WO2020129678A1 - Actuator - Google Patents

Actuator Download PDF

Info

Publication number
WO2020129678A1
WO2020129678A1 PCT/JP2019/047657 JP2019047657W WO2020129678A1 WO 2020129678 A1 WO2020129678 A1 WO 2020129678A1 JP 2019047657 W JP2019047657 W JP 2019047657W WO 2020129678 A1 WO2020129678 A1 WO 2020129678A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
fan
housing
speed reducer
actuator
Prior art date
Application number
PCT/JP2019/047657
Other languages
French (fr)
Japanese (ja)
Inventor
山口 修一
Original Assignee
Thk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thk株式会社 filed Critical Thk株式会社
Publication of WO2020129678A1 publication Critical patent/WO2020129678A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/207Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium with openings in the casing specially adapted for ambient air
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft

Definitions

  • the present invention relates to an actuator including a speed reducer, a motor and a fan.
  • Patent Document 1 Conventionally, it has been attempted to integrate a speed reducer and a motor in order to downsize the actuator (see Patent Document 1). In order to realize higher output of the actuator, it is necessary to cool the motor. In order to cool the motor, in the actuator of Patent Document 1, a fan is attached to the rotating shaft of the motor, fins are provided on the outer surface of the housing of the motor, and the fan generates wind along the outer surface of the housing of the motor. ing.
  • an object of the present invention is to provide an actuator capable of efficiently cooling a motor.
  • one embodiment of the present invention includes a motor, a speed reducer that reduces the rotation of the motor, and a fan that cools the motor, and includes the speed reducer, the motor, and the fan.
  • the actuators are arranged in order, an intake port is provided in a housing between the speed reducer and the motor, and the fan draws air from the intake port and blows air on the motor.
  • FIG. 1 is an external perspective view of an actuator of one embodiment of the present invention (FIG. 1A is a perspective view seen from a speed reducer side, and FIG. 1B is a perspective view seen from a fan side). It is sectional drawing along the shaft of the actuator of this embodiment. It is a perspective view of the stator of the actuator of this embodiment. It is a front view of the stator of the actuator of this embodiment.
  • FIG. 1 shows an external perspective view of an actuator 1 according to an embodiment of the present invention.
  • FIG. 2 shows a sectional view of the actuator 1 along the shaft 6.
  • the housing 5 accommodates the speed reducer 2, the motor 3, and the fan 4.
  • the reducer 2, the motor 3, and the fan 4 are arranged in order in the axial direction of the shaft 6 (in order from the left in FIG. 2).
  • the speed reducer 2 and the motor 3 share the shaft 6.
  • the fan 4 is separated from the shaft 6 and is not connected to the shaft 6.
  • the speed reducer 2, the motor 3, and the fan 4 are arranged coaxially, that is, the shaft 6 and the rotation shaft 4a which is the rotation center of the fan 4 are arranged coaxially, but the air flow passage is If secured, it does not necessarily have to be arranged coaxially.
  • FIG. 1A is an external perspective view of the actuator 1 viewed from the speed reducer 2 side
  • FIG. 1B is an external perspective view of the actuator 1 viewed from the fan 4 side.
  • An intake port 7 is provided in the housing 5 between the speed reducer 2 and the motor 3. As shown in FIG. 2, when the fan 4 is rotated, the air is sucked in through the intake port 7 and the wind 8 (the wind is schematically indicated by the arrow 8) hits the motor 3. The wind 8 passes through the motor 3 and the fan 4, and is exhausted from the exhaust port 9 of the housing 5.
  • the housing 5 includes a speed reducer housing 5a in which the speed reducer 2 is housed, and a motor housing 5b in which the motor 3 and the fan 4 are housed.
  • the material of the housing 5 is not particularly limited.
  • the speed reducer housing 5a is made of metal and the motor housing 5b is made of resin.
  • the speed reducer housing 5a has a bracket 10 and has a substantially bottomed tubular shape.
  • the motor housing 5b has a substantially tubular shape.
  • One end of the motor housing 5b is connected to one end of the speed reducer housing 5a.
  • a plurality of intake ports 7 are provided in the circumferential direction at one end of the motor housing 5b.
  • An exhaust port 9 is provided at the other end of the motor housing 5b.
  • the speed reducer 2 decelerates the rotation of the motor 3 and outputs it from the output shaft.
  • the type of the speed reducer 2 is not particularly limited, and for example, a planetary gear type, a cycloid type, a wave gear type, a spur gear type or the like can be used.
  • FIG. 2 shows a planetary gear type speed reducer as an example of the speed reducer 2.
  • the sun gear 11 is a sun gear
  • 13 is an internal gear
  • 12 is a planetary gear
  • 14 is a carrier
  • 15 is an output shaft.
  • the sun gear 11 is fixed to the shaft 6 that functions as an input shaft of the speed reducer 2 and rotates together with the shaft 6.
  • the internal gear 13 is fixed to the reduction gear housing 5a by a fastening member 16 such as a bolt.
  • the planetary gear 12 meshes with the sun gear 11 and the internal gear 13.
  • the carrier 14 rotatably supports the planetary gear 12 and is fixed to the output shaft 15 by a fastening member 17 such as a bolt.
  • the carrier 14 is rotatably supported by the speed reducer housing 5a via bearings 18a and 18b.
  • the motor 3 is an outer rotor type motor, and includes a stator 20 having a coil 21 and an outer rotor 23 having a magnet 24.
  • FIG. 3 shows a perspective view of the stator 20
  • FIG. 4 shows a front view of the stator 20.
  • the stator 20 includes a core 22 made of a soft magnetic material, and a plurality of coils 21 wound around a plurality of salient poles 22b of the core 22.
  • the core 22 includes a ring-shaped main body 22a and a plurality of salient poles 22b radially protruding from the outer surface of the main body 22a. Each coil 21 is wound around each salient pole 22b.
  • a ring-shaped stator housing 29 as a fixing member is fitted inside the stator 20. As shown in FIG.
  • the stator housing 29 has a role of fixing the stator 20 to the speed reducer housing 5a, and is fixed to the bracket 10 of the speed reducer housing 5a by a fastening member such as a bolt.
  • the motor 3 is supported by the speed reducer housing 5a.
  • a ring-shaped recess 29b is formed in the center of the stator housing 29.
  • An encoder in this embodiment, an incremental encoder 32, see FIG. 2 for detecting the rotational position of the motor 3 is arranged in the recess 29b.
  • the stator housing 29 is formed with an opening 30 penetrating in the axial direction. As shown in FIG. 4, the opening 30 is formed by radially arranging a slit group 30a including a plurality of slits parallel to each other.
  • the outer rotor 23 includes a rotor 25 and a plurality of magnets 24.
  • the rotor 25 is made of a soft magnetic material to facilitate passage of magnetic flux between the magnets 24.
  • the rotor 25 includes a substantially cylindrical back yoke 25a arranged outside the stator 20, a boss 25b fixed to the shaft 6, and a spoke 25c connecting the boss 25b and the back yoke 25a.
  • a plurality of magnets 24 are arranged in the circumferential direction on the inner surface of the back yoke 25a.
  • the magnet 24 faces the salient pole 22b of the core 22 of the stator 20 in the radial direction with a gap in between.
  • the shaft 6 that functions as the output shaft of the motor 3 is fastened to the outer rotor 23 by fastening members 27 such as bolts.
  • the outer rotor 23 rotates and the shaft 6 rotates together with the outer rotor 23.
  • the shaft 6 is supported by three bearings 28a, 28b, 28c. To receive the load of the speed reducer 2.
  • the two bearings 28 a and 28 b are arranged before and after the speed reducer 2.
  • the bearing 28c at one location is arranged on the motor 3.
  • a shaft is provided for each of the reducer and the motor, and the structure is such that they are connected by a spline or the like. In that case, in order to support each shaft, each shaft is supported by two bearings.
  • the shafts 6 of the speed reducer 2 and the shaft 6 of the motor 3 are integrated, and the same shaft 6 is shared by the speed reducer 2 and the motor 3, so that the bearings 28a, 28b, 28c.
  • the number of actuators is three, and the actuator 1 is miniaturized.
  • encoders absolute encoder 31 and incremental encoder 32
  • the fan 4 includes blades 41.
  • the fan 4 includes a fan motor 42 that rotates the blades 41.
  • the fan motor 42 includes a plurality of coils and a plurality of magnets facing the plurality of coils.
  • the fan 4 is supported by the motor housing 5b.
  • the fan 4 of this embodiment is an axial fan, and sucks the wind 8 from the front of the blade 41 and discharges the wind 8 to the rear.
  • the type of the fan 4 is not particularly limited, and a mixed flow fan, a centrifugal fan or the like can be used. For example, when the flow path resistance is large and the negative pressure is large, a mixed flow fan or a centrifugal fan is used. If the exhaust port cannot be provided at the end of the housing, a centrifugal fan is used to exhaust the gas through the exhaust port on the side surface of the housing.
  • the air that has entered through the intake port 7 is divided into a plurality of parts of the motor 3, such as the coil 21, the stator housing 29, the rotor 25, and the magnet 24, and cools each part.
  • the stator housing 29 is provided with openings 30 (see FIG. 4) that function as cooling fins, and heat generated by iron loss of the coil 21 and the core 22 is transmitted to the stator housing 29 by heat transfer.
  • the motor housing 5b is provided with ribs 33a and 33b for limiting the flow rate of the wind 8 passing through the gap g1 between the motor housing 5b and the outer rotor 23.
  • the ribs 33a and 33b project inward from the inner surface of the motor housing 5b.
  • the ribs 33a and 33b are provided on at least one of the front and the rear of the motor 3.
  • the coil 21 is designed so that the gap g2 (see FIG. 4) between the coils 21 is as narrow as possible in order to improve the performance of the motor 3. Therefore, although the air flows through the gap g2, the flow path resistance of the gap g2 becomes large.
  • narrow the opening 30 of the stator housing 29 narrow the gap g1 between the motor housing 5b and the outer rotor 23, or bend the flow passage by providing the ribs 33a and 33b in accordance with the flow passage resistance. In order to prevent the flow rate to the coil 21 from decreasing, the cooling performance of the entire motor 3 is improved.
  • the actuator 1 is equipped with an absolute encoder 31 as an encoder that detects the rotational position of the output shaft of the reduction gear 2.
  • the absolute encoder 31 is arranged between the speed reducer 2 and the motor 3.
  • the absolute encoder 31 is a magnetic type or an optical type, and includes a disk-shaped scale 31b attached to the carrier 14, and a sensor 31a attached to the bracket 10 of the speed reducer housing 5a and reading the scale of the scale 31b.
  • the absolute encoder 31 is used to control the position of the output shaft (shaft 6) of the speed reducer 2 and outputs the absolute position of the shaft 6.
  • the rotational position of the output shaft of the motor 3 is detected by the incremental encoder 32 as an encoder.
  • the incremental encoder 32 is arranged inside the outer rotor 23, in this embodiment, inside the stator 20.
  • the incremental encoder 32 is a magnetic type or an optical type, and includes a disk-shaped scale 32b attached to the outer rotor 23, and a sensor 32a attached to the stator housing 29 to read the scale of the scale 32b.
  • the incremental encoder 32 is used to control the rotation of the motor 3, and outputs the rotation speed and phase of the motor 3.
  • the configuration of the actuator 1 of this embodiment has been described above.
  • the actuator 1 according to the present embodiment has the following effects.
  • the speed reducer 2, the motor 3, and the fan 4 are arranged in order, an intake port 7 is provided in the housing 5 between the speed reducer 2 and the motor 3, and the fan 4 sucks air from the intake port 7 to wind the motor 3. Since 8 is applied, the heat of the motor 3 is less likely to be transmitted to the speed reducer 2 and the motor 3 can be cooled efficiently.
  • the motor 3 is an outer rotor type motor and the coil 21 is arranged inside the outer rotor 23, it is possible to concentrate the heat generating portion inside the motor 3 on the premise of forced air cooling by the fan 4 and apply the wind 8 thereto. Therefore, the motor 3 can be cooled more efficiently.
  • stator housing 29 is provided inside the stator 20 and the opening 30 through which the wind 8 passes is formed in the stator housing 29, heat transferred from the coil 21 and the core 22 to the stator housing 29 can be discharged.
  • the motor 3 can be cooled even if the rotation speed of the motor 3 is unsteady and the motor 3 stops.
  • the actuator 1 can be downsized.
  • the actuator 1 can be downsized.
  • the actuator 1 can be downsized. If the incremental encoder 32 is arranged outside the outer rotor 23, rigidity for fixing the incremental encoder 32 to the motor housing 5b is required, and the motor housing 5b becomes large and heavy. In the present embodiment, the motor housing 5b need only be strong enough to support the fan 4, so that the motor housing 5b can be made lighter with resin or the like.
  • the stator housing is provided with an opening through which air flows, but a fin capable of radiating heat may be provided instead of providing the opening.
  • the use of the actuator of this embodiment is not particularly limited, but is suitable for a robot joint.
  • the joint of the robot includes a first member and a second member rotatable about a shaft with respect to the first member.
  • the housing of the actuator is connected to the first member, and the output shaft of the speed reducer of the actuator is connected to the second member.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

Provided is an actuator capable of efficiently cooling a motor. An actuator (1) comprises: a motor (3); a reducer (2) that reduces the rotation speed of the motor (3); and a fan (4) that cools the motor (3). The reducer (2), the fan (4), and the motor (3) are disposed in sequence. An intake port (7) is provided to a housing (5) between the reducer (2) and the motor (3). The fan (4) intakes air from the intake port (7) and blows wind (8) against the motor (3). The motor (3) is an outer rotor type motor comprising: a stator (20) that includes a coil (21); and an outer rotor (23) that includes a magnet (24).

Description

アクチュエータActuator
 本発明は、減速機、モータ及びファンを備えるアクチュエータに関する。 The present invention relates to an actuator including a speed reducer, a motor and a fan.
 従来からアクチュエータの小型化のため、減速機とモータを一体化することが試みられている(特許文献1参照)。アクチュエータの高出力化を実現しようとすると、モータの冷却が必要になる。モータを冷却するために、特許文献1のアクチュエータにおいては、モータの回転軸にファンを取り付け、モータのハウジングの外面にフィンを設け、ファンによってモータのハウジングの外面に沿って風を発生させるようにしている。 Conventionally, it has been attempted to integrate a speed reducer and a motor in order to downsize the actuator (see Patent Document 1). In order to realize higher output of the actuator, it is necessary to cool the motor. In order to cool the motor, in the actuator of Patent Document 1, a fan is attached to the rotating shaft of the motor, fins are provided on the outer surface of the housing of the motor, and the fan generates wind along the outer surface of the housing of the motor. ing.
特開2015-130764号公報JP-A-2015-130764
 しかしながら、従来のアクチュエータにおいては、モータの外側部分を冷却することができても、モータの中心部分を効率よく冷却できないという課題がある。このため、モータの中心部分の温度が上昇して、モータの効率が低下してしまう。また、モータの外面にフィンを設けるので、アクチュエータの重量の増加を招いてしまう。 However, in the conventional actuator, there is a problem that the central portion of the motor cannot be efficiently cooled even though the outer portion of the motor can be cooled. For this reason, the temperature of the central portion of the motor rises and the efficiency of the motor decreases. Moreover, since the fins are provided on the outer surface of the motor, the weight of the actuator is increased.
 そこで、本発明は、モータを効率よく冷却することができるアクチュエータを提供することを目的とする。 Therefore, an object of the present invention is to provide an actuator capable of efficiently cooling a motor.
 上記課題を解決するために、本発明の一態様は、モータと、前記モータの回転を減速する減速機と、前記モータを冷却するファンと、を備え、前記減速機、前記モータ、前記ファンを順番に配置し、前記減速機と前記モータとの間のハウジングに吸気口を設け、前記ファンが前記吸気口から空気を吸い込んで、前記モータに風を当てるアクチュエータである。 In order to solve the above problems, one embodiment of the present invention includes a motor, a speed reducer that reduces the rotation of the motor, and a fan that cools the motor, and includes the speed reducer, the motor, and the fan. The actuators are arranged in order, an intake port is provided in a housing between the speed reducer and the motor, and the fan draws air from the intake port and blows air on the motor.
 本発明の一態様によれば、モータの熱が減速機に伝わりにくくしながらモータを効率よく冷却することができる。 According to one aspect of the present invention, it is possible to efficiently cool the motor while preventing heat of the motor from being transmitted to the reducer.
本発明の一実施形態のアクチュエータの外観斜視図である(図1(a)は減速機側から見た斜視図であり、図1(b)はファン側から見た斜視図である)。FIG. 1 is an external perspective view of an actuator of one embodiment of the present invention (FIG. 1A is a perspective view seen from a speed reducer side, and FIG. 1B is a perspective view seen from a fan side). 本実施形態のアクチュエータのシャフトに沿った断面図である。It is sectional drawing along the shaft of the actuator of this embodiment. 本実施形態のアクチュエータのステータの斜視図である。It is a perspective view of the stator of the actuator of this embodiment. 本実施形態のアクチュエータのステータの正面図である。It is a front view of the stator of the actuator of this embodiment.
 以下、添付図面を参照して、本発明のアクチュエータを具体化した実施形態を詳細に説明する。ただし、本発明のアクチュエータは種々の形態で具体化することができ、本明細書に記載される実施形態に限定されるものではない。この実施形態は、明細書の開示を十分にすることによって、当業者が発明の範囲を十分に理解できるようにする意図をもって提供されるものである。 Hereinafter, embodiments in which the actuator of the present invention is embodied will be described in detail with reference to the accompanying drawings. However, the actuator of the present invention can be embodied in various forms and is not limited to the embodiments described herein. This embodiment is provided with the intention of providing those of ordinary skill in the art with a sufficient understanding of the scope of the invention by having the full disclosure of the specification.
 図1は、本発明の一実施形態のアクチュエータ1の外観斜視図を示す。図2は、シャフト6に沿ったアクチュエータ1の断面図を示す。図2に示すように、ハウジング5には、減速機2、モータ3、ファン4が収容される。 FIG. 1 shows an external perspective view of an actuator 1 according to an embodiment of the present invention. FIG. 2 shows a sectional view of the actuator 1 along the shaft 6. As shown in FIG. 2, the housing 5 accommodates the speed reducer 2, the motor 3, and the fan 4.
 減速機2、モータ3、ファン4は、シャフト6の軸方向に順番に(図2では左から順番に)配置される。減速機2とモータ3は、シャフト6を共有する。ファン4はシャフト6から離れていて、シャフト6には接続されていない。この実施形態では、減速機2、モータ3、ファン4が同軸上に配置、すなわち、シャフト6とファン4の回転中心である回転軸4aとが同軸上に配置されるが、空気の流路が確保できれば、必ずしも同軸上に配置される必要はない。 The reducer 2, the motor 3, and the fan 4 are arranged in order in the axial direction of the shaft 6 (in order from the left in FIG. 2). The speed reducer 2 and the motor 3 share the shaft 6. The fan 4 is separated from the shaft 6 and is not connected to the shaft 6. In this embodiment, the speed reducer 2, the motor 3, and the fan 4 are arranged coaxially, that is, the shaft 6 and the rotation shaft 4a which is the rotation center of the fan 4 are arranged coaxially, but the air flow passage is If secured, it does not necessarily have to be arranged coaxially.
 図1(a)は減速機2側から見たアクチュエータ1の外観斜視図であり、図1(b)はファン4側から見たアクチュエータ1の外観斜視図である。減速機2とモータ3との間のハウジング5には、吸気口7が設けられる。図2に示すように、ファン4を回転させると、吸気口7から空気が吸い込まれ、風8(風を符号8の矢印で模式的に示す)がモータ3に当たる。風8はモータ3、ファン4を通り、ハウジング5の排気口9から排気される。 1A is an external perspective view of the actuator 1 viewed from the speed reducer 2 side, and FIG. 1B is an external perspective view of the actuator 1 viewed from the fan 4 side. An intake port 7 is provided in the housing 5 between the speed reducer 2 and the motor 3. As shown in FIG. 2, when the fan 4 is rotated, the air is sucked in through the intake port 7 and the wind 8 (the wind is schematically indicated by the arrow 8) hits the motor 3. The wind 8 passes through the motor 3 and the fan 4, and is exhausted from the exhaust port 9 of the housing 5.
 図2に示すように、ハウジング5は、減速機2が収容される減速機ハウジング5aと、モータ3とファン4が収容されるモータハウジング5bと、を備える。ハウジング5の材質は、特に限定されるものではない。例えば減速機ハウジング5aは金属製で、モータハウジング5bは樹脂製である。減速機ハウジング5aは、ブラケット10を有して略有底筒状である。モータハウジング5bは、略筒状である。減速機ハウジング5aの一端部にモータハウジング5bの一端部が連結される。モータハウジング5bの一端部には、円周方向に複数の吸気口7が設けられる。モータハウジング5bの他端部には、排気口9が設けられる。 As shown in FIG. 2, the housing 5 includes a speed reducer housing 5a in which the speed reducer 2 is housed, and a motor housing 5b in which the motor 3 and the fan 4 are housed. The material of the housing 5 is not particularly limited. For example, the speed reducer housing 5a is made of metal and the motor housing 5b is made of resin. The speed reducer housing 5a has a bracket 10 and has a substantially bottomed tubular shape. The motor housing 5b has a substantially tubular shape. One end of the motor housing 5b is connected to one end of the speed reducer housing 5a. A plurality of intake ports 7 are provided in the circumferential direction at one end of the motor housing 5b. An exhaust port 9 is provided at the other end of the motor housing 5b.
 減速機2は、モータ3の回転を減速して出力軸から出力する。減速機2の種類は、特に限定されるものではなく、例えば遊星歯車式、サイクロイド式、波動歯車式、平歯車式等を用いることができる。図2には、減速機2の一例として、遊星歯車式減速機を示す。 The speed reducer 2 decelerates the rotation of the motor 3 and outputs it from the output shaft. The type of the speed reducer 2 is not particularly limited, and for example, a planetary gear type, a cycloid type, a wave gear type, a spur gear type or the like can be used. FIG. 2 shows a planetary gear type speed reducer as an example of the speed reducer 2.
 11は太陽歯車、13は内歯車、12は遊星歯車、14はキャリヤ、15は出力軸である。太陽歯車11は、減速機2の入力軸として機能するシャフト6に固定されてシャフト6と共に回転する。内歯車13は、ボルト等の締結部材16によって減速機ハウジング5aに固定される。遊星歯車12は、太陽歯車11と内歯車13に噛み合う。キャリヤ14は、遊星歯車12を自転可能に支持すると共に、ボルト等の締結部材17によって出力軸15に固定される。キャリヤ14は、減速機ハウジング5aに軸受18a,18bを介して回転可能に支持される。太陽歯車11が回転すると、遊星歯車12が太陽歯車11の周囲を公転運動する。遊星歯車12の公転運動は、キャリヤ14を介して出力軸15に取り出される。 11 is a sun gear, 13 is an internal gear, 12 is a planetary gear, 14 is a carrier, and 15 is an output shaft. The sun gear 11 is fixed to the shaft 6 that functions as an input shaft of the speed reducer 2 and rotates together with the shaft 6. The internal gear 13 is fixed to the reduction gear housing 5a by a fastening member 16 such as a bolt. The planetary gear 12 meshes with the sun gear 11 and the internal gear 13. The carrier 14 rotatably supports the planetary gear 12 and is fixed to the output shaft 15 by a fastening member 17 such as a bolt. The carrier 14 is rotatably supported by the speed reducer housing 5a via bearings 18a and 18b. When the sun gear 11 rotates, the planetary gear 12 revolves around the sun gear 11. The revolution movement of the planetary gear 12 is taken out to the output shaft 15 via the carrier 14.
 モータ3は、アウターロータ型モータであり、コイル21を有するステータ20と、マグネット24を有するアウターロータ23と、を備える。 The motor 3 is an outer rotor type motor, and includes a stator 20 having a coil 21 and an outer rotor 23 having a magnet 24.
 図3はステータ20の斜視図を示し、図4はステータ20の正面図を示す。ステータ20は、軟質磁性材料製のコア22と、コア22の複数の突極22bに巻かれる複数のコイル21と、を備える。コア22は、リング状の本体部22aと、本体部22aの外面から放射状に突出する複数の突極22bと、を備える。各突極22bに各コイル21が巻かれる。ステータ20の内側には、固定部材としてのリング状のステータハウジング29が嵌められる。図2に示すように、ステータハウジング29は、ステータ20を減速機ハウジング5aに固定する役割を持ち、ボルト等の締結部材によって減速機ハウジング5aのブラケット10に固定される。モータ3は、減速機ハウジング5aに支持される。 FIG. 3 shows a perspective view of the stator 20, and FIG. 4 shows a front view of the stator 20. The stator 20 includes a core 22 made of a soft magnetic material, and a plurality of coils 21 wound around a plurality of salient poles 22b of the core 22. The core 22 includes a ring-shaped main body 22a and a plurality of salient poles 22b radially protruding from the outer surface of the main body 22a. Each coil 21 is wound around each salient pole 22b. A ring-shaped stator housing 29 as a fixing member is fitted inside the stator 20. As shown in FIG. 2, the stator housing 29 has a role of fixing the stator 20 to the speed reducer housing 5a, and is fixed to the bracket 10 of the speed reducer housing 5a by a fastening member such as a bolt. The motor 3 is supported by the speed reducer housing 5a.
 図3に示すように、ステータハウジング29の中央部には、リング状の凹部29bが形成される。この凹部29bには、モータ3の回転位置を検出するためのエンコーダ(この実施形態ではインクリメンタルエンコーダ32、図2参照)が配置される。また、ステータハウジング29には、軸方向に貫通する開口30が形成される。図4に示すように、開口30は、例えば互いに平行な複数のスリットから構成されるスリット群30aを放射状に配置してなる。 As shown in FIG. 3, a ring-shaped recess 29b is formed in the center of the stator housing 29. An encoder (in this embodiment, an incremental encoder 32, see FIG. 2) for detecting the rotational position of the motor 3 is arranged in the recess 29b. Further, the stator housing 29 is formed with an opening 30 penetrating in the axial direction. As shown in FIG. 4, the opening 30 is formed by radially arranging a slit group 30a including a plurality of slits parallel to each other.
 図2に示すように、アウターロータ23は、ロータ25と、複数のマグネット24と、を備える。ロータ25は、マグネット24間の磁束を通り易くするために軟質磁性材料製である。ロータ25は、ステータ20の外側に配置される略筒状のバックヨーク25aと、シャフト6に固定されるボス25bと、ボス25bとバックヨーク25aとを連結するスポーク25cと、を備える。バックヨーク25aの内面に、円周方向に複数のマグネット24が並べられる。マグネット24は、ステータ20のコア22の突極22bに半径方向に隙間を介して対向する。アウターロータ23には、モータ3の出力軸として機能するシャフト6がボルト等の締結部材27によって締結される。 As shown in FIG. 2, the outer rotor 23 includes a rotor 25 and a plurality of magnets 24. The rotor 25 is made of a soft magnetic material to facilitate passage of magnetic flux between the magnets 24. The rotor 25 includes a substantially cylindrical back yoke 25a arranged outside the stator 20, a boss 25b fixed to the shaft 6, and a spoke 25c connecting the boss 25b and the back yoke 25a. A plurality of magnets 24 are arranged in the circumferential direction on the inner surface of the back yoke 25a. The magnet 24 faces the salient pole 22b of the core 22 of the stator 20 in the radial direction with a gap in between. The shaft 6 that functions as the output shaft of the motor 3 is fastened to the outer rotor 23 by fastening members 27 such as bolts.
 ステータ20のコイル21に電力を供給すると、アウターロータ23が回転し、アウターロータ23と共にシャフト6が回転する。シャフト6は、3箇所の軸受28a,28b,28cで支持される。減速機2の荷重を受けるために。2箇所の軸受28a,28bは、減速機2の前後に配置される。1箇所の軸受28cは、モータ3に配置される。 When power is supplied to the coil 21 of the stator 20, the outer rotor 23 rotates and the shaft 6 rotates together with the outer rotor 23. The shaft 6 is supported by three bearings 28a, 28b, 28c. To receive the load of the speed reducer 2. The two bearings 28 a and 28 b are arranged before and after the speed reducer 2. The bearing 28c at one location is arranged on the motor 3.
 従来の減速機とモータとを一体化したアクチュエータでは、減速機とモータのそれぞれにシャフトを設け、スプライン等で接続する構成が採られる。その場合、それぞれのシャフトを支持するために、それぞれのシャフトを2箇所の軸受で支持する。これに対して、本実施形態では、減速機2のシャフト6とモータ3のシャフト6とを一体化し、減速機2とモータ3で同一のシャフト6を共有することで、軸受28a,28b,28cを3個にしてアクチュエータ1を小型化する。あわせて、軸受28cの前後にエンコーダ(アブソリュートエンコーダ31とインクリメンタルエンコーダ32)を設けることで、省スペース化を図る。 In the conventional actuator that integrates a reducer and a motor, a shaft is provided for each of the reducer and the motor, and the structure is such that they are connected by a spline or the like. In that case, in order to support each shaft, each shaft is supported by two bearings. On the other hand, in the present embodiment, the shafts 6 of the speed reducer 2 and the shaft 6 of the motor 3 are integrated, and the same shaft 6 is shared by the speed reducer 2 and the motor 3, so that the bearings 28a, 28b, 28c. The number of actuators is three, and the actuator 1 is miniaturized. In addition, by providing encoders (absolute encoder 31 and incremental encoder 32) before and after the bearing 28c, space saving is achieved.
 ファン4は、羽根41を備える。ファン4には、羽根41を回転させるファンモータ42が内蔵される。ファンモータ42は、複数のコイルと、複数のコイルに対向する複数のマグネットと、を備える。ファン4は、モータハウジング5bに支持される。この実施形態のファン4は軸流ファンであり、羽根41の前方から風8を吸い込み、後方へ吐き出す。ファン4の種類は、特に限定されるものではなく、斜流ファン、遠心ファン等を用いることができる。例えば、流路抵抗が大きくて負圧が大きい場合、斜流ファン又は遠心ファンを用いる。また、ハウジングの端部に排気口を設けられない場合、遠心ファンを用いてハウジングの側面の排気口から排気する。 The fan 4 includes blades 41. The fan 4 includes a fan motor 42 that rotates the blades 41. The fan motor 42 includes a plurality of coils and a plurality of magnets facing the plurality of coils. The fan 4 is supported by the motor housing 5b. The fan 4 of this embodiment is an axial fan, and sucks the wind 8 from the front of the blade 41 and discharges the wind 8 to the rear. The type of the fan 4 is not particularly limited, and a mixed flow fan, a centrifugal fan or the like can be used. For example, when the flow path resistance is large and the negative pressure is large, a mixed flow fan or a centrifugal fan is used. If the exhaust port cannot be provided at the end of the housing, a centrifugal fan is used to exhaust the gas through the exhaust port on the side surface of the housing.
 ファン4を回転させると、ハウジング5の吸気口7から空気が吸い込まれる。吸気口7から入った空気は、コイル21、ステータハウジング29、ロータ25、マグネット24等のモータ3の複数の部分に分かれて流れ、各部分を冷却する。ステータハウジング29には、冷却フィンとして機能する開口30(図4参照)が設けられており、コイル21やコア22の鉄損による発熱は、伝熱によってステータハウジング29まで伝わる。 When the fan 4 is rotated, air is sucked in through the intake port 7 of the housing 5. The air that has entered through the intake port 7 is divided into a plurality of parts of the motor 3, such as the coil 21, the stator housing 29, the rotor 25, and the magnet 24, and cools each part. The stator housing 29 is provided with openings 30 (see FIG. 4) that function as cooling fins, and heat generated by iron loss of the coil 21 and the core 22 is transmitted to the stator housing 29 by heat transfer.
 モータハウジング5bには、モータハウジング5bとアウターロータ23との間の隙間g1を通る風8の流量を制限するリブ33a,33bが設けられる。リブ33a,33bは、モータハウジング5bの内面から内側に突出する。リブ33a,33bは、モータ3の前後の少なくとも一方に設けられる。 The motor housing 5b is provided with ribs 33a and 33b for limiting the flow rate of the wind 8 passing through the gap g1 between the motor housing 5b and the outer rotor 23. The ribs 33a and 33b project inward from the inner surface of the motor housing 5b. The ribs 33a and 33b are provided on at least one of the front and the rear of the motor 3.
 コイル21は、モータ3の性能向上のため、なるべくコイル21間の空隙g2(図4参照)が狭くなるように設計される。このため、空気が空隙g2を流れるものの、空隙g2の流路抵抗は大きくなる。流路抵抗に合わせて、ステータハウジング29の開口30を狭くしたり、モータハウジング5bとアウターロータ23との間の隙間g1を狭くしたり、リブ33a,33bを設けて流路を曲げたりすることで流路抵抗を上げて、コイル21への流量が小さくならないようにし、モータ3全体での冷却性能を向上させる。 The coil 21 is designed so that the gap g2 (see FIG. 4) between the coils 21 is as narrow as possible in order to improve the performance of the motor 3. Therefore, although the air flows through the gap g2, the flow path resistance of the gap g2 becomes large. To narrow the opening 30 of the stator housing 29, narrow the gap g1 between the motor housing 5b and the outer rotor 23, or bend the flow passage by providing the ribs 33a and 33b in accordance with the flow passage resistance. In order to prevent the flow rate to the coil 21 from decreasing, the cooling performance of the entire motor 3 is improved.
 アクチュエータ1には、減速機2の出力軸の回転位置を検出するエンコーダとしてのアブソリュートエンコーダ31が搭載される。アブソリュートエンコーダ31は、減速機2とモータ3との間に配置される。アブソリュートエンコーダ31は、磁気式又は光学式であり、キャリヤ14に取り付けられるディスク状のスケール31bと、減速機ハウジング5aのブラケット10に取り付けられ、スケール31bの目盛を読み取るセンサ31aと、を備える。アブソリュートエンコーダ31は、減速機2の出力軸(シャフト6)を位置制御するために用いられ、シャフト6の絶対位置を出力する。 The actuator 1 is equipped with an absolute encoder 31 as an encoder that detects the rotational position of the output shaft of the reduction gear 2. The absolute encoder 31 is arranged between the speed reducer 2 and the motor 3. The absolute encoder 31 is a magnetic type or an optical type, and includes a disk-shaped scale 31b attached to the carrier 14, and a sensor 31a attached to the bracket 10 of the speed reducer housing 5a and reading the scale of the scale 31b. The absolute encoder 31 is used to control the position of the output shaft (shaft 6) of the speed reducer 2 and outputs the absolute position of the shaft 6.
 モータ3の出力軸の回転位置は、エンコーダとしてのインクリメンタルエンコーダ32によって検出される。インクリメンタルエンコーダ32は、アウターロータ23の内側、この実施形態では、ステータ20の内側に配置される。インクリメンタルエンコーダ32は、磁気式又は光学式であり、アウターロータ23に取り付けられるディスク状のスケール32bと、ステータハウジング29に取り付けられ、スケール32bの目盛を読み取るセンサ32aと、を備える。インクリメンタルエンコーダ32は、モータ3を回転制御するために用いられ、モータ3の回転数や位相を出力する。 The rotational position of the output shaft of the motor 3 is detected by the incremental encoder 32 as an encoder. The incremental encoder 32 is arranged inside the outer rotor 23, in this embodiment, inside the stator 20. The incremental encoder 32 is a magnetic type or an optical type, and includes a disk-shaped scale 32b attached to the outer rotor 23, and a sensor 32a attached to the stator housing 29 to read the scale of the scale 32b. The incremental encoder 32 is used to control the rotation of the motor 3, and outputs the rotation speed and phase of the motor 3.
 以上に本実施形態のアクチュエータ1の構成を説明した。本実施形態のアクチュエータ1によれば、以下の効果を奏する。 The configuration of the actuator 1 of this embodiment has been described above. The actuator 1 according to the present embodiment has the following effects.
 減速機2、モータ3、ファン4を順番に配置し、減速機2とモータ3との間のハウジング5に吸気口7を設け、ファン4が吸気口7から空気を吸い込んで、モータ3に風8を当てるので、モータ3の熱が減速機2に伝わりにくくしながらモータ3を効率よく冷却することができる。 The speed reducer 2, the motor 3, and the fan 4 are arranged in order, an intake port 7 is provided in the housing 5 between the speed reducer 2 and the motor 3, and the fan 4 sucks air from the intake port 7 to wind the motor 3. Since 8 is applied, the heat of the motor 3 is less likely to be transmitted to the speed reducer 2 and the motor 3 can be cooled efficiently.
 モータ3がアウターロータ型モータであり、コイル21をアウターロータ23の内側に配置するので、ファン4による強制空冷を前提に発熱部をモータ3の内側に集中させ、そこに風8を当てることができ、モータ3をより効率よく冷却できる。 Since the motor 3 is an outer rotor type motor and the coil 21 is arranged inside the outer rotor 23, it is possible to concentrate the heat generating portion inside the motor 3 on the premise of forced air cooling by the fan 4 and apply the wind 8 thereto. Therefore, the motor 3 can be cooled more efficiently.
 ステータ20の内側にステータハウジング29を設け、ステータハウジング29に風8が通る開口30を形成するので、コイル21やコア22からステータハウジング29に伝わる熱を排出することができる。 Since the stator housing 29 is provided inside the stator 20 and the opening 30 through which the wind 8 passes is formed in the stator housing 29, heat transferred from the coil 21 and the core 22 to the stator housing 29 can be discharged.
 ハウジング5とアウターロータ23との間の隙間g1を通る風8の流量を制限するリブ33a,33bを設けるので、コイル21を通る風8の流量が小さくならないようにすることができ、モータ3全体での冷却性能を向上させることができる。 Since the ribs 33a and 33b for limiting the flow rate of the wind 8 passing through the gap g1 between the housing 5 and the outer rotor 23 are provided, it is possible to prevent the flow rate of the wind 8 passing through the coil 21 from becoming small, and the motor 3 as a whole. The cooling performance can be improved.
 ファン4がファンモータ42を内蔵するので、モータ3の回転数が非定常でモータ3が停止したとしても、モータ3を冷却することができる。 Since the fan 4 incorporates the fan motor 42, the motor 3 can be cooled even if the rotation speed of the motor 3 is unsteady and the motor 3 stops.
 減速機2とモータ3が同一のシャフト6を共有し、シャフト6を3箇所の軸受28a,28b,28cで支持するので、アクチュエータ1の小型化が図れる。 Since the speed reducer 2 and the motor 3 share the same shaft 6 and the shaft 6 is supported by the bearings 28a, 28b, 28c at three locations, the actuator 1 can be downsized.
 減速機2の回転位置を検出するアブソリュートエンコーダ31を減速機2とモータ3との間に設けるので、アクチュエータ1の小型化が図れる。 Since the absolute encoder 31 that detects the rotational position of the speed reducer 2 is provided between the speed reducer 2 and the motor 3, the actuator 1 can be downsized.
 モータ3の回転位置を検出するインクリメンタルエンコーダ32をアウターロータ23の内側に設けるので、アクチュエータ1の小型化が図れる。仮にインクリメンタルエンコーダ32をアウターロータ23の外側に配置した場合、モータハウジング5bにインクリメンタルエンコーダ32を固定するための剛性が必要となり、モータハウジング5bが大きく重くなる。本実施形態では、モータハウジング5bにはファン4を支持する強度があれば十分なので、例えば樹脂等でモータハウジング5bをより軽く作ることができる。 Since the incremental encoder 32 that detects the rotational position of the motor 3 is provided inside the outer rotor 23, the actuator 1 can be downsized. If the incremental encoder 32 is arranged outside the outer rotor 23, rigidity for fixing the incremental encoder 32 to the motor housing 5b is required, and the motor housing 5b becomes large and heavy. In the present embodiment, the motor housing 5b need only be strong enough to support the fan 4, so that the motor housing 5b can be made lighter with resin or the like.
 なお、本発明は、上記実施形態に具現化されるのに限られることはなく、本発明の要旨を変更しない範囲でさまざまな実施形態に具現化可能である。 It should be noted that the present invention is not limited to being embodied in the above embodiments, and can be embodied in various embodiments without departing from the spirit of the present invention.
 例えば、上記実施形態では、ステータハウジングに風が通る開口を設けているが、開口を設ける代わりに放熱可能なフィンを設けることもできる。 For example, in the above embodiment, the stator housing is provided with an opening through which air flows, but a fin capable of radiating heat may be provided instead of providing the opening.
 本実施形態のアクチュエータの用途は、特に限定されるものではないが、ロボットの関節に適している。ロボットの関節は、第一部材と、第一部材に対してシャフトを中心にして回転可能な第二部材と、を備える。この場合、アクチュエータのハウジングが第一部材に連結され、アクチュエータの減速機の出力軸が第二部材に連結される。 The use of the actuator of this embodiment is not particularly limited, but is suitable for a robot joint. The joint of the robot includes a first member and a second member rotatable about a shaft with respect to the first member. In this case, the housing of the actuator is connected to the first member, and the output shaft of the speed reducer of the actuator is connected to the second member.
 本明細書は、2018年12月19日出願の特願2018-236919に基づく。この内容はすべてここに含めておく。 The present specification is based on Japanese Patent Application No. 2018-236919 filed on December 19, 2018. All this content is included here.
1…アクチュエータ、2…減速機、3…モータ、4…ファン、5…ハウジング、6…シャフト、7…吸気口、8…風、20…ステータ、21…コイル、23…アウターロータ、24…マグネット、28a~28c…軸受、29…ステータハウジング(固定部材)、30…開口、31…アブソリュートエンコーダ(エンコーダ)、32…インクリメンタルエンコーダ(エンコーダ)、33a,33b…リブ、42…ファンモータ 1... Actuator, 2... Reduction gear, 3... Motor, 4... Fan, 5... Housing, 6... Shaft, 7... Intake port, 8... Wind, 20... Stator, 21... Coil, 23... Outer rotor, 24... Magnet , 28a to 28c... Bearing, 29... Stator housing (fixing member), 30... Opening, 31... Absolute encoder (encoder), 32... Incremental encoder (encoder), 33a, 33b... Rib, 42... Fan motor

Claims (9)

  1.  モータと、
     前記モータの回転を減速する減速機と、
     前記モータを冷却するファンと、を備え、
     前記減速機、前記モータ、前記ファンを順番に配置し、
     前記減速機と前記モータとの間のハウジングに吸気口を設け、
     前記ファンが前記吸気口から空気を吸い込んで、前記モータに風を当てるアクチュエータ。
    A motor,
    A reducer for reducing the rotation of the motor,
    A fan that cools the motor,
    Arranging the speed reducer, the motor, and the fan in order,
    An intake port is provided in the housing between the speed reducer and the motor,
    An actuator in which the fan draws air from the intake port and blows air on the motor.
  2.  前記モータが、コイルを有するステータと、マグネットを有するアウターロータと、を備えるアウターロータ型モータであり、
     少なくとも前記コイルに前記風を当てることを特徴とする請求項1に記載のアクチュエータ。
    The motor is an outer rotor type motor including a stator having a coil and an outer rotor having a magnet,
    The actuator according to claim 1, wherein the wind is applied to at least the coil.
  3.  前記モータが、前記ステータの内側に設けられ、前記ハウジングに前記ステータを固定するための固定部材を備え、
     前記固定部材には、前記風が通る開口又はフィンが形成されることを特徴とする請求項2に記載のアクチュエータ。
    The motor is provided inside the stator, and includes a fixing member for fixing the stator to the housing,
    The actuator according to claim 2, wherein the fixing member is formed with an opening or a fin through which the wind passes.
  4.  前記ハウジングには、前記ハウジングと前記アウターロータとの間の隙間を通る前記風の流量を制限するリブが設けられることを特徴とする請求項2又は3に記載のアクチュエータ。 The actuator according to claim 2 or 3, wherein the housing is provided with a rib that restricts a flow rate of the wind passing through a gap between the housing and the outer rotor.
  5.  前記ファンがファンモータを内蔵することを特徴とする請求項1ないし4のいずれか一項に記載のアクチュエータ。 The actuator according to any one of claims 1 to 4, wherein the fan has a built-in fan motor.
  6.  前記減速機と前記モータが同一のシャフトを共有し、
     前記シャフトが3箇所の軸受で支持されることを特徴とする請求項1ないし5のいずれか一項に記載のアクチュエータ。
    The speed reducer and the motor share the same shaft,
    The actuator according to any one of claims 1 to 5, wherein the shaft is supported by bearings at three locations.
  7.  前記減速機の回転位置を検出するエンコーダが、前記減速機と前記モータとの間に設けられることを特徴とする請求項1ないし6のいずれか一項に記載のアクチュエータ。 The actuator according to any one of claims 1 to 6, wherein an encoder that detects a rotational position of the speed reducer is provided between the speed reducer and the motor.
  8.  前記モータの回転位置を検出するエンコーダが、前記アウターロータの内側に設けられることを特徴とする請求項2又は3に記載のアクチュエータ。 The actuator according to claim 2 or 3, wherein an encoder that detects a rotational position of the motor is provided inside the outer rotor.
  9.  前記アクチュエータは、ロボットの関節を駆動させるのに用いられることを特徴とする請求項1ないし8のいずれか一項に記載のアクチュエータ。 The actuator according to any one of claims 1 to 8, wherein the actuator is used to drive a joint of a robot.
PCT/JP2019/047657 2018-12-19 2019-12-05 Actuator WO2020129678A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018236919A JP7465624B2 (en) 2018-12-19 2018-12-19 Actuator
JP2018-236919 2018-12-19

Publications (1)

Publication Number Publication Date
WO2020129678A1 true WO2020129678A1 (en) 2020-06-25

Family

ID=71101441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047657 WO2020129678A1 (en) 2018-12-19 2019-12-05 Actuator

Country Status (2)

Country Link
JP (1) JP7465624B2 (en)
WO (1) WO2020129678A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111756177A (en) * 2020-07-31 2020-10-09 诸暨亚目发动机有限公司 Motor device capable of avoiding fault caused by temperature surge
CN111934492A (en) * 2020-10-14 2020-11-13 山东奥卓电气科技发展有限公司 Active heat dissipation device of switched reluctance motor controller
CN118269141A (en) * 2024-04-16 2024-07-02 华中农业大学 Cycloidal pin gear deceleration type robot joint module and assembly method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024009515A1 (en) * 2022-07-08 2024-01-11 ファナック株式会社 Position detection system and actuator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54104509A (en) * 1978-02-03 1979-08-16 Nippon Shiyouriyoku Sangiyou K Motor for hoist
JP2001339924A (en) * 2000-05-30 2001-12-07 Honda Motor Co Ltd Outer-rotor motor generator
WO2015025493A1 (en) * 2013-08-23 2015-02-26 日本電産コパル電子株式会社 Damping mechanism
WO2017051784A1 (en) * 2015-09-25 2017-03-30 日本電産株式会社 Motor and rotating propeller device
WO2017159201A1 (en) * 2016-03-17 2017-09-21 株式会社 マキタ Electrically driven tool
WO2018030064A1 (en) * 2016-08-12 2018-02-15 株式会社Soken Electric motor system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4787351B2 (en) 2009-11-09 2011-10-05 ファナック株式会社 Induction motor with a heat dissipation disk that dissipates heat generated in the rotor
JP5844629B2 (en) 2011-12-13 2016-01-20 住友重機械工業株式会社 Gear motor
JP2016182004A (en) 2015-03-24 2016-10-13 株式会社豊田自動織機 Motor with reduction gear
JP6397594B2 (en) 2018-04-02 2018-09-26 株式会社マキタ Impact driver, driver drill, power tool

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54104509A (en) * 1978-02-03 1979-08-16 Nippon Shiyouriyoku Sangiyou K Motor for hoist
JP2001339924A (en) * 2000-05-30 2001-12-07 Honda Motor Co Ltd Outer-rotor motor generator
WO2015025493A1 (en) * 2013-08-23 2015-02-26 日本電産コパル電子株式会社 Damping mechanism
WO2017051784A1 (en) * 2015-09-25 2017-03-30 日本電産株式会社 Motor and rotating propeller device
WO2017159201A1 (en) * 2016-03-17 2017-09-21 株式会社 マキタ Electrically driven tool
WO2018030064A1 (en) * 2016-08-12 2018-02-15 株式会社Soken Electric motor system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111756177A (en) * 2020-07-31 2020-10-09 诸暨亚目发动机有限公司 Motor device capable of avoiding fault caused by temperature surge
CN111934492A (en) * 2020-10-14 2020-11-13 山东奥卓电气科技发展有限公司 Active heat dissipation device of switched reluctance motor controller
CN111934492B (en) * 2020-10-14 2020-12-22 山东奥卓电气科技发展有限公司 Active heat dissipation device of switched reluctance motor controller
CN118269141A (en) * 2024-04-16 2024-07-02 华中农业大学 Cycloidal pin gear deceleration type robot joint module and assembly method thereof

Also Published As

Publication number Publication date
JP2020099148A (en) 2020-06-25
JP7465624B2 (en) 2024-04-11

Similar Documents

Publication Publication Date Title
WO2020129678A1 (en) Actuator
JP4291846B2 (en) Fan motor
JP5891521B2 (en) Outer rotor type motor
JP2007321699A (en) Motor-driven supercharger
JP5262583B2 (en) Resolver integrated rotary electric machine and rotor core
JP2007269129A (en) Wheel rotating device of in-wheel motor vehicle
JP4730664B2 (en) In-wheel motor
US11264868B2 (en) Motor cooling fan
JP4734516B2 (en) DC brushless motor
JP2016182004A (en) Motor with reduction gear
JP6278432B1 (en) Coreless motor
WO2014174721A1 (en) Induction machine
JP2009291031A (en) Brushless motor
JP6007951B2 (en) Rotating electric machine
JP2007259513A (en) Brushless motor
JP2008259376A (en) Motor device
US10024390B2 (en) Pancake motor
JP2008220054A (en) Vehicle driving totally-enclosed motor
JP2008005606A (en) Driving motor of servo unit for radio control
US20230327511A1 (en) Cooling structure of in-wheel motor
JP2019135140A (en) Gear motor for automotive vehicle wiper system
WO2017221994A1 (en) Coreless motor
JP5210986B2 (en) Motor unit
JP6318995B2 (en) Actuator
JP6450711B2 (en) Electric motor having balance structure and machine tool including the electric motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19899168

Country of ref document: EP

Kind code of ref document: A1