadrilateral, but also includes but is not limited to a general polygon, an ellipse, or a special shape composed of multiple arcs and straight lines.
  • the resonator graphic design should also satisfy that: any two sides are not parallel to each other, and the internal angle in the graphic is not less than 60 degrees.
  • the number of resonance groups (trapezoidal units) formed by series resonators and parallel resonators should not be less than 2.
  • the filter topology is not limited to a trapezoidal structure, but can also be a lattice structure or a mixed structure composed of a ladder structure and a lattice structure.
  • FIG. 7(a) is a partial plan view of the resonator edge restraint structure as an example
  • FIG. 7(b) is a cross-sectional view taken along line B-B' in FIG. 7(a).
  • the structure in FIG. 7 includes: a resonator 700, confinement layers 710 and 711, edge protrusion regions 720 and 750, a bottom electrode 750 of the resonator, a piezoelectric layer 740 and a top electrode 730.
  • the main structural feature in this embodiment is that the constrained edge provides an edge protrusion area for edge restraint.
  • the edge protrusion area may be a part of the constrained edge or an independent other layer; at least one end of the constraining layer is located on the edge extension Go out above the area and establish a connection, at least the other end meets the attachment relationship with the flexible substrate after being transferred to the flexible substrate.
  • the setting of the constraining layer is not limited to constraining the edge of the resonator, but can also be used to constrain other structures, including but not limited to port electrodes. It should be emphasized that the constraining layer in this embodiment can exert a position constraining effect on the edge structure, reducing the risk of instability such as edge warping caused by changes in the stress of the filter structure.
  • the resonator pattern is not limited to a quadrilateral, but also includes but is not limited to a general polygon, an ellipse, or a special shape composed of multiple arcs and straight lines.
  • the resonator graphic design should also satisfy that: any two sides are not parallel to each other, and the internal angle in the graphic is not less than 60 degrees.
  • the number of resonance groups (trapezoidal units) formed by series resonators and parallel resonators should be not less than 2.
  • the filter topology is not limited to a trapezoidal structure, but can also be a lattice structure or a mixed structure composed of a ladder structure and a lattice structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

一种柔性体声波滤波器,包括:柔性基底、多个谐振器、端口电极(440、460、480)、连接带(430),其中,柔性基底的材料包括但不限于:聚对苯二甲酸类塑料、聚乙酰亚胺、聚萘二甲酸乙二醇酯、聚醚酰亚胺、金属或者无机材料。谐振器的图形为多边形、椭圆形或由多段弧线及直线构成的异形,并且满足条件:任意两边互不平行,图形中内角≥60°,串联谐振器(400、410、420)和并联谐振器(450、470)的谐振组数≥2。该柔性体声波滤波器能够应用于向柔性衬底上的转移过程,且在转移后具有结构稳健性。还通过添加边缘约束结构使得工作区域结构稳健,通过添加额外附着区域面积增大了该滤波器在柔性衬底上附着能力。

Description

一种柔性体声波滤波器 技术领域
本发明涉及半导体技术领域,特别地涉及一种柔性体声波滤波器。
背景技术
柔性电子在显示、传感、通信等领域已有较快发展,可穿戴式柔性电子消费吸引了越来越多的兴趣。柔性电子通常被认为是建立在柔性衬底之上的电子或电子系统,系统具有可弯曲、拉伸或扭曲等特点。与常规硬质基底上电子系统相比,柔性电子需要在发生柔性形变时仍保留有一定的工作能力。进一步地,在高通信效率的应用中,构建柔性射频系统可进一步扩展柔性应用领域。
作为射频系统的重要组件之一,滤波器在信号处理中发挥重要作用。滤波器是一个典型的二端口电学网络,在组成形式上有多种分类,其中梯形(Ladder)拓扑结构是较为常见的一种。如图1所示,Ladder结构具有一个信号输入端(端口1)和一个信号输出端(端口2),其各级分别由一个串联在端口1、2之间的谐振器(Series Resonator)Xi(i=1,2,3…)和一个并联在端口1、2之间的谐振器(Shunt Resonator)Yi(i=1,2,3…)组成,且并联谐振器的谐振频率低于串联谐振器的谐振频率。通常,谐振器又包括两个谐振点:频率较低的串联谐振点和频率较高的并联谐振点。以带通滤波器为例,在Ladder结构的滤波器中往往令并联谐振器的并联谐振点与串联谐振器的串联谐振点相等以获得性能更佳的滤波器,如图2所示。
还有一种常见的滤波器基本拓扑结构为格形结构,如图3所示。格形结构与梯形结构是在版图布局方面是相似的,二者可以用同样的版图设计方法。更进一步地,既有梯形拓扑又有格形拓扑的混合型结 构也可用同样的版图设计方法。
另一方面,柔性电子的发展对柔性电学组件的开发提出了更高要求。通信射频波段在未来柔性电子系统中占有重要分量。柔性功能的实现一定程度上依赖于器件的可柔性化设计。近年来,体声波(Bulk Acoustic Wave,BAW)谐振器获得了快速发展。BAW谐振器凭借简单的结构、高性能、低功耗、小体积等优势成为实现柔性电子系统的重要组件之一。以一种体声波谐振器薄膜体声波谐振器(film bulk acoustic resonator,FBAR)为例,该类型谐振器具有三明治结构,从上至下依次为顶电极、压电层和底电极,在外加射频信号下可产生机械谐振,通过压电效应从而产生电学谐振信号。此外,为了构成有效的声反射层,通常还需要在两电极之外构建空气腔或布拉格反射层。
硬质基底上的BAW谐振器及其扩展滤波器应用在商业化方面已趋于成熟,但具有柔性特性的相关研究鲜有报道,柔性滤波器开发仍有空白。
发明内容
有鉴于此,本发明提供一种柔性体声波滤波器,并提高处理效率。
本发明的柔性体声波滤波器,包括:柔性基底、多个谐振器、端口电极、连接带,其中:所述柔性基底的材料包括:聚对苯二甲酸类塑料、聚乙酰亚胺、聚萘二甲酸乙二醇酯、聚醚酰亚胺、金属或者无机材料。
可选地,所述谐振器的图形为多边形、椭圆形或由多段弧线及直线构成的异形。
可选地,所述谐振器的图形满足条件:任意两边互不平行,图形中内角≥60°,串联谐振器和并联谐振器的谐振组数≥2。
可选地,所述柔性体声波滤波器的拓扑结构为梯形结构、格型结构,或者梯形与格型混合结构。
可选地,还包括独立额外附着面积结构,所述独立额外附着面积结构与所述基底接触,但所述独立额外附着面积结构既不与所述谐振器有电学连接也不与端口电极有电学连接。
可选地,所述端口电极具有电极额外附着面积。
可选地,所述谐振器和所述端口电极具有边缘约束结构。
可选地,所述边缘约束结构的至少一端位于被约束边缘的上方并建立连接,至少另一端与所述基底有附着关系。
可选地,所述边缘约束结构设置在所述端口电极边缘。
可选地,所述边缘约束结构是被约束边缘的一部分,或者是独立的其他层。
本发明的柔性体声波滤波器能够抑制谐振器寄生模式,这对提高滤波器的整体性能有利,从而使得滤波器应用于向柔性衬底上的转移过程,且在转移后具有结构稳健性。本发明中,还通过添加边缘约束结构使得工作区域结构稳健,通过添加额外附着区域面积增大了该滤波器在柔性衬底上附着能力。
附图说明
附图用于更好地理解本发明,不构成对本发明的不当限定。其中:
图1是梯形拓扑结构滤波器示意图;
图2是谐振器电学性能示意图;
图3是格型拓扑结构滤波器示意图;
图4是本发明第一实施例的柔性体声波滤波器拓扑结构版图设计;
图5(a)是本发明第二实施例的柔性体声波滤波器拓扑结构版图设计,图5(b)是图5(a)所示结构的A-A’处的剖面视图;
图6(a)是现有技术的滤波器中的端口电极版图设计,图6(b)是本发明第三实施例的柔性体声波滤波器中的端口电极版图设计;
图7(a)是本发明第四实施例的柔性体声波滤波器拓扑结构版图设计,图7(b)是图7(a)所示结构的B-B’处的剖面视图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相 连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
本发明实施例的柔性体声波滤波器,包括:柔性基底、多个谐振器、端口电极、连接带,其中:柔性基底的材料包括但不限于:聚对苯二甲酸类塑料、聚乙酰亚胺、聚萘二甲酸乙二醇酯、聚醚酰亚胺、金属或者无机材料。
可选地,谐振器的图形为多边形、椭圆形或由多段弧线及直线构成的异形。
可选地,谐振器的图形满足条件:任意两边互不平行,图形中内角≥60°,串联谐振器和并联谐振器的谐振组数≥2。
所述体声波谐振器的核心结构为具有两侧电极和位于电极之间的压电层构成的三明治结构。其中电极材料可包含但不限于:锇、镁、金、钨、钼、铂、钌、铱、锗、铜、钛、钛钨、铝、铬、砷掺杂金。所述FBAR压电层的材料为以下任意一种:氮化铝、氧化锌、锆钛酸铅、铌酸锂、石英、铌酸钾、钽酸锂。可选的,所述压电层的材料为 掺杂稀土元素的氮化铝。上述材料为压电薄膜,厚度小于10微米。氮化铝薄膜为多晶形态或者单晶形态,生长方式为薄膜溅射(sputtering)或者有机金属化学气相沉积法(MOCVD)。
可选地,柔性体声波滤波器的拓扑结构为梯形结构、格型结构,或者梯形与格型混合结构。
可选地,还包括独立额外附着面积结构,独立额外附着面积结构与基底接触,但独立额外附着面积结构既不与谐振器有电学连接也不与端口电极有电学连接。
可选地,端口电极具有电极额外附着面积。
需要说明单是,与电极上的额外附着面积结构相比,独立额外附着面积不与任一谐振器或者端口电极有电学连接,可以增大器件与柔性衬底之间的粘附(附着力),但结构稳健性低于电极上的额外附着面积结构。在端口电极上直接增加的额外面积附着也可以增大器件与柔性衬底之间的粘附(附着力),但会引入微弱的电磁干扰,进而影响器件的电学性能。
可选地,谐振器和端口电极具有边缘约束结构,边缘约束结构的至少一端位于被约束边缘的上方并建立连接,至少另一端与基底有附着关系。
可选地,边缘约束结构设置在端口电极边缘。
可选地,边缘约束结构是被约束边缘的一部分,或者是独立的其他层。
本发明的柔性体声波滤波器能够抑制谐振器寄生模式,这对提高滤波器的整体性能有利,从而使得滤波器应用于向柔性衬底上的转移 过程,且在转移后具有结构稳健性。本发明中,还通过添加边缘约束结构使得工作区域结构稳健,通过添加额外附着区域面积增大了该滤波器在柔性衬底上附着能力。
为使本领域技术人员更好地理解,下面结合具体实施例进行详细说明。
实施例1,柔性滤波器拓扑结构版图设计
本实施例中,图4所示为包括2.5个谐振组的梯形拓扑结构的滤波器版图示意,滤波器主体包括串联谐振器400、410、420,并联谐振器450、470,端口电极440、460、480和连接带430。其中,并联谐振器和串联谐振器是基本谐振器,端口电极用于与外界电学系统建立电学连接,连接带用于在谐振器与谐振器之间、谐振器与端口电极之间建立电学连接。
本实施例中,谐振器图形不限于四边形,还包括但不限于一般多边形、椭圆形或由多段弧线及直线构成的异形。谐振器图形设计还应满足:任意两边互不平行,且图形中的内角不小于60度。串联谐振器和并联谐振器构成的谐振组数(梯形单元)应不少于2。滤波器拓扑结构不限于梯形结构,还可以是格形结构或梯形结构与格形结构组成的混合结构。
实施例2,增加独立额外附着面积的版图改进
本实施例中,图5(a)所示为包括2.5个谐振组的梯形拓扑结构的滤波器版图示意,滤波器主体包括串联谐振器500、510、520,并联谐振器550、570,端口电极540、560、590,连接带530和独立额外附着面积580。其中,并联谐振器和串联谐振器是基本谐振器,端口电极用于与外界电学系统建立电学连接,连接带用于在谐振器与谐振器之间、谐振器与端口电极之间建立电学连接。独立额外附着面积既不与谐振器有电学连接也不与端口电极有电学连接,增强滤波器整体与柔性衬底的间的附着力。与没有额外附着面积的结构相比,独立的额外附着 面积还可以使柔性滤波器及其周围结构在弯曲时获得更均匀的应力分布,从较大程度避免滤波器因弯曲受力不均匀导致的局部开裂等机械和电学失效。图5(b)所示为沿图5(a)中AA’处的截面图示意,结构包括2个端口电极1500和1520,独立额外附着面积1510,底连接层1530和柔性衬底1540。其中,1500、1510、1520、1530属于滤波器版图结构,1500、1510、1520通过1530建立有底层联系,是一体的。本实施例中,独立额外附着面积具有的特征在于,与端口电极和谐振器间没有直接的电学联系,避免了电磁寄生;与端口电极和谐振器间具有底连接层,在整体结构上是一体的。
本实施例中,谐振器图形不限于四边形,还包括但不限于一般多边形、椭圆形或由多段弧线及直线构成的异形。谐振器图形设计还应满足:任意两边互不平行,且图形中的内角不小于60度。串联谐振器和并联谐振器构成的谐振组数(梯形单元)应不少于2。滤波器拓扑结构不限于梯形结构,还可以是格形结构或梯形结构与格形结构组成的混合结构。独立额外附着面积图案不限于图示中的位置,图案个数不低于1。
实施例3,增加电极额外附着面积的版图改进
本实施例中,图6所示为滤波器的局部版图示意,其中图6(a)为改进前版图,图6(b)为增加电极额外附着面积后版图。图6中结构包括端口电极600、601,连接带610、611和谐振器620、621。本实施例中,图6(a)与图6(b)区别于端口电极设计不同,图6(b)中端口电极总面积大于图6(a)中的端口电极,具有更好的滤波器整体与柔性衬底间附着力。与没有电极额外附着面积的结构相比,电极额外附着面积还可以使柔性滤波器及其周围结构在弯曲时获得更均匀的应力分布,从较大程度避免滤波器因弯曲受力不均匀导致的局部开裂等机械和电学失效。
本实施例中,谐振器图形不限于四边形,还包括但不限于一般多边形、椭圆形或由多段弧线及直线构成的异形。谐振器图形设计还应满足:任意两边互不平行,且图形中的内角不小于60度。串联谐振器 和并联谐振器构成的谐振组数(梯形单元)应不少于2。滤波器拓扑结构不限于梯形结构,还可以是格形结构或梯形结构与格形结构组成的混合结构。
实施例4,边缘约束结构版图改进
本实施例描述了一种谐振器和端口电极的边缘约束结构。如图7所示,图7(a)是以谐振器边缘约束结构为例的局部俯视图,图7(b)是沿图7(a)中B-B’线的剖视图。图7中结构包括:谐振器700,约束层710、711,边缘伸出区720、750,谐振器底电极750,压电层740和顶电极730。本实施例中的主要结构特征为,被约束边缘提供边缘伸出区用于边缘约束,边缘伸出区可以是被约束边缘的一部分,也可以是独立的其它层;约束层至少一端位于边缘伸出区上方并建立连接,至少另一端满足在转移至柔性衬底后与柔性衬底有附着关系。约束层设置不限于对谐振器边缘的约束,还可以用于约束其它结构,其它结构包括但不限于端口电极。应当强调,本实施例中的约束层能够对边缘结构起到位置约束作用,降低滤波器结构因所受应力变化而引起的边缘翘起等不稳定风险。
本实施例中,谐振器图形不限于四边形,还包括但不限于一般多边形、椭圆形或由多段弧线及直线构成的异形。谐振器图形设计还应满足:任意两边互不平行,且图形中的内角不小于60度。串联谐振器和并联谐振器构成的谐振组数(梯形单元)应不少于2。滤波器拓扑结构不限于梯形结构,还可以是格形结构或梯形结构与格形结构组成的混合结构。
上述具体实施方式,并不构成对本发明保护范围的限制。本领域技术人员应该明白的是,取决于设计要求和其他因素,可以发生各种各样的修改、组合、子组合和替代。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明保护范围之内。

Claims (10)

  1. 一种柔性体声波滤波器,包括:柔性基底、多个谐振器、端口电极、连接带,其特征在于:所述柔性基底的材料包括:聚对苯二甲酸类塑料、聚乙酰亚胺、聚萘二甲酸乙二醇酯、聚醚酰亚胺、金属或者无机材料。
  2. 根据权利要求1所述的柔性体声波滤波器,其特征在于,所述谐振器的图形为多边形、椭圆形或由多段弧线及直线构成的异形。
  3. 根据权利要求1所述的柔性体声波滤波器,其特征在于,所述谐振器的图形满足条件:任意两边互不平行,图形中内角≥60°,串联谐振器和并联谐振器的谐振组数≥2。
  4. 根据权利要求1所述的柔性体声波滤波器,其特征在于,所述柔性体声波滤波器的拓扑结构为梯形结构、格型结构,或者梯形与格型混合结构。
  5. 根据权利要求1所述的柔性体声波滤波器,其特征在于,还包括独立额外附着面积结构,所述独立额外附着面积结构与所述基底接触,但所述独立额外附着面积结构既不与所述谐振器有电学连接也不与端口电极有电学连接。
  6. 根据权利要求1所述的柔性体声波滤波器,其特征在于,所述端口电极具有电极额外附着面积。
  7. 根据权利要求1所述的柔性体声波滤波器,其特征在于,所述谐振器和所述端口电极具有边缘约束结构。
  8. 根据权利要求7所述的柔性体声波滤波器,其特征在于,所述 边缘约束结构的至少一端位于被约束边缘的上方并建立连接,至少另一端与所述基底有附着关系。
  9. 根据权利要求7所述的柔性体声波滤波器,其特征在于,所述边缘约束结构设置在所述端口电极边缘。
  10. 根据权利要求7所述的柔性体声波滤波器,其特征在于,所述边缘约束结构是被约束边缘的一部分,或者是独立的其他层。
PCT/CN2018/124079 2018-12-26 2018-12-26 一种柔性体声波滤波器 WO2020132998A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/124079 WO2020132998A1 (zh) 2018-12-26 2018-12-26 一种柔性体声波滤波器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/124079 WO2020132998A1 (zh) 2018-12-26 2018-12-26 一种柔性体声波滤波器

Publications (1)

Publication Number Publication Date
WO2020132998A1 true WO2020132998A1 (zh) 2020-07-02

Family

ID=71129476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/124079 WO2020132998A1 (zh) 2018-12-26 2018-12-26 一种柔性体声波滤波器

Country Status (1)

Country Link
WO (1) WO2020132998A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527551A (zh) * 2008-03-06 2009-09-09 富士通株式会社 压电薄膜谐振器、滤波器和通信设备
CN101977026A (zh) * 2010-11-01 2011-02-16 中国电子科技集团公司第二十六研究所 一种空腔型薄膜体声波谐振器(fbar)的制作方法
CN103296993A (zh) * 2013-04-11 2013-09-11 天津大学 谐振器及其制造方法
CN108092639A (zh) * 2017-12-21 2018-05-29 华南理工大学 一种微纳米柱柔性阵列薄膜体声波谐振子滤波器及其制备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527551A (zh) * 2008-03-06 2009-09-09 富士通株式会社 压电薄膜谐振器、滤波器和通信设备
CN101977026A (zh) * 2010-11-01 2011-02-16 中国电子科技集团公司第二十六研究所 一种空腔型薄膜体声波谐振器(fbar)的制作方法
CN103296993A (zh) * 2013-04-11 2013-09-11 天津大学 谐振器及其制造方法
CN108092639A (zh) * 2017-12-21 2018-05-29 华南理工大学 一种微纳米柱柔性阵列薄膜体声波谐振子滤波器及其制备

Similar Documents

Publication Publication Date Title
US11621688B2 (en) Acoustic wave device
USRE47989E1 (en) Acoustic wave device
CN102468818B (zh) 声波器件
US20160079958A1 (en) Acoustic resonator comprising vertically extended acoustic cavity
CN103329436B (zh) 弹性表面波装置
EP1406386A2 (en) Piezoelectric resonator, piezoelectric filter, and communication apparatus
JP2013128267A (ja) 圧電薄膜共振子及び圧電薄膜の製造方法
US20220216846A1 (en) Acoustic wave device
US20220216845A1 (en) Acoustic wave device
WO2020134803A1 (zh) 电极厚度不对称的体声波谐振器、滤波器和电子设备
JP2018006919A (ja) 弾性波デバイス
US7116040B2 (en) Electronic component and filter including the same
US20220216854A1 (en) Acoustic wave device
CN109889182B (zh) 一种柔性体声波滤波器
JP2009290369A (ja) Baw共振装置
CN115037263A (zh) 一种横向激励的薄膜体声波谐振器及滤波器
WO2020132998A1 (zh) 一种柔性体声波滤波器
WO2022206332A1 (zh) 具有钨电极的体声波谐振器、滤波器及电子设备
US20220337212A1 (en) Bulk acoustic wave resonance device and bulk acoustic wave filter
CN109889173B (zh) 柔性基底薄膜体声波滤波器的连接结构
US20220416765A1 (en) Bulk acoustic wave resonance device and bulk acoustic wave filter
US20200220521A1 (en) Acoustic wave device and method for manufacturing acoustic wave device
JP2018101964A (ja) 弾性波デバイス
WO2020132993A1 (zh) 柔性基底薄膜体声波滤波器的连接结构
JP2003234635A (ja) 水晶フィルタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944245

Country of ref document: EP

Kind code of ref document: A1