WO2020129539A1 - 太陽電池および熱電変換素子を有する複合発電装置 - Google Patents

太陽電池および熱電変換素子を有する複合発電装置 Download PDF

Info

Publication number
WO2020129539A1
WO2020129539A1 PCT/JP2019/045804 JP2019045804W WO2020129539A1 WO 2020129539 A1 WO2020129539 A1 WO 2020129539A1 JP 2019045804 W JP2019045804 W JP 2019045804W WO 2020129539 A1 WO2020129539 A1 WO 2020129539A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
electrode
type thermoelectric
conversion element
power generation
Prior art date
Application number
PCT/JP2019/045804
Other languages
English (en)
French (fr)
Inventor
健仁 上出
敏光 望月
秀尚 高遠
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2020561240A priority Critical patent/JP7503311B2/ja
Publication of WO2020129539A1 publication Critical patent/WO2020129539A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • H01L31/0525Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells including means to utilise heat energy directly associated with the PV cell, e.g. integrated Seebeck elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/42Cooling means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Definitions

  • the present invention relates to a combined power generation device that generates solar energy using photoelectric conversion and thermoelectric conversion.
  • the energy conversion efficiency of a solar cell is said to be about 29.5% according to the Shockley-Quiser theory when using a non-concentrating silicon single light absorber.
  • Multijunction solar cells and hot carrier solar cells have been proposed as solar cells that exceed energy conversion efficiency.
  • the hot carrier solar cell has a principle that hot carriers are taken out to an electrode before thermal relaxation occurs, and it is difficult to realize the structure, and the principle has not been demonstrated yet.
  • the present inventors have proposed the concept of a heat recovery type solar cell (for example, see Non-Patent Document 1).
  • Heat recovery solar cells do not require hot carriers to be removed before they experience thermal relaxation. Therefore, the heat recovery solar cell has an advantage that a wide range of light absorber materials can be used.
  • thermoelectric conversion module a technique for improving the energy conversion efficiency of a solar cell by combining a solar cell and a thermoelectric conversion module is known (see, for example, Patent Documents 1 and 2).
  • the output voltage improves as the temperature difference between the high temperature side and the low temperature side increases.
  • An object of the present invention is to provide a combined power generation device capable of improving energy conversion efficiency.
  • an absorption layer having a first surface for receiving light and a second surface behind the first surface, the first electrode provided on the first surface and the second surface.
  • a photoelectric conversion part including the absorption layer having a second electrode provided on the heat conduction layer; and a heat conduction layer provided on the second surface, and the heat conduction layer electrically insulated from each other.
  • thermoelectric conversion unit including first and second output electrodes that are in contact with the other end of one of the thermoelectric conversion element and the N-type thermoelectric conversion element; and the first electrode and the plurality of first electrodes.
  • one of the second connection electrodes is electrically connected, and the second electrode is electrically connected to another one of the plurality of first or second connection electrodes, and the M pairs of P Type thermoelectric conversion element and N-type thermoelectric conversion element are connected to each other via the first connection electrode and the second connection electrode, and the first and second output electrodes are used as output electrodes and the photoelectric conversion unit is connected.
  • the M pair of P-type thermoelectric conversion element and N-type thermoelectric conversion element are electrically connected in series, and the first temperature of the first connection electrode and the second temperature lower than the first temperature Of the electric power of the thermoelectric conversion unit generated due to the difference between the second temperature of the connection electrode of the above and the second temperature of the connection electrode of the photoelectric conversion unit is larger than the electric power amount that decreases at the first temperature with respect to the second temperature of the photoelectric conversion unit.
  • a combined power generation device configured as described above.
  • the heat from the sunlight is absorbed, and the loss of the power of the photoelectric conversion unit due to the temperature rise from the second temperature to the first temperature is exceeded and the first temperature and the second temperature are exceeded.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a combined power generation device according to an embodiment of the present invention.
  • the combined power generation device 10 includes a photoelectric conversion unit 10A that performs photoelectric conversion and a thermoelectric conversion unit 10B that performs thermoelectric conversion.
  • 10 A of photoelectric conversion parts have the absorption layer 11, the 1st electrode 12 in the 1st surface 11a which receives the sunlight, and the 2nd electrode 13 in the 2nd surface 11b on the back side of the 1st surface 11a.
  • the thermoelectric conversion unit 10B has M pairs of P-type thermoelectric conversion elements 22 (22 1 to 22 5 ) and N-type thermoelectric conversion elements 23 (23 1 to 23 5 ) that perform thermoelectric conversion.
  • the absorption layer 11 will be described as a single crystal pn junction type semiconductor. However, as will be described later, it is not limited thereto.
  • the absorption layer 11 has a p-layer 11p on the first surface 11a side and an n-layer 11n on the second surface 11b side, and the first electrode 12 is a positive electrode and the second electrode 13 is a negative electrode.
  • the infrared absorption layer 14 and the heat conduction layer 15 are provided in this order on the second surface 11b.
  • a plurality of high temperature side connection electrodes 20 are provided in contact with the heat conduction layer 15.
  • the plurality of high temperature side connection electrodes 20 are electrically insulated from each other.
  • the high temperature side connection electrodes 20 are arranged so as not to contact each other.
  • the second electrode 13 also serves as the high temperature side connection electrode 20.
  • each of the M pairs of P-type thermoelectric conversion element 22 and N-type thermoelectric conversion element 23 is in contact with the high temperature side connection electrode 20, and each of the other ends thereof has a plurality of low temperatures. It is in contact with one of the side connection electrodes 21.
  • the first and second output electrodes 24 and 25 of the low temperature side connection electrode 21 are arranged as electrodes for taking out the electric power of the combined power generation device 10.
  • the electric power is represented by the product of the current I out and the output voltage V.
  • the first output electrode 24 becomes a positive electrode that allows current to flow to the load 30, and the second output electrode 25 becomes a negative electrode that receives current from the load 30.
  • the low temperature side connection electrode 21 and the first and second output electrodes 24, 25 are arranged so as to contact the low temperature body 26.
  • the low temperature body 26 is kept at a temperature lower than the temperature of the high temperature side connecting electrode 20 during the operation of the combined power generation device 10.
  • the first electrode 12 arranged on the first surface 11 a of the absorption layer 11 is electrically connected to the high temperature side connection electrode 20 on the right side of FIG.
  • the second electrode 13 arranged on the second surface 11b is electrically connected to the high temperature side connection electrode 20 on the left side.
  • the second electrode 13 also serves as the high temperature side connection electrode 20 in this example, it may be provided separately.
  • the five pairs of P-type thermoelectric conversion element 22 and N-type thermoelectric conversion element 23 are electrically connected in series, and specifically, from the high temperature side connecting electrode 20 on the right side to the P-type thermoelectric conversion element 22 1 , The low-temperature side connection electrode 21, the N-type thermoelectric conversion element 23 1 ,..., The P-type thermoelectric conversion element 22 3 , and the first output electrode 24 are electrically connected in series, and further through the load 30 to the second side.
  • the output electrode 25, the N-type thermoelectric conversion element 23 3 , the high temperature side connection electrode 20, the P type thermoelectric conversion element 22 4 ,..., The N type thermoelectric conversion element 23 5 and the left high temperature side connection electrode 20 (second electrode 13 ) Is electrically connected in series.
  • the temperature of the absorption layer 11 and the infrared absorption layer 14 rises due to the reception of sunlight, and the heat directly conducted from the absorption layer 11 and the heat conduction layer 15 from the absorption layer 11 and the infrared absorption layer 14 are passed.
  • the temperature of the high temperature side connection electrode 20 rises due to the conducted heat (the temperature is T H ).
  • the low temperature side connecting electrode 21 is maintained at the environmental temperature T c (also referred to as TL as the low temperature side temperature) by the low temperature body 26 (which functions as a cooling unit).
  • thermoelectric conversion elements 22 1 to 22 5 and the N-type thermoelectric conversion elements 23 1 to 23 5, which are in contact with the high-temperature side connecting electrode 20 and the low-temperature side connecting electrode 21, have a potential difference due to the Seebeck effect due to a temperature difference at both ends thereof. Occurs, diffusion of holes and electrons occurs from the high temperature side to the low temperature side, and a current flows macroscopically. In this way, electric power is generated in the thermoelectric conversion unit 10B.
  • the photoelectric conversion unit 10A in the absorption layer 11, electron-hole pairs generated by photoexcitation by receiving sunlight are moved by an internal electric field, and an internal voltage is applied between the first electrode 12 and the second electrode 13. Occurs. A current flows from the first electrode 12 to the thermoelectric conversion unit 10B side via the wiring 28, and returns to the second electrode 13 to generate electric power.
  • the internal voltage of the absorption layer 11 decreases when the temperature during operation rises from a temperature before light reception (for example, an environmental temperature (temperature TL )) to a high temperature (temperature TH ). In this way, the electric power generated in the photoelectric conversion unit 10A decreases during operation.
  • the amount of electric power generated in the thermoelectric conversion unit 10B is the amount of electric power that decreases when the photoelectric conversion unit 10A reaches the temperature T H on the high temperature side with respect to the electric power generated at the temperature T L on the low temperature side.
  • the thermoelectric conversion unit 10B is configured to be larger than the above.
  • FIG. 2 is a diagram showing an electrical equivalent circuit of the combined power generation device according to the embodiment of the present invention.
  • a part of the high temperature side connecting electrode 20 and the low temperature side connecting electrode 21 is omitted.
  • FIG. 1 Referring in conjunction with FIG. 1, the composite power generation device 10, the right side of the thermoelectric conversion elements 22 1 to 22 3 in FIG. 2, 23 1 to 23 2 and the absorbent layer 11, the thermoelectric conversion of the left side of FIG. 2
  • the elements 22 4 to 22 5 and 23 3 to 23 5 are electrically connected in series.
  • the thermoelectric conversion elements 22 1 to 22 3 and 23 1 to 23 2 on the right side and the thermoelectric conversion elements 22 4 to 22 5 and 23 3 to 23 5 on the left side are P-type thermoelectric conversion elements.
  • 22 and the N-type thermoelectric conversion element 23 are electrically connected alternately in series via the high temperature side connection electrode 20 or the low temperature side connection electrode 21.
  • the absorption layer 11 of the photoelectric conversion unit 10A As a current, there are a photo-generated component I sun due to the hole-electron pair generated by receiving light and a radiation loss component I rad due to the radiative recombination of the hole-electron pair. Flows into the thermoelectric conversion elements 22 and 23.
  • the internal voltage generated in the absorption layer 11 is represented by V cell .
  • Radiation loss component I rad temperature T H of the internal voltage V cell and the absorption layer 11 (the absorption layer 11 may be hot-side temperature) depends on.
  • thermoelectric conversion unit 10B in the thermoelectric conversion elements 22 and 23 on the right side of FIG. 2 connected between the first electrode 12 and the first output electrode 24, if the number of thermoelectric conversion elements is M 1 , Seebeck effect
  • the voltage drop in their thermoelectric conversion elements 22 and 23 is represented as M 1 R using the electric resistance R of one thermoelectric conversion element.
  • M 1 +M 2 2M.
  • the output voltage V between the first output electrode 24 and the second output electrode 25 is V cell +2M( ⁇ (T H ⁇ T L ) ⁇ RI out ).
  • the product of the output voltage V and the current I out becomes the output (electric power) of the combined power generation device 10.
  • M 1 and M 2 are preferably 1 or more. That is, it is preferable that at least one thermoelectric conversion element is connected between the high temperature side connection electrode 20 connected to the first electrode 12 and the first output electrode 24.
  • the electrodes and the wiring have better thermal conductivity than the thermoelectric conversion element, and therefore the thermal energy from the high temperature side is high. Is radiated to the low temperature body via the first output electrode 24, resulting in heat loss.
  • at least one thermoelectric conversion element is connected between the second electrode 13 (also serving as the high temperature side connection electrode 20) and the second output electrode 25.
  • the absorption layer 11 includes a semiconductor material, and includes, for example, silicon, amorphous silicon, SiC, silicide semiconductors such as BaSi 2 , OsSi 2 , and Ca 2 Si, Se, and compound semiconductors such as InP and GaAs.
  • Perovskite crystal structure such as Al x Ga 1-x As, Ga x In 1-x As, In x Ga 1-x P, In x Ga 1-x N, etc. which are multi-component compound mixed crystals such as AlSb, CdTe, CdSe, etc.
  • MAPI CH 3 NH 3 PbI 3
  • FAMAPI formamidinium lead iodide
  • FAMAPI complex halide
  • CIGS-based materials compounds made of Cu, In, Ge, Se, S as raw materials
  • CZTS-based materials compounds made of Cu.Zn, Sn, S as raw materials
  • organic-based semiconductors compounds Polythiophene (P3HT) and the like can be used.
  • the absorption layer 11 is preferably textured on the first surface 11a on which sunlight is incident, the second surface 11b on the opposite side, or both, in terms of good light absorption.
  • the absorption layer 11 is a single crystal pn junction type semiconductor, it may be doped with p type and n type impurities.
  • the absorption layer 11 is Si
  • as the dopant for example, B, Al, Ga, In can be used for the p-type doped region 11p.
  • the n-type doped region 11n for example, P, As, Sb can be used.
  • the electrons generated in the absorption layer 11 flow through the n-type doped region 11n having high electron conductivity and reach the second electrode 13, and the holes generated in the absorption layer 11 have the conductivity of holes. It flows through the high p-type doped region 11p and reaches the vicinity of the first electrode 12.
  • the absorption layer 11 may have a passivation layer (not shown) formed on the exposed surface thereof.
  • a passivation layer for example, amorphous silicon (a-Si:H), thermal oxide film (SiO 2 ) or silicon nitride film (a-Si 1-x N x :H) can be used.
  • the first electrode 12 and the second electrode 13 are made of a conductive material, and include, for example, metals such as aluminum, nickel, copper, palladium, silver, platinum, gold and alloys thereof, and semiconductor materials such as silicon doped with impurity ions. , Titanium oxide (TiO 2 ), tin-added indium oxide (ITO), zinc oxide (ZnO), aluminum oxide (Al 2 O 3 ), AZO (ZnO:Al), GZO (ZnO:Ga), ATO (SnO 2 : It is selected from conductive metal oxides such as Sb), FTO(SnO 2 :F), and ZnMgO, mixtures thereof, and conductive paste. Further, the first electrode 12 and the second electrode 13 may be formed by laminating the above-mentioned different conductive materials, respectively.
  • the infrared absorbing layer 14 is made of a material having a high absorptivity in the infrared wavelength region, and examples thereof include a member treated with nitric acid-treated NiP plating, VANTA black, and Metal Velvet (registered trademark).
  • a member treated with nitric acid-treated NiP plating particularly infrared rays and converting it into heat
  • the temperature of the infrared absorption layer 14 rises, and the high temperature side connection electrode 20 can be heated via the heat conduction layer 15 in contact therewith. it can. It is preferable to provide the infrared absorption layer 14 in terms of obtaining the amount of heat for heating the high temperature side connection electrode 20, but it is not necessary to provide it.
  • the heat conduction layer 15 is made of a material having good heat conduction.
  • the heat conducting layer 15 conducts the heat from the infrared absorbing layer 14 or the absorbing layer 11 in contact with the high temperature side connecting electrode 20. It is preferable that at least the surface of the heat conduction layer 15 in contact with the high temperature side connection electrode 20 is formed of an electrically insulating material. Alternatively, the heat conducting layer 15 itself may be an electrically insulating material.
  • AlN aluminum nitride
  • a plate thereof which is a good thermal conductor material and an electric insulating material can be used.
  • the high temperature side and low temperature side connection electrodes 20, 21 and the first and second output electrodes 24, 25 are made of a conductive material, and are made of, for example, a metal such as aluminum, nickel, copper, palladium, silver, platinum, gold or the like. Alloys can be used.
  • thermoelectric conversion materials can be used for the P-type thermoelectric conversion elements 22 1 to 22 5 and the N-type thermoelectric conversion elements 23 1 to 23 5 , for example, tellurium bismuth (Bi 2 Te 3 ) based material or PbTe material. Can be used.
  • P-type thermoelectric conversion elements 22 1 to 22 5, for example sodium as an acceptor in the case of Sb 2-x Bi x Te 3 , PbTe material in the case of Bi 2 Te 3 based materials (Na) and germanium (Ge) A material added with can be used.
  • thermoelectric conversion elements 23 1 to 23 5 for the N-type thermoelectric conversion elements 23 1 to 23 5 , for example, lead iodide (PbI) is used as a donor in the case of Bi 2 Te 3 -based material and Bi 2 Te 3-X Se 2-X in the case of PbTe material. A material to which 2 ) is added can be used.
  • PbI lead iodide
  • the combined power generation device 10 adds the voltages generated in the photoelectric conversion unit 10A and the thermoelectric conversion unit 10B by electrically connecting the photoelectric conversion unit 10A and the thermoelectric conversion unit 10B in series. Output voltage is obtained, and the amount of electric power generated in the thermoelectric conversion unit 10B decreases when the photoelectric conversion unit 10A reaches the temperature T H on the high temperature side with respect to the electric power generated at the temperature T L on the low temperature side.
  • the thermoelectric conversion unit 10B is configured to be larger than that.
  • thermoelectric conversion unit 10A As a result, the heat from the sunlight is absorbed, and the power loss of the photoelectric conversion unit 10A due to the temperature increase from the temperature T L to the temperature T H is exceeded, and the temperature difference between the temperature T L and the temperature T H causes thermoelectric conversion.
  • thermoelectric conversion in the unit 10B By obtaining the electric power by thermoelectric conversion in the unit 10B, it is possible to provide the combined power generation device 10 capable of improving the energy conversion efficiency as compared with the conventional solar cell.
  • thermoelectric conversion unit 10 of the present embodiment a configuration in which p-type and n-type polarities are inverted may be applied.
  • the p-layer 11p and the n-layer 11n of the absorption layer 11 of the photoelectric conversion unit 10A are exchanged, and the P-type thermoelectric conversion element 22 and the N-type thermoelectric conversion element 23 of the thermoelectric conversion unit 10B are exchanged. It is a thing. Also in this configuration, the same operational effects as those of the combined power generation device 10 described above are exhibited.
  • FIG. 3 is a diagram showing a schematic configuration of an example of a combined cycle power generation device according to an embodiment of the present invention, (a) is a perspective view exploded in the x-axis direction, and (b) is a second absorption layer. It is the figure seen from the surface.
  • the absorption layer 11 is provided on the first surface 11a and the second surface 11b, respectively, and the grid-shaped first electrode 12 and the second surface 11b are provided.
  • Two electrodes 13 are provided.
  • the first electrode 12 and the second electrode 13 are arranged so that the main lines 12a and 13a extend in the y direction and the branch lines 12b and 13b extend from the main lines 12a and 13a in the z-axis direction, respectively.
  • the infrared absorption layer 14 is provided in contact with the entire second surface 11b of the absorption layer 11.
  • the heat conduction layer 15 has one main surface in contact with the infrared absorption layer 14 and the other main surface in contact with the high temperature side connection electrode 20.
  • the high temperature side connection electrodes 20 are arranged separately from each other. For the convenience of illustration, they are arranged apart from each other in the y-axis direction and the z-axis direction, but it is preferable that they are provided close to each other so as not to contact each other. Further, the spaces separated from each other may be filled with a material having good thermal conductivity and electrically insulating. Thereby, the thermal conductivity from the thermal conduction layer 15 to the high temperature side connection electrode 20 becomes good.
  • the upper end surface of the P-type and N-type thermoelectric conversion elements 22 and 23 is in contact with the high temperature side connecting electrode 20, and the lower end surface is in contact with the low temperature side connecting electrode 21 and the first and second output electrodes 24 and 25 in FIG. It is provided in.
  • the P-type and N-type thermoelectric conversion elements 22 and 23 may be cylindrical or prismatic.
  • the low temperature side connecting electrode 21 and the first and second output electrodes 24, 25 are arranged separately from each other, and may be arranged in the same manner as the high temperature side connecting electrode 20. It may be filled with a material that has good electrical insulation.
  • the low temperature body 26 is provided with one main surface in contact with the low temperature side connection electrode 21 and the first and second output electrodes 24, 25.
  • the low temperature body 26 may have a flat plate shape as shown in the figure, and the lower surface in the figure may be provided with a heat dissipation structure, for example, a large number of protrusions, or a known heat sink may be provided.
  • the composite power generation device 100 is electrically connected to the high temperature side connection electrode 20 from the first electrode 12 on the first surface 11 a of the absorption layer 11 via the wiring 28, and the P-type thermoelectric conversion element 22 and the low temperature side connection electrode 21.
  • N-type thermoelectric conversion element 23, high temperature side connecting electrode 20,..., N-type thermoelectric conversion element 23 in this order, M 1 P-type and N-type thermoelectric conversion elements 22, 23 are electrically connected in series alternately.
  • One output is taken out from the one output electrode 24.
  • the composite power generation device 100 is electrically connected to the high temperature side connection electrode 20 from the second electrode 13 on the second surface 11b of the absorption layer 11 via the wiring 28, and is connected to the N-type thermoelectric conversion element 23 and the low temperature side connection.
  • the electrode 21, the P-type thermoelectric conversion element 22, the high-temperature side connection electrode 20,..., The P-type thermoelectric conversion element 23 are electrically connected in series with M 2 P-type and N-type thermoelectric conversion elements 22, 23 alternately. Then, the other output is taken out from the second output electrode 25.
  • the absorption layer 11 absorbs all light having an energy equal to or higher than the band gap of the energy band of the semiconductor material, and the current generated by photoexcitation is used as the photogenerated component I sun .
  • a current loss due to radiative recombination in the absorption layer 11 is defined as a radiation loss component I rad .
  • the current (represented by the current density) I(A/m 2 ) of the absorption layer 11 is represented by Formula 1.
  • the light generation component I sun is expressed by the equation 2
  • the radiation loss component I rad is expressed by the equation 3.
  • CR is the condensing magnification
  • q is the elementary charge
  • c is the speed of light
  • R sun is the radius of the sun
  • L ES is the distance between the sun and the earth
  • E g A is the band gap energy of the semiconductor material of the absorption layer 11.
  • k B is the Boltzmann's constant
  • T sun is the solar surface temperature and is 6000 K
  • V cell is the internal voltage generated in the absorption layer 11.
  • Equation 4 The difference between the output voltage V and the internal voltage V cell of the absorption layer 11 is expressed by Equation 4.
  • the lengths of the P-type and N-type thermoelectric conversion elements 22 and 23 are L c (ends contacting the high temperature side connecting electrode 20 and low temperature side connecting electrode 21). (Length along the direction connecting to and) Is.
  • I is the current density of the absorption layer 11 described above
  • S A is the cross-sectional area of the absorption layer 11 (area of the plane perpendicular to the direction of current flow) (m 2 )
  • S A is the P-type and N-type thermoelectric This is the cross-sectional area (m 2 ) of the conversion elements 22 and 23.
  • the temperature difference ⁇ T during the operation of the combined power generation device 10 is expressed by the differential equation of Expression 5.
  • the x axis is set parallel to the direction connecting the high temperature side end and the low temperature side end of the P-type and N-type thermoelectric conversion elements 22 and 23, and ⁇ is the P-type and N-type thermoelectric conversion element 22.
  • 23 is the thermal conductivity (W/(m ⁇ K)).
  • Equation 8 is obtained by solving equation 5 using equations 6 and 7 as boundary conditions.
  • is a dimensionless quantity, which is defined by Equation 9. ⁇ j e L C / ⁇ (9)
  • Equation 8 the heat flow density j Q (W/m 2 ) per unit flowing in from the end faces of the P-type and N-type thermoelectric conversion elements in contact with the high temperature side connecting electrode is expressed by Equation 10.
  • the heat flow rate Q(W) is the energy flow density (W/m 2 ) of the incident light component (P sun ), the transmitted light component (P T ) and the radiative recombination loss component (P rad ) in the absorption layer 11. Were respectively set to the following formulas 11 to 13.
  • the current-voltage characteristic (IV characteristic) of the combined power generation device 10 and the energy conversion efficiency ⁇ represented by the equation 15 can be obtained by simulation.
  • ⁇ (%) 100 ⁇ IV/P sun ⁇ (15)
  • Equation 17 Due to the M pairs of P-type and N-type thermoelectric conversion elements 22 and 23 connected in series, the voltage increase is expressed by Expression 17, and the power increase G is expressed by Expression 18.
  • is ⁇ (Mj Q /j e ) ⁇ ( ⁇ / ⁇ ) (19)
  • is a factor representing the ratio (ratio) of the thermoelectromotive force obtained by M pairs to the voltage loss due to the electric resistance per pair of thermoelectric conversion elements 22 and 23.
  • C 1 is a factor representing the rate of temperature change of the internal voltage of the absorption layer 11 at the maximum power point with respect to the thermoelectromotive force per pair of thermoelectric conversion elements 22 and 23.
  • the net increase in electric power G net by the combined power generation device 10 is represented by equation 23 as compared with the case where the photoelectric conversion unit 10A is operated alone.
  • the first term in parentheses on the left side of Expression 24 is the ratio of voltage loss due to electric resistance to the thermoelectromotive force obtained in the pair of P-type and N-type thermoelectric conversion elements 22 and 23, and the second term is Per pair of P-type and N thermoelectric conversion elements with respect to thermoelectromotive force obtained in the pair of P-type and N thermoelectric conversion elements 22 and 23 (that is, divided by the number M of pairs of P-type and N-type thermoelectric conversion elements) It is the rate of temperature change of the internal voltage of the photoelectric conversion unit 10A at the maximum power point.
  • the sum of the first term and the second term is smaller than 1, the output power of the combined power generation device 10 becomes larger than the output power when the photoelectric conversion unit 10A alone generates power. Further, in the range satisfying the above formula 24, the larger M is, the more preferable because the energy conversion efficiency can be increased at a lower temperature.
  • the temperature T L of the low temperature side connecting electrode was set to 300 K, which was the same as T c .
  • FIG. 4 is a diagram showing a calculation example of parameters of the combined power generation device according to the embodiment of the present invention.
  • the horizontal axis is the logarithm M of the P-type and N-type thermoelectric conversion elements
  • the vertical axis is the left side of Formula 24 (1-(M/ ⁇ +C 1 /M)). It can be seen from FIG. 4 that (1-(M/ ⁇ +C 1 /M)) is larger than 0 when M is 3 or more and 15 or less. From this, it was found that by selecting M in the range of 3 ⁇ M ⁇ 15, the composite power generation device 10 can obtain greater energy conversion efficiency than the solar cell having the configuration of the photoelectric conversion unit 10A alone.
  • FIG. 5 is a figure which shows the example of calculation of the energy conversion efficiency of the combined power generator which concerns on one Embodiment of this invention
  • FIG. 6 is a figure which shows the numerical value of the example of calculation shown in FIG.
  • the horizontal axis represents the output voltage (V) of the combined power generation device
  • the vertical axis represents the energy conversion efficiency ⁇ (%) of the combined power generation device.
  • the effective lengths l eff (S A /S C ) of the P-type and N-type thermoelectric conversion elements, which are design parameters of the composite power generation device 10 included in ⁇ defined by the above equation (9), The calculation was performed for ⁇ 1 to ⁇ 4 in the range of ⁇ 1 while changing L C.
  • the output voltage at which the energy conversion efficiency ⁇ becomes 0 on the side where the output voltage is high (the right side in FIG. 5) is the voltage at which the output current becomes 0, and therefore represents the open circuit voltage V OC .
  • the maximum value (maximum energy efficiency) of the energy conversion efficiency ⁇ of the conventional single-junction solar cell is It can be seen that it is higher than the theoretical limit of 29.5%.
  • the open circuit voltage V OC also increases as ⁇ increases. From the above, it can be seen that the combined power generation device 10 can achieve energy conversion efficiency exceeding the conventional theoretical limit.
  • FIG. 7 is a diagram showing a calculation example of parameters of the combined power generation device of the comparative example.
  • the composite power generation device 10 according to the embodiment of the present invention has been described on the premise that it receives sunlight, but the invention is not limited to sunlight and is not particularly limited as long as the absorption layer 11 is light that causes photoexcitation.
  • Photoelectric conversion unit 10 100 Composite power generation device 10A Photoelectric conversion unit 10B Thermoelectric conversion unit 11 Absorption layer 12 First electrode 13 Second electrode 14 Infrared absorption layer 15 Heat conduction layer 20 High temperature side connection electrode 21 Low temperature side connection electrode 22, 22 1 to 22 5 P-type thermoelectric conversion element 23, 23 1 to 23 5 N-type thermoelectric conversion element 24 First output electrode 25 Second output electrode 26 Low temperature body

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本開示では、光電変換部(10A)と;熱伝導層(15)と、複数の第1の接続電極(20)と、複数の第2の接続電極(21)と、M対のP型熱電変換素子(22)およびN型熱電変換素子(23)(ただしMは自然数)と、第1および第2の出力電極(24,25)と、を含む熱電変換部(10B)と;を備え、上記第1および第2の出力電極(24,25)を出力電極として上記光電変換部(10A)と前記M対のP型熱電変換素子(22)およびN型熱電変換素子(23)とが電気的に直列に接続されてなり、上記第1の接続電極(20)の第1の温度とその第1の温度よりも低い上記第2の接続電極(21)の第2の温度との差により発生する上記熱電変換部(10B)の電力分が、上記光電変換部(10A)の上記第2の温度に対して上記第1の温度において減少する電力分よりも大きくなるように構成されてなる、複合発電装置(10)が提供される。

Description

太陽電池および熱電変換素子を有する複合発電装置
 本発明は、太陽エネルギーを光電変換および熱電変換を利用して発電する複合発電装置に関する。
 太陽電池は、そのエネルギー変換効率が、非集光でシリコン単一の光吸収体を用いた場合、ショックレー・クワイサー理論による29.5%程度と言われている。エネルギー変換効率を超える太陽電池として、多接合太陽電池やホットキャリア太陽電池が提案されている。ホットキャリア太陽電池は、ホットキャリアを熱緩和が生じる前に電極に取り出すという原理であり、その構造を実現するのが困難であり、原理の実証も未だ行われていない。
 本発明者等は、熱回収型太陽電池のコンセプトを提案している(例えば、非特許文献1参照。)。熱回収型太陽電池は、ホットキャリアが熱緩和を生じる前に取り出しを行うことを必要としていない。その為、熱回収型太陽電池には、広汎な光吸収体材料を用いることができるという利点がある。
 他方、太陽電池と熱電変換モジュールを組み合わせることで太陽電池のエネルギー変換効率を向上する技術が知られている(例えば、特許文献1および2参照。)。熱電変換モジュールでは高温側と低温側との温度差が大きいほど出力電圧が向上する。
特公昭51-48037号公報 特開平1-105582号公報
上出、他、第65回応用物理学会春季学術講演会、講演番号17a-D101-6(2018)
 しかしながら、太陽電池では、受光により温度が上昇して、太陽電池の開放電圧が減少し、太陽電池の出力低下が生じるが、特許文献2では、この点が考慮されておらず、エネルギー変換効率が実際に向上できるか不明であるという問題がある。
 本発明の目的は、エネルギー変換効率を向上可能な複合発電装置を提供することである。
 本発明の一態様によれば、受光する第1の面とその裏側の第2の面を有する吸収層であって、上記第1の面に設けられた第1の電極と上記第2の面に設けられた第2の電極とを有する上記吸収層を含む光電変換部と;上記第2の面に設けられた熱伝導層と、上記熱伝導層に、互いに電気的に絶縁されて設けられた複数の第1の接続電極と、複数の第2の接続電極と、M対のP型熱電変換素子およびN型熱電変換素子であって、各々の一端が上記複数の第1の接続電極のうちの一つと接触し、その他端が上記複数の第2の接続電極うちの一つに接触する、ただしMは自然数である、上記P型熱電変換素子およびN型熱電変換素子と、上記P型熱電変換素子およびN型熱電変換素子のうちの一つの他端に接触する第1および第2の出力電極と、を含む熱電変換部と;を備え、上記第1の電極と上記複数の第1または第2の接続電極の一つとが電気的に接続され、上記第2の電極と前記複数の第1または第2の接続電極の他の一つとが電気的に接続され、上記M対のP型熱電変換素子およびN型熱電変換素子の各々が上記第1の接続電極と上記第2の接続電極を介して接続され、上記第1および第2の出力電極を出力電極として上記光電変換部と前記M対のP型熱電変換素子およびN型熱電変換素子とが電気的に直列に接続されてなり、上記第1の接続電極の第1の温度とその第1の温度よりも低い上記第2の接続電極の第2の温度との差により発生する上記熱電変換部の電力分が、上記光電変換部の上記第2の温度に対して上記第1の温度において減少する電力分よりも大きくなるように構成されてなる、複合発電装置が提供される。
 上記態様によれば、太陽光による熱を吸収して、上記第2の温度から第1の温度への温度上昇による光電変換部の電力の損失分を超えて上記第1の温度と第2の温度との温度差によって熱電変換部において熱電変換による電力を得ることで、従来型の太陽電池よりもエネルギー変換効率を向上可能な複合発電装置を提供できる。
本発明の一実施形態に係る複合発電装置の概略構成を示す断面図である。 本発明の一実施形態に係る複合発電装置の電気的な等価回路を示す図である。 本発明の一実施形態に係る複合発電装置の一実施例の概略構成を示す図である。 本発明の一実施形態に係る複合発電装置のパラメータの計算例を示す図である。 本発明の一実施形態に係る複合発電装置のエネルギー変換効率の計算例を示す図である。 図5に示した計算例の数値を示す図である。 比較例の複合発電装置のパラメータの計算例を示す図である。
 以下、図面に基づいて本発明の一実施形態を説明する。なお、複数の図面間において共通する要素については同じ符号を付し、その要素の詳細な説明の繰り返しを省略する。
 図1は、本発明の一実施形態に係る複合発電装置の概略構成を示す断面図である。図1を参照するに、本実施形態に係る複合発電装置10は、光電変換を行う光電変換部10Aと、熱電変換を行う熱電変換部10Bを備える。光電変換部10Aは、吸収層11と、その太陽光を受光する第1面11aに第1電極12と、第1面11aの裏側の第2面11bに第2電極13とを有する。熱電変換部10Bは、熱電変換を行うM対のP型熱電変換素子22(221~225)およびN型熱電変換素子23(231~235)とを有する。ここで、Mは自然数であり、一例としてM=5とした。
 吸収層11は、本実施形態では、単結晶系pn接合型半導体であるとして説明する。なお、後述するように、それに限定されるわけではない。吸収層11は、第1面11a側にp層11p、第2面11b側にn層11nを有し、第1電極12は正極になり、第2電極13は負極になる。
 赤外線吸収層14および熱伝導層15は、第2面11bにこの順で設けられる。
 熱伝導層15には、複数の高温側接続電極20が接触して設けられる。複数の高温側接続電極20は、各々、互いに電気的に絶縁されている。図1では、高温側接続電極20は、互いに接触しないように離隔して配置されている。なお、第2電極13は高温側接続電極20を兼ねている。
 M対のP型熱電変換素子22およびN型熱電変換素子23は、各々の一端(図1では図面の上側の端部)が高温側接続電極20に接触し、各々の他端が複数の低温側接続電極21の一つと接触している。低温側接続電極21のうち第1および第2出力電極24、25が、複合発電装置10の電力を取り出す電極として配置される。なお、電力は電流Ioutと出力電圧Vとの積で表される。第1出力電極24が、電流を負荷30へ流す正極となり、第2出力電極25が負荷30から電流を受ける負極となる。低温側接続電極21並びに第1および第2出力電極24、25は、低温体26に接触するように配置される。低温体26は、複合発電装置10の動作時に高温側接続電極20の温度よりも低い温度に保持される。
 複合発電装置10は、吸収層11の第1面11aに配置された第1電極12が、配線28を介して図1の右側の高温側接続電極20に電気的に接続され、吸収層11の第2面11bに配置された第2電極13が左側の高温側接続電極20に電気的に接続される。なお、この例では、第2電極13が高温側接続電極20を兼ねているが、別個に設けてもよい。5対のP型熱電変換素子22およびN型熱電変換素子23は、電気的に直列に接続されており、具体的には、右側の高温側接続電極20から、P型熱電変換素子221、低温側接続電極21、N型熱電変換素子231、・・・、P型熱電変換素子223、第1出力電極24に電気的に直列に接続され、さらに、負荷30を介して、第2出力電極25、N型熱電変換素子233、高温側接続電極20、P型熱電変換素子224、・・・、N型熱電変換素子235および左側の高温側接続電極20(第2電極13)に電気的に直列に接続される。
 複合発電装置10は、太陽光の受光により吸収層11および赤外線吸収層14の温度が上昇し、吸収層11から直接伝導した熱と吸収層11および赤外線吸収層14から熱伝導層15を介して伝導した熱とにより高温側接続電極20の温度が上昇する(温度をTHとする。)。低温側接続電極21は、低温体26(冷却手段として機能する。)によって環境温度Tc(低温側温度としてTLとも称する。)に維持される。高温側接続電極20と低温側接続電極21とに接するP型熱電変換素子221~225およびN型熱電変換素子231~235は、その両端に温度差が生じることでゼーベック効果により電位差が発生し、それぞれ正孔、電子の拡散が高温側から低温側に生じて、巨視的に電流が流れる。このようにして熱電変換部10Bにおいて電力が発生する。
 他方、光電変換部10Aでは、吸収層11において、太陽光の受光により光励起によって生じた電子正孔対が内部電界によって移動して、第1電極12と第2電極13との間に内部電圧が生じる。第1電極12から電流が配線28を介して熱電変換部10B側に流れ、第2電極13に戻ってくることで電力が発生する。吸収層11は、受光前の温度(例えば、環境温度(温度TL))から、動作時の温度が上昇して高温(温度TH)になると、内部電圧が低下する。このようにして光電変換部10Aで発生する電力が動作時に低下する。複合発電装置10は、熱電変換部10Bで発生する電力分は、光電変換部10Aが低温側の温度TLにおいて発生する電力に対して高温側の温度THになった場合に減少する電力分よりも大きくなるように熱電変換部10Bが構成される。
 図2は、本発明の一実施形態に係る複合発電装置の電気的な等価回路を示す図である。図2において、高温側接続電極20と低温側接続電極21の一部を省略している。
 図2を図1と合わせて参照するに、複合発電装置10は、図2の右側の熱電変換素子221~223、231~232と吸収層11と、図2の左側の熱電変換素子224~225、233~235が直列に電気的に接続されている。先の図1に示したように、右側の熱電変換素子221~223、231~232も、左側の熱電変換素子224~225、233~235もP型熱電変換素子22とN型熱電変換素子23とが高温側接続電極20または低温側接続電極21を介して交互に直列に電気的に接続されている。
 光電変換部10Aの吸収層11では、電流として、受光により発生した正孔電子対による光生成成分Isunと正孔電子対の輻射再結合による放射損失成分Iradがあり、この差分の電流Iが熱電変換素子22、23に流れる。吸収層11で生じる内部電圧はVcellで表される。放射損失成分Iradは内部電圧Vcellと吸収層11の温度TH(吸収層11は高温側温度になっているため)に依存する。
 熱電変換部10Bにおいて、第1電極12と第1出力電極24との間に接続された図2の右側の熱電変換素子22、23においては、熱電変換素子の数をM1とすると、ゼーベック効果によって発生する電圧は、温度差(TH-TL)とゼーベック係数αと熱電変換素子の数M1(図1ではM1=5)によってαM1(TH-TL)で表される。一方、それらの熱電変換素子22、23における電圧降下は1つの熱電変換素子の電気抵抗Rを用いてM1Rと表される。したがって、右側の熱電変換素子22、23での正味の電圧はΔVA=M1(α(TH-TL)-RIout)で表される。熱電変換部10Bにおいて、第2電極13と第2出力電極25との間に接続された図2の左側のM2個の熱電変換素子22、23における正味の電圧は、同様にして、ΔVB=M2(α(TH-TL)-RIout)で表される(図1ではM2=5)。ただし、M1+M2=2Mである。
 したがって、第1出力電極24および第2出力電極25との間の出力電圧Vは、Vcell+2M(α(TH-TL)-RIout)となる。出力電圧Vと電流Ioutの積が複合発電装置10の出力(電力)となる。
 なお、M1およびM2は、1以上であることが好ましい。すなわち、第1電極12と接続された高温側接続電極20と第1出力電極24との間に少なくとも1個の熱電変換素子が接続されることが好ましい。高温側接続電極20と第1出力電極24とが直接あるいは導電体の配線で接続されると、熱電変換素子よりも電極および配線の方が熱伝導率が良好なため、高温側からの熱エネルギーが第1出力電極24を介して低温体に放熱されてしまい、熱損失が生じてしまう。同様の理由により、第2電極13(高温側接続電極20を兼ねる。)と第2出力電極25との間に少なくとも1個の熱電変換素子が接続されることが好ましい。
 図1に戻り、吸収層11は、半導体材料を含み、例えば、シリコン、アモルファスシリコン、SiC、シリサイド半導体であるBaSi2、OsSi2、Ca2Si等、Se、化合物半導体としては、InP、GaAs、AlSb、CdTe、CdSe等、多元系化合物混晶であるAlxGa1‐xAs、GaxIn1‐xAs、InxGa1‐xP、InxGa1‐xN等、ペロブスカイト結晶構造を有する材料であるMAPI(CH3NH3PbI3)、この鉛(Pb)をSnやGeで置き換えた類似体、ホルムアミジニウムヨウ化鉛(FAPI)、複合ハライド(FA,MA)PbI3(FAMAPI)、およびその類似体、CIGS系材料(Cu,In,Ge,Se,Sを原料とする化合物)、CZTS系材料(Cu.Zn,Sn,Sを原料とする化合物)、有機系半導体(ポリチオフェン(P3HT)等)等を用いることができる。
 吸収層11は、太陽光が入射する第1面11aまたは反対側の第2面11bあるいはその両方にテクスチャリングを施すことが光吸収が良好になる点で好ましい。
 吸収層11は、単結晶系pn接合型半導体としたが、p型およびn型不純物をドープしてもよい。吸収層11がSiの場合は、ドーパントとしては、p型ドープ領域11pは、例えばB、Al、Ga、Inを用いることができる。n型ドープ領域11nは、例えばP、As、Sbを用いることができる。これにより、吸収層11で生成された電子は電子の伝導度の高いn型ドープ領域11nを流れて第2電極13に到達し、吸収層11で生成された正孔は正孔の伝導度の高いp型ドープ領域11pを流れて第1電極12付近に到達する。
 なお、吸収層11は、その表面が露出する部分に、パッシベーション層(不図示)を形成してもよい。パッシベーション層は、例えば、アモルファスシリコン(a-Si:H)、熱酸化膜(SiO2)、シリコンナイトライド膜(a-Si1‐xx:H)を用いることができる。
 第1電極12および第2電極13は、導電性材料からなり、例えば、アルミニウム、ニッケル、銅、パラジウム、銀、白金、金等の金属およびこれらの合金、不純物イオンをドープしたケイ素等の半導体材料、酸化チタン(TiO2)、スズ添加酸化インジウム(ITO)、酸化亜鉛(ZnO)、酸化アルミニウム(Al23)、AZO(ZnO:Al)、GZO(ZnO:Ga)、ATO(SnO2:Sb)、FTO(SnO2:F)、ZnMgO等の導電性金属酸化物およびそれらの混合物、導電性ペースト等から選択される。また、第1電極12および第2電極13は、それぞれ上記の互いに異なる導電性材料を積層してもよい。
 赤外線吸収層14は、赤外線の波長領域で吸収率の高い材料からなり、例えば、硝酸処理NiPメッキが施された部材、VANTAブラック、Metal Velvet(登録商標)等が挙げられる。吸収層11を透過した光、特に赤外線を吸収して熱に変換することで、赤外線吸収層14の温度が上昇し、それに接する熱伝導層15を介して高温側接続電極20を加熱することができる。なお、赤外線吸収層14は設けた方が高温側接続電極20を加熱するための熱量を得られる点で好ましいが設けなくともよい。
 熱伝導層15は、熱伝導が良好な材料からなる。熱伝導層15は、接する赤外線吸収層14あるいは吸収層11からの熱を高温側接続電極20に伝導する。熱伝導層15は、少なくとも高温側接続電極20に接する面が電気絶縁材料が形成されていることが好ましい。その代わりに熱伝導層15自体が電気絶縁材料でもよい。熱伝導層15は、例えば、熱良導体材料で電気絶縁材料である窒化アルミ(AlN)層またはその板を用いることができる。
 高温側および低温側接続電極20、21並びに第1および第2出力電極24、25は、導電性材料からなり、例えば、アルミニウム、ニッケル、銅、パラジウム、銀、白金、金等の金属およびこれらの合金を用いることができる。
 P型熱電変換素子221~225およびN型熱電変換素子231~235は、公知の熱電変換材料を用いることができ、例えば、テルルビスマス(Bi2Te3)系材料またはPbTe材料を用いることができる。P型熱電変換素子221~225には、Bi2Te3系材料の場合にはSb2-xBixTe3、PbTe材料の場合にはアクセプタとして例えばナトリウム(Na)およびゲルマニウム(Ge)を添加した材料を用いることができる。また、N型熱電変換素子231~235には、Bi2Te3系材料の場合にはBi2Te3-XSe2-X、PbTe材料の場合にはドナーとして例えばヨウ化鉛(PbI2)を添加した材料を用いることができる。
 本実施形態によれば、複合発電装置10は、光電変換部10Aと熱電変換部10Bとを電気的に直列に接続することで、光電変換部10Aおよび熱電変換部10Bで発生した電圧を足し合わせた出力電圧が得られ、熱電変換部10Bで発生する電力分は、光電変換部10Aが低温側の温度TLにおいて発生する電力に対して高温側の温度THになった場合に減少する電力分よりも大きくなるように熱電変換部10Bが構成される。これにより、太陽光による熱を吸収して、温度TLから温度THへの温度上昇による光電変換部10Aの電力の損失分を超えて温度TLと温度THとの温度差によって熱電変換部10Bにおいて熱電変換による電力を得ることで、従来型の太陽電池よりもエネルギー変換効率を向上可能な複合発電装置10を提供できる。
 なお、本実施形態の複合発電装置10において、p型およびn型の極性を反転した構成を適用してもよい。この構成は、具体的には、光電変換部10Aの吸収層11のp層11pおよびn層11nを入れ替えて、熱電変換部10BのP型熱電変換素子22とN型熱電変換素子23とを入れ替えたものである。この構成においても上述した複合発電装置10と同様の作用効果を奏する。
 図3は、本発明の一実施形態に係る複合発電装置の一実施例の概略構成を示す図であり、(a)はx軸方向に分解した斜視図、(b)は吸収層を第2面から視た図である。図3(a)および(b)を参照するに、一実施例の複合発電装置100は、吸収層11が第1面11aおよび第2面11bに、それぞれ、グリッド状の第1電極12、第2電極13が設けられている。第1電極12および第2電極13は、y方向に主線12a、13aが延在し、主線12a、13aからそれぞれz軸方向に支線12b、13bが延在するように配置されている。
 赤外線吸収層14は、吸収層11の第2面11bの全体と接して設けられている。熱伝導層15は、一方の主面が赤外線吸収層14に接し、他方の主面が高温側接続電極20に接して設けられている。
 高温側接続電極20は、互いに分離して配置されている。図示の便宜のためy軸方向およびz軸方向に互いに離間して配置されているが、互いに接触しないように近接して設けることが好ましい。また、互いに離間する空間に熱伝導性が良好で電気的に絶縁する材料を充填してもよい。これにより、熱伝導層15から高温側接続電極20への熱伝導性が良好となる。
 P型およびN型熱電変換素子22、23は、図3において上端面が高温側接続電極20に接し、下端面が低温側接続電極21と第1および第2出力電極24、25とに接するように設けられている。P型およびN型熱電変換素子22、23は、円柱状でもよく、角柱状でもよい。
 低温側接続電極21と第1および第2出力電極24、25とは、互いに分離して配置されており、高温側接続電極20と同様に配置してもよく、互いに離間する空間に熱伝導性が良好で電気的に絶縁する材料を充填してもよい。
 低温体26は、一方の主面が低温側接続電極21と第1および第2出力電極24、25に接して設けられる。低温体26は、図示のように平板状でもよく、図において下の面が放熱構造、例えば、突起を多数設けてもよく、公知のヒートシンクを設けてもよい。
 複合発電装置100は、吸収層11の第1面11aの第1電極12から配線28を介して、高温側接続電極20に電気的に接続され、P型熱電変換素子22、低温側接続電極21、N型熱電変換素子23、高温側接続電極20、…、N型熱電変換素子23の順にM1個のP型およびN型熱電変換素子22、23が交互に直列に電気的に接続され第1出力電極24から一方の出力が取り出される。他方、複合発電装置100は、吸収層11の第2面11bの第2電極13から配線28を介して、高温側接続電極20に電気的に接続され、N型熱電変換素子23、低温側接続電極21、P型熱電変換素子22、高温側接続電極20、…、P型熱電変換素子23の順にM2個のP型およびN型熱電変換素子22、23が交互に直列に電気的に接続され第2出力電極25から他方の出力が取り出される。
[本実施の形態に係る複合発電装置のエネルギー効率のシミュレーション]
 本実施の形態に係る複合発電装置のエネルギー効率のシミュレーションを先の図1および図2を適宜参照しつつ説明する。
 本シミュレーションでは、吸収層11は、その半導体材料のエネルギーバンドのバンドギャップ以上のエネルギーを持つ光を全て吸収することを仮定して、光励起による電流を光生成成分Isunとする。吸収層11内の輻射再結合による電流損失を放射損失成分Iradとする。この場合、吸収層11の電流(電流密度で表す。)I(A/m2)では、式1で表される。
Figure JPOXMLDOC01-appb-M000002
 ここで、光生成成分Isunは式2で表され、放射損失成分Iradは式3で表される。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
ここで、CRは集光倍率、qは電気素量、cは光速、Rsunは太陽の半径、LESは太陽と地球との距離、Eg Aは吸収層11の半導体材料のバンドギャップエネルギー、
Figure JPOXMLDOC01-appb-M000005
はプランク定数であり、kBはボルツマン定数、Tsunは太陽表面温度であり6000Kとし、Vcellは吸収層11で生じる内部電圧である。
 出力電圧Vと吸収層11の内部電圧Vcellの差は式4で表される。
Figure JPOXMLDOC01-appb-M000006
ここで、断面積SCのP型およびN型熱電変換素子22、23を流れる電流密度je(A/m2)は、je=ISA/SCで与えられるとし、熱電変換材料のゼーベック係数をα (V/K)、電気伝導率をσ(1/(Ωm))、P型およびN型熱電変換素子22、23の高温側温度(TH)と低温側温度(TC)の温度差をΔT(=TH-TC)、P型およびN型熱電変換素子22、23の長さをLc(高温側接続電極20と接する端部と低温側接続電極21の端部とを結ぶ方向に沿った長さ)
である。なお、Iは上述した吸収層11の電流密度、SAは吸収層11の断面積(電流が流れる方向に対して垂直な面の面積)(m2)、SAはP型およびN型熱電変換素子22、23の断面積(m2)である。
 複合発電装置10の動作時の温度差ΔTは、式5の微分方程式を立式する。
Figure JPOXMLDOC01-appb-M000007
  T(Lc)=Tc         ・・・(6)
  dT/dx(x=0)=-j/κ ・・・(7)
ここで、x軸はP型およびN型熱電変換素子22、23の高温側の端部と低温側の端部とを結ぶ方向と平行に設定し、κはP型およびN型熱電変換素子22、23の熱伝導率(W/(m・K))である。
 式5を、式6および式7を境界条件として、解くことにより、式8が得られる。
Figure JPOXMLDOC01-appb-M000008
ここで、ξは無次元量であり、式9により定義した。
  ξ≡αjC/κ  ・・・(9)
 式8において、P型およびN型熱電変換素子の高温側接続電極に接する端面から流入する1本当たりの熱流密度jQ(W/m2)は式10で表されるとした。
  j=Q/(2MSC)
    =SA(Psun-PT-Prad(TH,Vcell)-IVcell)/(2MSC)  ・・・(10)
ここで、熱流量Q(W)は、吸収層11における入射光分(Psun)、透過光分(PT)および輻射再結合損失分(Prad)のエネルギー流密度(W/m2)を、それぞれ、下記式11~13とした。
Figure JPOXMLDOC01-appb-M000009
 複合発電装置10では、赤外線吸収層14を設けているので、透過光分(PT)は全て熱に変換されたとして、式10の代わりに式14を用いる。
  j=Q/(2MSC)
    =SA(Psun-Prad(TH,Vcell)-IVcell)/(2MSC)  ・・・(14)
 以上の立式により、複合発電装置10の電流電圧特性(I-V特性)および式15で表されるエネルギー変換効率ηをシミュレーションにより求めることができる。
  η(%)=100×IV/Psun  ・・・(15)
 上記式9で定義したξについて、ξ<1の場合は、上記式8のξ≪1に対する漸近式として式16の近似式を用いることができる。
Figure JPOXMLDOC01-appb-M000010
 式16を上記式5に代入すると式17が得られる。直列接続したM対のP型およびN型熱電変換素子22、23によって、電圧上昇分は式17、電力の増加分Gは式18で表される。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
ここで、λは、
  λ≡(MjQ/je)×(ασ/κ)  ・・・(19)
により定義した。λは、1対の熱電変換素子22、23当たりの電気抵抗による電圧損失に対する、M対により得られる熱起電力の比(割合)を表す因子である。
 式18によれば、M/λ<1の場合は、電力の増加分Gが正値になり、M対のP型およびN型熱電変換素子22、23を設けた効果が奏される。
 他方、吸収層11の温度(TH)が上昇すると、吸収層11の太陽電池としての内部電圧Vcellが低下し、それによる電力の減少も生じるおそれがある。内部電圧Vcellの低下は開放電圧の低下に主に起因するとすれば、その電力の減少分L(W)は、式20で表される。
Figure JPOXMLDOC01-appb-M000013
ここで、C1は、光電変換部10A単体の太陽電池としての曲線因子をフィルファクタFF、室温での開放電圧の温度係数を式21で表されるとすると、式22で表される。フィルファクタFFは、光電変換部10A単体の最大出力時の電圧Vmax、電流I(Vmax)、開放電圧をVOC、短絡電流をIshとしたときにI(Vmax)Vmax/VOCshで定義される。C1は、1対の熱電変換素子22、23当たりの熱起電力に対する、最大電力点における吸収層11の内部電圧の温度変化の割合を表す因子である。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 上記式18および20により、光電変換部10Aを単体で動作させた場合に対して、複合発電装置10による正味の電力増加Gnetは式23で表される。
Figure JPOXMLDOC01-appb-M000016
 式23において、右辺の括弧内が正値になれば、光電変換部10A単体で動作させた場合よりも複合発電装置10の電力が増加することになる。すなわち、
  1-(M/λ+C1/M)>0  ・・・(24)
である。
 式24の左辺のカッコ内の第1項は、1対のP型およびN型熱電変換素子22,23において、得られる熱起電力に対する電気抵抗による電圧損失の比であり、第2項は、1対のP型およびN熱電変換素子22,23において得られる熱起電力に対する、1対のP型およびN熱電変換素子当たりの(つまりP型およびN型熱電変換素子の対数Mで除した)最大電力点における光電変換部10Aの内部電圧の温度変化の割合である。この第1項と第2項との和が1よりも小さい場合に複合発電装置10の出力電力が光電変換部10A単体で発電を行った場合の出力電力よりも多くなる。さらに、上記式24を満たす範囲では、より低い温度でエネルギー変換効率を増加できる点でMは大きい程好ましい。
 シミュレーションでは、P型およびN型熱電変換素子22,23にBi2Te3系材料を用いたとして、電気伝導率σ=105(1/(Ωm))、熱伝導率κ=1(W/(mK))、ゼーベック係数α=0.0002(V/K)を用いた。吸収層11に結晶シリコン(エネルギーギャップE /q=1.12V)を想定し、環境温度T=300Kでの光電変換部10A単体での太陽電池特性パラメータをフィルファクタFF=0.869,開放電圧VOC=0.868Vとした。複合発電装置10が赤外線吸収層14を備えていることにより、入射光エネルギーの約70%(=0.7×Psun)が熱流となったとした。最大電力動作で吸収層11における電流損失がほぼないことを想定した。なお、低温側接続電極の温度TLはTと同じ300Kとした。
 計算の結果、上記式19で定義したλが17.9、上記式22で定義したCが1.8が得られた。これを用いて、上記式23で表される複合発電装置10による正味の電力増加Gnetの左辺に含まれる上記式24の左辺(1-(M/λ+C1/M))をP型およびN型熱電変換素子の対数Mの関数として計算した。
 図4は、本発明の一実施形態に係る複合発電装置のパラメータの計算例を示す図である。図4において、横軸はP型およびN型熱電変換素子の対数M、縦軸は式24の左辺(1-(M/λ+C1/M))である。図4を参照するに、Mが3以上15以下では(1-(M/λ+C1/M))が0よりも大きくなっていることが分かる。このことから、3≦M≦15の範囲でMを選択することで、複合発電装置10は、光電変換部10A単体の構成の太陽電池よりも大きなエネルギー変換効率が得られることが分かった。
 図4において、(1-(M/λ+C1/M))が0になる点が2カ所ある。それは、Mが小さい側がλ/2-((λ/2)2-λC1)1/2であり、大きい側がλ/2+((λ/2)2-λC1)1/2である。このことおよび最適なMの詳細な検討によれば、Mはλ/2に最も近い自然数が選択されることが、高温側の温度THの上昇に対してエネルギー変換効率がより向上する点で、好ましい。
 次に、M=6および10で、上記式2における集光倍率CRを1(非集光)の場合、複合発電装置10のエネルギー変換効率を計算した。
 図5は、本発明の一実施形態に係る複合発電装置のエネルギー変換効率の計算例を示す図であり、図6は、図5に示した計算例の数値を示す図である。図5において、横軸は複合発電装置の出力電圧(V)であり、縦軸は複合発電装置のエネルギー変換効率η(%)である。図5および図6において、上記式(9)で定義されるξに含まれる複合発電装置10の設計パラメータであるP型およびN型熱電変換素子の実効長leff=(SA/SC)LCを変えてξ<1の範囲でξ1~ξ4について計算した。なお、SA、SCおよびLCの定義は上記式4における定義と同様である。また、出力電圧が高い側(図5の右側)においてエネルギー変換効率ηが0になる出力電圧は、出力電流が0になる電圧であるから開放電圧VOCを表していることになる。
 図5および図6を参照するに、複合発電装置のエネルギー変換効率ηは、M=6でも10でも、その最大値(最大エネルギー効率)が、従来の単接合型太陽電池のエネルギー変換効率ηの理論的限界である29.5%よりも高くなっていることが分かる。特に、ξの増加に伴って、最大エネルギー効率ηmaxが上昇し、M=6のξ4では34%に達していることが分かる。開放電圧VOCも、ξの増加に伴って増加していることが分かる。以上のことから、複合発電装置10は、従来の理論的限界を超えるエネルギー変換効率を達成できることが分かる。
 さらに、図6において、M=10およびleff=3.0において高温側温度(吸収層の温度)THが466.9Kの場合、最大エネルギー変換効率ηmaxが33.5%となり、他方、M=6およびleff=2.0で同様のTHが488.5Kでηmaxが32.4%となっている。これらのことから、上記式24を満たす範囲ではMが大きい程好ましいことが分かった。
 図7は、比較例の複合発電装置のパラメータの計算例を示す図である。図7において、複合発電装置10の電力が光電変換部10A単体で動作させた場合よりも増加しない場合、すなわち、上記式24を満たしていない範囲でのM=2および20を用いた場合を比較例とした。
 図7を参照するに、比較例のM=2および20のいずれの場合も、実効長leff=0.1の場合が最大エネルギー変換効率ηmaxが29%であり他の実効長leffではそれよりも低くなっている。このことから、上記式24を満たしていない範囲では熱電変換部によるエネルギー変換効率を上昇させる効果がないことが分かる。
 以上、本発明の実施形態および実施例について詳述したが、本発明は係る特定の実施形態および実施例に限定されるものではなく、請求の範囲に記載された本発明の範囲内において、種々の変形・変更が可能である。本発明の実施形態に係る複合発電装置10は、太陽光を受光する前提で説明したが、太陽光に限定されず、吸収層11が光励起を生じる光であれば特に限定されない。
10、100  複合発電装置
10A  光電変換部
10B  熱電変換部
11  吸収層
12  第1電極
13  第2電極
14  赤外線吸収層
15  熱伝導層
20  高温側接続電極
21  低温側接続電極
22、221~225  P型熱電変換素子
23、231~235  N型熱電変換素子
24  第1出力電極
25  第2出力電極
26  低温体

 

Claims (11)

  1.  受光する第1の面とその裏側の第2の面を有する吸収層であって、該第1の面に設けられた第1の電極と該第2の面に設けられた第2の電極とを有する該吸収層を含む光電変換部と;
     前記第2の面に設けられた熱伝導層と、
     前記熱伝導層に、互いに電気的に絶縁されて設けられた複数の第1の接続電極と、
     複数の第2の接続電極と、
     M対のP型熱電変換素子およびN型熱電変換素子であって、各々の一端が前記複数の第1の接続電極のうちの一つと接触し、その他端が前記複数の第2の接続電極うちの一つに接触する、ただしMは自然数である、該P型熱電変換素子およびN型熱電変換素子と、
     前記P型熱電変換素子およびN型熱電変換素子のうちの一つの他端に接触する第1および第2の出力電極と、を含む熱電変換部と;
    を備え、
     前記第1の電極と前記複数の第1または第2の接続電極の一つとが電気的に接続され、前記第2の電極と前記複数の第1または第2の接続電極の他の一つとが電気的に接続され、前記M対のP型熱電変換素子およびN型熱電変換素子の各々が前記第1の接続電極と前記第2の接続電極を介して接続され、前記第1および第2の出力電極を出力電極として前記光電変換部と前記M対のP型熱電変換素子およびN型熱電変換素子とが電気的に直列に接続されてなり、
     前記第1の接続電極の第1の温度と該第1の温度よりも低い前記第2の接続電極の第2の温度との差により発生する前記熱電変換部の電力分が、前記光電変換部の前記第2の温度に対して前記第1の温度において減少する電力分よりも大きくなるように構成されてなる、複合発電装置。
  2.  前記Mは、式1を満たすように選択されてなる、請求項1記載の複合発電装置;
      1-(M/λ+C1/M)>0   ・・・(1)
    ここで、λは、1対の前記P型およびN型熱電変換素子の電気抵抗による電圧損失に対する前記M対の前記P型およびN型熱電変換素子により得られる熱起電力の割合を表す因子であり、C1は、1対の熱電変換素子において得られる熱起電力に対する、最大電力点における光電変換部の内部電圧の温度変化の割合を表す因子である。
  3.  前記λは式2で表される、請求項2記載の複合発電装置;
      λ=(MjQ/je)×(ασ/κ)  ・・・(2)
    ここで、式中のパラメータはP型およびN型熱電変換素子のパラメータであり、jQおよびjeは、P型およびN型熱電変換素子の1つあたりの、それぞれ、前記第1の接続電極から流入する熱流の熱流密度(W/m2)、電流密度(A/m2)、αはゼーベック係数(V/K)、σは電気伝導率(1/(Ωm))、κは熱伝導率(W/(mK))である。
  4.  前記Mは、λ/2に最も近い自然数が選択されてなる、請求項3記載の複合発電装置。
  5.  前記C1は式3で表される、請求項2~4のいずれか一項記載の複合発電装置;
    Figure JPOXMLDOC01-appb-M000001
    ここで、式中のパラメータは、dVOC/dTは光電変換部の開放電圧の温度特性、FFは光電変換部の電流-電圧特性のフィルファクタ、αはP型およびN型熱電変換素子のゼーベック係数(V/K)である。
  6.  式(4)を満たす範囲でその式中の各パラメータが選択されてなる、請求項2~5のうちいずれか一項記載の複合発電装置;
      ξ=αjec/κ<1  ・・・(4)
    ここで、式中のパラメータはP型およびN型熱電変換素子のパラメータであり、jeはP型およびN型熱電変換素子の1つあたりの電流密度(A/m2)、αはゼーベック係数(V/K)、κは熱伝導率(W/(mK))、Lcは前記第1の接続電極と接する端部と前記第2の接続電極の端部とを結ぶ方向に沿った長さ(m)である。
  7.  前記第1の電極と接続された前記第1の接続電極と前記第1の出力電極との間に少なくとも1個のP型熱電変換素子またはN型熱電変換素子が接続され、前記第2の電極と接続された前記第1の接続電極と前記第2の出力電極との間に少なくとも1個のP型熱電変換素子またはN型熱電変換素子が接続されてなる、請求項1~6のうちいずれか一項記載の複合発電装置。
  8.  前記熱伝導層は電気絶縁材料からなる請求項1~7のうちいずれか一項記載の複合発電装置。
  9.  前記吸収層と前記熱伝導層との間に赤外線吸収層をさらに備える、請求項1~8のうちいずれか一項記載の複合発電装置。
  10.  前記第2の電極が前記複数の第1の接続電極の他の一つを兼ねてなる、請求項1~9のうちいずれか一項記載の複合発電装置。
  11.  前記複数の第2の接続電極に接する冷却手段をさらに備える、請求項1~10のうちいずれか一項記載の複合発電装置。
PCT/JP2019/045804 2018-12-19 2019-11-22 太陽電池および熱電変換素子を有する複合発電装置 WO2020129539A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020561240A JP7503311B2 (ja) 2018-12-19 2019-11-22 太陽電池および熱電変換素子を有する複合発電装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018237064 2018-12-19
JP2018-237064 2018-12-19

Publications (1)

Publication Number Publication Date
WO2020129539A1 true WO2020129539A1 (ja) 2020-06-25

Family

ID=71102158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045804 WO2020129539A1 (ja) 2018-12-19 2019-11-22 太陽電池および熱電変換素子を有する複合発電装置

Country Status (2)

Country Link
JP (1) JP7503311B2 (ja)
WO (1) WO2020129539A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113838944A (zh) * 2021-08-27 2021-12-24 中国华能集团清洁能源技术研究院有限公司 集成式热光伏电池
US20230140254A1 (en) * 2021-10-29 2023-05-04 Korea University Research And Business Foundation Energy harvesting system using solar cell and thermoelectric device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50116192A (ja) * 1974-02-26 1975-09-11
JP2009016831A (ja) * 2007-06-29 2009-01-22 Gerhard Span 熱電素子、これを有する熱電発電機、熱電冷却器、及び熱電素子の製造方法
CN102130106A (zh) * 2010-12-25 2011-07-20 紫光股份有限公司 一种同时进行光电转换和热电转换的太阳能电池
JP2012508466A (ja) * 2008-11-04 2012-04-05 イートン コーポレーション 住宅用及び工業用建物のための熱電併給システム(chp)
US20140070190A1 (en) * 2012-07-13 2014-03-13 Boe Technology Group Co., Ltd. Light emitting device and method for manufacturing the same
KR20160112150A (ko) * 2015-03-18 2016-09-28 한국과학기술연구원 광전 열전 융합 발전소자 및 그 제조방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835991A (ja) * 1981-08-28 1983-03-02 Hitachi Ltd 高密度熱電素子
US6719987B2 (en) 2000-04-17 2004-04-13 Nucryst Pharmaceuticals Corp. Antimicrobial bioabsorbable materials
JP5835991B2 (ja) 2011-08-03 2015-12-24 日本特殊陶業株式会社 燃料電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50116192A (ja) * 1974-02-26 1975-09-11
JP2009016831A (ja) * 2007-06-29 2009-01-22 Gerhard Span 熱電素子、これを有する熱電発電機、熱電冷却器、及び熱電素子の製造方法
JP2012508466A (ja) * 2008-11-04 2012-04-05 イートン コーポレーション 住宅用及び工業用建物のための熱電併給システム(chp)
CN102130106A (zh) * 2010-12-25 2011-07-20 紫光股份有限公司 一种同时进行光电转换和热电转换的太阳能电池
US20140070190A1 (en) * 2012-07-13 2014-03-13 Boe Technology Group Co., Ltd. Light emitting device and method for manufacturing the same
KR20160112150A (ko) * 2015-03-18 2016-09-28 한국과학기술연구원 광전 열전 융합 발전소자 및 그 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NARDUCCI, DARIO ET AL.: "Challenges and Perspectives in Tandem Thermoelectric-Photovoltaic Solar Energy Conversion", IEEE TRANSACTIONS ON NANOTECHNOLOGY, vol. 15, no. 3, 2016, pages 348 - 355, XP011611892, DOI: 10.1109/TNANO.2016.2524680 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113838944A (zh) * 2021-08-27 2021-12-24 中国华能集团清洁能源技术研究院有限公司 集成式热光伏电池
US20230140254A1 (en) * 2021-10-29 2023-05-04 Korea University Research And Business Foundation Energy harvesting system using solar cell and thermoelectric device
KR20230062707A (ko) * 2021-10-29 2023-05-09 고려대학교 산학협력단 태양전지와 열전소자를 이용한 에너지 하베스팅 시스템
KR102628265B1 (ko) * 2021-10-29 2024-01-24 고려대학교 산학협력단 태양전지와 열전소자를 이용한 에너지 하베스팅 시스템

Also Published As

Publication number Publication date
JPWO2020129539A1 (ja) 2021-11-04
JP7503311B2 (ja) 2024-06-20

Similar Documents

Publication Publication Date Title
Li et al. A review of solar photovoltaic-thermoelectric hybrid system for electricity generation
Huen et al. Advances in hybrid solar photovoltaic and thermoelectric generators
Teffah et al. Modeling and experimental research of hybrid PV-thermoelectric system for high concentrated solar energy conversion
Tang et al. A review on energy conversion using hybrid photovoltaic and thermoelectric systems
EP2345087B1 (en) Combined solar/thermal (chp) heat and power for residential and industrial buildings
KR20190073895A (ko) 태양전지 열전 융합소자
WO1998050964A1 (en) Nighttime solar cell
US20100258164A1 (en) Photovoltaic force device
KR101956682B1 (ko) 태양전지 열전 융합소자
CN103426963A (zh) 聚集光伏/量子阱热电功率源
KR101664482B1 (ko) 태양광 발전장치 및 이의 제조방법
WO2020129539A1 (ja) 太陽電池および熱電変換素子を有する複合発電装置
Lorenzi et al. Conditions for beneficial coupling of thermoelectric and photovoltaic devices
US8729384B2 (en) Solar cell module
CN107017824A (zh) 一种光电热电复合发电装置
JPWO2019244428A1 (ja) 熱電変換材料、熱電変換素子、熱電変換モジュール、光センサおよび熱電変換材料の製造方法
US20160181456A1 (en) Low-Cost and High-Efficiency Tandem Photovoltaic Cells
CN101752496B (zh) 外加电场型温差发电热电堆电池及其制冷装置
KR102138688B1 (ko) 광전 열전 융합소자 및 이를 포함하는 발전모듈
Alshkeili et al. Design of dual-junction three-terminal CdTe/InGaAs solar cells
Singh et al. Theoretical study of highly efficient CH3NH3SnI3 based perovskite solar cell with CuInS2 quantum dot
Adam et al. Use of hybrid photovoltaic-thermoelectric (PV-TE) solar module for enhancing overall system efficiency
KR101601275B1 (ko) 태양광 발전장치 및 이의 제조방법
Wang Photovoltaic–thermoelectric hybrid energy conversion
WO2019124012A1 (ja) 太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901309

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020561240

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19901309

Country of ref document: EP

Kind code of ref document: A1