WO2020132894A1 - 压缩机、热泵系统及热水器和干衣机 - Google Patents

压缩机、热泵系统及热水器和干衣机 Download PDF

Info

Publication number
WO2020132894A1
WO2020132894A1 PCT/CN2018/123618 CN2018123618W WO2020132894A1 WO 2020132894 A1 WO2020132894 A1 WO 2020132894A1 CN 2018123618 W CN2018123618 W CN 2018123618W WO 2020132894 A1 WO2020132894 A1 WO 2020132894A1
Authority
WO
WIPO (PCT)
Prior art keywords
condenser
heat pump
outlet
compressor
pump system
Prior art date
Application number
PCT/CN2018/123618
Other languages
English (en)
French (fr)
Inventor
杨明洪
Original Assignee
广东美的白色家电技术创新中心有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的白色家电技术创新中心有限公司, 美的集团股份有限公司 filed Critical 广东美的白色家电技术创新中心有限公司
Priority to CN201880037370.9A priority Critical patent/CN110876272A/zh
Priority to PCT/CN2018/123618 priority patent/WO2020132894A1/zh
Publication of WO2020132894A1 publication Critical patent/WO2020132894A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • D06F58/206Heat pump arrangements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • D06F58/24Condensing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters

Definitions

  • the present disclosure relates to the technical field of heat pump systems, and particularly to compressors, heat pump systems, water heaters and clothes dryers.
  • the existing heat pump system includes four components: compressor, condenser, throttle mechanism, and evaporator.
  • the two fluids pass through the evaporator and the condenser respectively, the first fluid is cooled down through the evaporator, and the second fluid is heated up through the condenser.
  • It is generally a single evaporator single condenser system, as described above.
  • the temperature decrease range of the first fluid is 5-10°C
  • the temperature increase range of the second fluid is 5-15°C.
  • the condensation temperature is higher, resulting in lower energy efficiency of the system.
  • the purpose of the present disclosure is to provide a compressor, a heat pump system, a water heater, and a clothes dryer to solve at least one of the above problems.
  • the present disclosure provides a compressor including a first compression chamber, a second compression chamber, an air inlet, a first air outlet, and a second air outlet; the first compression chamber and the first Both compression chambers are connected to the air inlet, the first compression chamber is connected to the first air outlet, the second compression chamber is connected to the second air outlet; the first compression chamber and the first Both compression chambers are connected to the drive motor of the compressor.
  • the first compression chamber is provided with a first inlet and a first outlet;
  • the second compression chamber is provided with a second inlet and a second outlet; the first inlet and the second inlet It is respectively connected to the air inlet;
  • the first outlet is connected to the first air outlet, and the second outlet is connected to the second air outlet.
  • the present disclosure also provides a heat pump system, which includes a condenser assembly, a throttle mechanism, an evaporator, and the compressor; the compressor, the condenser, the throttle mechanism, and the evaporator A refrigerant circuit in which refrigerant flows; the condenser assembly includes: a first condenser and a second condenser; the first condenser is connected to the first air outlet of the compressor, and the second condenser is connected to the The second air outlet of the compressor is connected.
  • the throttle mechanism includes: a first throttle and the second throttle; the first condenser is connected to the first throttle, the second condensation Is connected to the second throttle; the first throttle and the second throttle are connected to the evaporator after being assembled through a three-way valve.
  • the heat pump system further includes an auxiliary condenser, and the auxiliary condenser is provided in a passage between the first condenser and the first throttle.
  • the auxiliary condenser is equipped with a wind drive mechanism.
  • the present disclosure also provides a water heater in which a water supply channel, a gas channel, and the heat pump system are provided; wherein, the water supply channel passes through the evaporator of the heat pump system, and the gas channel sequentially passes through the heat pump The second condenser and the first condenser of the system.
  • the present disclosure also provides a clothes dryer, in which a clothes dryer, a gas channel and the heat pump system are provided.
  • the clothes dryer is provided with a moisture outlet and a dry heat inlet; the two ends of the gas channel are respectively
  • the wet gas outlet and the dry hot gas inlet communicate with each other, and the gas passage from the wet gas outlet sequentially passes through the evaporator, the second condenser, and the first condenser of the heat pump system to the dry Hot air inlet.
  • a first compression chamber and a second compression chamber are provided in the compressor to separately compress the intake air to obtain compressed gases having different temperatures.
  • the compressor is used in a heat pump system. Compressed gases with different pressures discharged from the compressor enter different condensers respectively to obtain two different condensation temperatures. Two refrigerants with different condensation temperatures are throttled and enter the same evaporator. , The same evaporation temperature is obtained. Two different condensation temperatures can form energy cascade utilization. When the heat pump system is applied to a water heater, the air passes through the evaporator to lower the temperature, and the water passes through the second condenser and the first condenser to obtain a stepped temperature increase, and the total temperature increase exceeds 20°C.
  • the clothes dryer When the heat pump system is applied to a clothes dryer, the clothes dryer generates wet gas during the drying process, the humidity is not less than 60%, the wet gas is discharged from the wet gas outlet, passes through the evaporator to cool down and dehumidify, then passes through the second condenser, The first condenser heats up in turn and returns to the drying cylinder again, forming a closed air circulation, and the energy efficiency of the system is increased by more than 10%.
  • FIG. 1 is a schematic diagram of the internal structure of a compressor in an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of the internal structure of a compressor in another embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of a heat pump system in an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a heat pump system in another embodiment of the present disclosure.
  • FIG. 5 is a schematic structural view of a heat pump system applied to a clothes dryer in an embodiment of the present disclosure.
  • the present disclosure provides a compressor, a heat pump system, a water heater, and a clothes dryer.
  • a compressor as shown in FIGS. 1 and 2, includes a first compression chamber 12, a second compression chamber 13, an air inlet, a first air outlet, and a second air outlet; the first compression chamber 12 and the second compression
  • the cavity 13 is connected to the air inlet, the first compression cavity 12 is connected to the first air outlet, the second compression cavity 13 is connected to the second air outlet; the first compression cavity 12 and the second compression cavity 13 are connected to the compressor 1 motor.
  • the two compression chambers respectively compress the gas and have different compression capabilities. When the gas enters the two compression chambers, they are compressed into compressed gases with different pressures, and have different pressures when they are discharged from the compression chambers.
  • the compression capacity of the two compression chambers can be set to be the same, then the pressure of the gas discharged from the two compression chambers is the same.
  • Embodiment 1 As shown in FIG. 1, the first compression chamber 12 is provided with a first inlet and a first outlet; the second compression chamber 13 is provided with a second inlet and a second outlet, and the first inlet and the second inlet are respectively connected to the air inlet Connection; the first outlet is connected to the first air outlet, and the second outlet is connected to the second air outlet.
  • the gas After entering the compressor 1, the gas is divided into two paths, respectively entering the first compression chamber 12 and the second compression chamber 13, and after being compressed by each, they are discharged from the corresponding first air outlet and second air outlet.
  • Embodiment 2 As shown in FIG. 2, the first compression chamber 12 is provided with a first inlet and a first outlet; the second compression chamber 13 is provided with a second inlet and a second outlet; the first outlet is connected to the second inlet; the first outlet It is connected to the first air outlet; the second outlet is connected to the second air outlet.
  • the gas After the gas enters the compressor 1, it first enters the second compression chamber 13, after compression, it is divided into two paths, one of which is directly discharged from the second air outlet, and the other path enters the first compression chamber 12, after being compressed again, from the first air outlet discharge.
  • the gas pressures of the first gas outlet and the second gas outlet are different, and the gas pressure of the first gas outlet is higher than the temperature of the second gas outlet.
  • the compressor 1 is provided with a first compression chamber 12 and a second compression chamber 13 to respectively compress the intake air. In some embodiments, compressed gases with different pressures are obtained.
  • the compressor 1 is applied to a heat pump system. Compressed gases with different pressures discharged from the compressor 1 enter different condensers respectively to obtain two different condensation temperatures. Two refrigerants with different condensation temperatures are throttled and enter the same In the evaporator 4, the same evaporation temperature is obtained. Two different condensation temperatures can form energy cascade utilization.
  • the first compression chamber 12 and the second compression chamber 13 share a motor and a transmission structure.
  • the specific compression form may be a positive displacement compressor or a speed compressor.
  • the present disclosure also provides a heat pump system, as shown in FIGS. 3-5, the heat pump system includes a condenser assembly, a throttling mechanism, an evaporator 4 and the aforementioned compressor 1; a compressor 1, a condenser, a throttling mechanism and an evaporator 4 Refrigeration circuit that constitutes refrigerant flow; the condenser assembly includes: a first condenser 3 and a second condenser 2; the first condenser 3 is connected to the first air outlet of the compressor 1, the second condenser 2 is connected to the compressor The second outlet of 1 is connected.
  • the exhaust gases of the first compression chamber 12 and the second compression chamber 13 are respectively different condensers, the first compression chamber 12 enters the first condenser 3, and the second compression chamber 13 enters the second condenser 2, forming different condensation temperatures, When the outside air is heated, the outside air forms two temperature gradients.
  • the refrigerant enters the throttling mechanism and then enters the evaporator 4 to form a uniform evaporation temperature.
  • a single-suction dual-exhaust heat pump system is formed, which has one evaporation temperature and one high and one low condensation temperature in one heat pump cycle.
  • one heat pump circulation device forms one evaporation temperature and two condensation temperatures, where The condensation temperature in the first condenser 3 is higher than the condensation temperature in the second condenser 2. It is suitable for applications where the temperature of the second fluid passing the condenser exceeds 20°C.
  • the second fluid passes through the low-condensation temperature of the second condenser 2 and the high-condensation temperature of the first condenser 3 to increase the temperature twice, so as to achieve the energy cascade utilization of the temperature, and the system cycle energy efficiency can be increased by more than 10%.
  • the throttle mechanism may throttle the first condenser 3 and the second condenser 2, respectively,
  • the throttling mechanism includes: the first throttle 7 and the second throttle 6; the first condenser 3 is connected to the first throttle 7, the second condenser 2 is connected to the second throttle 6; the first section The flow reducer 7 and the second restrictor 6 are connected through a three-way 5 valve and connected to the evaporator 4. After throttling, the two fluids merge into a fluid through the three-way 5 device and enter the evaporator 4, where they are evaporated.
  • an auxiliary condenser may be provided in the passage between the first condenser 3 and the first throttle 7 8. Not only can the compressor 1 protection be avoided, but also the degree of supercooling can be increased to improve the system energy efficiency again.
  • the air is driven by the wind drive mechanism 9 to circulate air with the auxiliary condenser 8 to control heat exchange.
  • the wind drive mechanism is preferably a fan.
  • the present disclosure also provides a water heater using a heat pump system, which is provided with a water supply channel, a gas channel, and a heat pump system; wherein, the gas channel passes through the evaporator 4 of the heat pump system, and the water supply channel passes through the second condenser 2 and the heat pump system in turn First condenser 3. That is, in the water heater, the gas channel passes through the evaporator 4 to cool down, the water supply line passes through the second condenser 2 and then passes through the first condenser 3, and the temperature rises twice, so that the energy used to reach the temperature is cascaded, and the total temperature rise exceeds 20°C , The system cycle energy efficiency is improved by more than 10%.
  • the present disclosure also provides a clothes dryer using a heat pump system.
  • a clothes dryer 10 a gas channel, and a heat pump system are provided inside, and the clothes dryer 10 is provided with a moisture outlet and a dry hot gas inlet; The end is connected with the wet gas outlet and the dry hot gas inlet respectively, and the gas channel from the wet gas outlet passes through the evaporator 4, the second condenser 2 and the first condenser 3 of the heat pump system in order to the dry hot gas inlet.
  • the existing closed heat pump clothes dryer system generally adopts the traditional heat pump system, which includes four components: compressor, condenser, evaporator and throttle mechanism.
  • compressor condenser
  • evaporator the main heat load
  • the air temperature generally drops by about 5°C; then it is heated by the condenser, and the load is all sensible heat Under load, the air temperature can rise by 20-40°C.
  • the traditional heat pump system is used in a clothes dryer, the temperature rise of the air passing through the condenser is large, resulting in a high condensation temperature and a low thermal perfection of the heat pump system.
  • the heat pump system does not require an auxiliary condenser 8, and a fan 11 is provided on the gas channel.
  • the dryer generates wet gas during the drying process, the humidity is not less than 60%, and the wet gas is discharged from the wet gas outlet and evaporated
  • the temperature of the condenser 4 is increased by the second condenser 2 and the first condenser 3 in turn, and then returned to the drying cylinder 10 to form a closed air circulation, and the energy efficiency of the system operation is increased by more than 10%.
  • the two condensers of the heat pump system can provide two different condensation temperatures. After the humid air from the dryer drum is cooled and dehumidified by the evaporator, it is heated in turn by the two condensers whose condensation temperature is first low and then high. The air is sent to the dryer through the fan, and the air is cooled and cascaded to achieve the purpose of dehumidification and heating, and to achieve the cascade utilization of air energy, which improves the thermodynamic perfection of the heat pump system cycle and reduces the energy consumption of the compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Detail Structures Of Washing Machines And Dryers (AREA)

Abstract

一种压缩机、热泵系统及热水器和干衣机,压缩机(1)内设置第一压缩腔(12)和第二压缩腔(13),对进气分别进行压缩,获取压力不同的压缩气体。该压缩机(1)应用到热泵系统中,自压缩机(1)排出的压力不同的压缩气体分别进入不同的冷凝器(2、3),得到两个不同的冷凝温度,两种不同冷凝温度的制冷剂节流后进入同一蒸发器(4)中,获得同一蒸发温度。两种不同冷凝温度可形成能量梯级利用。当该热泵系统应用到热水器时,空气经过蒸发器(4)降温,水经过第二冷凝器(2)、第一冷凝器(3)得到阶梯型升温,总升温幅度超过20℃。当应用到干衣机时,干衣机产生湿气体,湿气体排出经蒸发器(4)降温除湿,再经第二、第一冷凝器(2、3)依次升温,再回干衣筒(10),能效提升10%以上。

Description

压缩机、热泵系统及热水器和干衣机 技术领域
本公开涉及热泵系统技术领域,尤其涉及压缩机、热泵系统及热水器和干衣机。
背景技术
现有热泵系统形式,包括压缩机、冷凝器、节流机构、蒸发器四大部件。其中两股流体分别经过蒸发器和冷凝器,第一流体经过蒸发器被降温,第二流体经过冷凝器被升温。一般为单蒸发器单冷凝器系统,如上所述。在一般的热泵应用范围中,第一流体的降温幅度在5~10℃,第二流体的升温幅度在5~15℃。在第二流体温升幅度较大的应用场合,由于冷凝温度需高于第二流体出口温度,因此冷凝温度较高,导致系统能效较低。
申请内容
(一)要解决的技术问题
本公开的目的是提供压缩机、热泵系统及热水器、干衣机,解决上述的至少一个问题。
(二)技术方案
为了解决上述技术问题,本公开提供一种压缩机,其包括第一压缩腔、第二压缩腔、进气口、第一出气口和第二出气口;所述第一压缩腔和所述第二压缩腔均与所述进气口相连,所述第一压缩腔与所述第一出气口相连,所述第二压缩腔与第二出气口相连;所述第一压缩腔和所述第二压缩腔均连接所述压缩机的驱动电机。
在一些实施例中,优选为,所述第一压缩腔设置第一进口、第一出口;所述第二压缩腔设置第二进口、第二出口;所述第一进口和所述第二进口分别与所述进气口连接;所述第一出口与所述第一出气口 相连,所述第二出口与所述第二出气口相连。
在一些实施例中,优选为所述第一压缩腔设置第一进口、第一出口;所述第二压缩腔设置第二进口、第二出口;所述第一出口与所述第二进口连接;所述第一出口与所述第一出气口相连;所述第二出口与所述第二出气口相连。
本公开还提供了一种热泵系统,其包括冷凝器组件、节流机构、蒸发器和所述的压缩机;所述压缩机、所述冷凝器、所述节流机构和所述蒸发器组成制冷剂流动的制冷回路;所述冷凝器组件包括:第一冷凝器和第二冷凝器;所述第一冷凝器与所述压缩机的第一出气口相连,所述第二冷凝器与所述压缩机的第二出气口相连。
在一些实施例中,优选为所述节流机构包括:第一节流器和所述第二节流器;所述第一冷凝器和所述第一节流器相连,所述第二冷凝器与所述第二节流器相连;所述第一节流器和所述第二节流器通过三通阀汇集后与所述蒸发器相连。
在一些实施例中,优选为所述的热泵系统还包括辅助冷凝器,所述第一冷凝器和所述第一节流器之间的通路上设置所述辅助冷凝器。
在一些实施例中,优选为所述辅助冷凝器配有风力驱动机构。
本公开还提供了一种热水器,其内部设置供水通道、气体通道和所述的热泵系统;其中,所述供水通道穿过所述热泵系统的蒸发器,所述气体通道依次穿过所述热泵系统的第二冷凝器和第一冷凝器。
本公开还提供了一种干衣机,其内部设置干衣筒、气体通道和所述的热泵系统,所述干衣筒设置湿气出口和干热气进口;所述气体通道的两端分别与所述湿气出口、所述干热气进口连通,其所述气体通道自所述湿气出口,依次穿过所述热泵系统的蒸发器、第二冷凝器和第一冷凝器,至所述干热气进口。
在一些实施例中,优选为所述气体通道设置风机。
(三)有益效果
与现有技术相比,本申请具有以下优点:
本公开提供的技术方案中压缩机内设置第一压缩腔和第二压缩腔,对进气分别进行压缩,获取温度不同的压缩气体。该压缩机应用到在热泵系统中,自压缩机排出的压力不同的压缩气体分别进入不同的冷凝器,得到两个不同的冷凝温度,两种不同冷凝温度的制冷剂节流后进入同一蒸发器中,获得同一蒸发温度。两种不同的冷凝温度可形成能量梯级利用。当该热泵系统应用到热水器时,空气经过蒸发器降温,水经过第二冷凝器、第一冷凝器得到阶梯型升温,总升温幅度超过20℃。当该热泵系统应用到干衣机时,干衣机在干衣过程中产生湿气体,湿度不低于60%,湿气体自湿气出口排出经过蒸发器降温除湿后,通过第二冷凝器、第一冷凝器依次升温,再次回到干衣筒,形成一个闭式空气循环,系统运行能效提升10%以上。
附图说明
图1为本公开一个实施例中压缩机的内部结构示意图;
图2为本公开另一个实施例中压缩机的内部结构示意图;
图3为本公开一个实施例中热泵系统的结构示意图;
图4为本公开另一个实施例中热泵系统的结构示意图;
图5为本公开一个实施例中热泵系统应用到干衣机中的结构示意图。
具体实施方式
下面结合附图和实施例,对本申请的具体实施方式作进一步详细描述。以下实施例用于说明本申请,但不用来限制本申请的范围。
在本申请的描述中,需要说明的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操 作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以视具体情况理解上述术语在本申请中的具体含义。
此外,在本申请的描述中,除非另有说明,“多个”、“多根”、“多组”的含义是两个或两个以上。
针对压缩机能耗量大的问题,本公开给出压缩机、热泵系统及热水器、干衣机。
下面将通过基础设计、扩展设计及替换设计对产品、方法等进行详细描述。
一种压缩机,如图1和2所示,其包括第一压缩腔12、第二压缩腔13、进气口、第一出气口和第二出气口;第一压缩腔12和第二压缩腔13均与进气口相连,第一压缩腔12与第一出气口相连,第二压缩腔13与第二出气口相连;第一压缩腔12和第二压缩腔13均连接压缩机1的驱动电机。
两个压缩腔分别进行气体压缩,具备不同的压缩能力,当气体分别进入两个压缩腔后被压缩成压力不同的压缩气体,自压缩腔排出时具备不同的压力。当然在其他的实施例中,可以将两个压缩腔的压缩能力设定为相同,那么自两个压缩腔排出的气体的压力相同。
气体进入压缩机1后,不同的实施例中流动路径不同:
实施例1:如图1所示,第一压缩腔12设置第一进口、第一出口;第二压缩腔13设置第二进口、第二出口,第一进口和第二进口分别与进气口连接;第一出口与第一出气口相连,第二出口与第二出 气口相连。
气体进入压缩机1后,分成两路,分别进入第一压缩腔12、第二压缩腔13,经过各自压缩后,自各自对应的第一出气口、第二出气口排出。
实施例2:如图2所示,第一压缩腔12设置第一进口、第一出口;第二压缩腔13设置第二进口、第二出口;第一出口与第二进口连接;第一出口与第一出气口相连;第二出口与第二出气口相连。
气体进入压缩机1后,首先进入第二压缩腔13,压缩后,分成两路,其中一路直接自第二出气口排出,另一路进入第一压缩腔12,再次压缩后,自第一出气口排出。第一出气口和第二出气口的气体压力不同,第一出气口的气体压力高于第二出气口的温度。
压缩机1内设置第一压缩腔12和第二压缩腔13,对进气分别进行压缩,在一些实施例中,获取压力不同的压缩气体。该压缩机1应用到在热泵系统中,自压缩机1排出的压力不同的压缩气体分别进入不同的冷凝器,得到两个不同的冷凝温度,两种不同冷凝温度的制冷剂节流后进入同一蒸发器4中,获得同一蒸发温度。两种不同的冷凝温度可形成能量梯级利用。
第一压缩腔12和第二压缩腔13共用电机和传动结构。具体压缩形式可为容积式压缩机,也可为速度式压缩机。
本公开还提供了热泵系统,如图3-5所示,热泵系统包括冷凝器组件、节流机构、蒸发器4和上述的压缩机1;压缩机1、冷凝器、节流机构和蒸发器4组成制冷剂流动的制冷回路;冷凝器组件包括:第一冷凝器3和第二冷凝器2;第一冷凝器3与压缩机1的第一出气口相连,第二冷凝器2与压缩机1的第二出气口相连。
第一压缩腔12和第二压缩腔13的排气分别不同的冷凝器,第一压缩腔12进入第一冷凝器3,第二压缩腔13进入第二冷凝器2,形成不同的冷凝温度,对外界气体升温,外界气体形成两个温度梯度。 制冷剂进入节流机构,随后进入蒸发器4,形成统一的蒸发温度。形成单吸气双排气热泵系统,该系统在一个热泵循环中具有一个蒸发温度和一高一低两个冷凝温度,具体为,一个热泵循环装置中形成一个蒸发温度和两个冷凝温度,其中第一冷凝器3中的冷凝温度比第二冷凝器2中的冷凝温度高。适用于经过冷凝器的第二流体升温超过20℃的应用场合。第二流体依次通过第二冷凝器2的低冷凝温度和第一冷凝器3的高冷凝温度两次升温,从而达到对温度的能量梯级利用,系统循环能效可提升10%以上。
在一些实施例中,节流机构可分别对第一冷凝器3、第二冷凝器2进行节流,
节流机构包括:第一节流器7和第二节流器6;第一冷凝器3和第一节流器7相连,第二冷凝器2与第二节流器6相连;第一节流器7和第二节流器6通过三通5阀汇集后与蒸发器4相连。节流后的两股流体经过三通5装置汇合成一股流体进入蒸发器4,在蒸发器4中蒸发。
由于第一冷凝器3中制冷剂冷凝温度过高,容易引起压缩机1保护,如图4所示,可以在第一冷凝器3和第一节流器7之间的通路上设置辅助冷凝器8。不仅能避免出现压缩机1保护,而且能够增加过冷度再次提升系统能效。而且,通过风力驱动机构9推动空气与辅助冷凝器8进行空气流通,控制换热。风力驱动机构优选为风扇。
本公开还提供了应用热泵系统的热水器,其内部设置供水通道、气体通道和热泵系统;其中,气体通道穿过热泵系统的蒸发器4,供水通道依次穿过热泵系统的第二冷凝器2和第一冷凝器3。即热水器中,气体通道经过蒸发器4降温,供水管路穿过第二冷凝器2再穿过第一冷凝器3,经过两次升温,从而达到温度的能量梯级利用,总升温幅度超过20℃,系统循环能效提升10%以上。
本公开还提供了应用热泵系统的干衣机,如图5所示,其内部设 置干衣筒10、气体通道和热泵系统,干衣筒10设置湿气出口和干热气进口;气体通道的两端分别与湿气出口、干热气进口连通,其气体通道自湿气出口,依次穿过热泵系统的蒸发器4、第二冷凝器2和第一冷凝器3,至干热气进口。
传统的干衣机,现有的闭式热泵干衣机系统形式一般采用传统的-热泵系统,包括压缩机、冷凝器、蒸发器和节流机构四大部件。干衣过程中,从干衣机滚筒出来的湿空气经过蒸发器进行降温除湿,主要热负荷为除湿的潜热负荷,空气温度一般下降约5℃;然后再经冷凝器升温,负荷全部为显热负荷,空气温度可上升20~40℃。传统热泵系统用于干衣机时,空气经过冷凝器温度上升幅度较大,造成冷凝温度较高,热泵系统热力完善度较低。
在干衣机中,热泵系统不需要辅助冷凝器8,气体通道上设置风机11,干衣机在干衣过程中产生湿气体,湿度不低于60%,湿气体自湿气出口排出经过蒸发器4降温除湿后,通过第二冷凝器2、第一冷凝器3依次升温,再次回到干衣筒10,形成一个闭式空气循环,系统运行能效提升10%以上。
本公开应用到干衣机。其中,热泵系统的两个冷凝器能够提供两个不同的冷凝温度,从干衣机滚筒出来的湿空气通过蒸发器降温除湿后,依次通过冷凝温度先低后高的两个冷凝器升温,再通过风机送入干衣筒,空气通过降温和梯级升温,达到了除湿和加热的目的,并实现空气能量的梯级利用,提高了热泵系统循环的热力学完善度,降低了压缩机的能耗。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (10)

  1. 一种压缩机,其特征在于,其包括第一压缩腔、第二压缩腔、进气口、第一出气口和第二出气口;所述第一压缩腔和所述第二压缩腔均与所述进气口相连,所述第一压缩腔与所述第一出气口相连,所述第二压缩腔与第二出气口相连;
    所述第一压缩腔和所述第二压缩腔均连接所述压缩机的驱动电机。
  2. 如权利要求1所述的压缩机,其特征在于,所述第一压缩腔设置第一进口、第一出口;所述第二压缩腔设置第二进口、第二出口;
    所述第一进口和所述第二进口分别与所述进气口连接;所述第一出口与所述第一出气口相连,所述第二出口与所述第二出气口相连。
  3. 如权利要求1所述的压缩机,其特征在于,所述第一压缩腔设置第一进口、第一出口;所述第二压缩腔设置第二进口、第二出口;
    所述第一出口与所述第二进口连接;
    所述第一出口与所述第一出气口相连;
    所述第二出口与所述第二出气口相连。
  4. 一种热泵系统,其特征在于,包括冷凝器组件、节流机构、蒸发器和权利要求1-3任一项所述的压缩机;所述压缩机、所述冷凝器、所述节流机构和所述蒸发器组成制冷剂流动的制冷回路;
    所述冷凝器组件包括:第一冷凝器和第二冷凝器;所述第一冷凝器与所述压缩机的第一出气口相连,所述第二冷凝器与所述压缩机的第二出气口相连。
  5. 如权利要求4所述的热泵系统,其特征在于,所述节流机构包括:第一节流器和所述第二节流器;所述第一冷凝器和所述第一节流器相连,所述第二冷凝器与所述第二节流器相连;所述第一节流器和所述第二节流器通过三通阀汇集后与所述蒸发器进口相连。
  6. 如权利要求5所述的热泵系统,其特征在于,还包括辅助冷 凝器,所述第一冷凝器和所述第一节流器之间的通路上设置所述辅助冷凝器。
  7. 如权利要求6所述的热泵系统,其特征在于,所述辅助冷凝器配有风力驱动机构。
  8. 一种热水器,其特征在于,其内部设置供水通道、气体通道和权利要求4-7任一项所述的热泵系统;其中,所述气体通道穿过所述热泵系统的蒸发器,所述供水通道依次穿过所述热泵系统的第二冷凝器和第一冷凝器。
  9. 一种干衣机,其特征在于,其内部设置干衣筒、气体通道和权利要求4-5任一项所述的热泵系统,所述干衣筒设置湿气出口和干热气进口;所述气体通道的两端分别与所述湿气出口、所述干热气进口连通,其所述气体通道自所述湿气出口,依次穿过所述热泵系统的蒸发器、第二冷凝器和第一冷凝器,至所述干热气进口。
  10. 如权利要求9所述的干衣机,其特征在于,所述气体通道设置风机。
PCT/CN2018/123618 2018-12-25 2018-12-25 压缩机、热泵系统及热水器和干衣机 WO2020132894A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880037370.9A CN110876272A (zh) 2018-12-25 2018-12-25 压缩机、热泵系统及热水器和干衣机
PCT/CN2018/123618 WO2020132894A1 (zh) 2018-12-25 2018-12-25 压缩机、热泵系统及热水器和干衣机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/123618 WO2020132894A1 (zh) 2018-12-25 2018-12-25 压缩机、热泵系统及热水器和干衣机

Publications (1)

Publication Number Publication Date
WO2020132894A1 true WO2020132894A1 (zh) 2020-07-02

Family

ID=69716390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123618 WO2020132894A1 (zh) 2018-12-25 2018-12-25 压缩机、热泵系统及热水器和干衣机

Country Status (2)

Country Link
CN (1) CN110876272A (zh)
WO (1) WO2020132894A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113654272A (zh) * 2020-04-28 2021-11-16 广东美的白色家电技术创新中心有限公司 热交换系统和电器设备
CN115074975A (zh) * 2021-03-16 2022-09-20 广东美的白色家电技术创新中心有限公司 干衣机的控制方法、干衣机和可读存储介质
CN114294940B (zh) * 2021-12-23 2023-01-10 珠海格力电器股份有限公司 热风供给组件和热泵烘干系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4779427A (en) * 1988-01-22 1988-10-25 E. Squared Incorporated Heat actuated heat pump
JPH1019409A (ja) * 1996-06-28 1998-01-23 Toshiba Corp 空気調和機
CN105297370A (zh) * 2014-05-29 2016-02-03 青岛胶南海尔洗衣机有限公司 一种带双排气压缩机系统的热泵干衣机及控制方法
CN105605772A (zh) * 2015-12-02 2016-05-25 珠海格力电器股份有限公司 一种热泵热水器
CN206670106U (zh) * 2017-04-11 2017-11-24 珠海格力电器股份有限公司 空气能热水器系统
CN108131858A (zh) * 2017-11-08 2018-06-08 珠海格力电器股份有限公司 一种热泵空调系统及其控制方法
CN108626118A (zh) * 2018-05-25 2018-10-09 珠海格力节能环保制冷技术研究中心有限公司 压缩机及具有其的换热系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2196756Y (zh) * 1994-04-06 1995-05-10 岳阳恒立冷气设备股份有限公司 能同时提供冷气和热水的空调器
JP4266903B2 (ja) * 2004-09-07 2009-05-27 三洋電機株式会社 洗濯乾燥機
KR100704540B1 (ko) * 2006-07-04 2007-04-09 김영호 냉매 사이클을 이용한 고온수 보일러
EP2551401A1 (en) * 2011-07-28 2013-01-30 Electrolux Home Products Corporation N.V. A heat pump system for a laundry dryer
CN105444453B (zh) * 2015-12-18 2018-01-23 珠海格力电器股份有限公司 一种双温制冷及制热系统
CN107576085B (zh) * 2017-08-21 2023-11-07 珠海格力电器股份有限公司 一种制冷系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4779427A (en) * 1988-01-22 1988-10-25 E. Squared Incorporated Heat actuated heat pump
JPH1019409A (ja) * 1996-06-28 1998-01-23 Toshiba Corp 空気調和機
CN105297370A (zh) * 2014-05-29 2016-02-03 青岛胶南海尔洗衣机有限公司 一种带双排气压缩机系统的热泵干衣机及控制方法
CN105605772A (zh) * 2015-12-02 2016-05-25 珠海格力电器股份有限公司 一种热泵热水器
CN206670106U (zh) * 2017-04-11 2017-11-24 珠海格力电器股份有限公司 空气能热水器系统
CN108131858A (zh) * 2017-11-08 2018-06-08 珠海格力电器股份有限公司 一种热泵空调系统及其控制方法
CN108626118A (zh) * 2018-05-25 2018-10-09 珠海格力节能环保制冷技术研究中心有限公司 压缩机及具有其的换热系统

Also Published As

Publication number Publication date
CN110876272A (zh) 2020-03-10

Similar Documents

Publication Publication Date Title
CN105910218B (zh) 一种多冷凝器并联的除湿新风机组及空气调节方法
CN107490283B (zh) 可快速升温的热回收型调温热泵干燥装置及其运行方法
KR101224157B1 (ko) 히트 펌프형 건조기
CN105444453B (zh) 一种双温制冷及制热系统
CN209310455U (zh) 一种快速升温的复合开闭式热泵干燥系统
WO2020181785A1 (zh) 热泵干燥系统和控制方法
WO2020097831A1 (zh) 闭式热泵干衣机系统
WO2020132894A1 (zh) 压缩机、热泵系统及热水器和干衣机
CN105937847A (zh) 一种带逆流式换热器的高效热泵干燥装置
CN107642925A (zh) 一种带旁通管路的多级热泵干燥除湿系统
CN107144123A (zh) 一种热泵烘干机系统
CN208458379U (zh) 闭式除湿水水热泵多烘房烘干系统
CN107726660A (zh) 回热式半解耦除湿热泵系统及方法
KR20120096916A (ko) 히트 펌프형 건조 시스템
CN207990944U (zh) 一种移动除湿烘干冷暖空调机
CN112413751B (zh) 一种除湿机风道系统及其风阀控制方法
CN203295854U (zh) 基于co2跨临界热泵循环系统的衣物干燥系统
CN108224915A (zh) 一种超高温单系统双温区热泵烘干机系统及使用方法
CN208154973U (zh) 次真空冷凝热泵干燥机
CN217686493U (zh) 一种空气源热泵干燥机组
CN106091458A (zh) 一体式高温变频热泵加热空调系统
CN103868271B (zh) 双电子膨胀阀热泵除湿干燥机
CN206989669U (zh) 一种热泵烘干机系统
CN109237926A (zh) 一种除湿烘干用热泵系统
CN205980418U (zh) 一体式高温变频热泵加热空调系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944608

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18944608

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/01/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 18944608

Country of ref document: EP

Kind code of ref document: A1