WO2020132807A1 - 显示面板及其制备方法、显示装置 - Google Patents

显示面板及其制备方法、显示装置 Download PDF

Info

Publication number
WO2020132807A1
WO2020132807A1 PCT/CN2018/123103 CN2018123103W WO2020132807A1 WO 2020132807 A1 WO2020132807 A1 WO 2020132807A1 CN 2018123103 W CN2018123103 W CN 2018123103W WO 2020132807 A1 WO2020132807 A1 WO 2020132807A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel
light
parameter
value
Prior art date
Application number
PCT/CN2018/123103
Other languages
English (en)
French (fr)
Inventor
张祖强
邱昌明
吴焕达
Original Assignee
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市柔宇科技有限公司 filed Critical 深圳市柔宇科技有限公司
Priority to PCT/CN2018/123103 priority Critical patent/WO2020132807A1/zh
Priority to CN201880095909.6A priority patent/CN112689868A/zh
Publication of WO2020132807A1 publication Critical patent/WO2020132807A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]

Definitions

  • the invention belongs to the field of display technology, and particularly relates to a display panel, a preparation method thereof, and a display device.
  • the main components of the display device for realizing the display function are the display panel and the drive circuit.
  • the drive circuit provides an anode voltage signal to the display panel to control the display panel to perform image display.
  • the voltage source of the driving circuit is set at one end of the display area of the display panel.
  • the response speed of the light-emitting units in the display areas in different positions to the anode voltage signal is different, and for a large-size display panel, the response speed is further increased, so that The resulting problem of uneven image display is more obvious.
  • the present invention provides a display panel with uniform display luminance.
  • the specific technical solution is as follows.
  • a preparation method of a display panel includes:
  • a target sub-pixel having the target parameter value is formed to compensate for the brightness of the target sub-pixel so that the light emission brightness values of all sub-pixels are preset brightness values.
  • the “determining the target sub-pixels whose light-emitting brightness needs to be adjusted among all the sub-pixels of the display panel” includes:
  • the sub-pixel whose difference between the actual value of the light-emitting parameter and the standard value of the light-emitting parameter exceeds a preset threshold is a target sub-pixel whose light-emitting brightness needs to be adjusted.
  • the “determining the target parameter value of the preset parameter of the target sub-pixel” includes:
  • the target parameter value of the preset parameter is obtained according to the magnitude of the difference between the actual value of the light emission parameter of the target subpixel and the standard value of the light emission parameter.
  • the “derived target parameter value of the preset parameter according to the magnitude of the difference between the actual value of the light emission parameter of the target subpixel and the standard value of the light emission parameter” includes:
  • the target parameter value of the preset parameter is obtained according to the standard parameter value and the compensation parameter value of the preset parameter.
  • the light-emitting parameter includes at least one of light-emitting brightness, light-emitting voltage, and light-emitting current.
  • the sub-pixel includes a sub-pixel light-emitting unit and a driving thin-film transistor
  • the driving thin-film transistor is connected to an anode voltage
  • the anode voltage drives the sub-pixel light-emitting unit to emit light through the driving thin-film transistor
  • the preset parameter includes at least one of a preset parameter of the sub-pixel light emitting unit or a preset parameter of the driving thin film transistor.
  • the preset parameters of the sub-pixel light-emitting unit include the size of the sub-pixel light-emitting unit and/or the parameter of the luminescent material in the sub-pixel light-emitting unit
  • the target parameter value of the sub-pixel light-emitting unit is the specific size of the sub-pixel light-emitting unit Value and/or composition value of the light-emitting material in the light-emitting unit of the sub-pixel.
  • a pixel-defining layer is provided on the peripheral side of the sub-pixel light-emitting unit, and the size of the sub-pixel light-emitting unit is defined by the size of the opening of the pixel-defining layer;
  • the size of the difference between the value and the standard value of the luminescence parameter determines the target parameter value of the preset parameter" includes:
  • the area of the pixel definition layer on the peripheral side of the sub-pixel light-emitting unit is determined according to the area compensation value of the pixel definition layer to obtain the target area of the pixel definition layer as the target parameter value.
  • the preset parameters of the driving thin film transistor include the size of the driving thin film transistor or the material parameter of the driving thin film transistor, and the target parameter value of the driving thin film transistor is the specific size value of the driving thin film transistor and And/or the composition value of the material in the driving thin film transistor.
  • the driving thin film transistor includes a gate, a source, a drain, and an active layer
  • the size of the driving thin film transistor includes at least one of a gate, a source, a drain, and an active layer
  • the material parameters of the driving thin film transistor include at least one material parameter of the gate, source, drain and active layer.
  • the present invention also provides a display panel including a plurality of sub-pixels, all of which include target sub-pixels whose emission brightness needs to be adjusted; target parameter values of preset parameters of the target sub-pixels are based on corresponding target sub-pixels The difference between the actual value of the light emission parameter of the pixel and the standard value of the light emission parameter is set so that the light emission brightness of each sub-pixel reaches the preset brightness value.
  • the sub-pixel includes a sub-pixel light-emitting unit and a driving thin-film transistor
  • the driving thin-film transistor is connected to an anode voltage
  • the anode voltage drives the sub-pixel light-emitting unit to emit light through the driving thin-film transistor
  • the preset parameter includes at least one of a preset parameter of the sub-pixel light emitting unit or a preset parameter of the driving thin film transistor.
  • the preset parameters of the sub-pixel light-emitting unit include the size of the sub-pixel light-emitting unit and/or the parameter of the luminescent material in the sub-pixel light-emitting unit, and the target parameter value of the sub-pixel light-emitting unit is the sub-pixel The specific size value of the pixel light-emitting unit and/or the composition value of the light-emitting material in the sub-pixel light-emitting unit.
  • a pixel defining layer is provided on the peripheral side of the sub-pixel light emitting unit, and the size of the sub-pixel light emitting unit is defined by the pixel defining layer.
  • the preset parameters of the driving thin film transistor include the size of the driving thin film transistor and/or the material parameter of the driving thin film transistor, and the target parameter value of the driving thin film transistor is the specific size of the driving thin film transistor Value and/or composition value of the material in the driving thin film transistor.
  • the present invention also provides a display device including the display panel according to any one of the above.
  • the method for manufacturing a display panel provided by the present invention improves the uniformity of light-emitting display of the entire display panel by forming target sub-pixels with target parameter values.
  • FIG. 1 is a flowchart of a method for manufacturing a display panel provided by the present invention.
  • FIG. 2 is a sub-flow diagram of step S100 in FIG. 1.
  • FIG. 3 is a sub-flow diagram of step S200 in FIG. 1.
  • FIG. 4 is a sub-flow diagram of step S220 in FIG. 3.
  • FIG. 5 is another seed flow chart of step S220 in FIG. 3.
  • FIG. 6 is a schematic structural diagram of a display panel provided by the present invention.
  • FIG. 7 is a schematic structural diagram of a sub-pixel light-emitting unit and a pixel definition layer in a display panel provided by the present invention.
  • FIG. 8 is a schematic structural diagram of a display device provided by the present invention.
  • the present invention provides a manufacturing method of the display panel 10.
  • the manufacturing method of the display panel 10 includes step S100, step S200 and step S300.
  • the detailed steps are as follows.
  • a target sub-pixel 200 whose light emission brightness needs to be adjusted among all the sub-pixels 100 of the display panel 10 is determined.
  • the sub-pixel 100 with inconsistent display brightness appear on the entire display panel 10.
  • the sub-pixel 100 near the voltage source emits light at a greater brightness than the one farther from the voltage source
  • the light emission brightness of the sub-pixel 100, or the display panel 10 causes the light emission brightness of the sub-pixel 100 in the display panel 10 to be inconsistent due to other reasons, which affects the uniformity of the overall display.
  • the sub-pixel 100 whose emission luminance needs to be adjusted is defined as the target sub-pixel 200.
  • step S200 the target parameter value of the preset parameter of the target sub-pixel 200 is determined.
  • the preset parameter refers to the parameter type
  • the target parameter value refers to the specific parameter value of the determined parameter type. In this step, it is necessary to determine the specific type and specific parameter value of the preset parameters.
  • a target sub-pixel 200 with a target parameter value is formed to compensate the brightness of the target sub-pixel 200 so that the light-emitting brightness values of all the sub-pixels 100 are preset brightness values.
  • a target sub-pixel 200 with a target parameter value is prepared, and the emission luminance value of the target sub-pixel 200 with the target parameter value is a preset brightness value. That is, by forming the target sub-pixel 200 having the target parameter value, the display brightness of the display panel 10 can be made uniform.
  • the preset brightness value may be set according to the actual light emission requirement of the display panel 10, and may be a fixed value or a range value that differs from the fixed value by a preset difference.
  • the manufacturing method of the display panel 10 provided by the present invention improves the uniformity of the light-emitting display of the entire display panel 10 by forming the target sub-pixel 200 with the target parameter value.
  • step S100 “determining the target sub-pixel 200 in which the emission brightness of all sub-pixels 100 of the display panel 10 needs to be adjusted” includes step S110, step S120, and step S130.
  • the detailed steps are as follows.
  • Step S110 Acquire the standard value of the light emission parameter of each sub-pixel 100 in the display panel 10.
  • the standard value of the light emission parameter of each sub-pixel 100 can be set in advance, and specifically can be set according to the needs of the actual application scene of the display panel 10.
  • the light emission parameter includes at least one of light emission brightness, light emission voltage, and light emission current.
  • the light emission brightness refers to the brightness value of the sub-pixel 100.
  • the light-emitting voltage refers to a voltage value provided to the sub-pixel 100 for light-emission display, and the voltage value may reflect the light-emitting luminance of the sub-pixel 100 during operation.
  • the light-emitting current refers to a current value provided to the sub-pixel 100 for light-emission display, and the current value may reflect the light-emitting luminance of the sub-pixel 100 during operation. Therefore, it can be set according to at least one of the three lighting parameters.
  • step S120 the actual value of the light emission parameter of each sub-pixel 100 in the display panel 10 is obtained. It can be understood that the actual value of the emission parameter of each sub-pixel 100 in the display panel 10 in which the target sub-pixel 200 with the target parameter value is not formed is obtained by performing at least one test in advance, where the test method includes a simulation test or Experimental means test.
  • step S130 it is determined that the sub-pixel 100 whose difference between the actual value of the light-emitting parameter and the standard value of the light-emitting parameter exceeds a preset threshold is the target sub-pixel 200 whose light-emitting brightness needs to be adjusted. For example, when the actual value of the light emission parameter is greater than the standard value, and the difference exceeds the preset threshold, the light emission brightness of the sub-pixel 100 is too bright, and the sub-pixel 100 is determined to be the target sub-pixel 200 that needs to reduce the light emission brightness; When the actual value of the parameter is less than the standard value, and the difference exceeds the preset threshold, it means that the luminous brightness of the sub-pixel 100 is insufficient and the display is dark. It is determined that the sub-pixel 100 is the target sub-pixel 200 that needs to increase the luminous brightness.
  • step S200 "determining the target parameter value of the preset parameter of the target sub-pixel 200" includes step S210 and step S220.
  • the detailed steps are as follows.
  • Step S210 Determine a preset parameter that has a compensating effect on the difference between the actual value of the emission parameter and the standard value of the emission parameter of the target sub-pixel 200.
  • preset parameters There are many kinds of preset parameters, and this step is used to determine the type of preset parameters capable of its compensation effect. For example, it is determined that the preset parameter is the size of the target sub-pixel 200.
  • Step S220 Obtain the target parameter value of the preset parameter according to the magnitude of the difference between the actual value of the light emission parameter of the target sub-pixel 200 and the standard value of the light emission parameter. This step is used to determine the target parameter value of the preset parameter. For example, a specific size value of the size of the target sub-pixel 200 is determined.
  • step S220 “obtain the target parameter value of the preset parameter according to the difference between the actual value of the light emission parameter of the target subpixel 200 and the standard value of the light emission parameter” includes step S221 -I and step S222-I.
  • the detailed steps are as follows.
  • step S221-I the compensation parameter value of the preset parameter is determined according to the magnitude of the difference between the actual value of the emission parameter of the target sub-pixel 200 and the standard value of the emission parameter.
  • step S222-I the target parameter value of the preset parameter is obtained according to the standard parameter value and the compensation parameter value of the preset parameter.
  • the sub-pixel 100 includes a sub-pixel light-emitting unit 110 and a driving thin-film transistor 120.
  • the driving thin-film transistor 120 is connected to an anode voltage U.
  • the anode voltage U drives the sub-pixel light-emitting unit 110 to emit light through the driving thin-film transistor 120.
  • the preset parameters include at least one of preset parameters of the sub-pixel light emitting unit 110 or preset parameters of the driving thin film transistor 120. It can be understood that the preset parameter of the sub-pixel 100 here is the preset parameter of the target sub-pixel 200.
  • the sub-pixel light-emitting unit 110 may be one of a red sub-pixel light-emitting unit, a green sub-pixel light-emitting unit, or a blue sub-pixel light-emitting unit. It can be understood that, in the present invention, only one of the red sub-pixel light-emitting unit, the green sub-pixel light-emitting unit or the blue sub-pixel light-emitting unit may be compensated for brightness, or at least two of them may be compensated for brightness .
  • the preset parameters of the sub-pixel light-emitting unit 110 include the size of the sub-pixel light-emitting unit 110 and/or the light-emitting material parameters in the sub-pixel light-emitting unit 110, and the target parameter value of the sub-pixel light-emitting unit 110 is the sub-pixel light-emitting
  • the specific size value of the unit 110 and/or the composition value of the light-emitting material in the sub-pixel light-emitting unit 110 The size value of the sub-pixel light-emitting unit 110 and the composition value of the light-emitting material affect the light-emitting display brightness of the sub-pixel light-emitting unit 110.
  • the same size value different light-emitting material composition value, its light-emitting display brightness will be different.
  • a pixel definition layer 130 is provided on the peripheral side of the sub-pixel light emitting unit 110, and the size of the sub-pixel light emitting unit 110 is defined by the size of the opening 131 of the pixel definition layer 130.
  • step S220 “determining the target parameter value of the preset parameter according to the magnitude of the difference between the actual value of the light emission parameter of the target subpixel 200 and the standard value of the light emission parameter” includes step S221-II, step S222-II and step S223-II . The detailed steps are as follows.
  • step S221-II the size compensation value of the sub-pixel light emitting unit 110 is obtained according to the size of the difference between the actual value of the light emission parameter of the target sub-pixel 200 and the standard value of the light emission parameter. That is to say, the preset parameter in the embodiment is the size of the sub-pixel light-emitting unit, and the light-emitting display brightness is adjusted by adjusting the size value.
  • step S222-II the area compensation value of the opening 131 of the pixel definition layer 130 is obtained according to the size compensation value of the sub-pixel light emitting unit 110.
  • an opening 131 is formed in the pixel definition layer 130, and then the sub-pixel light emitting unit 110 is formed in the opening 131.
  • the pixel definition layer 130 is provided on the surface of the base layer 140 in the display panel 10, an opening 131 is formed by grooving the pixel definition layer 130, and then the sub-pixel light emitting unit 110 is formed in the opening 131.
  • the size of the opening 131 of the pixel definition layer 130 determines the size of the sub-pixel light emitting unit 110. Therefore, in this step, the area compensation value of the opening 131 of the pixel definition layer 130 needs to be obtained according to the size compensation value of the sub-pixel light emitting unit 110.
  • step S223-II the target area of the pixel definition layer 130 on the peripheral side of the sub-pixel light emitting unit 110 is determined according to the area compensation value of the opening 131 of the pixel definition layer 130, to obtain the target area of the pixel definition layer 130 as a target parameter value.
  • the target area of the pixel definition layer 130 is determined, that is, the actual area after the pixel definition layer 130 is grooved.
  • the preset parameters of the driving thin film transistor 120 include the size of the driving thin film transistor 120 or the material parameters of the driving thin film transistor 120, and the target parameter value of the driving thin film transistor 120 is the specific size value of the driving thin film transistor 120 and/or Or drive the composition value of the material in the thin film transistor 120.
  • the specific size value of the driving thin film transistor 120 and/or the composition value of the material in the driving thin film transistor 120 may affect the light-emitting display brightness of the sub-pixel light emitting unit 110.
  • the light-emitting parameters of the sub-pixel light-emitting unit 120 may be affected, for example, the light-emitting current of the sub-pixel light-emitting unit 120, which in turn affects the light-emitting display brightness.
  • the composition values of the materials in the driving thin-film transistor 120 are different, and they have different influences on the light-emitting parameters of the sub-pixel light-emitting unit 120 during operation, thereby affecting the brightness of the light-emitting display.
  • the driving thin film transistor 120 includes a gate, a source, a drain, and an active layer
  • the size of the driving thin film transistor 120 includes at least one of a gate, a source, a drain, and an active layer
  • the material parameters of the driving thin film transistor 120 include at least one material parameter of the gate, source, drain, and active layer. That is to say, any change in the size or material parameters of the above-mentioned structures in the driving thin-film transistor 120 will affect the light-emitting display brightness of the sub-pixel light-emitting unit 110 connected thereto.
  • the present invention also provides a display panel 10.
  • the display panel 10 includes a plurality of sub-pixels 110. All the sub-pixels 110 include a target sub-pixel 200 whose light emission brightness needs to be adjusted.
  • the target parameter value of the preset parameter of the target sub-pixel 200 is set according to the difference between the actual value of the corresponding emission parameter of the target sub-pixel 200 and the standard value of the emission parameter, so that the emission luminance of each sub-pixel 100 reaches the pre- Set the brightness value.
  • the display panel 10 provided by the present invention sets the target parameter value of the preset parameter of the target sub-pixel 200 to make the display panel 10 display light more uniformly.
  • the sub-pixel 100 includes a sub-pixel light-emitting unit 110 and a driving thin-film transistor 120, the driving thin-film transistor 120 is connected to an anode voltage U, and the anode voltage U drives the sub-pixel light-emitting unit 110 to emit light through the driving thin-film transistor 120.
  • the preset parameters of the sub-pixel 100 include at least one of preset parameters of the sub-pixel light emitting unit 110 or preset parameters of the driving thin film transistor 120. It can be understood that the sub-pixel light-emitting unit 110 may be one of a red sub-pixel light-emitting unit, a green sub-pixel light-emitting unit, or a blue sub-pixel light-emitting unit.
  • the display panel 10 may only perform brightness compensation on one of the red sub-pixel light-emitting unit, the green sub-pixel light-emitting unit, or the blue sub-pixel light-emitting unit, or at least two of them. Perform brightness compensation.
  • the preset parameters of the sub-pixel light-emitting unit 110 include the size of the sub-pixel light-emitting unit 110 and/or the light-emitting material parameters in the sub-pixel light-emitting unit 110, and the target parameter value of the sub-pixel light-emitting unit 110 is the sub-pixel light-emitting The specific size value of the unit 110 and/or the composition value of the light-emitting material in the sub-pixel light-emitting unit 110.
  • a pixel definition layer 130 is provided on the peripheral side of the sub-pixel light-emitting unit 110, and the size of the sub-pixel light-emitting unit 110 is defined by the pixel definition layer 130.
  • the preset parameters of the driving thin film transistor 120 include the size of the driving thin film transistor 120 and/or the material parameters of the driving thin film transistor 120, and the target parameter value of the driving thin film transistor 120 is the specific size value of the driving thin film transistor 120 And/or drive the composition value of the material in the thin film transistor 120.
  • the present invention also provides a display device 20, which includes the display panel 10 as described above.
  • the display device 20 may be a TV, a robot, an aviation instrument, a smart phone (such as an Android phone, an iOS phone, a Windows phone, etc.), a tablet computer, a flexible palmtop computer, a flexible notebook computer, or a mobile Internet device (MID, Mobile Internet Devices) Or wearable devices, or may be an organic light-emitting diode (Organic Light-emitting diodes, OLED) display device, an active matrix organic light emitting diode (Active Matrix Organic Light Emitting Diode, AMOLED) display device.
  • OLED Organic Light-emitting diodes
  • AMOLED Active Matrix Organic Light Emitting Diode

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

本发明提供了一种显示面板(10)的制备方法,包括确定所述显示面板(10)的所有子像素(100)中的发光亮度需调整的目标子像素(200);确定目标子像素(200)的预设参数的目标参数值;形成具有所述目标参数值的目标子像素(200),以对所述目标子像素(200)的亮度进行补偿而使得所有子像素(100)的发光亮度值为预设亮度值。本发明还提供一种显示面板和显示装置。本发明提供的显示面板的制备方法通过形成具有目标参数值的目标子像素,来提高整个显示面板的发光显示的均匀性。

Description

显示面板及其制备方法、显示装置 技术领域
本发明属于显示技术领域,具体涉及一种显示面板及其制备方法、显示装置。
背景技术
随着显示技术的发展,有机发光显示或者液晶发光显示的显示面板产品得到广泛的应用,应用到工作、生活、作业以及航天等领域中,如液晶电视、数字电视、电脑、手机、车载显示、摄像机、电子手表、计算器等等。显示装置实现显示功能的主要部件是显示面板以及驱动电路,驱动电路为显示面板提供阳极电压信号,以控制显示面板进行图像显示。一般的,驱动电路的电压源设置在显示面板的显示区的一端。由于驱动电路与不同位置中的发光单元的距离不同,会导致不同位置显示区内的发光单元对阳极电压信号的响应速度不同,而对于大尺寸的显示面板,会进一步增大响应速度不同,使得由此导致的图像显示不均匀问题更加明显。
发明内容
有鉴于此,本发明提供一种显示发光亮度均匀的显示面板。具体技术方案如下所述。
一种显示面板的制备方法,所述显示面板的制备方法包括:
确定所述显示面板的所有子像素中的发光亮度需调整的目标子像素;
确定目标子像素的预设参数的目标参数值;
形成具有所述目标参数值的目标子像素,以对所述目标子像素的亮度进行 补偿而使得所有子像素的发光亮度值为预设亮度值。
优选的,所述“确定所述显示面板的所有子像素中的发光亮度需调整的目标子像素”包括:
获取所述显示面板中每个子像素的发光参数的标准值;
获取显示面板中每个子像素的发光参数的实际值;
确定发光参数的实际值与发光参数的标准值的差值超过预设阈值的子像素为发光亮度需调整的目标子像素。
优选的,所述“确定目标子像素的预设参数的目标参数值”包括:
确定目标子像素的对发光参数的实际值与发光参数的标准值的差值具有补偿作用的预设参数;
根据目标子像素的发光参数的实际值与发光参数的标准值的差值的大小得到所述预设参数的目标参数值。
优选的,所述“根据目标子像素的发光参数的实际值与发光参数的标准值的差值的大小得到所述预设参数的目标参数值”包括:
根据目标子像素的发光参数的实际值与发光参数的标准值的差值的大小确定所述预设参数的补偿参数值;
根据所述预设参数的标准参数值与补偿参数值得到所述预设参数的目标参数值。
优选的,所述发光参数包括发光亮度、发光电压、发光电流中的至少一种。
优选的,所述子像素包括子像素发光单元和驱动薄膜晶体管,所述驱动薄膜晶体管连接阳极电压,所述阳极电压通过所述驱动薄膜晶体管驱动所述子像素发光单元发光;所述子像素的预设参数包括子像素发光单元的预设参数或者驱动薄膜晶体管的预设参数中的至少一种。
优选的,所述子像素发光单元的预设参数包括子像素发光单元的尺寸和/ 或子像素发光单元中发光材料参数,所述子像素发光单元的目标参数值为子像素发光单元的具体尺寸值和/或子像素发光单元中发光材料的组成成分值。
优选的,所述子像素发光单元的周侧设有像素定义层,所述子像素发光单元的尺寸通过所述像素定义层开口的尺寸来定义;所述“根据目标子像素的发光参数的实际值与发光参数的标准值的差值的大小确定所述预设参数的目标参数值”包括:
根据目标子像素的发光参数的实际值与发光参数的标准值的差值的大小获得所述子像素发光单元的尺寸补偿值;
根据所述子像素发光单元的尺寸补偿值获得像素定义层开口的面积补偿值;
根据所述像素定义层的面积补偿值来确定所述子像素发光单元的周侧的像素定义层的面积,以得到像素定义层的目标面积作为所述目标参数值。
优选的,所述驱动薄膜晶体管的预设参数包括所述驱动薄膜晶体管的尺寸或者所述驱动薄膜晶体管的材料参数,所述驱动薄膜晶体管的目标参数值为所述驱动薄膜晶体管的具体尺寸值和/或所述驱动薄膜晶体管中材料的组成成分值。
优选的,所述驱动薄膜晶体管包括栅极、源极、漏极及有源层,所述驱动薄膜晶体管的尺寸包括栅极、源极、漏极及有源层至少一种的尺寸;所述驱动薄膜晶体管的材料参数包括栅极、源极、漏极及有源层至少一种的材料参数。
本发明还提供一种显示面板,所述显示面板包括多个子像素,所有子像素中包括发光亮度需要调整的目标子像素;所述目标子像素的预设参数的目标参数值根据对应的目标子像素的发光参数的实际值与发光参数的标准值之间的差值来设置,以使每个子像素的发光亮度达到预设亮度值。
优选的,所述子像素包括子像素发光单元和驱动薄膜晶体管,所述驱动薄 膜晶体管连接阳极电压,所述阳极电压通过所述驱动薄膜晶体管驱动所述子像素发光单元发光;所述子像素的预设参数包括所述子像素发光单元的预设参数或者所述驱动薄膜晶体管的预设参数中的至少一种。
优选的,所述子像素发光单元的预设参数包括所述子像素发光单元的尺寸和/或所述子像素发光单元中发光材料参数,所述子像素发光单元的目标参数值为所述子像素发光单元的具体尺寸值和/或所述子像素发光单元中发光材料的组成成分值。
优选的,所述子像素发光单元的周侧设有像素定义层,所述子像素发光单元的尺寸通过所述像素定义层来定义。
优选的,所述驱动薄膜晶体管的预设参数包括所述驱动薄膜晶体管的尺寸和/或所述驱动薄膜晶体管的材料参数,所述驱动薄膜晶体管的目标参数值为所述驱动薄膜晶体管的具体尺寸值和/或所述驱动薄膜晶体管中材料的组成成分值。
本发明还提供一种显示装置,所述显示装置包括如上述任一项所述的显示面板。
本发明的有益效果:本发明提供的显示面板的制备方法通过形成具有目标参数值的目标子像素,来提高整个显示面板的发光显示的均匀性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供一种显示面板的制备方法流程图。
图2为图1中步骤S100的一种子流程图。
图3为图1中步骤S200的一种子流程图。
图4为图3中步骤S220的一种子流程图。
图5为图3中步骤S220的另一种子流程图。
图6为本发明提供的一种显示面板的结构示意图。
图7为本发明提供的一种显示面板中的子像素发光单元与像素定义层的结构示意图。
图8为本发明提供的一种显示装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及所述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与 其它实施例相结合。
请一并参阅图1和图6,本发明提供一种显示面板10的制备方法,显示面板10的制备方法包括步骤S100、步骤S200和步骤S300。具体详细步骤介绍如下。
步骤S100,确定显示面板10的所有子像素100中的发光亮度需调整的目标子像素200。在显示面板10中,由于距离电压源的距离的远近不同,而使得在整个显示面板10上出现显示亮度不一致的子像素100,一般靠近电压源的子像素100的发光亮度会大于远离电压源的子像素100的发光亮度,或者显示面板10因其他原因而造成显示面板10中的子像素100发光亮度不一致,而影响整体显示的均匀性。在本发明中,将发光亮度需要调整的子像素100定义为目标子像素200。
步骤S200,确定目标子像素200的预设参数的目标参数值。其中预设参数是指参数的类型,目标参数值是指确定的参数类型的具体参数值。在该步骤中需要确定预设参数的具体类型和具体参数值两项。
步骤S300,形成具有目标参数值的目标子像素200,以对目标子像素200的亮度进行补偿而使得所有子像素100的发光亮度值为预设亮度值。在确定目标子像素200的预设参数的目标参数值后,制备形成具有目标参数值的目标子像素200,该具有目标参数值的目标子像素200的发光亮度值为预设亮度值。也就是说,通过形成具有目标参数值的目标子像素200,可使得显示面板10的显示亮度均匀。其中预设亮度值可根据显示面板10的发光实际需求来设定,可以为一个定值,也可以为与定值相差预设差值的一个范围值。
本发明提供的显示面板10的制备方法通过形成具有目标参数值的目标子像素200,来提高整个显示面板10的发光显示的均匀性。
请参阅图2,在进一步的实施例中,上述步骤S100“确定显示面板10的 所有子像素100中的发光亮度需调整的目标子像素200”包括步骤S110、步骤S120和步骤S130。具体详细步骤介绍如下。
步骤S110,获取显示面板10中每个子像素100的发光参数的标准值。每个子像素100的发光参数的标准值可通过预先设定,具体可根据显示面板10实际应用场景的需要来设定。在进一步的实施例中,发光参数包括发光亮度、发光电压、发光电流中的至少一种。发光亮度是指子像素100的亮度值。发光电压是指提供给子像素100进行发光显示的电压值,电压值可反映子像素100工作时的发光亮度。发光电流是指提供给子像素100进行发光显示的电流值,电流值可反映子像素100工作时的发光亮度。因此可根据这三种发光参数中的至少一种来设定。
步骤S120,获取显示面板10中每个子像素100的发光参数的实际值。可以理解的是,预先对未形成具有目标参数值的目标子像素200的显示面板10中的每个子像素100的发光参数的实际值进行至少一次测试而得出,其中测试的方法包括仿真测试或者实验手段测试。
步骤S130,确定发光参数的实际值与发光参数的标准值的差值超过预设阈值的子像素100为发光亮度需调整的目标子像素200。如当发光参数的实际值大于标准值,并且差值超过预设阈值时,说明该子像素100的发光亮度过亮,确定该子像素100为需要将发光亮度降低的目标子像素200;当发光参数的实际值小于标准值,并且差值超过预设阈值时,说明该子像素100的发光亮度不够,显示较暗,确定该子像素100为需要将发光亮度提升的目标子像素200。
请参阅图3,在进一步的实施例中,上述步骤S200“确定目标子像素200的预设参数的目标参数值”包括步骤S210和步骤S220。具体详细步骤介绍如下。
步骤S210,确定目标子像素200的对发光参数的实际值与发光参数的标 准值的差值具有补偿作用的预设参数。预设参数具有多种,该步骤用于确定能够其补偿作用的预设参数的类型。例如确定预设参数为目标子像素200的尺寸。
步骤S220,根据目标子像素200的发光参数的实际值与发光参数的标准值的差值的大小得到预设参数的目标参数值。该步骤用于确定预设参数的目标参数值。例如确定目标子像素200的尺寸的具体尺寸数值。
请参阅图4,在进一步的实施例中,上述步骤S220“根据目标子像素200的发光参数的实际值与发光参数的标准值的差值的大小得到预设参数的目标参数值”包括步骤S221-Ⅰ和步骤S222-Ⅰ。具体详细步骤介绍如下。
步骤S221-Ⅰ,根据目标子像素200的发光参数的实际值与发光参数的标准值的差值的大小确定预设参数的补偿参数值。
步骤S222-Ⅰ,根据预设参数的标准参数值与补偿参数值得到预设参数的目标参数值。
在进一步的实施例中,子像素100包括子像素发光单元110和驱动薄膜晶体管120,驱动薄膜晶体管120连接阳极电压U,阳极电压U通过驱动薄膜晶体管120驱动子像素发光单元110发光,子像素100的预设参数包括子像素发光单元110的预设参数或者驱动薄膜晶体管120的预设参数中的至少一种。可以理解的是,此处的子像素100的预设参数即为目标子像素200的预设参数。可以理解的是,子像素发光单元110可以为红色子像素发光单元、绿色子像素发光单元或者蓝色子像素发光单元中的一种。可以理解的是,在本发明中,可以仅对红色子像素发光单元、绿色子像素发光单元或者蓝色子像素发光单元中的一种进行亮度补偿,也可以对其中的至少两种进行亮度补偿。
在进一步的实施例中,子像素发光单元110的预设参数包括子像素发光单元110的尺寸和/或子像素发光单元110中发光材料参数,子像素发光单元110的目标参数值为子像素发光单元110的具体尺寸值和/或子像素发光单元110 中发光材料的组成成分值。子像素发光单元110的尺寸值和发光材料的组成成分值会影响子像素发光单元110的发光显示亮度。例如在发光材料组成成分值相同的情况下,子像素发光单元110的尺寸值越大,发光显示亮度越亮,子像素发光单元110的尺寸值越小,发光显示亮度越暗。在尺寸值相同的情况下,不同的发光材料组成成分值,其发光显示亮度也会不同。
请参阅图5和图7,在进一步的实施例中,子像素发光单元110的周侧设有像素定义层130,子像素发光单元110的尺寸通过像素定义层130开口131的尺寸来定义。上述步骤S220“根据目标子像素200的发光参数的实际值与发光参数的标准值的差值的大小确定预设参数的目标参数值”包括步骤S221-Ⅱ、步骤S222-Ⅱ和步骤S223-Ⅱ。具体详细步骤介绍如下。
步骤S221-Ⅱ,根据目标子像素200的发光参数的实际值与发光参数的标准值的差值的大小获得子像素发光单元110的尺寸补偿值。也就是说,在实施例中的预设参数是子像素发光单元的尺寸,通过调整尺寸值来调整发光显示亮度。
步骤S222-Ⅱ,根据子像素发光单元110的尺寸补偿值获得像素定义层130开口131的面积补偿值。可以理解的是,在像素定义层130定义子像素发光单元110的尺寸过程中,是在像素定义层130中开槽形成开口131,再在所述开口131中形成子像素发光单元110。如图7所示,像素定义层130设置在显示面板10中的基层140的表面上,通过在像素定义层130开槽形成开口131,然后再开口131中形成子像素发光单元110。所以像素定义层130开口131的尺寸决定了子像素发光单元110的尺寸。因此,在该步骤中,需要根据子像素发光单元110的尺寸补偿值获得像素定义层130开口131的面积补偿值。
步骤S223-Ⅱ,根据像素定义层130开口131的面积补偿值来确定子像素发光单元110的周侧的像素定义层130的目标面积,以得到像素定义层130 的目标面积作为目标参数值。在获得像素定义层130开口131的面积补偿值后,再以此来确定像素定义层130的目标面积,也就是对像素定义层130进行开槽后的实际面积。
在进一步的实施例中,驱动薄膜晶体管120的预设参数包括驱动薄膜晶体管120的尺寸或者驱动薄膜晶体管120的材料参数,驱动薄膜晶体管120的目标参数值为驱动薄膜晶体管120的具体尺寸值和/或驱动薄膜晶体管120中材料的组成成分值。驱动薄膜晶体管120的具体尺寸值和/或驱动薄膜晶体管120中材料的组成成分值会影响子像素发光单元110的发光显示亮度。不同尺寸值的驱动薄膜晶体管120在子像素100中运行工作时会对子像素发光单元120的发光参数具有影响,例如影响子像素发光单元120的发光电流,进而影响发光显示亮度。驱动薄膜晶体管120中材料的组成成分值不同,其在运行工作时对子像素发光单元120的发光参数的影响不同,进而影响发光显示亮度。
在进一步的实施例中,驱动薄膜晶体管120包括栅极、源极、漏极及有源层,驱动薄膜晶体管120的尺寸包括栅极、源极、漏极及有源层至少一种的尺寸,驱动薄膜晶体管120的材料参数包括栅极、源极、漏极及有源层至少一种的材料参数。也就是说驱动薄膜晶体管120中上述几种结构中任一种尺寸或者材料参数发生变化均会影响与其相连接的子像素发光单元110的发光显示亮度。
请参阅图6,本发明还提供一种显示面板10,显示面板10包括多个子像素110,所有子像素110中包括发光亮度需要调整的目标子像素200。目标子像素200的预设参数的目标参数值根据对应的目标子像素200的发光参数的实际值与发光参数的标准值之间的差值来设置,以使每个子像素100的发光亮度达到预设亮度值。
本发明提供的显示面板10通过设置目标子像素200的预设参数的目标参 数值,以使显示面板10显示发光更均匀。
在进一步的实施例中,子像素100包括子像素发光单元110和驱动薄膜晶体管120,驱动薄膜晶体管120连接阳极电压U,阳极电压U通过驱动薄膜晶体管120驱动子像素发光单元110发光。子像素100的预设参数包括子像素发光单元110的预设参数或者驱动薄膜晶体管120的预设参数中的至少一种。可以理解的是,子像素发光单元110可以为红色子像素发光单元、绿色子像素发光单元或者蓝色子像素发光单元中的一种。可以理解的是,在本发明中,显示面板10可以仅对红色子像素发光单元、绿色子像素发光单元或者蓝色子像素发光单元中的一种进行亮度补偿,也可以对其中的至少两种进行亮度补偿。
在进一步的实施例中,子像素发光单元110的预设参数包括子像素发光单元110的尺寸和/或子像素发光单元110中发光材料参数,子像素发光单元110的目标参数值为子像素发光单元110的具体尺寸值和/或子像素发光单元110中发光材料的组成成分值。
请参阅图7,在进一步的实施例中,子像素发光单元110的周侧设有像素定义层130,子像素发光单元110的尺寸通过像素定义层130来定义。
在进一步的实施例中,驱动薄膜晶体管120的预设参数包括驱动薄膜晶体管120的尺寸和/或驱动薄膜晶体管120的材料参数,驱动薄膜晶体管120的目标参数值为驱动薄膜晶体管120的具体尺寸值和/或驱动薄膜晶体管120中材料的组成成分值。
请参阅图8,本发明还提供一种显示装置20,显示装置20包括如上述任一项的显示面板10。显示装置20可以为电视机、机器人、航空仪器、智能手机(如Android手机、iOS手机、Windows Phone手机等)、平板电脑、柔性掌上电脑、柔性笔记本电脑、移动互联网设备(MID,Mobile Internet Devices)或穿戴式设备等,或者可以为有机电致发光二极管(Organic light-emitting  diodes,OLED)显示装置、有源矩阵有机发光二极管(Active Matrix Organic Light Emitting Diode,AMOLED)显示装置。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (16)

  1. 一种显示面板的制备方法,其特征在于,所述显示面板的制备方法包括:
    确定所述显示面板的所有子像素中的发光亮度需调整的目标子像素;
    确定目标子像素的预设参数的目标参数值;
    形成具有所述目标参数值的目标子像素,以对所述目标子像素的亮度进行补偿而使得所有子像素的发光亮度值为预设亮度值。
  2. 如权利要求1所述的制备方法,其特征在于,所述“确定所述显示面板的所有子像素中的发光亮度需调整的目标子像素”包括:
    获取所述显示面板中每个子像素的发光参数的标准值;
    获取显示面板中每个子像素的发光参数的实际值;
    确定发光参数的实际值与发光参数的标准值的差值超过预设阈值的子像素为发光亮度需调整的目标子像素。
  3. 如权利要求2所述的制备方法,其特征在于,所述“确定目标子像素的预设参数的目标参数值”包括:
    确定目标子像素的对发光参数的实际值与发光参数的标准值的差值具有补偿作用的预设参数;
    根据目标子像素的发光参数的实际值与发光参数的标准值的差值的大小得到所述预设参数的目标参数值。
  4. 如权利要求3所述的制备方法,其特征在于,所述“根据目标子像素的发光参数的实际值与发光参数的标准值的差值的大小得到所述预设参数的 目标参数值”包括:
    根据目标子像素的发光参数的实际值与发光参数的标准值的差值的大小确定所述预设参数的补偿参数值;
    根据所述预设参数的标准参数值与补偿参数值得到所述预设参数的目标参数值。
  5. 如权利要求2所述的制备方法,其特征在于,所述发光参数包括发光亮度、发光电压、发光电流中的至少一种。
  6. 如权利要求3所述的制备方法,其特征在于,所述子像素包括子像素发光单元和驱动薄膜晶体管,所述驱动薄膜晶体管连接阳极电压,所述阳极电压通过所述驱动薄膜晶体管驱动所述子像素发光单元发光;所述子像素的预设参数包括子像素发光单元的预设参数或者驱动薄膜晶体管的预设参数中的至少一种。
  7. 如权利要求6述的制备方法,其特征在于,所述子像素发光单元的预设参数包括子像素发光单元的尺寸和/或子像素发光单元中发光材料参数,所述子像素发光单元的目标参数值为子像素发光单元的具体尺寸值和/或子像素发光单元中发光材料的组成成分值。
  8. 如权利要求7所述的制备方法,其特征在于,所述子像素发光单元的周侧设有像素定义层,所述子像素发光单元的尺寸通过所述像素定义层开口的尺寸来定义;所述“根据目标子像素的发光参数的实际值与发光参数的标准值的差值的大小确定所述预设参数的目标参数值”包括:
    根据目标子像素的发光参数的实际值与发光参数的标准值的差值的大小获得所述子像素发光单元的尺寸补偿值;
    根据所述子像素发光单元的尺寸补偿值获得像素定义层开口的面积补偿值;
    根据所述像素定义层的面积补偿值来确定所述子像素发光单元的周侧的像素定义层的面积,以得到像素定义层的目标面积作为所述目标参数值。
  9. 如权利要求6所述的制备方法,其特征在于,所述驱动薄膜晶体管的预设参数包括所述驱动薄膜晶体管的尺寸或者所述驱动薄膜晶体管的材料参数,所述驱动薄膜晶体管的目标参数值为所述驱动薄膜晶体管的具体尺寸值和/或所述驱动薄膜晶体管中材料的组成成分值。
  10. 如权利要求9所述的制备方法,其特征在于,所述驱动薄膜晶体管包括栅极、源极、漏极及有源层,所述驱动薄膜晶体管的尺寸包括栅极、源极、漏极及有源层至少一种的尺寸;所述驱动薄膜晶体管的材料参数包括栅极、源极、漏极及有源层至少一种的材料参数。
  11. 一种显示面板,其特征在于,所述显示面板包括多个子像素,所有子像素中包括发光亮度需要调整的目标子像素;所述目标子像素的预设参数的目标参数值根据对应的目标子像素的发光参数的实际值与发光参数的标准值之间的差值来设置,以使每个子像素的发光亮度达到预设亮度值。
  12. 如权利要求11所述的显示面板,其特征在于,所述子像素包括子像素发光单元和驱动薄膜晶体管,所述驱动薄膜晶体管连接阳极电压,所述阳极 电压通过所述驱动薄膜晶体管驱动所述子像素发光单元发光;所述子像素的预设参数包括所述子像素发光单元的预设参数或者所述驱动薄膜晶体管的预设参数中的至少一种。
  13. 如权利要求12所述的显示面板,其特征在于,所述子像素发光单元的预设参数包括所述子像素发光单元的尺寸和/或所述子像素发光单元中发光材料参数,所述子像素发光单元的目标参数值为所述子像素发光单元的具体尺寸值和/或所述子像素发光单元中发光材料的组成成分值。
  14. 如权利要求13所述的显示面板,其特征在于,所述子像素发光单元的周侧设有像素定义层,所述子像素发光单元的尺寸通过所述像素定义层来定义。
  15. 如权利要求12所述的显示面板,其特征在于,所述驱动薄膜晶体管的预设参数包括所述驱动薄膜晶体管的尺寸和/或所述驱动薄膜晶体管的材料参数,所述驱动薄膜晶体管的目标参数值为所述驱动薄膜晶体管的具体尺寸值和/或所述驱动薄膜晶体管中材料的组成成分值。
  16. 一种显示装置,其特征在于,所述显示装置包括如权利要求11-15任一项所述的显示面板。
PCT/CN2018/123103 2018-12-24 2018-12-24 显示面板及其制备方法、显示装置 WO2020132807A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/123103 WO2020132807A1 (zh) 2018-12-24 2018-12-24 显示面板及其制备方法、显示装置
CN201880095909.6A CN112689868A (zh) 2018-12-24 2018-12-24 显示面板及其制备方法、显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/123103 WO2020132807A1 (zh) 2018-12-24 2018-12-24 显示面板及其制备方法、显示装置

Publications (1)

Publication Number Publication Date
WO2020132807A1 true WO2020132807A1 (zh) 2020-07-02

Family

ID=71126430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123103 WO2020132807A1 (zh) 2018-12-24 2018-12-24 显示面板及其制备方法、显示装置

Country Status (2)

Country Link
CN (1) CN112689868A (zh)
WO (1) WO2020132807A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114842798B (zh) * 2022-05-13 2024-05-10 深圳市华星光电半导体显示技术有限公司 亮度补偿方法及装置、可读存储介质、显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196191A (ja) * 2000-01-14 2001-07-19 Fuji Electric Co Ltd 有機薄膜発光ディスプレイおよびその製造方法
CN1549350A (zh) * 2003-05-12 2004-11-24 胜华科技股份有限公司 有机发光二极管显示装置
CN1588520A (zh) * 2004-07-13 2005-03-02 友达光电股份有限公司 改善电流驱动式显示器画面均匀度的方法及其显示器
CN103489405A (zh) * 2013-09-30 2014-01-01 京东方科技集团股份有限公司 一种显示补偿方法、装置及显示补偿系统
CN107331346A (zh) * 2017-08-18 2017-11-07 深圳市华星光电半导体显示技术有限公司 显示设备的亮度调节装置及亮度调节方法、显示设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104809986B (zh) * 2015-05-15 2016-05-11 京东方科技集团股份有限公司 一种有机电致发光显示面板及显示装置
CN104821152B (zh) * 2015-05-28 2017-09-01 深圳市华星光电技术有限公司 补偿amoled电压降的方法及系统
CN107909964A (zh) * 2017-12-07 2018-04-13 北海威德电子科技有限公司 一种显示面板的显示补偿方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196191A (ja) * 2000-01-14 2001-07-19 Fuji Electric Co Ltd 有機薄膜発光ディスプレイおよびその製造方法
CN1549350A (zh) * 2003-05-12 2004-11-24 胜华科技股份有限公司 有机发光二极管显示装置
CN1588520A (zh) * 2004-07-13 2005-03-02 友达光电股份有限公司 改善电流驱动式显示器画面均匀度的方法及其显示器
CN103489405A (zh) * 2013-09-30 2014-01-01 京东方科技集团股份有限公司 一种显示补偿方法、装置及显示补偿系统
CN107331346A (zh) * 2017-08-18 2017-11-07 深圳市华星光电半导体显示技术有限公司 显示设备的亮度调节装置及亮度调节方法、显示设备

Also Published As

Publication number Publication date
CN112689868A (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
US11264436B2 (en) Display substrate, manufacturing method therefor, display panel and display device
CN107274834B (zh) 一种amoled显示面板亮度补偿方法及装置
US20200193898A1 (en) Mura compensation method and device for curved screen
US9578719B2 (en) Method and device for correcting color shift of organic light-emitting diode (OLED) display panel, and display device
KR101944645B1 (ko) Amoled의 전압강하 보상방법
US9898972B2 (en) Field-sequential display panel, field-sequential display apparatus and driving method
US20190006438A1 (en) Organic light-emitting diode display panel and electronic device
WO2020107675A1 (zh) 一种显示面板的亮度调整方法及装置
US20170271417A1 (en) Organic light-emitting diode double-sided display panel, its manufacturing method and display device
US9966423B2 (en) OLED substrate, manufacturing method thereof, OLED display panel and electronic equipment
US20120050344A1 (en) Organic Light Emitting Display Having Uniform Brightness
CN106935190A (zh) 一种有机发光显示面板、有机发光显示装置、有机发光显示面板的驱动方法
WO2019179058A1 (zh) Oled器件及其制作方法
CN110930954A (zh) 显示亮度补偿方法及补偿系统
CN110010065B (zh) 显示面板亮度调节方法及显示面板亮度调节系统
WO2020223956A1 (en) Method and system for estimating and compensating aging of light emitting elements in display panel
US11004386B2 (en) Methods for calibrating correlation between voltage and grayscale value of display panels
CN110910822A (zh) 一种oled补偿方法、补偿装置及计算机可读存储介质
WO2020155452A1 (zh) 异形显示装置
CN110136631B (zh) 显示装置显示画面的调整方法
WO2020132807A1 (zh) 显示面板及其制备方法、显示装置
US10593262B2 (en) Compensation method for Mura
CN109065568B (zh) 一种woled面板和woled显示装置
WO2021129632A1 (zh) 电子设备、其控制方法及计算机可读存储介质
WO2019205441A1 (zh) 显示画面的调整方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944593

Country of ref document: EP

Kind code of ref document: A1