WO2020129128A1 - Battery, battery pack, electrical storage device, vehicle, and flying object - Google Patents

Battery, battery pack, electrical storage device, vehicle, and flying object Download PDF

Info

Publication number
WO2020129128A1
WO2020129128A1 PCT/JP2018/046374 JP2018046374W WO2020129128A1 WO 2020129128 A1 WO2020129128 A1 WO 2020129128A1 JP 2018046374 W JP2018046374 W JP 2018046374W WO 2020129128 A1 WO2020129128 A1 WO 2020129128A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
negative electrode
reinforcing member
exterior
battery
Prior art date
Application number
PCT/JP2018/046374
Other languages
French (fr)
Japanese (ja)
Inventor
元気 山岸
直樹 岩村
博清 間明田
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to JP2020560658A priority Critical patent/JP7155290B2/en
Priority to CN201880100276.3A priority patent/CN113169368B/en
Priority to PCT/JP2018/046374 priority patent/WO2020129128A1/en
Publication of WO2020129128A1 publication Critical patent/WO2020129128A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/176Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Embodiments of the present invention relate to a battery, a battery pack, a power storage device, a vehicle, and a flying object.
  • a battery such as a primary battery and a secondary battery generally includes an electrode group including a positive electrode and a negative electrode, and an exterior member that houses the electrode group.
  • metal cans and laminated film containers are put to practical use as exterior materials.
  • the metal can is obtained by deep drawing from a metal plate such as aluminum.
  • the metal plate needs to have a certain thickness, which hinders the thinning of the exterior member and leads to a loss in volume capacity.
  • the ratio of the total plate thickness of the outer can to the battery thickness is about 7.7%. Since it is a thin battery, the leads inside the battery are required to be compactly accommodated by being bent complicatedly.
  • the thin battery has a thin exterior material, so the exterior material is easily deformed.
  • the area around the terminal area is easily deformed by pressure reduction and pressure applied by a charge/discharge probe.
  • the deformation may cause a sealing failure or a conduction failure during charging/discharging.
  • the problem to be solved by the present invention is to provide a battery, a battery pack, a power storage device, a vehicle, and a flying body, which are hard to deform in a thin battery.
  • the battery of the embodiment includes a positive electrode, a positive electrode current collecting tab electrically connected to the positive electrode, a negative electrode, and a negative electrode current collecting tab electrically connected to the negative electrode.
  • a flat electrode group in which the tab is located on the first end surface and the negative electrode current collecting tab wound in a flat shape is located on the second end surface, and an electrode group side positive electrode electrically connected to the positive electrode current collecting tab
  • a flange of the first exterior part which includes a lead, a negative electrode lead on the electrode group side electrically connected to the negative electrode current collecting tab, a first exterior part having a flange part in an opening, and a second exterior part.
  • a second exterior part the exterior member having an electrode group housed in a space formed by welding, the first exterior part having a through hole on the side of the positive electrode current collecting tab, and the positive electrode head and the positive electrode.
  • a positive electrode external terminal including a positive electrode shaft portion extending from the head portion, a positive electrode terminal lead having a through hole and electrically connected to the electrode group side positive electrode lead, and the positive electrode head portion is outside the first exterior portion.
  • a positive electrode terminal portion protruding, the positive electrode shaft portion being inserted into the through hole of the positive electrode terminal lead, and the positive electrode shaft portion being caulked and fixed to the first outer casing portion and the positive electrode terminal lead; and the first outer casing portion being on the negative electrode collector tab side.
  • a negative electrode external terminal including a negative electrode head portion and a negative electrode shaft portion extending from the negative electrode head portion, including a negative electrode terminal lead having a through hole and electrically connected to the electrode group side negative electrode lead, A negative electrode terminal portion in which the negative electrode head portion protrudes outside the first exterior portion, the negative electrode shaft portion is inserted into the through hole of the negative electrode terminal lead, and the negative electrode shaft portion is caulked and fixed to the first exterior portion and the negative electrode terminal lead;
  • a first positive electrode insulation reinforcing member that is disposed on the inner surface side of the first outer packaging portion and on the inner surface side of the second outer packaging portion and that is disposed between the positive electrode terminal and the second outer packaging portion, and the first outer packaging portion
  • a first negative electrode insulating reinforcing member arranged between the negative electrode terminal and the second external portion, the first positive electrode insulating reinforcing member being disposed between the negative electrode terminal and the second external portion.
  • a first negative electrode insulating reinforcing member having a slope facing the end of the positive electrode shaft portion opposite to the positive electrode head side, wherein the first negative electrode insulating reinforcing member is opposite to the negative electrode head side of the negative electrode shaft portion.
  • a negative electrode insulating reinforcement holding portion having a slope facing the end portion on the side.
  • FIG. 1 is a schematic perspective view of the battery according to the first embodiment.
  • FIG. 2 is an exploded perspective view of the battery shown in FIG. 1 viewed from the positive electrode side.
  • FIG. 3 is an exploded perspective view of the battery shown in FIG. 1 viewed from the negative electrode side.
  • FIG. 4 is a perspective view of an electrode group of the battery shown in FIG.
  • FIG. 5 is a perspective view showing a state where the electrode group is partially developed.
  • FIG. 6 is a schematic view seen from the positive electrode terminal side (negative electrode terminal side) side.
  • FIG. 7 is a cross-sectional view obtained when cut along the plane A-A′ on the positive electrode side of FIG. 6.
  • FIG. 8 is a sectional view obtained when cut along the B-B′ surface on the positive electrode side of FIG. 6. is there.
  • FIG. 9 is a cross-sectional view obtained when cut along the C-C′ surface on the positive electrode side of FIG. 6. is there.
  • FIG. 10 is a cross-sectional view obtained when cut along the D-D′ surface on the positive electrode side of FIG. 7.
  • FIG. 11 is a cross-sectional view obtained when cut along the A-A′ surface on the negative electrode side of FIG. 6.
  • FIG. 12 is a schematic diagram for explaining the angles of the terminals, leads, and slopes.
  • FIG. 13 is a cross-sectional view obtained when cut along the A-A′ surface on the positive electrode side of FIG. 6 in the modified example.
  • FIG. 14 is a cross-sectional view obtained when cut along the A-A′ surface on the positive electrode side of FIG. 6 in the modified example.
  • FIG. 15 is a cross-sectional view obtained when cut along the B-B′ surface on the positive electrode side of FIG. 6 in the modified example.
  • FIG. 16 is a cross-sectional view obtained when cut along the C-C′ surface on the positive electrode side of FIG. 6 in the modified example.
  • FIG. 17 is a cross-sectional view obtained when cut along the B-B′ surface on the positive electrode side of FIG. 6 in the modified example.
  • FIG. 18 is a cross-sectional view obtained when cut along the A-A′ surface on the positive electrode side of FIG. 6 in the modified example.
  • FIG. 19 is a cross-sectional view obtained when cut along the B-B′ surface on the positive electrode side of FIG. 6 in the modified example.
  • FIG. 20 is a perspective view showing the battery shown in FIG.
  • FIG. 21A is a plan view of the second exterior portion
  • FIG. 21B is a plan view of the first exterior portion
  • 22A, 22 ⁇ /b>B, 22 ⁇ /b>C, and 22 ⁇ /b>D are three-sided views showing the manufacturing process of the battery according to the first embodiment.
  • FIG. 23A is a process diagram showing an assembling process of a battery containing a plurality of electrode groups.
  • FIG. 23B is a process diagram showing an assembling process of a battery containing a plurality of electrode groups.
  • FIG. 23C is a process diagram showing an assembling process of a battery containing a plurality of electrode groups.
  • FIG. 24 is a schematic diagram showing a first example of the battery pack according to the second embodiment.
  • FIG. 25 is a schematic diagram showing a second example of the battery pack according to the second embodiment.
  • FIG. 26 is a schematic diagram of the power storage device of the third embodiment.
  • FIG. 27 is a schematic diagram of a vehicle of the fourth embodiment.
  • FIG. 28 is a schematic diagram of the flying object of the fifth embodiment.
  • FIGS. 1 to 23 A part of the drawing is a perspective view or a developed view, and some members and parts are not shown, but the positive electrode and the negative electrode are symmetrically configured, and therefore the part of one electrode not shown is the other electrode. Will be revealed from the structure of. Note that the embodiments recognize that the positive electrode and the negative electrode are asymmetrically configured.
  • the battery 100 shown in FIG. 1 includes an exterior member 1, an electrode group 2, a positive electrode terminal portion 3, a negative electrode terminal portion 4, and an electrolyte (not shown).
  • the battery 100 shown in FIG. 1 is, for example, a secondary battery.
  • the battery 100 of the embodiment is thin.
  • the thickness of the thin battery 100 is preferably 5 mm or more and 30 mm or less, and more preferably 5 mm or more and 25 mm or less.
  • FIG. 2 is an exploded perspective view of the battery shown in FIG. 1 viewed from the positive electrode side.
  • FIG. 3 is an exploded perspective view of the battery shown in FIG. 1 viewed from the negative electrode side.
  • the exterior member 1 includes a first exterior portion 5 and a second exterior portion 6.
  • the 1st exterior part 5 is a bottomed square tube container, and has the flange part 5b in the opening part 5a.
  • the electrode group 2 is housed in a space formed by welding the flange portion 5b of the first exterior portion 5 and the second exterior portion 6.
  • the first exterior part 5 and the second exterior part 6 are preferably made of any one selected from the group consisting of stainless steel, aluminum laminate, and aluminum. Further, in order to increase the battery capacity per volume of the battery 100, the thickness of the first exterior part 5 and the second exterior part 6, that is, the plates of the first exterior part 5 and the second exterior part 6. The thickness is preferably in the range of 0.02 mm or more and 0.3 mm or less. Within this range, the contradictory properties of mechanical strength and flexibility can be compatible. A more preferable range of the plate thickness is 0.05 mm or more and 0.15 mm or less.
  • an inwardly projecting recess is provided near the center of the corner connecting the short side wall and the bottom of the first exterior part 5, and the bottom of the recess is an inclined surface. It is 5d.
  • the first exterior portion 5 has a depth equal to or smaller than the size of the opening 5a (the maximum length of the portion that becomes the opening area). The more preferable first exterior portion 5 has a depth equal to or less than the short side of the portion having the opening area (for example, the one shown in FIG. 2).
  • the first outer casing 5 is, for example, a cup-shaped container having an opening formed from a steel plate by shallow drawing.
  • the second exterior portion 6 is a lid.
  • the second exterior portion 6 covers the opening of the first exterior portion 5.
  • the second exterior portion 6 may be a cup-shaped container formed by shallow drawing or a plate-like shape.
  • the side surface of the second exterior portion 6 can be regarded as a part of the side surface of the first exterior portion 5.
  • the inner surface of the second exterior portion 6 on the side surface side can be regarded as a part of the inner surface of the first exterior portion 5.
  • the electrode group 2 is housed in a space formed by welding the flange portion 5b of the first exterior portion 5 to the four sides of the second exterior portion 6.
  • resistance seam welding is used for the welding. Resistance seam welding can achieve high airtightness and heat resistance at a lower cost than laser welding.
  • FIG. 4 is a perspective view of the electrode group 2 of the battery 100 shown in FIG.
  • the positive electrode collector tab 7a of the electrode group 2 shown in FIG. 4 is electrically connected to the electrode group side positive electrode lead 12.
  • the positive electrode current collecting tab 7a may be sandwiched between the backup positive electrode lead 11 and the backup positive electrode lead 11 may be electrically connected to the electrode group side positive electrode lead 12.
  • the negative electrode collector tab 8a of the electrode group 2 shown in FIG. 4 is electrically connected to the electrode group side negative electrode lead 14.
  • the negative electrode current collecting tab 8a may be sandwiched between the backup negative electrode lead 13 and the backup negative electrode lead 13 may be electrically connected to the electrode group side negative electrode lead 14.
  • the space in which the electrode group 2 is housed is a space with a low height.
  • the height of the exterior member 1 (the maximum distance between the first exterior portion 5 and the second exterior portion 6) is 5 mm or more and 30 mm or less.
  • the positive electrode insulation reinforcement holding portion 24 a is provided on the first positive electrode insulation reinforcement member 24 immediately below the positive electrode terminal 17, and the negative electrode insulation reinforcement holding portion 37 a is provided on the first negative electrode insulation reinforcement member 37 immediately below the negative electrode terminal 32.
  • the battery 100 is less likely to be deformed by external pressure or impact in the thickness direction of the battery 100.
  • the electrode group 2 has a flat shape and includes a positive electrode 7, a negative electrode 8, and a separator 9 arranged between the positive electrode 7 and the negative electrode 8.
  • the flat electrode group 2 includes a positive electrode 7, a positive electrode current collecting tab 7a electrically connected to the positive electrode 7, a negative electrode 8, and a negative electrode current collecting tab 8a electrically connected to the negative electrode 8, and has a flat shape.
  • the positive electrode collector tab 7a wound on the first end face is located on the first end face
  • the negative electrode collector tab 8a wound in a flat shape is located on the second end face.
  • One of the two flat surfaces of the electrode group 2 faces the bottom surface of the first exterior portion 5, and the other of the two flat surfaces of the electrode group 2 faces the surface of the second exterior portion 6. To do.
  • the positive electrode 7 includes, for example, a strip-shaped positive electrode current collector made of foil, a positive electrode current collector tab 7a having one end parallel to the long side of the positive electrode current collector, and at least the positive electrode current collector tab 7a. And a positive electrode material layer (positive electrode active material-containing layer) 7b formed on the electric body.
  • the positive electrode current collecting tab 7a is arranged at the center of the electrode group 2 in the width direction.
  • the width of the positive electrode current collecting tab 7a is preferably narrower than the width of the electrode group 2.
  • the width of the positive electrode current collector tab 7a and the width of the electrode group 2 are perpendicular to both the thickness direction of the battery 100 and the depth direction of the battery (direction from the positive electrode terminal 17 to the negative electrode terminal 32).
  • That the positive electrode current collector tab 7a is narrower than the width of the electrode group 2 means that the widthwise end of the positive electrode current collector tab 7a is notched. From the viewpoint of efficiently accommodating the current collector 2 in the exterior member 1, it is more preferable that the positive electrode current collector tabs 7a are cut out from both ends by 5 mm or more and narrower than the width of the electrode group 2 by 10 mm or more. In FIG. 2 and the like, both ends of the positive electrode current collector tab 7a are notched.
  • the negative electrode 8 includes, for example, a strip-shaped negative electrode current collector made of foil, a negative electrode current collector tab 8a having one end portion parallel to the long side of the negative electrode current collector, and at least the negative electrode current collector tab 8a portion. And a negative electrode material layer (negative electrode active material-containing layer) 8b formed on the negative electrode current collector.
  • the width of the negative electrode current collecting tab 8a is preferably narrower than the width of the electrode group 2.
  • the width of the negative electrode current collector tab 8a and the width of the electrode group 2 are perpendicular to both the thickness direction of the battery 100 and the depth direction of the battery 100 (direction from the positive electrode terminal 17 to the negative electrode terminal 32).
  • That the negative electrode current collecting tab 8a is narrower than the width of the electrode group 2 means that the widthwise end of the negative electrode current collecting tab 8a is notched. From the viewpoint of efficiently accommodating the electrode group 2 in the exterior member 1, it is more preferable that the negative electrode current collecting tabs 8a are cut out by 5 mm or more from both ends and are narrower than the width of the electrode group 2 by 10 mm or more. In FIG. 3 and the like, both ends of the negative electrode current collecting tab 8a are notched.
  • the positive electrode material layer 7b of the positive electrode 7 and the negative electrode material layer 8b of the negative electrode 8 face each other via the separator 9, and the positive electrode current collecting tab 7a is provided on one side of the winding shaft more than the negative electrode 8 and the separator 9.
  • the positive electrode 7, the separator 9, and the negative electrode 8 are wound in a flat shape so that the negative electrode current collecting tab 8a projects toward the other side than the positive electrode 7 and the separator 9. Therefore, in the electrode group 2, the positive current collecting tab 7a wound in a flat spiral shape is located on the first end surface perpendicular to the winding axis.
  • the flat, spirally wound negative electrode current collector tab 8a is located on the second end face perpendicular to the winding axis.
  • the insulating sheet 10 covers a part of the outermost circumference of the electrode group 2 between the positive electrode current collecting tab 7a and the negative electrode current collecting tab 8a.
  • the insulating sheet 10 also covers a part of the positive electrode collector tab 7a and the negative electrode collector tab 8a in the outermost periphery of the electrode group 2.
  • the electrode group 2 holds an electrolyte (not shown).
  • the backup positive electrode lead 11 is formed by bending a conductive plate into a U shape, and sandwiches the layers (around the center) excluding the curved portions at both ends of the positive electrode current collecting tab 7a to sandwich the layers of the positive electrode current collecting tab 7a. It is in close contact.
  • the electrode group side positive electrode lead 12 is a conductive plate having a larger area than the backup positive electrode lead 11. The backup positive electrode lead 11 can be omitted. When the backup positive electrode lead 11 is not used, the positive electrode current collecting tab 7 a is directly electrically connected to the electrode group side positive electrode lead 12.
  • the backup negative electrode lead 13 is formed by bending a conductive plate into a U shape, and sandwiches the layers of the negative electrode current collecting tab 8a with the portions (near the center) excluding the curved portions at both ends of the negative electrode current collecting tab 8a sandwiched therebetween. It is in close contact.
  • the electrode group side negative electrode lead 14 is a conductive plate having a larger area than the backup negative electrode lead 13. The backup negative electrode lead 13 can be omitted. When the backup negative electrode lead 13 is not used, the negative electrode current collecting tab 8a is directly electrically connected to the electrode group side negative electrode lead 14.
  • FIG. 6 shows a schematic view of the battery 100 viewed from the positive electrode terminal portion 3 side (negative electrode terminal portion 4 side) side.
  • the view seen from the positive electrode terminal portion 3 side and the view seen from the negative electrode terminal side portion 4 are the same.
  • FIG. 6 shows virtual lines (broken lines) of A-A', B-B' and C-C'.
  • these sectional views of the AA′ plane, the BB′ plane, and the CC′ plane, that is, from the virtual line to the depth direction of the battery 100 (from the positive electrode terminal portion 3 to the negative electrode terminal portion) 4 is a sectional view taken in the direction of (4).
  • FIG. 7 is a cross-sectional view obtained when cut along the A-A′ surface on the positive electrode terminal portion 3 side in FIG. 6.
  • the A-A′ surface is a cross section that passes through the center of the positive electrode terminal 17 (the center of the inclined surface 5d) and includes the positive electrode insulating reinforcement holding portion 24a.
  • FIG. 8 is a cross-sectional view obtained when cut along the B-B′ surface on the positive electrode terminal portion 3 side in FIG. 6.
  • the B-B′ surface is a cross section that passes through the outside of the positive electrode terminal 17 near the positive electrode terminal 17, and does not include the positive electrode insulating reinforcement holding portion 24a.
  • FIG. 9 is a cross-sectional view obtained when cut along the C-C′ surface on the positive electrode terminal portion 3 side in FIG. 6.
  • the C-C′ surface is a cross section that passes near the end of the first outer casing 5, and does not include the positive electrode insulating reinforcement holding portion 24 a. As shown in FIG. 7, the inside of the battery 100 of the positive electrode terminal 17 is supported by the positive electrode insulating reinforcement holding portion 24a.
  • the positive electrode insulation reinforcement holding portion 24a prevents deformation of the entire battery 100, particularly the positive electrode terminal portion 3 side when a force is applied from the outside of the battery 100.
  • FIG. 10 shows a cross-sectional view obtained by cutting along the DD′ plane of FIG. 7.
  • FIG. 11 is a cross-sectional view obtained when cut along the AA′ surface on the negative electrode terminal portion 4 side in FIG. 6.
  • the AA′ surface is a cross section that passes through the center of the negative electrode terminal 32 (the center of the inclined surface 5d) and includes the negative electrode insulation reinforcement holding portion 37a.
  • the inside of the battery 100 of the negative electrode terminal 32 is supported by the negative electrode insulating reinforcement holding portion 37a.
  • the negative electrode insulation reinforcement holding portion 37a prevents deformation of the entire battery 100, particularly the negative electrode terminal portion 4 side when a force is applied from the outside of the battery 100.
  • the positive electrode side and the negative electrode side are symmetric, the cross-sectional views of the BB′ surface, the CC′ surface, and the DD′ surface on the negative electrode side are not shown in FIG.
  • the structure on the negative electrode terminal portion 4 side can be understood by referring to.
  • the internal structure of the battery 100 will be described with reference to FIGS. 2, 3, and 7 to 11.
  • the electrode group side positive electrode lead 12 includes a flat plate portion 12a electrically connected to the positive electrode current collecting tab 7a side on the positive electrode current collecting tab 7a side, and a second portion. Has a first extending portion 12b and a second extending portion 12c extending toward the exterior portion 6 side. As shown in FIG. 8, the first extending portion 12b and the second extending portion 12c are directly and electrically connected to the positive electrode terminal lead 23. A gap 12d where the electrode group side positive electrode lead 12 does not exist exists between the first extending part 12b and the second extending part 12c. As shown in FIGS. 7 and 10, the positive electrode shaft portion 17b is exposed from the gap 12d.
  • the electrode group side positive electrode lead 12 is connected to the surface of the backup positive electrode lead 11 or the positive electrode current collecting tab 7a.
  • the backup positive electrode lead 11 is electrically connected to the positive electrode current collecting tab 7a and the electrode group side positive electrode lead 12.
  • the positive electrode collector tab 7a is electrically connected to the electrode group side positive electrode lead 12.
  • the positive electrode current collecting tab 7a, the backup positive electrode lead 11 and the electrode group side positive electrode lead 12 are integrated by welding, whereby the positive electrode 7 is connected to the electrode group side positive electrode lead 12 via the positive electrode current collecting tab 7a and the backup positive electrode lead 11. It is electrically connected.
  • the welding of the positive electrode current collector tab 7a and the backup positive electrode lead 11 is performed by, for example, laser welding or ultrasonic welding.
  • the backup positive electrode lead 11 and the electrode group side positive electrode lead 12 are welded by, for example, laser welding or ultrasonic welding.
  • the backup positive electrode lead 11 can be omitted. When the backup positive electrode lead 11 is omitted, it is preferable that the positive electrode current collecting tab 7a and the electrode side positive electrode lead 12 are welded.
  • the electrode group side negative electrode lead 14 includes a flat plate portion 14a electrically connected to the negative electrode current collecting tab 8a side on the negative electrode current collecting tab 8a side, and a second exterior portion. It has a first extending portion 14b and a second extending portion 14c extending toward the 6 side. Referring to FIG. 8, the first extending portion 14b and the second extending portion 14c are directly and electrically connected to the negative electrode terminal lead 36. A gap 14d where the electrode group side negative electrode lead 14 does not exist exists between the first extending portion 14b and the second extending portion 14c. As shown in FIGS. 10 and 11 for reference, the positive electrode shaft portion 32b is exposed from the gap 14d.
  • the electrode group side negative electrode lead 14 is connected to the surface of the backup negative electrode lead 13 or the negative electrode current collecting tab 8a.
  • the backup negative electrode lead 13 is electrically connected to the negative electrode current collecting tab 8a and the electrode group side negative electrode lead 14.
  • the negative electrode current collecting tab 8a is electrically connected to the electrode group side negative electrode lead 14.
  • the negative electrode current collecting tab 8a, the backup negative electrode lead 13 and the electrode group side negative electrode lead 14 are integrated by welding, whereby the negative electrode 8 is connected to the electrode group side negative electrode lead 14 via the negative electrode current collecting tab 8a and the backup negative electrode lead 13. It is electrically connected.
  • the welding of the negative electrode current collecting tab 8a and the backup negative electrode lead 13 is performed by, for example, laser welding or ultrasonic welding.
  • the backup negative electrode lead 13 and the electrode group side negative electrode lead 14 are welded by, for example, laser welding or ultrasonic welding.
  • the positive electrode terminal portion 3 includes a through hole 15 formed in the inclined surface 5d of the first exterior portion 5, a positive electrode outer member 17, and a positive electrode insulating member. 18 a, a positive electrode reinforcing member (ring member) 18 b, an insulating gasket 19, and a positive electrode terminal insulating member 20.
  • the first exterior portion 5 has a through hole 15 on the positive electrode collector tab 7a side.
  • the positive electrode terminal 17 of the positive electrode terminal portion 3 includes a positive electrode head portion 17a and a positive electrode shaft portion 17b extending from the positive electrode head portion 17a.
  • the positive electrode terminal portion 3 includes a positive electrode terminal lead 23 having a through hole 23e.
  • the positive electrode head portion 17a projects to the outside of the first exterior portion 5
  • the positive electrode shaft portion 17b is inserted into the through hole 23e of the positive electrode terminal lead 23, and the positive electrode shaft portion 17b becomes the first exterior portion. 5 and the positive electrode terminal lead 23 are fixed by crimping.
  • the burring portion (annular rising portion) 16 extends from the peripheral portion of the through hole 15 toward the inside of the exterior member 1 as shown in FIG. 7, and is formed by burring processing.
  • the positive electrode terminal 17 includes a truncated pyramid-shaped positive electrode head portion 17 a and a cylindrical positive electrode shaft portion 17 b that penetrates the through hole 15 of the first exterior portion 5.
  • the cylindrical positive electrode shaft portion 17b extends from a plane parallel to the top surface of the positive electrode head portion 17a.
  • the positive electrode external terminal 17 is formed of a conductive material such as aluminum or aluminum alloy.
  • the positive electrode insulating member 18 a insulates the first exterior part 5 from the positive electrode terminal 17 and the positive electrode terminal lead 23.
  • the positive electrode reinforcing member 18b is sandwiched between the first exterior part 5 and the positive electrode insulating member 18a.
  • the positive electrode reinforcing member 18b is, for example, a circular ring formed of a material having higher rigidity than a gasket.
  • materials having higher rigidity than the gasket include stainless steel, iron plated (for example, Ni, NiCr, etc.), ceramics, resin that can have higher rigidity than the gasket (for example, polyphenylene sulfide (PPS), poly Butylene terephthalate (PBT)) and the like are included.
  • PPS polyphenylene sulfide
  • PBT poly Butylene terephthalate
  • the positive electrode reinforcing member 18b is arranged on the outer peripheral surface of the burring portion 16 and is in contact with the burring portion 16 and the positive electrode insulating member 18a.
  • the positive electrode reinforcing member 18b is made of an insulating material such as resin or ceramics, it can be integrated with the second positive electrode insulating reinforcing member 25.
  • the insulating gasket 19 is a cylindrical body having a flange portion 19a at one open end. As shown in FIG. 7, the insulating gasket 19 has a cylindrical portion inserted into the through hole 15 and the burring portion 16, and the flange portion 19 a is arranged on the outer surface of the first exterior portion 5 on the outer periphery of the through hole 15. Has been done.
  • the insulating gasket 19 is, for example, a resin such as fluororesin, fluororubber, polyphenylene sulfide resin (PPS resin), polyether ether ketone resin (PEEK resin), polypropylene resin (PP resin), and polybutylene terephthalate resin (PBT resin). Are formed from.
  • the positive electrode terminal insulating member 20 is a plate member bent at an obtuse angle, and has a through hole 20a at the bottom.
  • the positive electrode terminal insulating member 20 is arranged on the outer surface of the first exterior portion 5.
  • An insulating gasket 19 is inserted into the through hole 20 a of the positive electrode terminal insulating member 20.
  • the positive electrode terminal lead 23 is a conductive plate having a flat plate portion 23a, a first extending portion 23b, a second extending portion 23c and a third extending portion 23d.
  • the positive electrode terminal lead 23 has a flat plate portion 23a on the electrode group 2 side.
  • the first extending portion 23b and the second extending portion 23c extend to the opening side of the first exterior portion 5, that is, the second exterior portion 6 side.
  • the first extending portion 23b and the second extending portion 23c are located on the second exterior material 6 side, and the first extending portion 12b and the second extending portion 12c of the electrode group side positive electrode lead 12 are located. It extends in the same direction as.
  • the third extending portion 23d extends in the direction along the inclined surface 5d.
  • a through hole 23e is provided in the center of the third extending portion 23d.
  • the first extending portion 23b of the positive electrode terminal lead 23 is integrated with the first extending portion 12b of the electrode group side positive electrode lead 12 by welding. Faces of the first extending portion 23b of the positive electrode terminal lead 23 and the first extending portion 12b of the electrode group side positive electrode lead 12 facing each other, and/or the first extending portion of the positive electrode terminal lead 23 on the tip side. The end surface of 23b and the end surface of the first extending portion 12b of the electrode group side positive electrode lead 12 are welded.
  • the second extending portion 23c of the positive electrode terminal lead 23 is integrated with the second extending portion 12c of the electrode group side positive electrode lead 12 by welding. Faces of the second extending portion 23c of the positive electrode terminal lead 23 and the second extending portion 12c of the electrode group side positive electrode lead 12 facing each other, and/or the second extending portion of the positive electrode terminal lead 23 on the tip side. The end surface of 23c and the end surface of the second extending portion 12c of the electrode group side positive electrode lead 12 are welded.
  • the extending direction of at least the tip portion of the first extending portion 23b of the positive electrode terminal lead 23 and the first extending portion 12b of the electrode group side positive electrode lead 12 is the second extending direction. It is preferably perpendicular or substantially perpendicular (80° or more and 100° or less) to the surface of the exterior portion 6.
  • the extending direction of at least the tip end portion of the first extending portion 23b of the positive electrode terminal lead 23 and the first extending portion 12b of the electrode group-side positive electrode lead 12 is perpendicular or approximately to the surface of the second exterior portion 6. Being vertical means that the first extension portion 23b of the positive electrode terminal lead 23 and the first extension portion 12b of the electrode group-side positive electrode lead 12 are formed without welding after welding.
  • the extending direction of at least the tip portion of the second extending portion 23c of the positive electrode terminal lead 23 and the second extending portion 12c of the electrode group side positive electrode lead 12 is the second It is preferably perpendicular or substantially perpendicular (80° or more and 100° or less) to the surface of the exterior portion 6.
  • the extending direction of at least the tip end portion of the second extending portion 23c of the positive electrode terminal lead 23 and the second extending portion 12c of the electrode group-side positive electrode lead 12 is perpendicular or approximately to the surface of the second exterior portion 6.
  • Being vertical means that the second extension portion 23c of the positive electrode terminal lead 23 and the second extension portion 12c of the electrode group side positive electrode lead 12 are formed without welding after welding.
  • the wiring of the terminal part of the electrode can be made compact by bending the lead after welding, but in order to perform bending accurately after welding, it is required to reduce the thickness of the lead.
  • reducing the thickness of the leads is not preferable because it is difficult for a large current to flow.
  • the thickness of the lead can be increased by making the welded portion face the direction of the surface of the second exterior portion 6.
  • the thickness of the positive electrode terminal lead 23 can be 0.5 mm or more and 3.0 mm or less, and the thickness of the electrode group side positive electrode lead 12 is 0.5 mm or more and 3.0 mm. It can be: Further, considering the bending process of the leads before welding the leads to each other and the large current characteristic, the sum of the thickness of the positive electrode terminal lead 23 and the thickness of the electrode group side positive electrode lead 12 is 1.0 mm or more and 1.2 mm or less. It is preferable. These thicknesses are preferably filled at least in the welded parts.
  • the first positive electrode insulating reinforcing member 24 has a structure in which a rectangular cylinder with a bottom is divided in half in the long side direction, as shown in FIGS. 2, 3, and 7 to 10.
  • the first positive electrode insulating reinforcing member 24 covers approximately half of the positive electrode current collecting tab 7a from the winding center to the second outer packaging portion 6 side, whereby the second outer packaging portion 6, particularly near the short side. Can be reinforced.
  • the first positive electrode insulating reinforcing member 24 is arranged on the inner surface side of the first outer casing 5 and the inner surface side of the second outer casing 6, and is arranged between the positive electrode terminal 17 and the second outer casing 6. ..
  • the first positive electrode insulating reinforcing member 24 has a positive electrode insulating reinforcing holding portion 24a.
  • the positive electrode insulating reinforcement holding portion 24a has a sloped surface facing the end portion of the positive electrode shaft portion 17b on the side opposite to the positive electrode head portion 17a side. Since the positive electrode terminal portion 3 is supported by the sloped surface of the positive electrode insulating reinforcement holding portion 24a, the strength of the battery 100 is improved.
  • the positive electrode insulation reinforcement holding portion 24a is a portion extending from the bottom portion 24b of the first positive electrode insulation reinforcement member 24 facing the second exterior portion 6 side.
  • the first positive electrode insulating reinforcing member 24 includes a first side face 24c facing the positive electrode terminal side of the first outer casing 5 and a second side face 24d facing the widthwise face of the first outer casing 5. From the viewpoint of reinforcing the battery 100 on the positive electrode terminal portion 3 side, the surface of the positive electrode shaft portion 17b facing the positive electrode insulating reinforcement holding portion 24a, that is, the surface of the end portion of the positive electrode shaft portion 17b opposite to the positive electrode head portion 17a side. Is preferably smaller than the slope of the positive electrode insulating reinforcement holding portion 24a, that is, the surface facing the positive electrode shaft portion 17b of the positive electrode insulating reinforcement holding portion 24a and having the closest distance to the positive electrode shaft portion 17b.
  • the positive electrode shaft portion 17 crimped and fixed to the positive electrode terminal lead 23 comes into contact with the sloped surface of the positive electrode insulation reinforcement holding portion 24a having a large area and can be held, so that the battery 100 of the positive electrode terminal portion 3 side can be held. Strength is improved.
  • the positive electrode terminal portion 3 further includes a second positive electrode insulating reinforcing member 25.
  • the second positive electrode insulating reinforcing member 25 has a structure in which a rectangular cylinder with a bottom is divided in half in the long side direction.
  • the second positive electrode insulating reinforcing member 25 is arranged on the inner surface side of the first outer casing 5 and between the positive electrode terminal lead 23 and the first outer casing 5, and is connected to the first positive electrode insulating reinforcing member 24. Facing each other.
  • the second positive electrode insulating reinforcing member 25 includes a bottom portion 25a facing the bottom side of the first exterior portion 5 and a first side surface portion facing the side surface (side wall on the short side side) side of the first exterior portion 5 in the positive electrode terminal direction. 25b, the bottom portion 25a and the first side surface portion 25b are connected to each other, the inclined portion 25c arranged in the center of the second positive electrode insulating and reinforcing member 25, the through hole 25d opened in the center of the inclined portion 25c, and the first A second side surface portion 25e that faces the side surface (long side sidewall) in the width direction of the exterior portion 5 is provided.
  • the second positive electrode insulating reinforcing member 25 includes a corner portion connected from the short side wall of the first exterior portion 5 to the bottom surface and a corner portion connected from the short side wall of the first exterior portion 5 to the long side surface. To cover. As a result, it is possible to reinforce the first exterior portion 5, particularly, the vicinity of the corner where the short side wall, the long side wall, and the bottom portion intersect.
  • the through hole 25d communicates with the through hole 15 of the first exterior portion 5.
  • the positive electrode terminal lead 23 is arranged on the second positive electrode insulating reinforcing member 25.
  • the through hole 23e of the positive electrode terminal lead 23 communicates with the through hole 25d of the second positive electrode insulating and reinforcing member 25 and the through hole 15 of the first exterior portion 5.
  • the second positive electrode insulating reinforcing member 25 is caulked and fixed to the positive electrode shaft portion 17b, the first outer casing portion 5 and the positive electrode terminal lead 23, and is fixed at the positive electrode terminal portion 3 from the viewpoint of imparting insulation and strength. Is preferred.
  • the first positive electrode insulating reinforcing member 24 and the second positive electrode insulating reinforcing member 25 are preferably insulative and molded resin.
  • the positive electrode current collecting tab 7a and the positive electrode terminal 17 inside the battery 100 are configured so as not to short-circuit with the first exterior part 5 and the second exterior part 6.
  • the inner surface side of the first exterior part 5 and the second exterior part 6 between the positive electrode terminal 17 and the positive electrode current collecting tab 7a is provided with a first positive electrode insulation reinforcing member 24 and a second positive electrode insulation reinforcing member 25.
  • the positive electrode current collecting tab 7a and the positive electrode terminal 17 inside the battery 100 are configured so as not to be short-circuited with the first exterior part 5 and the second exterior part 6 by being covered.
  • the positive electrode shaft portion 17b of the positive electrode external terminal 17 includes an insulating gasket 19, a through hole 20a of the positive electrode terminal insulating member 20, a through hole 15 of the first outer casing 5, a through hole 25c of the second positive electrode insulating reinforcing member 25, and a positive electrode.
  • caulking causes plastic deformation.
  • these members are integrated and the positive electrode external terminal 17 is electrically connected to the positive electrode terminal lead 23. Therefore, the positive electrode external terminal 17 also serves as a rivet.
  • the boundary between the end surface 17b of the positive electrode shaft portion of the positive electrode external terminal 17 and the through hole 23e of the positive electrode terminal lead 23 may be welded by a laser or the like to make a stronger connection and improve electrical conductivity.
  • the negative electrode terminal portion 4 has a through hole 30 formed in the inclined surface 5d of the first exterior portion 5, a negative electrode terminal 32, a negative electrode insulating member 33a, and a negative electrode reinforcing member (ring). Shaped member) 33b, an insulating gasket 34, and a negative electrode terminal insulating member 35.
  • the first exterior portion 5 has a through hole 30 on the negative electrode current collector tab 8a side.
  • the negative electrode terminal 32 of the negative electrode terminal portion 4 includes a negative electrode head portion 32a and a negative electrode shaft portion 32b extending from the negative electrode head portion 32a.
  • the negative electrode terminal portion 4 includes a negative electrode terminal lead 36 having a through hole 36e.
  • the negative electrode head portion 32a projects to the outside of the first exterior portion 5
  • the negative electrode shaft portion 32b is inserted into the through hole 36e of the negative electrode terminal lead 36, and the negative electrode shaft portion 32b becomes the first exterior portion. 5 and the negative electrode terminal lead 36 are fixed by crimping.
  • the burring portion (annular rising portion) 31 extends from the peripheral portion of the through hole 30 toward the inside of the exterior member 1, and is formed by burring processing.
  • the negative electrode terminal 32 includes a truncated pyramid-shaped negative electrode head portion 32 a and a cylindrical negative electrode shaft portion 32 b that penetrates the through hole 30 of the first exterior portion 5.
  • the columnar negative electrode shaft portion 32b extends from a plane parallel to the top surface of the negative electrode head portion 32a.
  • the negative electrode terminal 32 is made of a conductive material such as aluminum or aluminum alloy.
  • the negative electrode insulating member 33 a insulates the first exterior part 5 from the negative electrode terminal 32 and the negative electrode terminal lead 36.
  • the negative electrode reinforcing member 33b is sandwiched between the first exterior portion 5 and the negative electrode insulating member 33a.
  • the negative electrode reinforcing member 33b is, for example, a circular ring formed of a material having higher rigidity than the gasket.
  • materials having higher rigidity than the gasket include stainless steel, iron plated (for example, Ni, NiCr, etc.), ceramics, resin that can have higher rigidity than the gasket (for example, polyphenylene sulfide (PPS), poly Butylene terephthalate (PBT)) and the like are included.
  • PPS polyphenylene sulfide
  • PBT poly Butylene terephthalate
  • the negative electrode reinforcing member 33b is arranged on the outer peripheral surface of the burring portion 31 and is in contact with the burring portion 31 and the negative electrode insulating member 33a.
  • the negative electrode reinforcing member 33b is made of an insulating material such as resin or ceramics, it can be integrated with the first negative electrode insulating reinforcing member 37.
  • the insulating gasket 34 is a cylindrical body (cylindrical portion) having a flange portion 34a at one open end.
  • the cylindrical portion is inserted into the through hole 30 and the burring portion 31, and the flange portion 34 a is formed in the through hole 30 on the outer surface of the first exterior portion 5. It is arranged on the outer circumference.
  • the insulating gasket 34 is, for example, a resin such as fluororesin, fluororubber, polyphenylene sulfide resin (PPS resin), polyether ether ketone resin (PEEK resin), polypropylene resin (PP resin), and polybutylene terephthalate resin (PBT resin). Are formed from.
  • the negative electrode terminal insulating member 35 is a plate member bent at an obtuse angle, and has a through hole 35a at the bottom.
  • the negative electrode terminal insulating member 35 is arranged on the outer surface of the first exterior portion 5.
  • An insulating gasket 34 is inserted into the through hole 35 a of the negative electrode terminal insulating member 35.
  • the negative electrode terminal lead 36 is a conductive plate having a flat plate portion 36a, a first extending portion 36b, a second extending portion 36c and a third extending portion 36d.
  • the negative electrode terminal lead 36 has a flat plate portion 36a on the electrode group 2 side.
  • the first extending portion 36b and the second extending portion 36c extend to the opening side of the first exterior portion 5, that is, the second exterior portion 6 side.
  • the 1st extension part 36b and the 2nd extension part 36c are located in the 2nd exterior material 6 side, and the 1st extension part 14b and the 2nd extension part 14c of the electrode group side negative electrode lead 14 are located. It extends in the same direction as.
  • the third extending portion 36d extends in the direction along the inclined surface 5d.
  • a through hole 36e is provided at the center of the third extending portion 36d.
  • the first extending portion 36b of the negative electrode terminal lead 36 is integrated with the first extending portion 14b of the electrode group side negative electrode lead 14 by welding. There is. Faces of the first extension portion 36b of the negative electrode terminal lead 36 and the first extension portion 14b of the electrode group side negative electrode lead 14 facing each other and/or the first extension portion of the negative electrode terminal lead 36 on the tip side. The end face of 36b and the end face of the first extending portion 14b of the electrode group side negative electrode lead 14 are also welded.
  • the second extension portion 36c of the negative electrode terminal lead 36 is integrated with the second extension portion 14c of the electrode group side negative electrode lead 14 by welding. There is.
  • the end face of 36c and the end face of the second extending portion 14c of the electrode group side negative electrode lead 14 are welded.
  • the extending direction of at least the tip end portion of the first extension portion 36b of the negative electrode terminal lead 36 and the first extension portion 14b of the electrode group side negative electrode lead 14 Is preferably perpendicular or substantially perpendicular (80° or more and 100° or less) to the surface of the second exterior portion 6.
  • the extending direction of at least the tip end portion of the first extending portion 36b of the negative electrode terminal lead 36 and the first extending portion 14b of the electrode group-side negative electrode lead 14 is perpendicular or approximately to the surface of the second exterior portion 6.
  • Being vertical means that the first extension portion 36b of the negative electrode terminal lead 36 and the first extension portion 14b of the electrode group side negative electrode lead 14 are formed without welding after welding.
  • the extending direction of at least the tip portion of the second extending portion 36c of the negative electrode terminal lead 36 and the second extending portion 14c of the electrode group side negative electrode lead 14 Is preferably perpendicular or substantially perpendicular (80° or more and 100° or less) to the surface of the second exterior portion 6.
  • the extending direction of at least the tip end portion of the second extending portion 36c of the negative electrode terminal lead 36 and the second extending portion 14c of the electrode group-side negative electrode lead 14 is perpendicular or approximately to the surface of the second exterior portion 6.
  • Being vertical means that the second extension portion 36c of the negative electrode terminal lead 36 and the second extension portion 14c of the electrode group-side negative electrode lead 14 are formed without welding after welding.
  • the wiring of the terminal portion of the electrode can be made compact by bending the lead after welding, it is required to reduce the thickness of the lead in order to perform bending accurately after welding.
  • reducing the thickness of the leads is not preferable because it is difficult for a large current to flow.
  • the thickness of the lead can be increased by making the welded portion face the direction of the surface of the second exterior portion 6.
  • the thickness of the negative electrode terminal lead 36 can be 0.5 mm or more and 3.0 mm or less, and the thickness of the electrode group side negative electrode lead 14 is 0.5 mm or more and 3.0 mm. It can be: Furthermore, considering the lead bending process before welding the leads to each other and the large current characteristic, the sum of the thickness of the negative electrode terminal lead 36 and the thickness of the electrode group side negative electrode lead 14 is 1.0 mm or more and 1.2 mm or less. It is preferable.
  • the first negative electrode insulating reinforcing member 37 has a structure in which a rectangular cylinder with a bottom is divided in half in the long side direction, as shown in FIGS. 2, 3, 11 and 9 to 10 for reference.
  • the first negative electrode insulating reinforcing member 37 covers about half of the negative electrode current collecting tab 8a from the winding center to the second outer packaging portion 6 side, whereby the second outer packaging portion 6, particularly near the short side. Can be reinforced.
  • the first negative electrode insulating reinforcing member 37 is arranged on the inner surface side of the first outer casing 5 and the inner surface side of the second outer casing 6, and is arranged between the negative electrode terminal 32 and the second outer casing 6. ..
  • the first negative electrode insulating reinforcing member 37 has a negative electrode insulating reinforcing holding portion 37a.
  • the negative electrode insulation reinforcement holding portion 37a has a sloped surface facing the end portion of the negative electrode shaft portion 32b opposite to the negative electrode head portion 32a side.
  • the negative electrode terminal portion 3 is supported by the sloped surface of the negative electrode insulating reinforcement holding portion 37a, thereby improving the strength of the battery 100.
  • the negative electrode insulation reinforcement holding portion 37a is a portion extending from the bottom portion 37b of the first negative electrode insulation reinforcement member 37 facing the second exterior portion 6 side.
  • the first negative electrode insulating reinforcing member 37 includes a first side surface 37c facing the negative electrode terminal side of the first outer casing 5 and a second side surface 37d facing the widthwise surface of the first outer casing 5. From the viewpoint of reinforcing the battery 100 on the negative electrode terminal portion 4 side, the surface of the negative electrode shaft portion 32b facing the negative electrode insulating reinforcement holding portion 37a, that is, the surface of the end portion of the negative electrode shaft portion 32b opposite to the positive electrode head portion 32a side. Is preferably smaller than the slope of the negative electrode insulating reinforcement holding portion 37a, that is, the surface facing the negative electrode shaft portion 32b of the negative electrode insulating reinforcement holding portion 37a and having the shortest distance from the negative electrode shaft portion 32b.
  • the negative electrode shaft portion 32 crimped and fixed to the negative electrode terminal lead 36 comes into contact with the slope of the negative electrode insulation reinforcement holding portion 37a having a large area and can be held, so that the battery 100 on the negative electrode terminal portion 4 side can be held. Strength is improved.
  • the negative electrode terminal portion 3 further includes a second negative electrode insulating reinforcing member 38.
  • the second negative electrode insulating reinforcing member 38 has a structure in which a bottomed rectangular tube is halved in the long side direction.
  • the second negative electrode insulating reinforcing member 38 is arranged on the inner surface side of the first outer casing 5 and between the negative electrode terminal lead 36 and the first outer casing 5, and is connected to the first negative electrode insulating reinforcing member 37. Facing each other.
  • the second negative electrode insulation reinforcing member 38 includes a bottom portion 38a that faces the bottom portion side of the first exterior portion 5, and a first side surface portion that faces the side surface (side wall on the short side side) side of the first exterior portion 5 in the negative electrode terminal direction. 38b, the bottom portion 38a and the first side surface portion 38b, and an inclined portion 38c arranged in the center of the second negative electrode insulating reinforcing member 38, a through hole 38d opened in the center of the inclined portion 38d, and the first A second side surface portion 38e that faces the side surface (long side wall) of the exterior portion 5 in the width direction.
  • the second negative electrode insulating reinforcing member 38 includes a corner portion connecting the short side wall of the first exterior portion 5 to the bottom surface and a corner portion connecting the short side wall of the first exterior portion 5 to the long side surface. To cover. As a result, it is possible to reinforce the first exterior portion 5, particularly, the vicinity of the corner where the short side wall, the long side wall, and the bottom portion intersect.
  • the through hole 38d communicates with the through hole 30 of the first exterior portion 5.
  • the negative electrode terminal lead 36 is disposed on the second negative electrode insulating reinforcing member 38.
  • the through hole 36 e of the negative electrode terminal lead 36 communicates with the through hole 38 d of the second negative electrode insulating reinforcing member 38 and the through hole 30 of the first exterior portion 5.
  • the second negative electrode insulation reinforcing member 38 is caulked and fixed to the negative electrode shaft portion 32b, the first exterior portion 5 and the negative electrode terminal lead 36, and is fixed at the negative electrode terminal portion 4 from the viewpoint of providing insulation and strength. Is preferred.
  • the first negative electrode insulating reinforcing member 37 and the second negative electrode insulating reinforcing member 38 are preferably insulative and molded resin.
  • the negative electrode current collecting tab 8a and the positive electrode terminal 17 inside the battery 100 are configured so as not to short-circuit with the first exterior part 5 and the second exterior part 6.
  • the inner surfaces of the first outer casing 5 and the second outer casing 6 between the negative electrode terminal 32 and the negative electrode current collecting tab 8a are covered with a first negative electrode insulating reinforcing member 37 and a second negative electrode insulating reinforcing member 38.
  • the negative electrode current collecting tab 8a and the negative electrode terminal 32 inside the battery 100 are configured so as not to be short-circuited with the first exterior part 5 and the second exterior part 6 by being covered.
  • the negative electrode shaft portion 32b of the negative electrode terminal 32 includes an insulating gasket 34, a through hole 35a of the negative electrode insulating member 35, a through hole 30 of the first exterior portion 5, a through hole 37c of the first negative electrode insulating reinforcing member 37, and a negative electrode terminal lead. After being inserted into the through hole 36e of 36, caulking causes plastic deformation. As a result, these members are integrated and the negative electrode terminal 32 is electrically connected to the negative electrode terminal lead 36. Therefore, the negative electrode terminal 32 also serves as a rivet.
  • the boundary between the end surface 32b of the negative electrode shaft portion of the negative electrode terminal 32 and the through hole 36e of the negative electrode terminal lead 36 may be welded with a laser or the like for stronger connection and improved electrical conductivity.
  • the backup positive electrode terminal lead 11, the electrode group side positive electrode lead 12, the positive electrode terminal lead 23, the backup negative electrode terminal lead 13, the electrode group side negative electrode lead 14 and the negative electrode terminal lead 36 can be formed of, for example, aluminum or an aluminum alloy material. ..
  • the material of the lead is preferably the same as the material of the positive electrode current collector or the negative electrode current collector that can be electrically connected to the lead.
  • the positive electrode insulating member 18a, the first positive electrode insulating reinforcing member 24, the second positive electrode insulating reinforcing member 25, the negative electrode insulating member 33a, the first negative electrode terminal insulating reinforcing member 37, and the second negative electrode insulating reinforcing member 38 are, for example, Tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer (PFA), polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), polyphenylene sulfide (PPS) and polyether ether ketone It is formed of a thermoplastic resin containing at least one selected from the group consisting of (PEEK) and the like.
  • PFA Tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer
  • PP polypropylene
  • PE polyethylene
  • PET polyethylene terephthalate
  • PTFE polytetrafluoroethylene
  • the electrode group 2 is housed in the first exterior part 5 such that the positive electrode current collecting tab 7 a faces the positive electrode terminal part 3 and the negative electrode current collecting tab 8 a faces the negative electrode terminal part 4. Therefore, a curved surface that intersects the positive electrode current collector tab 7a and the negative electrode current collector tab 8a with the flat surface that intersects the positive electrode current collector tab 7a and the negative electrode current collector tab 8a of the electrode group 2 facing the bottom surface 5c in the first exterior portion 5. Faces the side surface on the long side in the first exterior portion 5.
  • the strength of the battery 100 is improved.
  • the displacement of the battery 100 when a load of 10 N is applied to the positive electrode terminal or the negative electrode terminal in the direction from the first exterior part 5 to the second exterior part 6 is 1. It is less than 0 mm. Therefore, the reliability of the battery 100 is improved even in a harsh environment.
  • FIG. 12 is a schematic diagram for explaining the angles of the terminals, leads, and slopes. Since the positive electrode side and the negative electrode side are the same, the positive electrode side will be mainly described.
  • the sloped surface facing the end of the positive electrode shaft portion 17b of the positive electrode insulation reinforcement holding portion 24a opposite to the positive electrode head portion 17a has an end portion opposite to the positive electrode head portion 17a of the positive electrode shaft portion 17b facing the sloped surface. If it is parallel or substantially parallel to, it is possible to further prevent deformation of the battery 100 due to external pressure.
  • the angle formed between the second exterior portion 6 and the surface of the positive electrode shaft portion 17a that faces the slope of the positive insulation reinforcement holding portion 24a is A1
  • the slope of the positive insulation reinforcement holding portion 24a and the second exterior portion 6 are Is defined as A2
  • the angle between the surface of the negative electrode shaft portion 32b facing the sloped surface of the negative electrode insulation reinforcement holding portion 37a and the second exterior portion 6 is defined as B1
  • the sloped surface of the negative electrode insulation reinforcement holding portion 37a is defined as the second surface. It is preferable that
  • the angle formed by the second exterior portion 6 and the surface of the positive electrode shaft portion 17a facing the inclined surface of the positive electrode insulation reinforcement holding portion 24a is A1, and the angle formed by the inclination surface of the positive electrode insulation reinforcement holding portion 24a and the second exterior portion 6 A2 is calculated using the virtual lines L1 to L5 in FIG.
  • the angle is obtained by CT (Computed Tomography) inspection using X-rays on the center cross section of the battery 100 as shown in FIG. 7 that includes the positive electrode shaft portion 17a and the positive electrode insulating reinforcement holding portion 24a.
  • the virtual line L1 is a line along the bottom surface of the second exterior portion 6.
  • the virtual line L2 is a line passing through two points (X1 and X2) where the third extending portion 23d of the positive electrode terminal lead 23 and the positive electrode shaft portion 17b are in contact with each other.
  • the intersection point between the perpendicular line L3 from the imaginary line L2 passing through the contact point X1 and the positive electrode insulating reinforcement holding portion 24a is defined as Y1.
  • the intersection point of the perpendicular line L4 from the imaginary line L2 passing through the contact point X2 and the positive electrode insulating reinforcement holding portion 24a is defined as Y2.
  • a line passing through Y1 and Y2 is defined as a virtual line L5.
  • An angle A1 formed by the surface of the positive electrode shaft portion 17a facing the inclined surface of the positive electrode insulating reinforcement holding portion 24a and the second exterior portion 6 is an angle formed by the virtual line L1 and the virtual line L2.
  • An angle A2 formed by the inclined surface of the positive electrode insulating reinforcement holding portion 24a and the second exterior portion 6 is an angle formed by the virtual line L1 and the virtual line L2.
  • the angle formed between the second exterior portion 6 and the surface of the negative electrode shaft portion 32b that faces the slope of the negative insulation reinforcement holding portion 37a is B1, and the slope between the negative insulation reinforcement holding portion 37a and the second exterior portion 6 is formed.
  • the angle B2 is similarly obtained.
  • the distance between the slope of the positive electrode insulating reinforcement holding portion 24a and the positive electrode shaft portion 17b is 0.0 mm or more and 1.0 mm or less.
  • the distance between the slope of the negative electrode insulating reinforcement holding portion 37a and the negative electrode shaft portion 32b is preferably 0.0 mm or more and 1.0 mm or less.
  • the distance between the slope of the positive electrode insulation reinforcement holding portion 24a and the positive electrode shaft portion 17b is obtained from the average value of the distance between X1 and Y1 and the distance between X2 and Y2.
  • the distance between the slope of the negative electrode insulation reinforcement holding portion 37a and the negative electrode shaft portion 32b is also obtained from the average value of the distance between X1 and Y1 and the distance between X2 and Y2.
  • the slope of the positive electrode insulation reinforcement holding part 24a is a wide slope and faces the positive electrode terminal lead 23 (third extension part 23d). Is preferred.
  • the slope of the negative electrode insulation reinforcement holding portion 37a is a wide slope and preferably faces the negative electrode terminal lead 36 (third extending portion 23d).
  • the distance between the sloped surface of the positive electrode insulating reinforcing holding portion 24a and the positive electrode terminal lead 23 is large, the impact when the positive electrode insulating reinforcing holding portion 24a and the positive electrode terminal lead 23 come into contact with each other is likely to be large, so that the strength of the battery 100 is improved. The effect will decrease. Therefore, it is preferable that the distance between the inclined surface of the positive electrode insulating reinforcement holding portion 24a and the positive electrode terminal lead 23 is 0.0 mm or more and 1.0 mm or less. Similarly, the distance between the slope of the negative electrode insulation reinforcement holding portion 37a and the negative electrode terminal lead 36 is preferably 0.0 mm or more and 1.0 mm or less.
  • the distance between the slope of the positive electrode insulation reinforcement holding portion 24a and the positive electrode terminal lead 23 is the distance between the intersection of the virtual line L3 and the positive electrode terminal lead 23 on the positive electrode insulation reinforcement holding portion 24a side and Y1, the virtual line L4 and the positive electrode terminal lead 23. It is calculated from the average value of the distance between the intersection point on the positive electrode insulation reinforcement holding portion 24a side and Y2.
  • the distance between the slope of the negative electrode insulation reinforcement holding portion 37a and the negative electrode terminal lead 36 is the distance between the virtual line L3 and the intersection of the negative electrode terminal lead 36 on the negative electrode insulation reinforcement holding portion 37a side and Y1. It is calculated from the average value of the distance between the intersection of the line L4 and the negative electrode terminal lead 36 on the side of the negative electrode insulating reinforcement holding portion 37a and Y2.
  • the terminal portion can be installed more than when the positive electrode terminal portion 3 and the negative electrode terminal portion 4 are provided on the short side surface having no inclined surface. The area can be increased. Therefore, the diameters of the positive electrode shaft portion 17b of the positive electrode terminal 17 and the negative electrode shaft portion 32b of the negative electrode terminal 32 can be increased, and a large current (high rate current) can be flowed with low resistance.
  • the positive electrode current collecting tab 7a is covered with the cover.
  • the negative electrode current collecting tab 8a is covered with a bottomed rectangular tubular cover formed by the lower end of the second negative electrode insulating reinforcing member 38 being in contact with the upper end of the first negative electrode insulating reinforcing member 37.
  • the second exterior part 6 functions as a lid for the first exterior part 5.
  • the electrode group 2 is sealed in the exterior member 1 by welding the flange portion 5 b of the first exterior portion 5 and the four sides of the second exterior portion 6 to each other.
  • the battery shown in FIGS. 1 to 11 described above is an exterior member in which the electrode group is housed in the space formed by welding the first exterior portion and the second exterior portion having the flange portion in the opening. It is preferable to include.
  • the positive electrode insulation reinforcement holding part 24a and the negative electrode insulation reinforcement holding part 37a high strength can be maintained even when the plate thickness of the first and second exterior parts is reduced.
  • the flexibility of the exterior member can be increased, it becomes easy to restrain the electrode group 2 by vacuum sealing or applying a load from the outside of the exterior member 1.
  • the distance between the electrodes of the electrode group 2 can be stabilized and the resistance can be reduced, and a battery pack having vibration resistance and impact resistance can be easily realized.
  • the flexibility of the first exterior portion 5 and the second exterior portion 6 is high, it becomes easy to shorten the distance from the inner surface of the first and second exterior portions to the electrode group 2, and thus the battery The heat dissipation can be improved.
  • the stainless steel first exterior part 5 and the second exterior part 6 are easily welded and can be sealed by inexpensive resistance seam welding. Therefore, the exterior member 1 having a higher gas sealing property than the laminated film container can be realized at low cost. Moreover, the heat resistance of the exterior member 1 can be improved.
  • the melting point of SUS304 is 1400°C
  • the melting point of Al is 650°C.
  • the shaft portion of the external terminal is plastically deformed as a result of being caulked and fixed in the through hole.
  • a force is applied in the radial direction of the insulating gasket, but since the burring portion is reinforced by the ring-shaped member arranged on the outer side of the insulating gasket, a compressive stress is generated in the insulating gasket, so that the external terminal is attached to the first exterior portion 5.
  • the burring portion extends from the edge of the through hole toward the inside of the exterior member 1, it is possible to suppress liquid leakage when the internal pressure of the exterior member 1 rises due to gas generation or the like by the action of the external pressure. Becomes Therefore, high reliability can be realized even when the plate thickness of the first exterior portion 5 and the second exterior portion 6 is reduced.
  • the battery of the first embodiment high strength and reliability can be obtained even when the plate thicknesses of the first exterior part 5 and the second exterior part 6 are reduced, and thus the flexibility and It is possible to provide a battery having excellent heat dissipation and high strength and reliability.
  • the first exterior part 5 When the first exterior part 5 has a depth equal to or less than the maximum length of the opening, the area of the opening of the first exterior part 5 becomes large.
  • the second armor is welded to the four sides of the first armor, but when the opening area increases, the length of one side welded increases, so three sides are welded first and the remaining one side is welded. It becomes easy to inject the electrolytic solution through the gap.
  • the exterior member 1 can be temporarily sealed by providing a portion having a welding strength lower than that of the other parts, a component for temporary sealing (for example, a rubber plug) can be eliminated.
  • the exterior member 1 since the exterior member 1 has a flat shape, the heat dissipation of the battery can be improved.
  • the dead space in the first exterior part 5 can be reduced by including the concave portion having the inclined surface 5d in the first exterior part 5 and disposing the terminal portion on the inclined surface 5d.
  • the inclined surface 5d is not limited to being provided in the vicinity of the central portion of the short side of the exterior member 1, and may be the entire short side of the exterior member.
  • the end face of the head of the electrode terminal has a quadrilateral top face and first and second inclined faces connected to two opposite sides of the top face, any one of the three faces is welded.
  • the welding direction can be changed by selecting the surface.
  • the shaft portion of the electrode terminal has the step-like inclined surface, the electrode terminal is firmly fixed.
  • the difference (wall thickness) between the outer and inner diameters of the positive electrode terminal portion 3, the negative electrode terminal portion 4, or both ring-shaped members is preferably equal to or greater than the plate thickness of the first exterior portion 5. This makes it possible to connect the external terminals to the first outer casing 5 with high strength regardless of the plate thickness of the first outer casing 5.
  • the shortest wall thickness can be 0.1 mm or more.
  • the outer shape of the ring-shaped member does not necessarily have to be the same as the burring cross-sectional shape, and may be a polyhedron such as a rectangle or a hexagon, or may be a composite shape of one or more curved lines and one or more straight lines.
  • the flat plate as illustrated in FIGS. 5 and 6 can be used for the second exterior portion 6, but a plate having a flange portion at the opening may be used instead of the flat plate.
  • An example of such a structure may be the same as that of the first exterior portion 5.
  • the backup positive electrode lead 11 and the backup negative electrode lead 13 are not limited to U-shaped conductive plates, and conductive flat plates may be used. Further, it is also possible to adopt a configuration in which neither the backup positive electrode lead 11 or the backup negative electrode lead 13 or both are used.
  • the exterior member 1 can further include a safety valve or the like that can release the pressure inside the battery when the internal pressure of the battery rises above a specified value.
  • the battery 100 according to the first embodiment may be a primary battery or a secondary battery.
  • a lithium ion secondary battery is an example of the battery 100 according to the first embodiment.
  • the positive electrode 7, the negative electrode 8, the separator 9, and the electrolyte of the battery 100 of the first embodiment will be described below.
  • Positive electrode 7 The positive electrode 7 can include, for example, a positive electrode current collector, a positive electrode material layer held by the positive electrode current collector, and a positive electrode current collector tab 7 a.
  • the positive electrode material layer can include, for example, a positive electrode active material, a conductive agent, and a binder.
  • an oxide or a sulfide can be used as the positive electrode active material.
  • oxides and sulfides are lithium-occluding manganese dioxide (MnO 2 ), iron oxide, copper oxide, nickel oxide, lithium manganese composite oxide (for example, Li x Mn 2 O 4 or Li x MnO 2 ), Lithium nickel composite oxide (eg Li x NiO 2 ), lithium cobalt composite oxide (eg Li x CoO 2 ), lithium nickel cobalt composite oxide (eg LiNi 1-y Co y O 2 ), lithium manganese cobalt composite oxide (e.g.
  • Li x Mn y Co 1-y O 2 lithium manganese nickel complex oxide having a spinel structure (e.g., Li x Mn 2-y Ni y O 4), lithium phosphates having an olivine structure (e.g., Li x FePO 4, Li x Fe 1- y Mn y PO 4, Li x CoPO 4), iron sulfate (Fe 2 (SO 4) 3 ), vanadium oxide (e.g. V 2 O 5) and lithium nickel-cobalt-manganese composite oxide Things can be mentioned.
  • these compounds may be used alone, or a plurality of compounds may be used in combination.
  • the binder is mixed to bind the active material and the current collector.
  • the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and fluororubber.
  • the conductive agent is blended as necessary to improve the current collecting performance and to suppress the contact resistance between the active material and the current collector.
  • the conductive agent include carbonaceous materials such as acetylene black, carbon black and graphite.
  • the positive electrode active material and the binder are preferably blended in the proportions of 80% by mass to 98% by mass and 2% by mass to 20% by mass, respectively.
  • ⁇ Sufficient electrode strength can be obtained by using the binder in an amount of 2% by mass or more. Further, when the content is 20% by mass or less, the compounding amount of the insulating material of the electrode can be reduced and the internal resistance can be reduced.
  • the positive electrode active material, the binder, and the conductive agent are 77% by mass or more and 95% by mass or less, 2% by mass or more and 20% by mass or less, and 3% by mass or more and 15% by mass or less, respectively. It is preferable to mix them in proportions.
  • the conductive agent can exhibit the above-mentioned effects by adjusting the amount to 3% by mass or more. Further, when the content is 15% by mass or less, decomposition of the non-aqueous electrolyte on the surface of the positive electrode conductive agent under high temperature storage can be reduced.
  • the positive electrode current collector is preferably an aluminum foil or an aluminum alloy foil containing at least one element selected from Mg, Ti, Zn, Ni, Cr, Mn, Fe, Cu and Si.
  • the positive electrode current collector is preferably integrated with the positive electrode current collector tab. Alternatively, the positive electrode current collector may be separate from the positive electrode current collector tab.
  • Negative electrode 8 The negative electrode 8 can include, for example, a negative electrode current collector, a negative electrode material layer held by the negative electrode current collector, and a negative electrode current collector tab 8a.
  • the negative electrode material layer can include, for example, a negative electrode active material, a conductive agent, and a binder.
  • the negative electrode active material for example, a metal oxide, a metal nitride, an alloy, carbon or the like that can store and release lithium ions can be used. It is preferable to use a substance capable of inserting and extracting lithium ions at a noble potential of 0.4 V or higher (vs. Li/Li + ) as the negative electrode active material.
  • the negative electrode active material for example, a graphite material or a carbonaceous material (for example, graphite, coke, carbon fiber, spherical carbon, pyrolytic gas phase carbonaceous material, resin fired body, etc.), chalcogen compound (for example, titanium disulfide, Molybdenum disulfide, niobium selenide, etc.), light metals (for example, aluminum, aluminum alloys, magnesium alloys, lithium, lithium alloys, etc.), Li 4+x Ti 5 O 12 (x is in the range of ⁇ 1 ⁇ x ⁇ 3 due to charge/discharge reaction) Of the spinel type lithium titanate, ramsteride type Li 2+x Ti 3 O 7 (x changes within the range of ⁇ 1 ⁇ x ⁇ 3 due to charge/discharge reaction), Ti and P, V, Sn , A metal composite oxide and a niobium titanium composite oxide containing at least one element selected from the group consisting of Cu, Ni and Fe.
  • chalcogen compound for example, titanium
  • Examples of the metal composite oxide containing Ti and at least one element selected from the group consisting of P, V, Sn, Cu, Ni and Fe include, for example, TiO 2 —P 2 O 5 and TiO 2 —V 2.
  • O 5 , TiO 2 —P 2 O 5 —SnO 2 and TiO 2 —P 2 O 5 —MO can be mentioned.
  • These metal composite oxides are changed into lithium titanium composite oxides by inserting lithium by charging. It is preferable to include one or more substances selected from the group consisting of lithium titanium oxide (eg, spinel type lithium titanate), silicon and tin.
  • the binder for the negative electrode active material layer is the same as the binder for the positive electrode active material layer.
  • the conductive agent of the negative electrode active material layer is common with the conductive agent of the positive electrode active material layer.
  • niobium titanium-containing composite oxide examples include, for example, the general formula Li a TiM b Nb 2 ⁇ O 7 ⁇ (where the value of each subscript is 0 ⁇ a ⁇ 5, 0 ⁇ b ⁇ 0.3, 0 ⁇ It is within the range of ⁇ 0.3, 0 ⁇ 0.3, and M is at least one kind selected from the group consisting of Fe, V, Mo and Ta (may be one kind or plural kinds).
  • a composite oxide having a tetragonal crystal structure can be used.
  • the value of each subscript is 0 ⁇ a1 ⁇ 6, 0 ⁇ b1 ⁇ 2, 0 ⁇ c1.
  • ⁇ 6, 0 ⁇ d1 ⁇ 6, -0.5 ⁇ 1 ⁇ 0.5, and M(I) is at least selected from the group consisting of Sr, Ba, Ca, Mg, Na, Cs, and K.
  • M(II) is Nb, or Nb and Zr, Sn, V, Ta, Mo, W, Fe, Co, Mn and It is preferably a combination with at least one kind (may be one kind or plural kinds) selected from the group consisting of Al.
  • the monoclinic niobium titanium-containing composite oxide is more preferable because it has a large capacity per weight and can increase the battery capacity.
  • the conductive agent is added to improve the current collecting performance and to suppress the contact resistance between the negative electrode active material and the current collector.
  • the conductive agent include carbonaceous materials such as acetylene black, carbon black and graphite.
  • the binder is mixed to fill the gap between the dispersed negative electrode active material and to bind the negative electrode active material and the current collector.
  • the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine rubber, and styrene butadiene rubber.
  • the active material, the conductive agent, and the binder in the negative electrode material layer are mixed in the proportions of 68% by mass to 96% by mass, 2% by mass to 30% by mass, and 2% by mass to 30% by mass, respectively. It is preferable. By setting the amount of the conductive agent to 2% by mass or more, the current collecting performance of the negative electrode layer can be improved. Further, when the amount of the binder is 2% by mass or more, the binding property between the negative electrode material layer and the current collector can be sufficiently exhibited, and excellent cycle characteristics can be expected. On the other hand, it is preferable that the content of each of the conductive agent and the binder is 28% by mass or less in order to increase the capacity.
  • the current collector a material that is electrochemically stable at the lithium storage and emission potentials of the negative electrode active material is used.
  • the current collector is preferably made of copper, nickel, stainless steel, or aluminum, or an aluminum alloy containing at least one element selected from Mg, Ti, Zn, Mn, Fe, Cu, and Si.
  • the thickness of the current collector is preferably in the range of 5 to 20 ⁇ m. The current collector having such a thickness can balance the strength and weight reduction of the negative electrode.
  • the negative electrode current collector is preferably integrated with the negative electrode current collector tab 8a. Alternatively, the negative electrode current collector may be separate from the negative electrode current collector tab 8a.
  • a negative electrode active material, a binder, and a conductive agent are suspended in a commonly used solvent to prepare a slurry, and the slurry is applied to a current collector and dried to form a negative electrode material layer. Then, it is manufactured by pressing.
  • the negative electrode may also be produced by forming a negative electrode active material, a binder and a conductive agent into a negative electrode material layer to form a negative electrode material layer, and disposing this on the current collector.
  • the separator 9 includes a non-woven fabric including a resin-made ultra-thin nanofiber film, a film, paper, an inorganic particle layer, and the like.
  • the constituent material of the separator 9 include polyolefin such as polyethylene and polypropylene, cellulose, polyester, polyvinyl alcohol, polyimide, polyamide, polyamideimide, polytetrafluoroethylene, and vinylon.
  • An example of the separator 9 that is preferable from the viewpoint of thinness and mechanical strength is a nonwoven fabric containing cellulose fibers.
  • the inorganic particle layer contains oxide particles, a thickener, and a binder.
  • the oxide particles metal oxides such as aluminum oxide, titanium oxide, magnesium oxide, zinc oxide, and barium sulfate can be used.
  • Carboxymethyl cellulose can be used as a thickener.
  • methyl acrylate, an acrylic copolymer containing the same, styrene-butadiene rubber (SBR) or the like can be used.
  • the insulating sheet 10 may be made of non-woven fabric, film, or paper. The insulating sheet 10 is preferably further fixed with a tape (not shown).
  • Electrolyte Electrolytes include a solution containing an electrolyte salt and a non-aqueous solvent, a non-aqueous gel electrolyte in which a polymer material is combined with a solution containing an electrolyte salt and a non-aqueous solvent, a solution containing an electrolyte salt and water, or an electrolyte salt. It is preferable to use an aqueous gel electrolyte in which a polymer material is combined with a solution containing water.
  • the electrolyte salt contained in the non-aqueous solution is, for example, LiPF 6 , LiBF 4 , Li(CF 3 SO 2 ) 2 N (lithium bistrifluoromethanesulfonylamide; commonly known as LiTFSI), LiCF 3 SO 3 (commonly LiTFS), Li(C).
  • LiPF 6 LiBF 4
  • Li(CF 3 SO 2 ) 2 N lithium bistrifluoromethanesulfonylamide
  • LiCF 3 SO 3 commonly LiTFS
  • Li(C) LiPF 6 , LiBF 4 , Li(CF 3 SO 2 ) 2 N (lithium bistrifluoromethanesulfonylamide; commonly known as LiTFSI), LiCF 3 SO 3 (commonly LiTFS), Li(C).
  • LiBETI bis pentafluoroethanesulfonyl amide lithium; called LiBETI
  • LiClO 4 LiAsF 6 , LiSbF 6, LiB (C 2 O 4) 2
  • LiBOB bis oxa Lato lithium borate; called LiBOB
  • difluoro Lithium such as (trifluoro-2-oxide-2-trifluoro-methylpropionato(2-)-0,0
  • LiBF 2 OCOOC(CF 3 ) 2 lithium borate; commonly known as LiBF 2 (HHIB) Salts
  • These electrolyte salts may be used alone or in combination of two or more. LiPF 6 and LiBF 4 are particularly preferable.
  • a supporting salt that conducts ions can be used as the lithium salt.
  • Examples thereof include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate, and imide-based supporting salts.
  • the lithium salt may contain one kind or two or more kinds.
  • the non-aqueous electrolyte salt concentration is preferably in the range of 0.5 mol/L or more and 3 mol/L or less, and more preferably in the range of 0.7 mol/L or more and 2 mol/L or less.
  • Such regulation of the electrolyte concentration makes it possible to further improve the performance when a high load current is passed while suppressing the influence of the viscosity increase due to the increase of the electrolyte salt concentration.
  • the non-aqueous solvent is not particularly limited, but examples thereof include cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC) or methyl ethyl carbonate (MEC). Or chain carbonate such as dipropyl carbonate (DPC), 1,2-dimethoxyethane (DME), ⁇ -butyrolactone (GBL), tetrahydrofuran (THF), 2-methyltetrahydrofuran (2-MeHF), 1,3-dioxolane , Sulfolane, and acetonitrile (AN) can be used. These solvents may be used alone or in combination of two or more.
  • cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC) or methyl ethyl carbonate (MEC).
  • chain carbonate such as dipropyl carbon
  • a non-aqueous solvent containing a cyclic carbonate and/or a chain carbonate is preferable.
  • the polymer material contained in the non-aqueous gel electrolyte include polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyethylene oxide (PEO), polymethacrylate, and the like.
  • the electrolyte salt contained in the aqueous solution is LiCl, LiBr, LiOH, Li 2 SO 4 , LiNO 3 , LiN(SO 2 CF 3 ) 2 (lithium trifluoromethanesulfonylamide; commonly known as LiTFSA), LiN(SO 2 C 2 F 5 ) 2 (lithium bispentafluoroethanesulfonylamide; commonly called LiBETA), LiN(SO 2 F) 2 (lithium bisfluorosulfonylamide; commonly called LiFSA), LiB[(OCO) 2 ] 2 and the like.
  • the type of lithium salt used may be one type or two or more types.
  • Examples of the polymer material contained in the water-based gel electrolyte include polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyethylene oxide (PEO), polymethacrylate, and the like.
  • the concentration of the aqueous electrolyte salt is preferably 1 mol/L or more and 12 mol/L or more, and more preferably 112 mol/L or more and 10 mol/L or less.
  • LiOH or Li 2 SO 4 can be added to adjust the pH.
  • the pH value is preferably 3 or more and 13 or less, and more preferably pH 4 or more and 12 or less.
  • non-aqueous electrolyte a room temperature molten salt containing lithium ions (ionic melt), a polymer solid electrolyte, an inorganic solid electrolyte, or the like may be used.
  • the room temperature molten salt refers to a compound that can exist as a liquid at room temperature (15 to 25° C.) among organic salts composed of a combination of organic cations and anions.
  • the room-temperature molten salt includes a room-temperature molten salt that exists alone as a liquid, a room-temperature molten salt that becomes a liquid when mixed with an electrolyte, and a room-temperature molten salt that becomes a liquid when dissolved in an organic solvent.
  • the melting point of the room temperature molten salt used in the non-aqueous electrolyte battery is 25° C. or lower.
  • the organic cation generally has a quaternary ammonium skeleton.
  • FIG. 13 shows a positive electrode portion of a battery 101 which is a modified example of the battery 100 of the first embodiment. Since the positive electrode side and the negative electrode side are symmetrical, illustration and partial description of the negative electrode side are omitted.
  • FIG. 13 shows a cross-sectional view of the A-A′ plane of FIG. 6 in the modified example.
  • the end portion side of the first positive electrode insulating reinforcing member 24 on the positive electrode current collecting tab 7a side projects to the second positive electrode insulating reinforcing member 25 side
  • An end portion side of the positive electrode insulating reinforcing member 25 on the positive electrode current collecting tab 7a side projects to the first positive electrode insulating reinforcing member 24 side.
  • the protruding portion of the first positive electrode insulating reinforcing member 24 is referred to as a protruding portion 24d.
  • the protruding portion of the second positive electrode insulating reinforcing member 25 is referred to as a protruding portion 25f. It is preferable that the protruding portion 24d of the first positive electrode insulating reinforcing member 24 and the protruding portion 25f of the second positive electrode insulating reinforcing member 25 face each other.
  • the protrusion 24d and the protrusion 25f prevent the positive electrode current collector tab 7a from approaching the positive electrode terminal portion 3 side, so that the deformation of the battery 101 due to the force in the depth direction of the battery 101 can be prevented.
  • the end portion side of the first negative electrode insulating reinforcing member 37 on the negative electrode current collecting tab 8a side projects to the second negative electrode insulating reinforcing member 38 side, Since the end portion side of the second negative electrode insulating reinforcing member 38 on the negative electrode current collecting tab 8a side projects toward the first negative electrode insulating reinforcing member 37 side, deformation of the battery 101 due to force in the depth direction of the battery 101 is prevented. be able to.
  • FIG. 14 shows a positive electrode terminal portion 3 side of a battery 102 which is a modified example of the battery 100 of the first embodiment. Since the positive electrode terminal portion 3 side and the negative electrode terminal portion 4 side are symmetrical, illustration and partial description of the negative electrode terminal portion 4 side are omitted.
  • the first positive electrode insulating reinforcing member 24 and the second positive electrode insulating reinforcing member 25 are fitted.
  • FIG. 14 shows a cross-sectional view of the A-A′ plane of FIG. 6 in the modified example. The fitting will be specifically described.
  • the first positive electrode insulating reinforcing member 25 that is not crimped is fixed by the second positive electrode insulating reinforcing member 25 that is crimped and fixed. , Can be fixed.
  • the deformation of the battery 102 due to the force in the depth direction of the battery 102 is prevented. Can be prevented.
  • the first negative electrode insulating reinforcing member 37 and the second negative electrode insulating reinforcing member 38 are similarly fitted on the negative electrode terminal portion 4 side.
  • the deformation of the battery 102 due to the force in the depth direction of the battery 102 can be prevented on the negative electrode terminal portion 4 side as well as on the positive electrode terminal portion 3 side. It is possible to arbitrarily select the shape of the fitting concavity and convexity and which is the convexity.
  • FIG. 15 shows a positive electrode terminal portion 3 side of a battery 103 which is a modified example of the battery 100 of the first embodiment. Since the positive electrode terminal portion 3 side and the negative electrode terminal portion 4 side are symmetrical, illustration and partial description of the negative electrode terminal portion 4 side are omitted.
  • FIG. 15 shows a cross-sectional view of the B-B′ plane of FIG. 6 in the modified example.
  • the strength of the battery 103 is improved.
  • the projecting portion 24f of the first positive electrode insulating reinforcing member 24 and the projecting portion 25h of the second positive electrode insulating reinforcing member 25 form a column, but the projecting portion 24f or the projecting portion 25h alone forms a column. You can also do it.
  • the support pillars on the negative electrode terminal portion 4 side similarly to the positive electrode terminal portion 3 side, the deformation of the battery 103 due to the force in the thickness direction of the battery 103 can be prevented.
  • FIG. 16 shows the positive electrode terminal portion 3 side of a battery 104 which is a modified example of the battery 100 of the first embodiment. Since the positive electrode terminal portion 3 side and the negative electrode terminal portion 4 side are symmetrical, illustration and partial description of the negative electrode terminal portion 4 side are omitted.
  • the first positive electrode insulating reinforcing member 24 and the second positive electrode insulating reinforcing member 25 are fitted.
  • FIG. 16 shows a cross-sectional view of the E-E′ plane of FIG. 6 in the modified example. The fitting will be specifically described.
  • the first positive electrode insulating reinforcing member 24 By fixing the first positive electrode insulating reinforcing member 24 to prevent the first positive electrode insulating reinforcing member 24 from approaching the positive electrode current collecting tab 7a side, deformation of the battery 104 due to force in the depth direction of the battery 102 is prevented. Can be prevented.
  • the first negative electrode insulating reinforcing member 37 and the second negative electrode insulating reinforcing member 38 are similarly fitted on the negative electrode terminal portion 4 side.
  • the deformation of the battery 102 due to the force in the depth direction of the battery 104 can be prevented on the negative electrode terminal portion 4 side as well as on the positive electrode terminal portion 3 side. It is possible to arbitrarily select the shape of the fitting concavity and convexity and which is the convexity.
  • FIG. 17 shows the positive electrode terminal portion 3 side of a battery 105 which is a modified example of the battery 100 of the first embodiment. Since the positive electrode side and the negative electrode side are symmetrical, illustration and partial description of the negative electrode side are omitted.
  • a battery 105 shown in FIG. 17 is a modified example of the battery 102 shown in FIG. 14, in which the first positive electrode insulating reinforcing member 24 and the second positive electrode insulating reinforcing member 25 are fitted together.
  • the concave portion 24h provided on the protruding portion 24f of the first positive electrode insulating reinforcing member 24 and the convex portion 25j provided on the protruding portion 25h of the second positive electrode insulating reinforcing member 25 are fitted to each other, and are fitted in the thickness direction of the supporting column. As a result, the strength of the battery 105 in the depth direction is improved. As with the positive electrode terminal portion 3 side, the negative electrode terminal portion 4 side can also prevent the battery 105 from being deformed by forces in the thickness direction and the depth direction. It is possible to arbitrarily select the shape of the fitting concavity and convexity and which is the convexity.
  • FIGS. 18 and 19 show the positive electrode terminal portion 3 side of a battery 106 which is a modified example of the battery 100 of the first embodiment. Since the positive electrode side and the negative electrode side are symmetrical, illustration and partial description of the negative electrode side are omitted.
  • FIG. 18 shows a cross-sectional view of the A-A′ plane of FIG. 6 in the modified example.
  • FIG. 19 shows a cross-sectional view of the B-B′ plane of FIG. 6 in the modified example.
  • the center portion in the width direction of the positive electrode current collector tab 7a is cut away so that the ratio of the electrode group 2 in the battery 106 can be increased.
  • the facing direction referred to here is a direction from the positive electrode external terminal 17 to the negative electrode external terminal 32.
  • the positive electrode backup lead 11 and the electrode group side positive electrode lead 12 do not face the positive electrode insulating reinforcement holding portion 24a, respectively.
  • the backup positive electrode lead 11 and the electrode group side positive electrode lead 12 are not provided in the portion where the positive electrode current collecting tab 7a does not exist, and the backup positive electrode lead 11 and the electrode group side positive electrode lead 12 are divided into two parts. There is. Similarly, on the negative electrode side, the negative electrode current collecting tab 8a does not face the negative electrode insulating reinforcement holding portion 37a. The backup negative electrode lead 13 and the electrode group side negative electrode lead 14 also do not face the negative electrode insulation reinforcement holding portion 37a. With such a configuration, it is possible to obtain a battery 106 having a larger capacity while increasing the battery strength.
  • 21(a) to 21(b) and 22(a) to 22(d) are process diagrams for manufacturing a battery.
  • FIG. 21A shows an example in which guide holes 39 for positioning are opened at the four corners of the second exterior portion 6.
  • FIG. 21B shows an example in which guide holes 39 for positioning are opened at the four corners of the first exterior part 5.
  • the electrode group 2 is housed in the first outer casing 5, the electrode group side positive electrode lead 12 is joined to the positive electrode terminal lead 23 by welding or the like, and the electrode group side negative electrode lead 14 is welded to the negative electrode terminal lead 36 or the like. And join. Laser welding, TIG welding, and friction stir welding can be used for joining, for example. In the embodiment, any joint is treated as welding.
  • the second positive electrode insulating reinforcing member 25 and the second negative electrode insulating reinforcing member 38 are covered on the positive electrode current collecting tab 7a and the negative electrode current collecting tab 8a of the electrode group 2.
  • the second exterior portion 6 is arranged on the first exterior portion 5. Since the guide holes 39 are opened at the four corners of each of the first exterior portion 5 and the second exterior portion 6, it is easy to determine the position of the second exterior portion 6 with respect to the first exterior portion 5.
  • the three sides (for example, the long side and the two short sides) of the first exterior portion 5 and the second exterior portion 6 are welded.
  • the welding for example, resistance seam welding is used.
  • the welded portion is indicated by reference numeral 40. It is desirable that the welding location 40 be located inside the outer edges of the first exterior portion 5 and the second exterior portion 6.
  • this side is welded by, for example, resistance seam welding. It is desirable that the welded portion 41 be an outer edge portion of the first exterior portion 5 and the second exterior portion 6.
  • a cut-out portion 42 is created by cutting off a part of the welded portion 41, and the gas in the exterior member 1 is released.
  • a welding portion 43 (long side of the second exterior portion 6) further inside than the welding portion 41 is welded by resistance seam welding or the like. It is desirable to perform this welding in a reduced pressure atmosphere.
  • the guide hole 39 can be removed by cutting the vicinity of the outer edges of the first exterior part 5 and the second exterior part 6.
  • the guide hole 39 may be left as it is.
  • the battery of the first embodiment can be manufactured with high productivity.
  • the battery according to the first embodiment can include a plurality of electrode groups 2 in one exterior member 1.
  • FIG. 23 shows a process diagram on the positive electrode terminal portion 3 side for manufacturing the battery 100 in the case where one electrode group 2 is housed in one outer casing member 1.
  • the electrode group 2 is prepared, and the backup positive electrode lead 11 bundles the central tips of the positive electrode current collecting tabs 7a.
  • the backup positive electrode lead 11 and the electrode group side positive electrode lead 12 are welded.
  • the electrode group side positive electrode lead 12 is bent to form the first extending portion 12 as shown in FIG. 23B.
  • the electrode-side positive electrode lead bent in advance may be welded to the backup positive electrode lead 11 to obtain a member as shown in FIG. 23B.
  • the member shown in FIG. 23B is inserted from the opening side of the first exterior material 5 in which the positive electrode terminal portion 3 is incorporated in advance.
  • the first extension portion 12b of the electrode group side positive electrode lead 12 and the first extension portion of the positive electrode terminal lead 23 are fixed by laser welding to fix one electrode group 2 to the first as shown in FIG. 23C. It is fixed in the exterior portion 5 of 1. Then, by covering the second exterior portion 6 with the lid, the battery 100 can be obtained.
  • the battery of the first embodiment described above is suitable for a large current because the lead in the exterior member 1 can have a large thickness even if it is a thin battery.
  • the battery pack of the second embodiment includes one or more batteries of the first embodiment.
  • An example of the assembled battery of the battery of the first embodiment is shown in FIGS. 24 and 25.
  • the battery pack 200 uses the batteries 100 to 106 of the first embodiment as unit cells.
  • the battery pack 200 may be covered with a laminate (not shown).
  • a triangular columnar conductive connecting member 62 is disposed between the top surface of the negative electrode terminal 32 of the first unit cell 60 and the top surface of the negative electrode terminal 32 of the second unit cell 61. Further, a triangular columnar conductive connecting member 62 is arranged between the top surface of the positive electrode terminal 17 of the first unit cell 60 and the top surface of the positive electrode terminal 17 of the second unit cell 61.
  • the two top surfaces and the conductive connecting member 62 are electrically connected by welding. Laser welding, arc welding, or resistance welding is used for welding.
  • an assembled battery unit 63 in which the first unit cell 60 and the second unit cell 61 are connected in parallel is obtained.
  • the battery pack 200 is obtained by connecting the units 63 of the assembled battery to each other in series by the bus bar 64.
  • the battery pack 201 shown in FIG. 25 uses the batteries 100 to 106 of the first embodiment as unit cells.
  • a battery unit 65 is formed by connecting the first unit cell 60 and the second unit cell 61 in series using a conductive connecting member 62, and the battery unit units 65 are connected in series by a bus bar 64.
  • the battery pack is composed of.
  • the method of electrically connecting the first unit cell 60 and the second unit cell 61 using the conductive connecting member 62 is the same as that described with reference to FIG.
  • the first unit cell 60 and the second unit cell 61 which are adjacent to each other are stacked with the main surfaces of the exterior members 1 facing each other.
  • the main surface of the first exterior portion 5 of the first unit cell 60 and the main surface of the first exterior portion 5 of the second unit cell 61 face each other.
  • the main surface of the second exterior portion 6 of the second unit cell 61 of the unit battery 63 of one of the battery packs and the second unit cell of the unit 63 of the other battery pack The main surface of the second exterior portion 6 of 61 faces.
  • an insulating space between the unit cell 60 and the unit cell 61, or between the unit cells 60, 60 and the unit cells 61, 61, 0.03 mm or more.
  • an insulating member for example, resin such as polypropylene, polyphenylene sulfide, epoxy, or fine ceramics such as alumina or zirconia
  • resin such as polypropylene, polyphenylene sulfide, epoxy, or fine ceramics such as alumina or zirconia
  • the unit cell is provided at one of two positions (for example, the first and second inclined surfaces) (first inclined surface) of one head.
  • the external terminal can be connected to the other (the second inclined surface) of the bus bar.
  • one head can be connected in two directions.
  • the battery pack of the second embodiment includes at least one battery of the first embodiment, it is possible to reduce the thickness and improve the flexibility, and since the battery itself has high strength, it has excellent reliability and low manufacturing cost.
  • a battery pack that can be reduced can be provided.
  • the battery pack is used, for example, as a power source for electronic devices and vehicles (railroad vehicles, automobiles, motorbikes, light vehicles, trolleybuses, etc.).
  • the assembled battery may include a plurality of batteries connected in series, parallel, or a combination of series and parallel and electrically connected.
  • the battery pack may include circuits such as a battery control unit (BMU), but the battery pack unit has a circuit included in a battery pack unit (for example, a vehicle).
  • BMU battery control unit
  • the battery control unit has a function of monitoring the voltage or current or both of the unit cells and the assembled battery to prevent overcharge and overdischarge.
  • the third embodiment relates to a power storage device.
  • the battery packs 200 and 201 of the second embodiment can be mounted on the power storage device 300.
  • a power storage device 300 shown in the conceptual diagram of FIG. 26 includes battery packs 200 and 201, an inverter 302, and a converter 301.
  • An external AC power source 303 is converted into a direct current by a converter 301, the battery packs 200 and 201 are charged, an alternating current is converted into an alternating current by an inverter 302 of a direct current power source from the battery packs 200 and 201, and electricity is supplied to a load 304 connected to a power storage device 300 It is configured to do.
  • the power storage device 300 of this configuration including the battery packs 200 and 201 of the embodiment, a power storage device having excellent battery characteristics is provided.
  • the batteries 100 to 106 may be used instead of the battery packs 200 and 201.
  • the reliability of the storage battery 300 is also improved.
  • the fourth embodiment relates to a vehicle.
  • the vehicle of the fourth embodiment uses the battery packs 200 and 201 of the second embodiment.
  • the configuration of the vehicle according to this embodiment will be briefly described with reference to the schematic diagram of the vehicle 400 in FIG. 27.
  • the vehicle 400 includes battery packs 200 and 201, a vehicle body 401, a motor 402, wheels 403, and a control unit 404.
  • the battery packs 200 and 201, the motor 402, the wheels 403, and the control unit 404 are arranged on the vehicle body 401.
  • the control unit 404 converts the power output from the battery packs 200 and 201 and adjusts the output.
  • the motor 402 rotates the wheel 403 using the electric power output from the battery packs 200 and 201.
  • Vehicle 400 also includes an electric vehicle such as a train and a hybrid vehicle having another drive source such as an engine.
  • the battery packs 200, 201 may be charged by the regenerative energy from the motor 402. What is driven by the electric energy from the battery packs 200 and 201 is not limited to the motor, and may be used as a power source for operating the electric devices included in the vehicle 400. Further, it is preferable that regenerative energy is obtained when the vehicle 400 is decelerated and the battery packs 200 and 201 are charged using the obtained regenerative energy.
  • the batteries 100 to 106 may be used instead of the battery packs 200 and 201. As the reliability of the battery packs 200 and 201 is improved, the reliability of the vehicle 400 is also improved.
  • the fifth embodiment relates to a flying object (for example, a multicopter).
  • the flying vehicle of the fifth embodiment uses the battery packs 200 and 201 of the second embodiment.
  • the configuration of the flying object according to the present embodiment will be briefly described with reference to the schematic view of the flying object (quadcopter) 500 in FIG.
  • the flying body 500 includes battery packs 200 and 201, a body skeleton 501, a motor 502, a rotary wing 503, and a control unit 504.
  • the battery packs 200 and 201, the motor 502, the rotor 503, and the control unit 504 are arranged in the body skeleton 501.
  • the control unit 504 converts the electric power output from the battery packs 200 and 201 and adjusts the output.
  • the motor 502 rotates the rotor 503 using the electric power output from the battery packs 200 and 201.
  • the flying body 500 of this configuration including the battery packs 200 and 201 of the embodiment a flying body with improved reliability is provided.
  • the batteries 100 to 106 may be used instead of the battery packs 200 and 201.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

The present invention addresses the problem of providing, in a thin type battery, a lead-shaped battery which has excellent large current characteristics, a battery pack, an electrical storage device, a vehicle, and a flying object. A battery 100 of an embodiment of the present invention includes: a flat-shaped electrode group 3 that has a positive electrode 7, a positive electrode collecting tab 7a which is electrically connected to the positive electrode 7, a negative electrode 8, and a negative electrode collecting tab 8a which is electrically connected to the negative electrode 8; an external member 1 that has a first external part 5 and a second external part 6; a positive electrode terminal part 3; a negative electrode terminal part 4; a first positive electrode insulation reinforcement member 24 that has a positive electrode insulation reinforcement maintaining part 24a; and a first negative electrode insulation reinforcement member 37 that has a negative electrode insulation reinforcement maintaining part 37a.

Description

電池、電池パック、蓄電装置、車両及び飛翔体Batteries, battery packs, power storage devices, vehicles and flying vehicles
 本発明の実施形態は、電池、電池パック、蓄電装置、車両及び飛翔体に関する。 Embodiments of the present invention relate to a battery, a battery pack, a power storage device, a vehicle, and a flying object.
 一次電池及び二次電池などの電池は、一般に、正極及び負極を備えた電極群と、この電極群を収納する外装部材とを具備する。 A battery such as a primary battery and a secondary battery generally includes an electrode group including a positive electrode and a negative electrode, and an exterior member that houses the electrode group.
 外装部材として、現在、金属缶、ラミネートフィルム製容器が実用化されている。金属缶は、アルミニウム等の金属板から深絞り加工により得られる。深絞り加工で缶を作製するには、金属板にある程度の厚さが必要で、それが外装部材の薄型化を妨げ、体積容量ロスに繋がっている。例えば、板厚0.5mmの外装缶を厚さ13mmの電池に適用すると、電池厚さに占める外装缶のトータル板厚の割合はおよそ7.7%となる。薄型の電池であるため電池内のリードは複雑に折り曲げるなどしてコンパクトに収容することが求められる。 Currently, metal cans and laminated film containers are put to practical use as exterior materials. The metal can is obtained by deep drawing from a metal plate such as aluminum. In order to manufacture a can by deep drawing, the metal plate needs to have a certain thickness, which hinders the thinning of the exterior member and leads to a loss in volume capacity. For example, when the outer can having a plate thickness of 0.5 mm is applied to a battery having a thickness of 13 mm, the ratio of the total plate thickness of the outer can to the battery thickness is about 7.7%. Since it is a thin battery, the leads inside the battery are required to be compactly accommodated by being bent complicatedly.
 薄型の電池は、外装材が薄いため、外装材が変形しやすい。減圧封止や充放電のプローブによる加圧で端子部周辺が変形しやすい。また、変形によってシール不良や充放電時の導通不良が生じる可能性がある。  The thin battery has a thin exterior material, so the exterior material is easily deformed. The area around the terminal area is easily deformed by pressure reduction and pressure applied by a charge/discharge probe. In addition, the deformation may cause a sealing failure or a conduction failure during charging/discharging.
国際公開第2016/204147号International Publication No. 2016/204147
 本発明が解決しようとする課題は、薄型の電池において、変形しにくい電池、電池パック、蓄電装置、車両及び飛翔体を提供する。 The problem to be solved by the present invention is to provide a battery, a battery pack, a power storage device, a vehicle, and a flying body, which are hard to deform in a thin battery.
 実施形態の電池は、正極、正極と電気的に接続された正極集電タブ、負極、及び、負極と電気的に接続された負極集電タブを含み、扁平形状に捲回された正極集電タブが第一端面に位置し、かつ扁平形状に捲回された負極集電タブが第二端面に位置する、扁平形状の電極群と、正極集電タブと電気的に接続した電極群側正極リードと、負極集電タブと電気的に接続した電極群側負極リードと、開口部にフランジ部を有する第1の外装部と、第2の外装部とを含み、第1の外装部のフランジ部と第2の外装部が溶接されて形成された空間内に電極群が収納された外装部材と、第1の外装部は正極集電タブ側に貫通孔を有し、正極頭部及び正極頭部から延び出た正極軸部を含む正極外部端子と、貫通孔を有し電極群側正極リードと電気的に接続した正極端子リードを含み、正極頭部が第1の外装部の外側に突出し、正極軸部が正極端子リードの貫通孔に挿入されて正極軸部が第1の外装部及び正極端子リードにカシメ固定された正極端子部と、第1の外装部は負極集電タブ側に貫通孔を有し、負極頭部及び負極頭部から延び出た負極軸部を含む負極外部端子と、貫通孔を有し電極群側負極リードと電気的に接続した負極端子リードを含み、負極頭部が第1の外装部の外側に突出し、負極軸部が負極端子リードの貫通孔に挿入されて負極軸部が第1の外装部及び負極端子リードにカシメ固定された負極端子部と、第1の外装部の内面側及び第2の外装部の内面側に配置され、正極端子と第2の外装部の間に配置された第1の正極絶縁補強部材と、第1の外装部の内面側及び第2の外装部の内面側に配置され、負極端子と第2の外装部の間に配置された第1の負極絶縁補強部材と、を含み、第1の正極絶縁補強部材は、正極軸部の正極頭部側とは反対側の端部と対向する斜面を有する正極絶縁補強保持部を含み、第1の負極絶縁補強部材は、負極軸部の負極頭部側とは反対側の端部と対向する斜面を有する負極絶縁補強保持部を含む。 The battery of the embodiment includes a positive electrode, a positive electrode current collecting tab electrically connected to the positive electrode, a negative electrode, and a negative electrode current collecting tab electrically connected to the negative electrode. A flat electrode group in which the tab is located on the first end surface and the negative electrode current collecting tab wound in a flat shape is located on the second end surface, and an electrode group side positive electrode electrically connected to the positive electrode current collecting tab A flange of the first exterior part, which includes a lead, a negative electrode lead on the electrode group side electrically connected to the negative electrode current collecting tab, a first exterior part having a flange part in an opening, and a second exterior part. And a second exterior part, the exterior member having an electrode group housed in a space formed by welding, the first exterior part having a through hole on the side of the positive electrode current collecting tab, and the positive electrode head and the positive electrode. A positive electrode external terminal including a positive electrode shaft portion extending from the head portion, a positive electrode terminal lead having a through hole and electrically connected to the electrode group side positive electrode lead, and the positive electrode head portion is outside the first exterior portion. A positive electrode terminal portion protruding, the positive electrode shaft portion being inserted into the through hole of the positive electrode terminal lead, and the positive electrode shaft portion being caulked and fixed to the first outer casing portion and the positive electrode terminal lead; and the first outer casing portion being on the negative electrode collector tab side. Having a through hole, a negative electrode external terminal including a negative electrode head portion and a negative electrode shaft portion extending from the negative electrode head portion, including a negative electrode terminal lead having a through hole and electrically connected to the electrode group side negative electrode lead, A negative electrode terminal portion in which the negative electrode head portion protrudes outside the first exterior portion, the negative electrode shaft portion is inserted into the through hole of the negative electrode terminal lead, and the negative electrode shaft portion is caulked and fixed to the first exterior portion and the negative electrode terminal lead; A first positive electrode insulation reinforcing member that is disposed on the inner surface side of the first outer packaging portion and on the inner surface side of the second outer packaging portion and that is disposed between the positive electrode terminal and the second outer packaging portion, and the first outer packaging portion A first negative electrode insulating reinforcing member arranged between the negative electrode terminal and the second external portion, the first positive electrode insulating reinforcing member being disposed between the negative electrode terminal and the second external portion. A first negative electrode insulating reinforcing member having a slope facing the end of the positive electrode shaft portion opposite to the positive electrode head side, wherein the first negative electrode insulating reinforcing member is opposite to the negative electrode head side of the negative electrode shaft portion. And a negative electrode insulating reinforcement holding portion having a slope facing the end portion on the side.
図1は、第1の実施形態の電池の概略斜視図である。FIG. 1 is a schematic perspective view of the battery according to the first embodiment. 図2は、図1に示す電池の正極側から見た分解斜視図である。FIG. 2 is an exploded perspective view of the battery shown in FIG. 1 viewed from the positive electrode side. 図3は、図1に示す電池の負極側から見た分解斜視図である。FIG. 3 is an exploded perspective view of the battery shown in FIG. 1 viewed from the negative electrode side. 図4は、図1に示す電池の電極群の斜視図である。FIG. 4 is a perspective view of an electrode group of the battery shown in FIG. 図5は、電極群を部分的に展開した状態を示す斜視図である。FIG. 5 is a perspective view showing a state where the electrode group is partially developed. 図6は、正極端子側(負極端子側)側からみた概略図である。FIG. 6 is a schematic view seen from the positive electrode terminal side (negative electrode terminal side) side. 図7は、図6の正極側のA-A’面に沿って切断した際に得られる断面図である。FIG. 7 is a cross-sectional view obtained when cut along the plane A-A′ on the positive electrode side of FIG. 6. 図8は、図6の正極側のB-B’面に沿って切断した際に得られる断面図である。ある。FIG. 8 is a sectional view obtained when cut along the B-B′ surface on the positive electrode side of FIG. 6. is there. 図9は、図6の正極側のC-C’面に沿って切断した際に得られる断面図である。ある。FIG. 9 is a cross-sectional view obtained when cut along the C-C′ surface on the positive electrode side of FIG. 6. is there. 図10は、図7の正極側のD-D’面に沿って切断した際に得られる断面図である。FIG. 10 is a cross-sectional view obtained when cut along the D-D′ surface on the positive electrode side of FIG. 7. 図11は、図6の負極側のA-A’面に沿って切断した際に得られる断面図である。FIG. 11 is a cross-sectional view obtained when cut along the A-A′ surface on the negative electrode side of FIG. 6. 図12は、端子、リード、斜面の角度を説明するための概略図である。FIG. 12 is a schematic diagram for explaining the angles of the terminals, leads, and slopes. 図13は、変形例における図6の正極側のA-A’面に沿って切断した際に得られる断面図である。FIG. 13 is a cross-sectional view obtained when cut along the A-A′ surface on the positive electrode side of FIG. 6 in the modified example. 図14は、変形例における図6の正極側のA-A’面に沿って切断した際に得られる断面図である。FIG. 14 is a cross-sectional view obtained when cut along the A-A′ surface on the positive electrode side of FIG. 6 in the modified example. 図15は、変形例における図6の正極側のB-B’面に沿って切断した際に得られる断面図である。FIG. 15 is a cross-sectional view obtained when cut along the B-B′ surface on the positive electrode side of FIG. 6 in the modified example. 図16は、変形例における図6の正極側のC-C’面に沿って切断した際に得られる断面図である。FIG. 16 is a cross-sectional view obtained when cut along the C-C′ surface on the positive electrode side of FIG. 6 in the modified example. 図17は、変形例における図6の正極側のB-B’面に沿って切断した際に得られる断面図である。FIG. 17 is a cross-sectional view obtained when cut along the B-B′ surface on the positive electrode side of FIG. 6 in the modified example. 図18は、変形例における図6の正極側のA-A’面に沿って切断した際に得られる断面図である。FIG. 18 is a cross-sectional view obtained when cut along the A-A′ surface on the positive electrode side of FIG. 6 in the modified example. 図19は、変形例における図6の正極側のB-B’面に沿って切断した際に得られる断面図である。FIG. 19 is a cross-sectional view obtained when cut along the B-B′ surface on the positive electrode side of FIG. 6 in the modified example. 図20は、図1に示す電池の第1の外装部に端子部が固定されたものを示す斜視図である。FIG. 20 is a perspective view showing the battery shown in FIG. 1 with the terminal portion fixed to the first exterior portion. 図21(a)は、第2の外装部の平面図であり、図21(b)は、第1の外装部の平面図である。21A is a plan view of the second exterior portion, and FIG. 21B is a plan view of the first exterior portion. 図22(a)、(b)、(c)、(d)は、第1の実施形態の電池の製造工程を示す三面図である。22A, 22</b>B, 22</b>C, and 22</b>D are three-sided views showing the manufacturing process of the battery according to the first embodiment. 図23Aは、複数の電極群を収容した電池の組み立て工程を示す工程図である。FIG. 23A is a process diagram showing an assembling process of a battery containing a plurality of electrode groups. 図23Bは、複数の電極群を収容した電池の組み立て工程を示す工程図である。FIG. 23B is a process diagram showing an assembling process of a battery containing a plurality of electrode groups. 図23Cは、複数の電極群を収容した電池の組み立て工程を示す工程図である。FIG. 23C is a process diagram showing an assembling process of a battery containing a plurality of electrode groups. 図24は、第2の実施形態に係る電池パックの第一例を示す概略図である。FIG. 24 is a schematic diagram showing a first example of the battery pack according to the second embodiment. 図25は、第2の実施形態に係る電池パックの第二例を示す概略図である。FIG. 25 is a schematic diagram showing a second example of the battery pack according to the second embodiment. 図26は、第3の実施形態の蓄電装置の概略図である。FIG. 26 is a schematic diagram of the power storage device of the third embodiment. 図27は、第4の実施形態の車両の概略図である。FIG. 27 is a schematic diagram of a vehicle of the fourth embodiment. 図28は、第5の実施形態の飛翔体の概略図である。FIG. 28 is a schematic diagram of the flying object of the fifth embodiment.
 以下に、実施の形態について図面を参照しながら説明する。なお、実施の形態を通して共通の構成には同一の符号を付すものとし、重複する説明は省略する。また、各図は実施の形態の説明とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置等で異なる個所があるが、これらは以下の説明と公知の技術とを参酌して、適宜設計変更することができる。 The embodiments will be described below with reference to the drawings. It should be noted that the same components throughout the embodiments are denoted by the same reference numerals, and overlapping description will be omitted. Further, each drawing is a schematic diagram for facilitating the description of the embodiment and its understanding, and the shape, dimensions, ratio, etc. may differ depending on the actual device, etc., but these are the following description and known techniques. The design can be changed as appropriate in consideration of the above.
 [第1の実施形態]
 第1の実施形態の電池を図1~図23を参照して説明する。図面の一部は斜視図や展開図であり、一部の部材及び部分は図示されていないが、正極及び負極は対称に構成されているため、一方の電極の図示されない部分は、他方の電極の構造から明らかにされる。なお、実施形態は、正極及び負極を非対称に構成することを認める。
[First Embodiment]
The battery according to the first embodiment will be described with reference to FIGS. 1 to 23. A part of the drawing is a perspective view or a developed view, and some members and parts are not shown, but the positive electrode and the negative electrode are symmetrically configured, and therefore the part of one electrode not shown is the other electrode. Will be revealed from the structure of. Note that the embodiments recognize that the positive electrode and the negative electrode are asymmetrically configured.
 図1に示す電池100は、外装部材1と、電極群2と、正極端子部3と、負極端子部4と、電解質(図示しない)とを含む。図1に示す電池100は、例えば、二次電池である。実施形態の電池100は、薄型である。薄型である電池100の厚さは、5mm以上30mm以下が好ましく、5mm以上25mm以下がより好ましい。 The battery 100 shown in FIG. 1 includes an exterior member 1, an electrode group 2, a positive electrode terminal portion 3, a negative electrode terminal portion 4, and an electrolyte (not shown). The battery 100 shown in FIG. 1 is, for example, a secondary battery. The battery 100 of the embodiment is thin. The thickness of the thin battery 100 is preferably 5 mm or more and 30 mm or less, and more preferably 5 mm or more and 25 mm or less.
 図2は、図1に示す電池の正極側から見た分解斜視図である。図3は、図1に示す電池の負極側から見た分解斜視図である。図1、図2及び図3に示すように、外装部材1は、第1の外装部5と、第2の外装部6とを含む。第1の外装部5は、底付き角筒容器であり、開口部5aにフランジ部5bを有する。外装部材1には、第1の外装部5のフランジ部5bと第2の外装部6が溶接されて形成された空間内に電極群2が収納されている。 FIG. 2 is an exploded perspective view of the battery shown in FIG. 1 viewed from the positive electrode side. FIG. 3 is an exploded perspective view of the battery shown in FIG. 1 viewed from the negative electrode side. As shown in FIGS. 1, 2, and 3, the exterior member 1 includes a first exterior portion 5 and a second exterior portion 6. The 1st exterior part 5 is a bottomed square tube container, and has the flange part 5b in the opening part 5a. In the exterior member 1, the electrode group 2 is housed in a space formed by welding the flange portion 5b of the first exterior portion 5 and the second exterior portion 6.
 第1の外装部5及び第2の外装部6は、ステンレス、アルミラミネート及びアルミニウムからなる群より選ばれるいずれかからなることが好ましい。また、電池100の体積当たりの電池容量を増加させるために、第1の外装部5及び第2の外装部6の厚さ、つまり、第1の外装部5及び第2の外装部6の板厚は、0.02mm以上0.3mm以下の範囲にすることが望ましい。この範囲にすることにより、機械的強度と柔軟性という相反する性質を両立させることができる。板厚のより好ましい範囲は、0.05mm以上0.15mm以下である。 The first exterior part 5 and the second exterior part 6 are preferably made of any one selected from the group consisting of stainless steel, aluminum laminate, and aluminum. Further, in order to increase the battery capacity per volume of the battery 100, the thickness of the first exterior part 5 and the second exterior part 6, that is, the plates of the first exterior part 5 and the second exterior part 6. The thickness is preferably in the range of 0.02 mm or more and 0.3 mm or less. Within this range, the contradictory properties of mechanical strength and flexibility can be compatible. A more preferable range of the plate thickness is 0.05 mm or more and 0.15 mm or less.
 図1、図2及び図3に示すように、第1の外装部5の短辺側壁と底部とを繋ぐコーナの中央付近に内側に張り出した凹部が設けられており、凹部の底部が傾斜面5dになっている。第1の外装部5は、開口部5aの大きさ(開口面積となる部分の最大長)以下の深さを有するものである。より好ましい第1の外装部5は、開口面積となる部分の短辺以下の深さを有するものである(例えば図2に示すもの)。第1の外装部5は、例えば、鋼板から浅絞り加工によって作製された開口部を有するカップ型容器である。一方、第2の外装部6は、蓋である。第2の外装部6は第1の外装部5の開口部を覆う。第2の外装部6も第1の外装部5と同様に浅絞り加工によって作成されたカップ型容器でも板状でもよい。第2の外装部6がカップ型容器であるとき、第2の外装部6の側面を第1の外装部5の側面の一部と見なすことができる。また、第2の外装部6がカップ型容器であるとき、第2の外装部6の側面側の内面を第1の外装部5の内面の一部と見なすことができる。第1の外装部5のフランジ部5bが第2の外装部6の四辺に溶接されて形成された空間内に電極群2が収納される。溶接には、例えば、抵抗シーム溶接が用いられる。抵抗シーム溶接は、レーザ溶接に比して低いコストで高い気密性と耐熱性を実現することができる。 As shown in FIG. 1, FIG. 2 and FIG. 3, an inwardly projecting recess is provided near the center of the corner connecting the short side wall and the bottom of the first exterior part 5, and the bottom of the recess is an inclined surface. It is 5d. The first exterior portion 5 has a depth equal to or smaller than the size of the opening 5a (the maximum length of the portion that becomes the opening area). The more preferable first exterior portion 5 has a depth equal to or less than the short side of the portion having the opening area (for example, the one shown in FIG. 2). The first outer casing 5 is, for example, a cup-shaped container having an opening formed from a steel plate by shallow drawing. On the other hand, the second exterior portion 6 is a lid. The second exterior portion 6 covers the opening of the first exterior portion 5. Similarly to the first exterior portion 5, the second exterior portion 6 may be a cup-shaped container formed by shallow drawing or a plate-like shape. When the second exterior portion 6 is a cup-shaped container, the side surface of the second exterior portion 6 can be regarded as a part of the side surface of the first exterior portion 5. Further, when the second exterior portion 6 is a cup-shaped container, the inner surface of the second exterior portion 6 on the side surface side can be regarded as a part of the inner surface of the first exterior portion 5. The electrode group 2 is housed in a space formed by welding the flange portion 5b of the first exterior portion 5 to the four sides of the second exterior portion 6. For the welding, for example, resistance seam welding is used. Resistance seam welding can achieve high airtightness and heat resistance at a lower cost than laser welding.
 図4は、図1に示す電池100の電極群2の斜視図である。図4に示す電極群2の正極集電タブ7aは、電極群側正極リード12と電気的に接続している。バックアップ正極リード11を用いる場合、正極集電タブ7aをバックアップ正極リード11で挟み、バックアップ正極リード11が電極群側正極リード12と電気的に接続した構成とすることが出来る。同様に、図4に示す電極群2の負極集電タブ8aは、電極群側負極リード14と電気的に接続している。バックアップ負極リード13を用いる場合、負極集電タブ8aをバックアップ負極リード13で挟み、バックアップ負極リード13が電極群側負極リード14と電気的に接続した構成とすることが出来る。 FIG. 4 is a perspective view of the electrode group 2 of the battery 100 shown in FIG. The positive electrode collector tab 7a of the electrode group 2 shown in FIG. 4 is electrically connected to the electrode group side positive electrode lead 12. When the backup positive electrode lead 11 is used, the positive electrode current collecting tab 7a may be sandwiched between the backup positive electrode lead 11 and the backup positive electrode lead 11 may be electrically connected to the electrode group side positive electrode lead 12. Similarly, the negative electrode collector tab 8a of the electrode group 2 shown in FIG. 4 is electrically connected to the electrode group side negative electrode lead 14. When the backup negative electrode lead 13 is used, the negative electrode current collecting tab 8a may be sandwiched between the backup negative electrode lead 13 and the backup negative electrode lead 13 may be electrically connected to the electrode group side negative electrode lead 14.
 薄型の電池であるため、電極群2が収容される空間は、高さの低い空間である。外装部材1の高さ(第1の外装部5と第2の外装部6の最大距離)は、5mm以上30mm以下である。電池100が薄型であるが、高容量とするために外装部材1の部材の厚さは薄くする必要がある。外装部材1の部材の厚さを薄くすると電池が変形しやすいが、電池の厚さが薄いため補強がしにくいという問題がある。実施形態では、正極端子17の直下の第1の正極絶縁補強部材24に正極絶縁補強保持部24aと負極端子32の直下の第1の負極絶縁補強部材37に負極絶縁補強保持部37aを設けて、電池100の厚さ方向の外圧や衝撃によっても電池100が変形しにくくなっている。 Since it is a thin battery, the space in which the electrode group 2 is housed is a space with a low height. The height of the exterior member 1 (the maximum distance between the first exterior portion 5 and the second exterior portion 6) is 5 mm or more and 30 mm or less. Although the battery 100 is thin, it is necessary to reduce the thickness of the member of the exterior member 1 in order to achieve high capacity. When the thickness of the member of the exterior member 1 is reduced, the battery is easily deformed, but there is a problem that it is difficult to reinforce because the battery is thin. In the embodiment, the positive electrode insulation reinforcement holding portion 24 a is provided on the first positive electrode insulation reinforcement member 24 immediately below the positive electrode terminal 17, and the negative electrode insulation reinforcement holding portion 37 a is provided on the first negative electrode insulation reinforcement member 37 immediately below the negative electrode terminal 32. The battery 100 is less likely to be deformed by external pressure or impact in the thickness direction of the battery 100.
 電極群2は、図5に示すように、扁平形状で、正極7と、負極8と、正極7と負極8の間に配置されたセパレータ9とを含む。扁平状の電極群2は、正極7、正極7と電気的に接続された正極集電タブ7a、負極8、及び、負極8と電気的に接続された負極集電タブ8aを含み、扁平形状に捲回された正極集電タブ7aが第一端面に位置し、かつ扁平形状に捲回された負極集電タブ8aが第二端面に位置する。電極群2の扁平な2面のうち1つの面が第1の外装部5の底面と対向し、電極群2の扁平な2面のうち他方の面が第2の外装部6の面と対向する。 As shown in FIG. 5, the electrode group 2 has a flat shape and includes a positive electrode 7, a negative electrode 8, and a separator 9 arranged between the positive electrode 7 and the negative electrode 8. The flat electrode group 2 includes a positive electrode 7, a positive electrode current collecting tab 7a electrically connected to the positive electrode 7, a negative electrode 8, and a negative electrode current collecting tab 8a electrically connected to the negative electrode 8, and has a flat shape. The positive electrode collector tab 7a wound on the first end face is located on the first end face, and the negative electrode collector tab 8a wound in a flat shape is located on the second end face. One of the two flat surfaces of the electrode group 2 faces the bottom surface of the first exterior portion 5, and the other of the two flat surfaces of the electrode group 2 faces the surface of the second exterior portion 6. To do.
 正極7は、例えば箔からなる帯状の正極集電体と、正極集電体の長辺に平行な一端部からなる正極集電タブ7aと、少なくとも正極集電タブ7aの部分を除いて正極集電体に形成された正極材料層(正極活物質含有層)7bとを含む。正極集電タブ7aは、電極群2の幅方向の中心に配置されている。正極集電タブ7aの幅は、電極群2の幅より狭いことが好ましい。正極集電タブ7aの幅と電極群2の幅は、電池100の厚さ方向と電池の奥行き方向(正極端子17から負極端子32に向かう方向)の両方に垂直な方向である。正極集電タブ7aが電極群2の幅より狭いということは、正極集電タブ7aの幅方向の端が切り欠けられているということである。集電体2を効率よく外装部材1に収容する観点から、正極集電タブ7aは、両端からそれぞれ5mm以上切り欠けられていて、電極群2の幅よりも10mm以上狭いことがより好ましい。図2等では、正極集電タブ7aの両側の端部は切り欠けられている。 The positive electrode 7 includes, for example, a strip-shaped positive electrode current collector made of foil, a positive electrode current collector tab 7a having one end parallel to the long side of the positive electrode current collector, and at least the positive electrode current collector tab 7a. And a positive electrode material layer (positive electrode active material-containing layer) 7b formed on the electric body. The positive electrode current collecting tab 7a is arranged at the center of the electrode group 2 in the width direction. The width of the positive electrode current collecting tab 7a is preferably narrower than the width of the electrode group 2. The width of the positive electrode current collector tab 7a and the width of the electrode group 2 are perpendicular to both the thickness direction of the battery 100 and the depth direction of the battery (direction from the positive electrode terminal 17 to the negative electrode terminal 32). That the positive electrode current collector tab 7a is narrower than the width of the electrode group 2 means that the widthwise end of the positive electrode current collector tab 7a is notched. From the viewpoint of efficiently accommodating the current collector 2 in the exterior member 1, it is more preferable that the positive electrode current collector tabs 7a are cut out from both ends by 5 mm or more and narrower than the width of the electrode group 2 by 10 mm or more. In FIG. 2 and the like, both ends of the positive electrode current collector tab 7a are notched.
 一方、負極8は、例えば箔からなる帯状の負極集電体と、負極集電体の長辺に平行な一端部からなる負極集電タブ8aと、少なくとも負極集電タブ8aの部分を除いて負極集電体に形成された負極材料層(負極活物質含有層)8bとを含む。負極集電タブ8aの幅は、電極群2の幅より狭いことが好ましい。負極集電タブ8aの幅と電極群2の幅は、電池100の厚さ方向と電池100の奥行き方向(正極端子17から負極端子32に向かう方向)の両方に垂直な方向である。負極集電タブ8aが電極群2の幅より狭いということは、負極集電タブ8aの幅方向の端が切り欠けられているということである。電極群2を効率よく外装部材1に収容する観点から、負極集電タブ8aは、両端からそれぞれ5mm以上切り欠けられていて、電極群2の幅よりも10mm以上狭いことがより好ましい。図3等では、負極集電タブ8aの両側の端部は、切り欠けられている。 On the other hand, the negative electrode 8 includes, for example, a strip-shaped negative electrode current collector made of foil, a negative electrode current collector tab 8a having one end portion parallel to the long side of the negative electrode current collector, and at least the negative electrode current collector tab 8a portion. And a negative electrode material layer (negative electrode active material-containing layer) 8b formed on the negative electrode current collector. The width of the negative electrode current collecting tab 8a is preferably narrower than the width of the electrode group 2. The width of the negative electrode current collector tab 8a and the width of the electrode group 2 are perpendicular to both the thickness direction of the battery 100 and the depth direction of the battery 100 (direction from the positive electrode terminal 17 to the negative electrode terminal 32). That the negative electrode current collecting tab 8a is narrower than the width of the electrode group 2 means that the widthwise end of the negative electrode current collecting tab 8a is notched. From the viewpoint of efficiently accommodating the electrode group 2 in the exterior member 1, it is more preferable that the negative electrode current collecting tabs 8a are cut out by 5 mm or more from both ends and are narrower than the width of the electrode group 2 by 10 mm or more. In FIG. 3 and the like, both ends of the negative electrode current collecting tab 8a are notched.
 電極群2は、正極7の正極材料層7bと負極8の負極材料層8bがセパレータ9を介して対向すると共に、捲回軸の一方側に正極集電タブ7aが負極8及びセパレータ9よりも突出し、かつ他方側に負極集電タブ8aが正極7及びセパレータ9よりも突出するように、正極7、セパレータ9及び負極8が扁平形状に捲回されたものである。よって、電極群2において、捲回軸と垂直な第一端面に、扁平の渦巻き状に捲回された正極集電タブ7aが位置する。 In the electrode group 2, the positive electrode material layer 7b of the positive electrode 7 and the negative electrode material layer 8b of the negative electrode 8 face each other via the separator 9, and the positive electrode current collecting tab 7a is provided on one side of the winding shaft more than the negative electrode 8 and the separator 9. The positive electrode 7, the separator 9, and the negative electrode 8 are wound in a flat shape so that the negative electrode current collecting tab 8a projects toward the other side than the positive electrode 7 and the separator 9. Therefore, in the electrode group 2, the positive current collecting tab 7a wound in a flat spiral shape is located on the first end surface perpendicular to the winding axis.
 また、捲回軸と垂直な第二端面に、扁平の渦巻き状に捲回された負極集電タブ8aが位置する。絶縁シート10は、電極群2の最外周のうち、正極集電タブ7aと負極集電タブ8aの間の部分を被覆している。そして、絶縁シート10は、電極群2の最外周のうち、正極集電タブ7a及び負極集電タブ8aの一部も被覆している。なお、電極群2は、電解質(図示しない)を保持している。 Also, the flat, spirally wound negative electrode current collector tab 8a is located on the second end face perpendicular to the winding axis. The insulating sheet 10 covers a part of the outermost circumference of the electrode group 2 between the positive electrode current collecting tab 7a and the negative electrode current collecting tab 8a. The insulating sheet 10 also covers a part of the positive electrode collector tab 7a and the negative electrode collector tab 8a in the outermost periphery of the electrode group 2. The electrode group 2 holds an electrolyte (not shown).
 バックアップ正極リード11は、導電性の板をU字状に折り曲げたもので、正極集電タブ7aの両端の湾曲部を除いた部分(中央付近)を挟んで正極集電タブ7aの層同士を密着させている。電極群側正極リード12は、バックアップ正極リード11よりも大きな面積の導電性の板である。バックアップ正極リード11を省略することが出来る。バックアップ正極リード11を用いない場合は、正極集電タブ7aは、電極群側正極リード12と直接的に電気的に接続している。 The backup positive electrode lead 11 is formed by bending a conductive plate into a U shape, and sandwiches the layers (around the center) excluding the curved portions at both ends of the positive electrode current collecting tab 7a to sandwich the layers of the positive electrode current collecting tab 7a. It is in close contact. The electrode group side positive electrode lead 12 is a conductive plate having a larger area than the backup positive electrode lead 11. The backup positive electrode lead 11 can be omitted. When the backup positive electrode lead 11 is not used, the positive electrode current collecting tab 7 a is directly electrically connected to the electrode group side positive electrode lead 12.
 バックアップ負極リード13は、導電性の板をU字形状に折り曲げたもので、負極集電タブ8aの両端の湾曲部を除いた部分(中央付近)を挟んで負極集電タブ8aの層同士を密着させている。電極群側負極リード14は、バックアップ負極リード13よりも大きな面積の導電性の板である。バックアップ負極リード13を省略することが出来る。バックアップ負極リード13を用いない場合は、負極集電タブ8aは、電極群側負極リード14と直接的に電気的に接続している。 The backup negative electrode lead 13 is formed by bending a conductive plate into a U shape, and sandwiches the layers of the negative electrode current collecting tab 8a with the portions (near the center) excluding the curved portions at both ends of the negative electrode current collecting tab 8a sandwiched therebetween. It is in close contact. The electrode group side negative electrode lead 14 is a conductive plate having a larger area than the backup negative electrode lead 13. The backup negative electrode lead 13 can be omitted. When the backup negative electrode lead 13 is not used, the negative electrode current collecting tab 8a is directly electrically connected to the electrode group side negative electrode lead 14.
 図6に正極端子部3側(負極端子部4側)側から電池100を見た概略図を示す。正極端子部3側から見た図と負極端子側部4から見た図は、同様である。図6には、A-A’、B-B’とC-C’の仮想線(破線)を示している。図7以降の断面図においては、これらA-A’面、B-B’面とC-C’面の断面図、つまり、仮想線から電池100の奥行き方向(正極端子部3から負極端子部4に向かう方向)に切断した断面図を示している。 FIG. 6 shows a schematic view of the battery 100 viewed from the positive electrode terminal portion 3 side (negative electrode terminal portion 4 side) side. The view seen from the positive electrode terminal portion 3 side and the view seen from the negative electrode terminal side portion 4 are the same. FIG. 6 shows virtual lines (broken lines) of A-A', B-B' and C-C'. In the sectional views from FIG. 7 onward, these sectional views of the AA′ plane, the BB′ plane, and the CC′ plane, that is, from the virtual line to the depth direction of the battery 100 (from the positive electrode terminal portion 3 to the negative electrode terminal portion) 4 is a sectional view taken in the direction of (4).
 図7は、図6の正極端子部3側のA-A’面に沿って切断した際に得られる断面図である。A-A’面は、正極端子17の中央(傾斜面5dの中央)を通る断面であり、正極絶縁補強保持部24aを含む断面である。図8は、図6の正極端子部3側のB-B’面に沿って切断した際に得られる断面図である。B-B’面は、正極端子17寄りの正極端子17の外側を通る断面であり、正極絶縁補強保持部24aを含まない断面である。図9は、図6の正極端子部3側のC-C’面に沿って切断した際に得られる断面図である。C-C’面は、第1の外装部5の端部に近いところを通る断面であり、正極絶縁補強保持部24aを含まない断面である。図7に示すように、正極端子17の電池100内側は、正極絶縁補強保持部24aによって支えられている。正極絶縁補強保持部24aは、電池100の外側から力が加わった際に電池100全体、特に正極端子部3側の変形を防ぐ。 FIG. 7 is a cross-sectional view obtained when cut along the A-A′ surface on the positive electrode terminal portion 3 side in FIG. 6. The A-A′ surface is a cross section that passes through the center of the positive electrode terminal 17 (the center of the inclined surface 5d) and includes the positive electrode insulating reinforcement holding portion 24a. FIG. 8 is a cross-sectional view obtained when cut along the B-B′ surface on the positive electrode terminal portion 3 side in FIG. 6. The B-B′ surface is a cross section that passes through the outside of the positive electrode terminal 17 near the positive electrode terminal 17, and does not include the positive electrode insulating reinforcement holding portion 24a. FIG. 9 is a cross-sectional view obtained when cut along the C-C′ surface on the positive electrode terminal portion 3 side in FIG. 6. The C-C′ surface is a cross section that passes near the end of the first outer casing 5, and does not include the positive electrode insulating reinforcement holding portion 24 a. As shown in FIG. 7, the inside of the battery 100 of the positive electrode terminal 17 is supported by the positive electrode insulating reinforcement holding portion 24a. The positive electrode insulation reinforcement holding portion 24a prevents deformation of the entire battery 100, particularly the positive electrode terminal portion 3 side when a force is applied from the outside of the battery 100.
 また、図10には、図7のD-D’面に沿って切断した際に得られる断面図を示している。そして、図11には、図6の負極端子部4側のA-A’面に沿って切断した際に得られる断面図である。A-A’面は、負極端子32の中央(傾斜面5dの中央)を通る断面であり、負極絶縁補強保持部37aを含む断面である。図11に示すように、負極端子32の電池100内側は、負極絶縁補強保持部37aによって支えられている。負極絶縁補強保持部37aは、電池100の外側から力が加わった際に電池100全体、特に負極端子部4側の変形を防ぐ。正極側と負極側は対称であるため、負極側のB-B’面、C-C’面及びD-D’面の断面図は、図示しないが、正極端子部3側の図8-10を参考にすることによって負極端子部4側の構造が理解される。
 以下、図2、図3、図7~図11を参照して電池100の内部構造について説明する。
Further, FIG. 10 shows a cross-sectional view obtained by cutting along the DD′ plane of FIG. 7. Then, FIG. 11 is a cross-sectional view obtained when cut along the AA′ surface on the negative electrode terminal portion 4 side in FIG. 6. The AA′ surface is a cross section that passes through the center of the negative electrode terminal 32 (the center of the inclined surface 5d) and includes the negative electrode insulation reinforcement holding portion 37a. As shown in FIG. 11, the inside of the battery 100 of the negative electrode terminal 32 is supported by the negative electrode insulating reinforcement holding portion 37a. The negative electrode insulation reinforcement holding portion 37a prevents deformation of the entire battery 100, particularly the negative electrode terminal portion 4 side when a force is applied from the outside of the battery 100. Since the positive electrode side and the negative electrode side are symmetric, the cross-sectional views of the BB′ surface, the CC′ surface, and the DD′ surface on the negative electrode side are not shown in FIG. The structure on the negative electrode terminal portion 4 side can be understood by referring to.
Hereinafter, the internal structure of the battery 100 will be described with reference to FIGS. 2, 3, and 7 to 11.
 図2、図3、図7~図10に示すように、電極群側正極リード12は、正極集電タブ7a側に正極集電タブ7a側と電気的に接続する平板部12aと、第2の外装部6側に延びる第1の延出部12bと第2の延出部12cを有する。図8に示すように、第1の延出部12bと第2の延出部12cは、正極端子リード23と直接的かつ電気的に接続している。第1の延出部12bと第2の延出部12cの間には、電極群側正極リード12が存在しないギャップ12dが存在する。図7及び図10に示すようにギャップ12dから正極軸部17bが露出している。電極群側正極リード12は、バックアップ正極リード11又は正極集電タブ7aの面に接続されている。バックアップ正極リード11は、正極集電タブ7a及び電極群側正極リード12と電気的に接続している。また、正極集電タブ7aは、電極群側正極リード12と電気的に接続している。 As shown in FIGS. 2, 3, and 7 to 10, the electrode group side positive electrode lead 12 includes a flat plate portion 12a electrically connected to the positive electrode current collecting tab 7a side on the positive electrode current collecting tab 7a side, and a second portion. Has a first extending portion 12b and a second extending portion 12c extending toward the exterior portion 6 side. As shown in FIG. 8, the first extending portion 12b and the second extending portion 12c are directly and electrically connected to the positive electrode terminal lead 23. A gap 12d where the electrode group side positive electrode lead 12 does not exist exists between the first extending part 12b and the second extending part 12c. As shown in FIGS. 7 and 10, the positive electrode shaft portion 17b is exposed from the gap 12d. The electrode group side positive electrode lead 12 is connected to the surface of the backup positive electrode lead 11 or the positive electrode current collecting tab 7a. The backup positive electrode lead 11 is electrically connected to the positive electrode current collecting tab 7a and the electrode group side positive electrode lead 12. The positive electrode collector tab 7a is electrically connected to the electrode group side positive electrode lead 12.
 正極集電タブ7a、バックアップ正極リード11及び電極群側正極リード12は、溶接により一体化され、これにより正極7が正極集電タブ7a及びバックアップ正極リード11を介して電極群側正極リード12と電気的に接続されている。正極集電タブ7aとバックアップ正極リード11との溶接は、例えばレーザ溶接や超音波溶接により行われる。バックアップ正極リード11と電極群側正極リード12との溶接は、例えばレーザ溶接や超音波溶接により行われる。バックアップ正極リード11は省略可能である。バックアップ正極リード11が省略される場合、正極集電タブ7aと電極側正極リード12とが溶接されることが好ましい。 The positive electrode current collecting tab 7a, the backup positive electrode lead 11 and the electrode group side positive electrode lead 12 are integrated by welding, whereby the positive electrode 7 is connected to the electrode group side positive electrode lead 12 via the positive electrode current collecting tab 7a and the backup positive electrode lead 11. It is electrically connected. The welding of the positive electrode current collector tab 7a and the backup positive electrode lead 11 is performed by, for example, laser welding or ultrasonic welding. The backup positive electrode lead 11 and the electrode group side positive electrode lead 12 are welded by, for example, laser welding or ultrasonic welding. The backup positive electrode lead 11 can be omitted. When the backup positive electrode lead 11 is omitted, it is preferable that the positive electrode current collecting tab 7a and the electrode side positive electrode lead 12 are welded.
 図2、図3及び図11に示すように、電極群側負極リード14は、負極集電タブ8a側に負極集電タブ8a側と電気的に接続する平板部14aと、第2の外装部6側に延びる第1の延出部14bと第2の延出部14cを有する。図8を参考に、第1の延出部14bと第2の延出部14cは、負極端子リード36と直接的かつ電気的に接続している。第1の延出部14bと第2の延出部14cの間には、電極群側負極リード14が存在しないギャップ14dが存在する。参考とする図10及び図11に示すようにギャップ14dから正極軸部32bが露出している。電極群側負極リード14は、バックアップ負極リード13又は負極集電タブ8aの面に接続されている。バックアップ負極リード13は、負極集電タブ8a及び電極群側負極リード14と電気的に接続している。また、負極集電タブ8aは、電極群側負極リード14と電気的に接続している。 As shown in FIGS. 2, 3 and 11, the electrode group side negative electrode lead 14 includes a flat plate portion 14a electrically connected to the negative electrode current collecting tab 8a side on the negative electrode current collecting tab 8a side, and a second exterior portion. It has a first extending portion 14b and a second extending portion 14c extending toward the 6 side. Referring to FIG. 8, the first extending portion 14b and the second extending portion 14c are directly and electrically connected to the negative electrode terminal lead 36. A gap 14d where the electrode group side negative electrode lead 14 does not exist exists between the first extending portion 14b and the second extending portion 14c. As shown in FIGS. 10 and 11 for reference, the positive electrode shaft portion 32b is exposed from the gap 14d. The electrode group side negative electrode lead 14 is connected to the surface of the backup negative electrode lead 13 or the negative electrode current collecting tab 8a. The backup negative electrode lead 13 is electrically connected to the negative electrode current collecting tab 8a and the electrode group side negative electrode lead 14. The negative electrode current collecting tab 8a is electrically connected to the electrode group side negative electrode lead 14.
 負極集電タブ8a、バックアップ負極リード13及び電極群側負極リード14は、溶接により一体化され、これにより負極8が負極集電タブ8a及びバックアップ負極リード13を介して電極群側負極リード14と電気的に接続されている。負極集電タブ8aとバックアップ負極リード13との溶接は、例えばレーザ溶接や超音波溶接により行われる。バックアップ負極リード13と電極群側負極リード14との溶接は、例えばレーザ溶接や超音波溶接により行われる。 The negative electrode current collecting tab 8a, the backup negative electrode lead 13 and the electrode group side negative electrode lead 14 are integrated by welding, whereby the negative electrode 8 is connected to the electrode group side negative electrode lead 14 via the negative electrode current collecting tab 8a and the backup negative electrode lead 13. It is electrically connected. The welding of the negative electrode current collecting tab 8a and the backup negative electrode lead 13 is performed by, for example, laser welding or ultrasonic welding. The backup negative electrode lead 13 and the electrode group side negative electrode lead 14 are welded by, for example, laser welding or ultrasonic welding.
 正極端子部3は、図2、図3、図7及び図10に示すように、第1の外装部5の傾斜面5dに開口された貫通孔15と、正極外子17と、正極絶縁部材18a、正極補強部材(リング状部材)18bと、絶縁ガスケット19と、正極端子絶縁部材20とを含む。 As shown in FIG. 2, FIG. 3, FIG. 7, and FIG. 10, the positive electrode terminal portion 3 includes a through hole 15 formed in the inclined surface 5d of the first exterior portion 5, a positive electrode outer member 17, and a positive electrode insulating member. 18 a, a positive electrode reinforcing member (ring member) 18 b, an insulating gasket 19, and a positive electrode terminal insulating member 20.
 正極端子部3において、第1の外装部5は正極集電タブ7a側に貫通孔15を有している。正極端子部3の正極端子17は、正極頭部17a及び正極頭部17aから延び出た正極軸部17bを含む。正極端子部3において、貫通孔23eを有する正極端子リード23を含む。正極端子部3において、正極頭部17aが第1の外装部5の外側に突出し、正極軸部17bが正極端子リード23の貫通孔23eに挿入されて、正極軸部17bが第1の外装部5及び正極端子リード23にカシメ固定されている。 In the positive electrode terminal portion 3, the first exterior portion 5 has a through hole 15 on the positive electrode collector tab 7a side. The positive electrode terminal 17 of the positive electrode terminal portion 3 includes a positive electrode head portion 17a and a positive electrode shaft portion 17b extending from the positive electrode head portion 17a. The positive electrode terminal portion 3 includes a positive electrode terminal lead 23 having a through hole 23e. In the positive electrode terminal portion 3, the positive electrode head portion 17a projects to the outside of the first exterior portion 5, the positive electrode shaft portion 17b is inserted into the through hole 23e of the positive electrode terminal lead 23, and the positive electrode shaft portion 17b becomes the first exterior portion. 5 and the positive electrode terminal lead 23 are fixed by crimping.
 バーリング部(環状の立ち上がり部)16は、図7に示すように、貫通孔15の周縁部から外装部材1の内側に向けて延びており、バーリング加工によって形成されたものである。 The burring portion (annular rising portion) 16 extends from the peripheral portion of the through hole 15 toward the inside of the exterior member 1 as shown in FIG. 7, and is formed by burring processing.
 正極端子17は、図7に示すように、角錐台形状の正極頭部17aと、第1の外装部5の貫通孔15を貫通する円柱状の正極軸部17bとを含む。円柱状の正極軸部17bは、正極頭部17aの頂面と平行な平面から伸び出ている。正極外部端子17は、例えば、アルミニウム、アルミニウム合金等の導電性材料から形成される。 As shown in FIG. 7, the positive electrode terminal 17 includes a truncated pyramid-shaped positive electrode head portion 17 a and a cylindrical positive electrode shaft portion 17 b that penetrates the through hole 15 of the first exterior portion 5. The cylindrical positive electrode shaft portion 17b extends from a plane parallel to the top surface of the positive electrode head portion 17a. The positive electrode external terminal 17 is formed of a conductive material such as aluminum or aluminum alloy.
 正極絶縁部材18aは、第1の外装部5を正極端子17及び正極端子リード23と絶縁する。第1の外装部5と、正極絶縁部材18aによって、正極補強部材18bが挟まれている。 The positive electrode insulating member 18 a insulates the first exterior part 5 from the positive electrode terminal 17 and the positive electrode terminal lead 23. The positive electrode reinforcing member 18b is sandwiched between the first exterior part 5 and the positive electrode insulating member 18a.
 正極補強部材18bは、例えば、ガスケットよりも剛性の高い材質で形成された円形リングからなる。ガスケットよりも剛性の高い材質の例には、ステンレス鋼、鉄にメッキ(例えばNi、NiCr等)を施したもの、セラミックス、ガスケットよりも高い剛性を持ち得る樹脂(例えばポリフェニレンサルファイド(PPS)、ポリブチレンテレフタレート(PBT))などが含まれる。正極補強部材18bは、図7に示すように、バーリング部16の外周面上に配置されてバーリング部16及び正極絶縁部材18aと接している。また、正極補強部材18bを樹脂やセラミックス等絶縁材料で形成した場合は、第2の正極絶縁補強部材25と一体化することも出来る。 The positive electrode reinforcing member 18b is, for example, a circular ring formed of a material having higher rigidity than a gasket. Examples of materials having higher rigidity than the gasket include stainless steel, iron plated (for example, Ni, NiCr, etc.), ceramics, resin that can have higher rigidity than the gasket (for example, polyphenylene sulfide (PPS), poly Butylene terephthalate (PBT)) and the like are included. As shown in FIG. 7, the positive electrode reinforcing member 18b is arranged on the outer peripheral surface of the burring portion 16 and is in contact with the burring portion 16 and the positive electrode insulating member 18a. When the positive electrode reinforcing member 18b is made of an insulating material such as resin or ceramics, it can be integrated with the second positive electrode insulating reinforcing member 25.
 絶縁ガスケット19は、一方の開口端にフランジ部19aを有する円筒体(筒部)である。絶縁ガスケット19は、図7に示すように、円筒体の部分が貫通孔15及びバーリング部16内に挿入され、フランジ部19aが第1の外装部5の外面上の貫通孔15の外周に配置されている。絶縁ガスケット19は、例えば、フッ素樹脂、フッ素ゴム、ポリフェニレンサルファイド樹脂(PPS樹脂)、ポリエーテルエーテルケトン樹脂(PEEK樹脂)、ポリプロピレン樹脂(PP樹脂)、及びポリブチレンテレフタレート樹脂(PBT樹脂)などの樹脂から形成されている。 The insulating gasket 19 is a cylindrical body having a flange portion 19a at one open end. As shown in FIG. 7, the insulating gasket 19 has a cylindrical portion inserted into the through hole 15 and the burring portion 16, and the flange portion 19 a is arranged on the outer surface of the first exterior portion 5 on the outer periphery of the through hole 15. Has been done. The insulating gasket 19 is, for example, a resin such as fluororesin, fluororubber, polyphenylene sulfide resin (PPS resin), polyether ether ketone resin (PEEK resin), polypropylene resin (PP resin), and polybutylene terephthalate resin (PBT resin). Are formed from.
 正極端子絶縁部材20は、図2及び図7に示すように、鈍角に折れ曲がった板状部材であり、底部に貫通孔20aを有する。正極端子絶縁部材20は、第1の外装部5の外面上に配置されている。正極端子絶縁部材20の貫通孔20aには、絶縁ガスケット19が挿入されている。 As shown in FIGS. 2 and 7, the positive electrode terminal insulating member 20 is a plate member bent at an obtuse angle, and has a through hole 20a at the bottom. The positive electrode terminal insulating member 20 is arranged on the outer surface of the first exterior portion 5. An insulating gasket 19 is inserted into the through hole 20 a of the positive electrode terminal insulating member 20.
 正極端子リード23は、平板部23a、第1の延出部23b、第2の延出部23cと第3の延出部23dを有する導電性の板である。図8では、正極端子リード23は、電極群2側に平板部23aを有する。第1の延出部23bと第2の延出部23cは、第1の外装部5の開口部側、すなわち、第2の外装部6側に延出している。第1の延出部23b及び第2の延出部23cは、第2の外装材6側に位置し、電極群側正極リード12の第1の延出部12b及び第2の延出部12cと同方向に延出している。第3の延出部23dは、傾斜面5dに沿う方向に延びている。第3の延出部23dの中央には、貫通孔23eが設けられている。 The positive electrode terminal lead 23 is a conductive plate having a flat plate portion 23a, a first extending portion 23b, a second extending portion 23c and a third extending portion 23d. In FIG. 8, the positive electrode terminal lead 23 has a flat plate portion 23a on the electrode group 2 side. The first extending portion 23b and the second extending portion 23c extend to the opening side of the first exterior portion 5, that is, the second exterior portion 6 side. The first extending portion 23b and the second extending portion 23c are located on the second exterior material 6 side, and the first extending portion 12b and the second extending portion 12c of the electrode group side positive electrode lead 12 are located. It extends in the same direction as. The third extending portion 23d extends in the direction along the inclined surface 5d. A through hole 23e is provided in the center of the third extending portion 23d.
 図8~図10に示すように、正極端子リード23の第1の延出部23bは、電極群側正極リード12の第1の延出部12bと溶接により一体化されている。正極端子リード23の第1の延出部23bと電極群側正極リード12の第1の延出部12bの対向する面、又は/及び、先端側の正極端子リード23の第1の延出部23bの端面と電極群側正極リード12の第1の延出部12bの端面が溶接されている。 As shown in FIGS. 8 to 10, the first extending portion 23b of the positive electrode terminal lead 23 is integrated with the first extending portion 12b of the electrode group side positive electrode lead 12 by welding. Faces of the first extending portion 23b of the positive electrode terminal lead 23 and the first extending portion 12b of the electrode group side positive electrode lead 12 facing each other, and/or the first extending portion of the positive electrode terminal lead 23 on the tip side. The end surface of 23b and the end surface of the first extending portion 12b of the electrode group side positive electrode lead 12 are welded.
 図8~図10に示すように、正極端子リード23の第2の延出部23cは、電極群側正極リード12の第2の延出部12cと溶接により一体化されている。正極端子リード23の第2の延出部23cと電極群側正極リード12の第2の延出部12cの対向する面、又は/及び、先端側の正極端子リード23の第2の延出部23cの端面と電極群側正極リード12の第2の延出部12cの端面が溶接されている。 As shown in FIGS. 8 to 10, the second extending portion 23c of the positive electrode terminal lead 23 is integrated with the second extending portion 12c of the electrode group side positive electrode lead 12 by welding. Faces of the second extending portion 23c of the positive electrode terminal lead 23 and the second extending portion 12c of the electrode group side positive electrode lead 12 facing each other, and/or the second extending portion of the positive electrode terminal lead 23 on the tip side. The end surface of 23c and the end surface of the second extending portion 12c of the electrode group side positive electrode lead 12 are welded.
 図8~図10に示すように、正極端子リード23の第1の延出部23b及び電極群側正極リード12の第1の延出部12bの少なくとも先端部分の延在方向は、第2の外装部6の面に対して垂直又は略垂直(80°以上100°以下)であることが好ましい。正極端子リード23の第1の延出部23b及び電極群側正極リード12の第1の延出部12bの少なくとも先端部分の延在方向が第2の外装部6の面に対して垂直又は略垂直であることは、正極端子リード23の第1の延出部23bと電極群側正極リード12の第1の延出部12bの溶接後にリードを折り曲げずに作成されたことを表している。 As shown in FIGS. 8 to 10, the extending direction of at least the tip portion of the first extending portion 23b of the positive electrode terminal lead 23 and the first extending portion 12b of the electrode group side positive electrode lead 12 is the second extending direction. It is preferably perpendicular or substantially perpendicular (80° or more and 100° or less) to the surface of the exterior portion 6. The extending direction of at least the tip end portion of the first extending portion 23b of the positive electrode terminal lead 23 and the first extending portion 12b of the electrode group-side positive electrode lead 12 is perpendicular or approximately to the surface of the second exterior portion 6. Being vertical means that the first extension portion 23b of the positive electrode terminal lead 23 and the first extension portion 12b of the electrode group-side positive electrode lead 12 are formed without welding after welding.
 図8~図10に示すように、正極端子リード23の第2の延出部23c及び電極群側正極リード12の第2の延出部12cの少なくとも先端部分の延在方向は、第2の外装部6の面に対して垂直又は略垂直(80°以上100°以下)であることが好ましい。正極端子リード23の第2の延出部23c及び電極群側正極リード12の第2の延出部12cの少なくとも先端部分の延在方向が第2の外装部6の面に対して垂直又は略垂直であることは、正極端子リード23の第2の延出部23cと電極群側正極リード12の第2の延出部12cの溶接後にリードを折り曲げずに作成されたことを表している。 As shown in FIGS. 8 to 10, the extending direction of at least the tip portion of the second extending portion 23c of the positive electrode terminal lead 23 and the second extending portion 12c of the electrode group side positive electrode lead 12 is the second It is preferably perpendicular or substantially perpendicular (80° or more and 100° or less) to the surface of the exterior portion 6. The extending direction of at least the tip end portion of the second extending portion 23c of the positive electrode terminal lead 23 and the second extending portion 12c of the electrode group-side positive electrode lead 12 is perpendicular or approximately to the surface of the second exterior portion 6. Being vertical means that the second extension portion 23c of the positive electrode terminal lead 23 and the second extension portion 12c of the electrode group side positive electrode lead 12 are formed without welding after welding.
 溶接後にリードを折り曲げることによって電極の端子部分の配線をコンパクトにできるという利点があるが、溶接後に折曲げを精度良く行うには、リードの厚さを薄くすることが求められる。しかし、リードの厚さを薄くすると大電流を流しにくいという点で好ましくない。溶接された部分が第2の外装部6の面の方向を向くようにすることで、リードの厚さを厚くすることができる。 There is an advantage that the wiring of the terminal part of the electrode can be made compact by bending the lead after welding, but in order to perform bending accurately after welding, it is required to reduce the thickness of the lead. However, reducing the thickness of the leads is not preferable because it is difficult for a large current to flow. The thickness of the lead can be increased by making the welded portion face the direction of the surface of the second exterior portion 6.
 大電流特性を考慮すると、正極端子リード23の厚さは、0.5mm以上3.0mm以下とすることができ、また、電極群側正極リード12の厚さは、0.5mm以上3.0mm以下とすることができる。さらに、リード同士の溶接前のリードの折り曲げ工程及び大電流特性を考慮すると、正極端子リード23の厚さと電極群側正極リード12の厚さの和は、1.0mm以上1.2mm以下とすることが好ましい。これらの厚さは、溶接されている部分で少なくとも満たすことが好ましい。 Considering the large current characteristics, the thickness of the positive electrode terminal lead 23 can be 0.5 mm or more and 3.0 mm or less, and the thickness of the electrode group side positive electrode lead 12 is 0.5 mm or more and 3.0 mm. It can be: Further, considering the bending process of the leads before welding the leads to each other and the large current characteristic, the sum of the thickness of the positive electrode terminal lead 23 and the thickness of the electrode group side positive electrode lead 12 is 1.0 mm or more and 1.2 mm or less. It is preferable. These thicknesses are preferably filled at least in the welded parts.
 第1の正極絶縁補強部材24は、図2、図3、図7~10に示すように、有底矩形筒を長辺方向に半割した構造を有する。第1の正極絶縁補強部材24は、正極集電タブ7aのうち、捲回中心から第2の外装部6側までの半分程度を被覆するこれにより、第2の外装部6、特に短辺付近を補強することができる。第1の正極絶縁補強部材24は、第1の外装部5の内面側及び第2の外装部6の内面側に配置され、正極端子17と第2の外装部6の間に配置されている。第1の正極絶縁補強部材24は、正極絶縁補強保持部24aを有する。正極絶縁補強保持部24aは、正極軸部17bの正極頭部17a側とは反対側の端部と対向する斜面を有する。この正極絶縁補強保持部24aの斜面によって正極端子部3が支えられることで、電池100の強度を向上させる。正極絶縁補強保持部24aは、第1の正極絶縁補強部材24の第2の外装部6側を向く底部24bから延出した部分である。第1の正極絶縁補強部材24は、第1の外装部5の正極端子側を向く第1側面24cと第1の外装部5の幅方向の面を向く第2側面24dを含む。正極端子部3側の電池100の補強の観点から、正極軸部17bの正極絶縁補強保持部24aを向く面、つまり、正極軸部17bの正極頭部17a側とは反対側の端部の面は、正極絶縁補強保持部24aの斜面、つまり、正極絶縁補強保持部24aの正極軸部17bと対向し、正極軸部17bと最も距離の近い面よりも小さいことが好ましい。この要件を満たすとき、正極端子リード23にカシメ固定された正極軸部17が広い面積の正極絶縁補強保持部24aの斜面と接し、保持可能となることで、正極端子部3側の電池100の強度が向上する。 The first positive electrode insulating reinforcing member 24 has a structure in which a rectangular cylinder with a bottom is divided in half in the long side direction, as shown in FIGS. 2, 3, and 7 to 10. The first positive electrode insulating reinforcing member 24 covers approximately half of the positive electrode current collecting tab 7a from the winding center to the second outer packaging portion 6 side, whereby the second outer packaging portion 6, particularly near the short side. Can be reinforced. The first positive electrode insulating reinforcing member 24 is arranged on the inner surface side of the first outer casing 5 and the inner surface side of the second outer casing 6, and is arranged between the positive electrode terminal 17 and the second outer casing 6. .. The first positive electrode insulating reinforcing member 24 has a positive electrode insulating reinforcing holding portion 24a. The positive electrode insulating reinforcement holding portion 24a has a sloped surface facing the end portion of the positive electrode shaft portion 17b on the side opposite to the positive electrode head portion 17a side. Since the positive electrode terminal portion 3 is supported by the sloped surface of the positive electrode insulating reinforcement holding portion 24a, the strength of the battery 100 is improved. The positive electrode insulation reinforcement holding portion 24a is a portion extending from the bottom portion 24b of the first positive electrode insulation reinforcement member 24 facing the second exterior portion 6 side. The first positive electrode insulating reinforcing member 24 includes a first side face 24c facing the positive electrode terminal side of the first outer casing 5 and a second side face 24d facing the widthwise face of the first outer casing 5. From the viewpoint of reinforcing the battery 100 on the positive electrode terminal portion 3 side, the surface of the positive electrode shaft portion 17b facing the positive electrode insulating reinforcement holding portion 24a, that is, the surface of the end portion of the positive electrode shaft portion 17b opposite to the positive electrode head portion 17a side. Is preferably smaller than the slope of the positive electrode insulating reinforcement holding portion 24a, that is, the surface facing the positive electrode shaft portion 17b of the positive electrode insulating reinforcement holding portion 24a and having the closest distance to the positive electrode shaft portion 17b. When this requirement is satisfied, the positive electrode shaft portion 17 crimped and fixed to the positive electrode terminal lead 23 comes into contact with the sloped surface of the positive electrode insulation reinforcement holding portion 24a having a large area and can be held, so that the battery 100 of the positive electrode terminal portion 3 side can be held. Strength is improved.
 正極端子部3が第2の正極絶縁補強部材25をさらに備えることが好ましい。図2、図3、図7~10に示すように、第2の正極絶縁補強部材25は、有底矩形筒を長辺方向に半割した構造を有する。第2の正極絶縁補強部材25は、第1の外装部5の内面側であって、正極端子リード23と第1の外装部5との間に配置され、第1の正極絶縁補強部材24と対向している。 It is preferable that the positive electrode terminal portion 3 further includes a second positive electrode insulating reinforcing member 25. As shown in FIGS. 2, 3, and 7 to 10, the second positive electrode insulating reinforcing member 25 has a structure in which a rectangular cylinder with a bottom is divided in half in the long side direction. The second positive electrode insulating reinforcing member 25 is arranged on the inner surface side of the first outer casing 5 and between the positive electrode terminal lead 23 and the first outer casing 5, and is connected to the first positive electrode insulating reinforcing member 24. Facing each other.
 第2の正極絶縁補強部材25は、第1の外装部5の底部側を向く底部25aと、第1の外装部5の正極端子方向の側面(短辺側側壁)側を向く第1側面部25bと、底部25aと第1側面部25bをつなぎ、第2の正極絶縁補強部材25の中央に配置された傾斜部25cと、傾斜部25cの中央に開口された貫通孔25dと、第1の外装部5の幅方向の側面(長辺側側壁)側を向く第2側面部25eとを有する。第2の正極絶縁補強部材25は、第1の外装部5の短辺側側壁から底面に繋がるコーナ部と、第1の外装部5の短辺側側壁から長辺側側面に繋がるコーナ部を被覆する。これにより、第1の外装部5、特に短辺側側壁と長辺側側壁と底部とが交わるコーナ付近を補強することができる。貫通孔25dは、第1の外装部5の貫通孔15と連通する。第2の正極絶縁補強部材25上に、正極端子リード23が配置される。正極端子リード23の貫通孔23eは、第2の正極絶縁補強部材25の貫通孔25d及び第1の外装部5の貫通孔15と連通する。 The second positive electrode insulating reinforcing member 25 includes a bottom portion 25a facing the bottom side of the first exterior portion 5 and a first side surface portion facing the side surface (side wall on the short side side) side of the first exterior portion 5 in the positive electrode terminal direction. 25b, the bottom portion 25a and the first side surface portion 25b are connected to each other, the inclined portion 25c arranged in the center of the second positive electrode insulating and reinforcing member 25, the through hole 25d opened in the center of the inclined portion 25c, and the first A second side surface portion 25e that faces the side surface (long side sidewall) in the width direction of the exterior portion 5 is provided. The second positive electrode insulating reinforcing member 25 includes a corner portion connected from the short side wall of the first exterior portion 5 to the bottom surface and a corner portion connected from the short side wall of the first exterior portion 5 to the long side surface. To cover. As a result, it is possible to reinforce the first exterior portion 5, particularly, the vicinity of the corner where the short side wall, the long side wall, and the bottom portion intersect. The through hole 25d communicates with the through hole 15 of the first exterior portion 5. The positive electrode terminal lead 23 is arranged on the second positive electrode insulating reinforcing member 25. The through hole 23e of the positive electrode terminal lead 23 communicates with the through hole 25d of the second positive electrode insulating and reinforcing member 25 and the through hole 15 of the first exterior portion 5.
 第2の正極絶縁補強部材25は、正極軸部17b、第1の外装部5及び正極端子リード23にカシメ固定され、正極端子部3において固定されていることが、絶縁性及び強度付与の観点から好ましい。 The second positive electrode insulating reinforcing member 25 is caulked and fixed to the positive electrode shaft portion 17b, the first outer casing portion 5 and the positive electrode terminal lead 23, and is fixed at the positive electrode terminal portion 3 from the viewpoint of imparting insulation and strength. Is preferred.
 第1の正極絶縁補強部材24及び第2の正極絶縁補強部材25は、絶縁性であり、成型された樹脂であることが好ましい。 The first positive electrode insulating reinforcing member 24 and the second positive electrode insulating reinforcing member 25 are preferably insulative and molded resin.
 例えば、絶縁シート10で正極集電タブ7aを一部巻き、少なくとも正極集電タブ7a側の絶縁シート10を第1の正極絶縁補強部材24及び第2の正極絶縁補強部材25で覆うことで、電池100の内部の正極集電タブ7aや正極端子17が第1の外装部5及び第2の外装部6と短絡しないように構成されていることが好ましい。また、第1の外装部5及び第2の外装部6の正極端子17から正極集電タブ7aの間の内面側は、第1の正極絶縁補強部材24及び第2の正極絶縁補強部材25で覆われることで、電池100の内部の正極集電タブ7aや正極端子17が第1の外装部5及び第2の外装部6と短絡しないように構成されていることが好ましい。 For example, by partially winding the positive electrode current collector tab 7a with the insulating sheet 10 and covering at least the insulating sheet 10 on the positive electrode current collector tab 7a side with the first positive electrode insulating reinforcing member 24 and the second positive electrode insulating reinforcing member 25, It is preferable that the positive electrode current collecting tab 7a and the positive electrode terminal 17 inside the battery 100 are configured so as not to short-circuit with the first exterior part 5 and the second exterior part 6. The inner surface side of the first exterior part 5 and the second exterior part 6 between the positive electrode terminal 17 and the positive electrode current collecting tab 7a is provided with a first positive electrode insulation reinforcing member 24 and a second positive electrode insulation reinforcing member 25. It is preferable that the positive electrode current collecting tab 7a and the positive electrode terminal 17 inside the battery 100 are configured so as not to be short-circuited with the first exterior part 5 and the second exterior part 6 by being covered.
 正極外部端子17の正極軸部17bは、絶縁ガスケット19、正極端子絶縁部材20の貫通孔20a、第1の外装部5の貫通孔15、第2の正極絶縁補強部材25の貫通孔25c及び正極端子リード23の貫通孔23eに挿入された後、カシメ加工によって塑性変形を生じる。その結果、これらの部材が一体化されると共に、正極外部端子17が正極端子リード23と電気的に接続される。よって、正極外部端子17は、リベットの役割も担う。なお、正極外部端子17の正極軸部の17b端面と正極端子リード23の貫通孔23eとの境界部をレーザ等により溶接し、より強固な接続と電気導通性の向上を施しても良い。
The positive electrode shaft portion 17b of the positive electrode external terminal 17 includes an insulating gasket 19, a through hole 20a of the positive electrode terminal insulating member 20, a through hole 15 of the first outer casing 5, a through hole 25c of the second positive electrode insulating reinforcing member 25, and a positive electrode. After being inserted into the through hole 23e of the terminal lead 23, caulking causes plastic deformation. As a result, these members are integrated and the positive electrode external terminal 17 is electrically connected to the positive electrode terminal lead 23. Therefore, the positive electrode external terminal 17 also serves as a rivet. It should be noted that the boundary between the end surface 17b of the positive electrode shaft portion of the positive electrode external terminal 17 and the through hole 23e of the positive electrode terminal lead 23 may be welded by a laser or the like to make a stronger connection and improve electrical conductivity.
 負極端子部4は、図3及び図11に示すように、第1の外装部5の傾斜面5dに開口された貫通孔30と、負極端子32と、負極絶縁部材33a、負極補強部材(リング状部材)33bと、絶縁ガスケット34と、負極端子絶縁部材35とを含む。 As shown in FIGS. 3 and 11, the negative electrode terminal portion 4 has a through hole 30 formed in the inclined surface 5d of the first exterior portion 5, a negative electrode terminal 32, a negative electrode insulating member 33a, and a negative electrode reinforcing member (ring). Shaped member) 33b, an insulating gasket 34, and a negative electrode terminal insulating member 35.
 負極端子部4において、第1の外装部5は負極集電タブ8a側に貫通孔30を有している。負極端子部4の負極端子32は、負極頭部32a及び負極頭部32aから延び出た負極軸部32bを含む。負極端子部4において、貫通孔36eを有する負極端子リード36を含む。負極端子部4において、負極頭部32aが第1の外装部5の外側に突出し、負極軸部32bが負極端子リード36の貫通孔36eに挿入されて、負極軸部32bが第1の外装部5及び負極端子リード36にカシメ固定されている。 In the negative electrode terminal portion 4, the first exterior portion 5 has a through hole 30 on the negative electrode current collector tab 8a side. The negative electrode terminal 32 of the negative electrode terminal portion 4 includes a negative electrode head portion 32a and a negative electrode shaft portion 32b extending from the negative electrode head portion 32a. The negative electrode terminal portion 4 includes a negative electrode terminal lead 36 having a through hole 36e. In the negative electrode terminal portion 4, the negative electrode head portion 32a projects to the outside of the first exterior portion 5, the negative electrode shaft portion 32b is inserted into the through hole 36e of the negative electrode terminal lead 36, and the negative electrode shaft portion 32b becomes the first exterior portion. 5 and the negative electrode terminal lead 36 are fixed by crimping.
 バーリング部(環状の立ち上がり部)31は、図11に示すように、貫通孔30の周縁部から外装部材1の内側に向けて延びており、バーリング加工によって形成されたものである。 As shown in FIG. 11, the burring portion (annular rising portion) 31 extends from the peripheral portion of the through hole 30 toward the inside of the exterior member 1, and is formed by burring processing.
 負極端子32は、図11に示すように、角錐台形状の負極頭部32aと、第1の外装部5の貫通孔30を貫通する円柱状の負極軸部32bとを含む。円柱状の負極軸部32bは、負極頭部32aの頂面と平行な平面から伸び出ている。負極端子32は、例えば、アルミニウム、アルミニウム合金等の導電性材料から形成される。 As shown in FIG. 11, the negative electrode terminal 32 includes a truncated pyramid-shaped negative electrode head portion 32 a and a cylindrical negative electrode shaft portion 32 b that penetrates the through hole 30 of the first exterior portion 5. The columnar negative electrode shaft portion 32b extends from a plane parallel to the top surface of the negative electrode head portion 32a. The negative electrode terminal 32 is made of a conductive material such as aluminum or aluminum alloy.
 負極絶縁部材33aは、第1の外装部5を負極端子32及び負極端子リード36と絶縁する。第1の外装部5と、負極絶縁部材33aによって、負極補強部材33bが挟まれている。 The negative electrode insulating member 33 a insulates the first exterior part 5 from the negative electrode terminal 32 and the negative electrode terminal lead 36. The negative electrode reinforcing member 33b is sandwiched between the first exterior portion 5 and the negative electrode insulating member 33a.
 負極補強部材33bは、例えば、ガスケットよりも剛性の高い材質で形成された円形リングからなる。ガスケットよりも剛性の高い材質の例には、ステンレス鋼、鉄にメッキ(例えばNi、NiCr等)を施したもの、セラミックス、ガスケットよりも高い剛性を持ち得る樹脂(例えばポリフェニレンサルファイド(PPS)、ポリブチレンテレフタレート(PBT))などが含まれる。負極補強部材33bは、図11に示すように、バーリング部31の外周面上に配置されてバーリング部31及び負極絶縁部材33aと接している。また、負極補強部材33bを樹脂やセラミックス等絶縁材料で形成した場合は、第1の負極絶縁補強部材37と一体化することも出来る。 The negative electrode reinforcing member 33b is, for example, a circular ring formed of a material having higher rigidity than the gasket. Examples of materials having higher rigidity than the gasket include stainless steel, iron plated (for example, Ni, NiCr, etc.), ceramics, resin that can have higher rigidity than the gasket (for example, polyphenylene sulfide (PPS), poly Butylene terephthalate (PBT)) and the like are included. As shown in FIG. 11, the negative electrode reinforcing member 33b is arranged on the outer peripheral surface of the burring portion 31 and is in contact with the burring portion 31 and the negative electrode insulating member 33a. When the negative electrode reinforcing member 33b is made of an insulating material such as resin or ceramics, it can be integrated with the first negative electrode insulating reinforcing member 37.
 絶縁ガスケット34は、一方の開口端にフランジ部34aを有する円筒体(筒部)である。絶縁ガスケット34は、図3及び図11に示すように、円筒体の部分が貫通孔30及びバーリング部31内に挿入され、フランジ部34aが第1の外装部5の外面上の貫通孔30の外周に配置されている。絶縁ガスケット34は、例えば、フッ素樹脂、フッ素ゴム、ポリフェニレンサルファイド樹脂(PPS樹脂)、ポリエーテルエーテルケトン樹脂(PEEK樹脂)、ポリプロピレン樹脂(PP樹脂)、及びポリブチレンテレフタレート樹脂(PBT樹脂)などの樹脂から形成されている。 The insulating gasket 34 is a cylindrical body (cylindrical portion) having a flange portion 34a at one open end. In the insulating gasket 34, as shown in FIGS. 3 and 11, the cylindrical portion is inserted into the through hole 30 and the burring portion 31, and the flange portion 34 a is formed in the through hole 30 on the outer surface of the first exterior portion 5. It is arranged on the outer circumference. The insulating gasket 34 is, for example, a resin such as fluororesin, fluororubber, polyphenylene sulfide resin (PPS resin), polyether ether ketone resin (PEEK resin), polypropylene resin (PP resin), and polybutylene terephthalate resin (PBT resin). Are formed from.
 負極端子絶縁部材35は、図3及び図11に示すように、鈍角に折れ曲がった板状部材であり、底部に貫通孔35aを有する。負極端子絶縁部材35は、第1の外装部5の外面上に配置されている。負極端子絶縁部材35の貫通孔35aには、絶縁ガスケット34が挿入されている。 As shown in FIGS. 3 and 11, the negative electrode terminal insulating member 35 is a plate member bent at an obtuse angle, and has a through hole 35a at the bottom. The negative electrode terminal insulating member 35 is arranged on the outer surface of the first exterior portion 5. An insulating gasket 34 is inserted into the through hole 35 a of the negative electrode terminal insulating member 35.
 負極端子リード36は、平板部36a、第1の延出部36b、第2の延出部36cと第3の延出部36dを有する導電性の板である。図11では、負極端子リード36は、電極群2側に平板部36aを有する。第1の延出部36bと第2の延出部36cは、第1の外装部5の開口部側、すなわち、第2の外装部6側に延出している。第1の延出部36b及び第2の延出部36cは、第2の外装材6側に位置し、電極群側負極リード14の第1の延出部14b及び第2の延出部14cと同方向に延出している。第3の延出部36dは、傾斜面5dに沿う方向に延びている。第3の延出部36dの中央には、貫通孔36eが設けられている。 The negative electrode terminal lead 36 is a conductive plate having a flat plate portion 36a, a first extending portion 36b, a second extending portion 36c and a third extending portion 36d. In FIG. 11, the negative electrode terminal lead 36 has a flat plate portion 36a on the electrode group 2 side. The first extending portion 36b and the second extending portion 36c extend to the opening side of the first exterior portion 5, that is, the second exterior portion 6 side. The 1st extension part 36b and the 2nd extension part 36c are located in the 2nd exterior material 6 side, and the 1st extension part 14b and the 2nd extension part 14c of the electrode group side negative electrode lead 14 are located. It extends in the same direction as. The third extending portion 36d extends in the direction along the inclined surface 5d. A through hole 36e is provided at the center of the third extending portion 36d.
 参考とする図9~10及び図11に示すように、負極端子リード36の第1の延出部36bは、電極群側負極リード14の第1の延出部14bと溶接により一体化されている。負極端子リード36の第1の延出部36bと電極群側負極リード14の第1の延出部14bの対向する面、又は/及び、先端側の負極端子リード36の第1の延出部36bの端面と電極群側負極リード14の第1の延出部14bの端面も溶接されている。 As shown in FIGS. 9 to 10 and FIG. 11 for reference, the first extending portion 36b of the negative electrode terminal lead 36 is integrated with the first extending portion 14b of the electrode group side negative electrode lead 14 by welding. There is. Faces of the first extension portion 36b of the negative electrode terminal lead 36 and the first extension portion 14b of the electrode group side negative electrode lead 14 facing each other and/or the first extension portion of the negative electrode terminal lead 36 on the tip side. The end face of 36b and the end face of the first extending portion 14b of the electrode group side negative electrode lead 14 are also welded.
 参考とする図9~10及び図11に示すように、負極端子リード36の第2の延出部36cは、電極群側負極リード14の第2の延出部14cと溶接により一体化されている。負極端子リード36の第2の延出部36cと電極群側負極リード14の第2の延出部14cの対向する面、又は/及び、先端側の負極端子リード36の第2の延出部36cの端面と電極群側負極リード14の第2の延出部14cの端面が溶接されている。 As shown in FIGS. 9 to 10 and FIG. 11 for reference, the second extension portion 36c of the negative electrode terminal lead 36 is integrated with the second extension portion 14c of the electrode group side negative electrode lead 14 by welding. There is. The second extension part 36c of the negative electrode terminal lead 36 and the second extension part 14c of the electrode group side negative electrode lead 14 facing each other, and/or the second extension part of the negative electrode terminal lead 36 on the tip side. The end face of 36c and the end face of the second extending portion 14c of the electrode group side negative electrode lead 14 are welded.
 参考とする図9~10及び図11に示すように、負極端子リード36の第1の延出部36b及び電極群側負極リード14の第1の延出部14bの少なくとも先端部分の延在方向は、第2の外装部6の面に対して垂直又は略垂直(80°以上100°以下)であることが好ましい。負極端子リード36の第1の延出部36b及び電極群側負極リード14の第1の延出部14bの少なくとも先端部分の延在方向が第2の外装部6の面に対して垂直又は略垂直であることは、負極端子リード36の第1の延出部36bと電極群側負極リード14の第1の延出部14bの溶接後にリードを折り曲げずに作成されたことを表している。 As shown in FIGS. 9 to 10 and FIG. 11 for reference, the extending direction of at least the tip end portion of the first extension portion 36b of the negative electrode terminal lead 36 and the first extension portion 14b of the electrode group side negative electrode lead 14 Is preferably perpendicular or substantially perpendicular (80° or more and 100° or less) to the surface of the second exterior portion 6. The extending direction of at least the tip end portion of the first extending portion 36b of the negative electrode terminal lead 36 and the first extending portion 14b of the electrode group-side negative electrode lead 14 is perpendicular or approximately to the surface of the second exterior portion 6. Being vertical means that the first extension portion 36b of the negative electrode terminal lead 36 and the first extension portion 14b of the electrode group side negative electrode lead 14 are formed without welding after welding.
 参考とする図9~10及び図11に示すように、負極端子リード36の第2の延出部36c及び電極群側負極リード14の第2の延出部14cの少なくとも先端部分の延在方向は、第2の外装部6の面に対して垂直又は略垂直(80°以上100°以下)であることが好ましい。負極端子リード36の第2の延出部36c及び電極群側負極リード14の第2の延出部14cの少なくとも先端部分の延在方向が第2の外装部6の面に対して垂直又は略垂直であることは、負極端子リード36の第2の延出部36cと電極群側負極リード14の第2の延出部14cの溶接後にリードを折り曲げずに作成されたことを表している。 As shown in FIGS. 9 to 10 and FIG. 11 for reference, the extending direction of at least the tip portion of the second extending portion 36c of the negative electrode terminal lead 36 and the second extending portion 14c of the electrode group side negative electrode lead 14 Is preferably perpendicular or substantially perpendicular (80° or more and 100° or less) to the surface of the second exterior portion 6. The extending direction of at least the tip end portion of the second extending portion 36c of the negative electrode terminal lead 36 and the second extending portion 14c of the electrode group-side negative electrode lead 14 is perpendicular or approximately to the surface of the second exterior portion 6. Being vertical means that the second extension portion 36c of the negative electrode terminal lead 36 and the second extension portion 14c of the electrode group-side negative electrode lead 14 are formed without welding after welding.
溶接後にリードを折り曲げることによって電極の端子部分の配線をコンパクトにできるという利点があるが、溶接後に折曲げを精度良く行うには、リードの厚さを薄くすることが求められる。しかし、リードの厚さを薄くすると大電流を流しにくいという点で好ましくない。溶接された部分が第2の外装部6の面の方向を向くようにすることで、リードの厚さを厚くすることができる。 Although there is an advantage that the wiring of the terminal portion of the electrode can be made compact by bending the lead after welding, it is required to reduce the thickness of the lead in order to perform bending accurately after welding. However, reducing the thickness of the leads is not preferable because it is difficult for a large current to flow. The thickness of the lead can be increased by making the welded portion face the direction of the surface of the second exterior portion 6.
 大電流特性を考慮すると、負極端子リード36の厚さは、0.5mm以上3.0mm以下とすることができ、また、電極群側負極リード14の厚さは、0.5mm以上3.0mm以下とすることができる。さらに、リード同士の溶接前のリードの折り曲げ工程及び大電流特性を考慮すると、負極端子リード36の厚さと電極群側負極リード14の厚さの和は、1.0mm以上1.2mm以下とすることが好ましい。 Considering the large current characteristics, the thickness of the negative electrode terminal lead 36 can be 0.5 mm or more and 3.0 mm or less, and the thickness of the electrode group side negative electrode lead 14 is 0.5 mm or more and 3.0 mm. It can be: Furthermore, considering the lead bending process before welding the leads to each other and the large current characteristic, the sum of the thickness of the negative electrode terminal lead 36 and the thickness of the electrode group side negative electrode lead 14 is 1.0 mm or more and 1.2 mm or less. It is preferable.
 第1の負極絶縁補強部材37は、図2、図3、図11及び参考とする図9~10に示すように、有底矩形筒を長辺方向に半割した構造を有する。第1の負極絶縁補強部材37は、負極集電タブ8aのうち、捲回中心から第2の外装部6側までの半分程度を被覆するこれにより、第2の外装部6、特に短辺付近を補強することができる。第1の負極絶縁補強部材37は、第1の外装部5の内面側及び第2の外装部6の内面側に配置され、負極端子32と第2の外装部6の間に配置されている。第1の負極絶縁補強部材37は、負極絶縁補強保持部37aを有する。負極絶縁補強保持部37aは、負極軸部32bの負極頭部32a側とは反対側の端部と対向する斜面を有する。この負極絶縁補強保持部37aの斜面によって負極端子部3が支えられることで、電池100の強度を向上させる。負極絶縁補強保持部37aは、第1の負極絶縁補強部材37の第2の外装部6側を向く底部37bから延出した部分である。第1の負極絶縁補強部材37は、第1の外装部5の負極端子側を向く第1側面37cと第1の外装部5の幅方向の面を向く第2側面37dを含む。負極端子部4側の電池100の補強の観点から、負極軸部32bの負極絶縁補強保持部37aを向く面、つまり、負極軸部32bの正極頭部32a側とは反対側の端部の面は、負極絶縁補強保持部37aの斜面、つまり、負極絶縁補強保持部37aの負極軸部32bと対向し、負極軸部32bと最も距離の近い面よりも小さいことが好ましい。この要件を満たすとき、負極端子リード36にカシメ固定された負極軸部32が広い面積の負極絶縁補強保持部37aの斜面と接し、保持可能となることで、負極端子部4側の電池100の強度が向上する。 The first negative electrode insulating reinforcing member 37 has a structure in which a rectangular cylinder with a bottom is divided in half in the long side direction, as shown in FIGS. 2, 3, 11 and 9 to 10 for reference. The first negative electrode insulating reinforcing member 37 covers about half of the negative electrode current collecting tab 8a from the winding center to the second outer packaging portion 6 side, whereby the second outer packaging portion 6, particularly near the short side. Can be reinforced. The first negative electrode insulating reinforcing member 37 is arranged on the inner surface side of the first outer casing 5 and the inner surface side of the second outer casing 6, and is arranged between the negative electrode terminal 32 and the second outer casing 6. .. The first negative electrode insulating reinforcing member 37 has a negative electrode insulating reinforcing holding portion 37a. The negative electrode insulation reinforcement holding portion 37a has a sloped surface facing the end portion of the negative electrode shaft portion 32b opposite to the negative electrode head portion 32a side. The negative electrode terminal portion 3 is supported by the sloped surface of the negative electrode insulating reinforcement holding portion 37a, thereby improving the strength of the battery 100. The negative electrode insulation reinforcement holding portion 37a is a portion extending from the bottom portion 37b of the first negative electrode insulation reinforcement member 37 facing the second exterior portion 6 side. The first negative electrode insulating reinforcing member 37 includes a first side surface 37c facing the negative electrode terminal side of the first outer casing 5 and a second side surface 37d facing the widthwise surface of the first outer casing 5. From the viewpoint of reinforcing the battery 100 on the negative electrode terminal portion 4 side, the surface of the negative electrode shaft portion 32b facing the negative electrode insulating reinforcement holding portion 37a, that is, the surface of the end portion of the negative electrode shaft portion 32b opposite to the positive electrode head portion 32a side. Is preferably smaller than the slope of the negative electrode insulating reinforcement holding portion 37a, that is, the surface facing the negative electrode shaft portion 32b of the negative electrode insulating reinforcement holding portion 37a and having the shortest distance from the negative electrode shaft portion 32b. When this requirement is satisfied, the negative electrode shaft portion 32 crimped and fixed to the negative electrode terminal lead 36 comes into contact with the slope of the negative electrode insulation reinforcement holding portion 37a having a large area and can be held, so that the battery 100 on the negative electrode terminal portion 4 side can be held. Strength is improved.
 負極端子部3が第2の負極絶縁補強部材38をさらに備えることが好ましい。図2、図3、図11及び参考とする図9~10に示すように、第2の負極絶縁補強部材38は、有底矩形筒を長辺方向に半割した構造を有する。第2の負極絶縁補強部材38は、第1の外装部5の内面側であって、負極端子リード36と第1の外装部5との間に配置され、第1の負極絶縁補強部材37と対向している。 It is preferable that the negative electrode terminal portion 3 further includes a second negative electrode insulating reinforcing member 38. As shown in FIGS. 2, 3, and 11 and FIGS. 9 to 10 for reference, the second negative electrode insulating reinforcing member 38 has a structure in which a bottomed rectangular tube is halved in the long side direction. The second negative electrode insulating reinforcing member 38 is arranged on the inner surface side of the first outer casing 5 and between the negative electrode terminal lead 36 and the first outer casing 5, and is connected to the first negative electrode insulating reinforcing member 37. Facing each other.
 第2の負極絶縁補強部材38は、第1の外装部5の底部側を向く底部38aと、第1の外装部5の負極端子方向の側面(短辺側側壁)側を向く第1側面部38bと、底部38aと第1側面部38bをつなぎ、第2の負極絶縁補強部材38の中央に配置された傾斜部38cと、傾斜部38dの中央に開口された貫通孔38dと、第1の外装部5の幅方向の側面(長辺側側壁)側を向く第2側面部38eとを有する。第2の負極絶縁補強部材38は、第1の外装部5の短辺側側壁から底面に繋がるコーナ部と、第1の外装部5の短辺側側壁から長辺側側面に繋がるコーナ部を被覆する。これにより、第1の外装部5、特に短辺側側壁と長辺側側壁と底部とが交わるコーナ付近を補強することができる。貫通孔38dは、第1の外装部5の貫通孔30と連通する。第2の負極絶縁補強部材38上に、負極端子リード36が配置される。負極端子リード36の貫通孔36eは、第2の負極絶縁補強部材38の貫通孔38d及び第1の外装部5の貫通孔30と連通する。 The second negative electrode insulation reinforcing member 38 includes a bottom portion 38a that faces the bottom portion side of the first exterior portion 5, and a first side surface portion that faces the side surface (side wall on the short side side) side of the first exterior portion 5 in the negative electrode terminal direction. 38b, the bottom portion 38a and the first side surface portion 38b, and an inclined portion 38c arranged in the center of the second negative electrode insulating reinforcing member 38, a through hole 38d opened in the center of the inclined portion 38d, and the first A second side surface portion 38e that faces the side surface (long side wall) of the exterior portion 5 in the width direction. The second negative electrode insulating reinforcing member 38 includes a corner portion connecting the short side wall of the first exterior portion 5 to the bottom surface and a corner portion connecting the short side wall of the first exterior portion 5 to the long side surface. To cover. As a result, it is possible to reinforce the first exterior portion 5, particularly, the vicinity of the corner where the short side wall, the long side wall, and the bottom portion intersect. The through hole 38d communicates with the through hole 30 of the first exterior portion 5. The negative electrode terminal lead 36 is disposed on the second negative electrode insulating reinforcing member 38. The through hole 36 e of the negative electrode terminal lead 36 communicates with the through hole 38 d of the second negative electrode insulating reinforcing member 38 and the through hole 30 of the first exterior portion 5.
 第2の負極絶縁補強部材38は、負極軸部32b、第1の外装部5及び負極端子リード36にカシメ固定され、負極端子部4において固定されていることが、絶縁性及び強度付与の観点から好ましい。 The second negative electrode insulation reinforcing member 38 is caulked and fixed to the negative electrode shaft portion 32b, the first exterior portion 5 and the negative electrode terminal lead 36, and is fixed at the negative electrode terminal portion 4 from the viewpoint of providing insulation and strength. Is preferred.
 第1の負極絶縁補強部材37及び第2の負極絶縁補強部材38は、絶縁性であり、成型された樹脂であることが好ましい。 The first negative electrode insulating reinforcing member 37 and the second negative electrode insulating reinforcing member 38 are preferably insulative and molded resin.
 例えば、絶縁シート10で負極集電タブ8aを一部巻き、少なくとも負極集電タブ8a側の絶縁シート10を第1の負極絶縁補強部材37及び第2の負極絶縁補強部材38で覆うことで、電池100の内部の負極集電タブ8aや正極端子17が第1の外装部5及び第2の外装部6と短絡しないように構成されていることが好ましい。また、第1の外装部5及び第2の外装部6の負極端子32から負極集電タブ8aの間の内面側は、第1の負極絶縁補強部材37及び第2の負極絶縁補強部材38で覆われることで、電池100の内部の負極集電タブ8aや負極端子32が第1の外装部5及び第2の外装部6と短絡しないように構成されていることが好ましい。 For example, by partially winding the negative electrode current collecting tab 8a with the insulating sheet 10 and covering at least the insulating sheet 10 on the negative electrode current collecting tab 8a side with the first negative electrode insulating reinforcing member 37 and the second negative electrode insulating reinforcing member 38, It is preferable that the negative electrode current collecting tab 8a and the positive electrode terminal 17 inside the battery 100 are configured so as not to short-circuit with the first exterior part 5 and the second exterior part 6. The inner surfaces of the first outer casing 5 and the second outer casing 6 between the negative electrode terminal 32 and the negative electrode current collecting tab 8a are covered with a first negative electrode insulating reinforcing member 37 and a second negative electrode insulating reinforcing member 38. It is preferable that the negative electrode current collecting tab 8a and the negative electrode terminal 32 inside the battery 100 are configured so as not to be short-circuited with the first exterior part 5 and the second exterior part 6 by being covered.
 負極端子32の負極軸部32bは、絶縁ガスケット34、負極絶縁部材35の貫通孔35a、第1の外装部5の貫通孔30、第1の負極絶縁補強部材37の貫通孔37c及び負極端子リード36の貫通孔36eに挿入された後、カシメ加工によって塑性変形を生じる。その結果、これらの部材が一体化されると共に、負極端子32が負極端子リード36と電気的に接続される。よって、負極端子32は、リベットの役割も担う。なお、負極端子32の負極軸部の32b端面と負極端子リード36の貫通孔36eとの境界部をレーザ等により溶接し、より強固な接続と電気導通性の向上を施しても良い。 The negative electrode shaft portion 32b of the negative electrode terminal 32 includes an insulating gasket 34, a through hole 35a of the negative electrode insulating member 35, a through hole 30 of the first exterior portion 5, a through hole 37c of the first negative electrode insulating reinforcing member 37, and a negative electrode terminal lead. After being inserted into the through hole 36e of 36, caulking causes plastic deformation. As a result, these members are integrated and the negative electrode terminal 32 is electrically connected to the negative electrode terminal lead 36. Therefore, the negative electrode terminal 32 also serves as a rivet. The boundary between the end surface 32b of the negative electrode shaft portion of the negative electrode terminal 32 and the through hole 36e of the negative electrode terminal lead 36 may be welded with a laser or the like for stronger connection and improved electrical conductivity.
 バックアップ正極端子リード11、電極群側正極リード12、正極端子リード23、バックアップ負極端子リード13、電極群側負極リード14及び負極端子リード36は、例えば、アルミニウム、アルミニウム合金材から形成することができる。接触抵抗を低減するために、リードの材料は、リードに電気的に接続し得る正極集電体又は負極集電体の材料と同じであることが好ましい。 The backup positive electrode terminal lead 11, the electrode group side positive electrode lead 12, the positive electrode terminal lead 23, the backup negative electrode terminal lead 13, the electrode group side negative electrode lead 14 and the negative electrode terminal lead 36 can be formed of, for example, aluminum or an aluminum alloy material. .. In order to reduce the contact resistance, the material of the lead is preferably the same as the material of the positive electrode current collector or the negative electrode current collector that can be electrically connected to the lead.
 正極絶縁部材18a、第1の正極絶縁補強部材24、第2の正極絶縁補強部材25、負極絶縁部材33a、第1の負極端子絶縁補強部材37及び第2の負極絶縁補強部材38は、例えば、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリエチレンテレフタラート(PET)、ポリテトラフロロエチレン(PTFE)、ポリフェニレンサルファイド(PPS)及びポリエーテルエーテルケトン(PEEK)等からなる群より選ばれる1種以上を含む熱可塑性樹脂から形成される。 The positive electrode insulating member 18a, the first positive electrode insulating reinforcing member 24, the second positive electrode insulating reinforcing member 25, the negative electrode insulating member 33a, the first negative electrode terminal insulating reinforcing member 37, and the second negative electrode insulating reinforcing member 38 are, for example, Tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer (PFA), polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), polyphenylene sulfide (PPS) and polyether ether ketone It is formed of a thermoplastic resin containing at least one selected from the group consisting of (PEEK) and the like.
 電極群2は、第1の外装部5内に、正極集電タブ7aが正極端子部3と対向し、かつ負極集電タブ8aが負極端子部4と対向するように収納される。そのため、電極群2の正極集電タブ7a及び負極集電タブ8aと交わる平面が第1の外装部5内の底面5cと対向し、正極集電タブ7a及び負極集電タブ8aと交わる湾曲面が第1の外装部5内の長辺側側面と対向する。 The electrode group 2 is housed in the first exterior part 5 such that the positive electrode current collecting tab 7 a faces the positive electrode terminal part 3 and the negative electrode current collecting tab 8 a faces the negative electrode terminal part 4. Therefore, a curved surface that intersects the positive electrode current collector tab 7a and the negative electrode current collector tab 8a with the flat surface that intersects the positive electrode current collector tab 7a and the negative electrode current collector tab 8a of the electrode group 2 facing the bottom surface 5c in the first exterior portion 5. Faces the side surface on the long side in the first exterior portion 5.
 実施形態のように正極絶縁補強保持部24a及び負極絶縁補強保持部37aを設けることで、電池100の強度が向上する。強度が向上した電池100においては、正極端子又は前記負極端子に対して第1の外装部5から第2の外装部6に向かう方向に10Nの負荷を加えた際の電池100の変位が1.0mm未満である。従って、過酷な環境においても、電池100の信頼性が向上する。 By providing the positive electrode insulating reinforcement holding portion 24a and the negative electrode insulating reinforcement holding portion 37a as in the embodiment, the strength of the battery 100 is improved. In the battery 100 having improved strength, the displacement of the battery 100 when a load of 10 N is applied to the positive electrode terminal or the negative electrode terminal in the direction from the first exterior part 5 to the second exterior part 6 is 1. It is less than 0 mm. Therefore, the reliability of the battery 100 is improved even in a harsh environment.
 次に、図12を参照して、正極端子17(負極端子32)と正極絶縁補強保持部24a(負極絶縁補強保持部37a)との角度と距離等について説明する。図12は、端子、リード、斜面の角度を説明するための概略図である。正極側と負極側は同様であるため、正極側について主に説明する。 Next, with reference to FIG. 12, the angle and distance between the positive electrode terminal 17 (negative electrode terminal 32) and the positive electrode insulation reinforcement holding portion 24a (negative electrode insulation reinforcement holding portion 37a) will be described. FIG. 12 is a schematic diagram for explaining the angles of the terminals, leads, and slopes. Since the positive electrode side and the negative electrode side are the same, the positive electrode side will be mainly described.
 正極絶縁補強保持部24aの正極軸部17bの正極頭部17aとは反対側の端部と対向する斜面は、かかる斜面と対向する正極軸部17bの正極頭部17aとは反対側の端部と平行若しくは略平行であると、外圧による電池100の変形をより防ぐことが出来る。そこで、正極軸部17aが正極絶縁補強保持部24aの斜面と対向する面と第2の外装部6とのなす角度をA1とし、正極絶縁補強保持部24aの斜面と第2の外装部6とのなす角度をA2とし、負極軸部32bが負極絶縁補強保持部37aの斜面と対向する面と第2の外装部6とのなす角度をB1とし、負極絶縁補強保持部37aの斜面と第2の外装部6とのなす角度をB2とするとき、|A1-A2|≦8度、及び、|B1-B2|≦8度を満たすことが好ましい。この関係を満たすとき、かかる斜面と対向する正極軸部17bの正極頭部17aとは反対側の端部の角度の差が少ないため、かかる斜面の全体で、外圧を受けることができる。同観点から、|A1-A2|≦5度、及び、|B1-B2|≦5度を満たすことがより好ましい。 The sloped surface facing the end of the positive electrode shaft portion 17b of the positive electrode insulation reinforcement holding portion 24a opposite to the positive electrode head portion 17a has an end portion opposite to the positive electrode head portion 17a of the positive electrode shaft portion 17b facing the sloped surface. If it is parallel or substantially parallel to, it is possible to further prevent deformation of the battery 100 due to external pressure. Therefore, the angle formed between the second exterior portion 6 and the surface of the positive electrode shaft portion 17a that faces the slope of the positive insulation reinforcement holding portion 24a is A1, and the slope of the positive insulation reinforcement holding portion 24a and the second exterior portion 6 are Is defined as A2, the angle between the surface of the negative electrode shaft portion 32b facing the sloped surface of the negative electrode insulation reinforcement holding portion 37a and the second exterior portion 6 is defined as B1, and the sloped surface of the negative electrode insulation reinforcement holding portion 37a is defined as the second surface. It is preferable that |A1−A2|≦8 degrees and |B1−B2|≦8 degrees are satisfied, where B2 is the angle formed by the exterior portion 6 of the above. When this relationship is satisfied, there is little difference in the angle of the end of the positive electrode shaft portion 17b opposite to the positive electrode head portion 17a facing the slope, so that the entire slope can receive external pressure. From the same viewpoint, it is more preferable to satisfy |A1-A2|≦5 degrees and |B1-B2|≦5 degrees.
 正極軸部17aが正極絶縁補強保持部24aの斜面と対向する面と第2の外装部6とのなす角度をA1、正極絶縁補強保持部24aの斜面と第2の外装部6とのなす角度をA2は、図12の仮想線L1~L5を用いて求められる。角度は、正極軸部17aと正極絶縁補強保持部24aが含まれる図7のような電池100の中央の断面をX線を用いたCT(Computed Tomography)検査して求める。 The angle formed by the second exterior portion 6 and the surface of the positive electrode shaft portion 17a facing the inclined surface of the positive electrode insulation reinforcement holding portion 24a is A1, and the angle formed by the inclination surface of the positive electrode insulation reinforcement holding portion 24a and the second exterior portion 6 A2 is calculated using the virtual lines L1 to L5 in FIG. The angle is obtained by CT (Computed Tomography) inspection using X-rays on the center cross section of the battery 100 as shown in FIG. 7 that includes the positive electrode shaft portion 17a and the positive electrode insulating reinforcement holding portion 24a.
 仮想線L1は、第2の外装部6の底面に沿う線である。仮想線L2は、正極端子リード23の第3の延出部23dと正極軸部17bとが接する2点(X1及びX2)を通る線である。接する点X1を通る仮想線L2からの垂線L3と正極絶縁補強保持部24aとの交点をY1とする。また、接する点X2を通る仮想線L2からの垂線L4と正極絶縁補強保持部24aとの交点をY2とする。Y1とY2を通る線を仮想線L5とする。正極軸部17aが正極絶縁補強保持部24aの斜面と対向する面と第2の外装部6とのなす角度をA1は、仮想線L1と仮想線L2とがなす角度である。正極絶縁補強保持部24aの斜面と第2の外装部6とのなす角度をA2は、仮想線L1と仮想線L2とがなす角度である。
 負極軸部32bが負極絶縁補強保持部37aの斜面と対向する面と第2の外装部6とのなす角度をB1と、負極絶縁補強保持部37aの斜面と第2の外装部6とのなす角度をB2も同様にして求められる。
The virtual line L1 is a line along the bottom surface of the second exterior portion 6. The virtual line L2 is a line passing through two points (X1 and X2) where the third extending portion 23d of the positive electrode terminal lead 23 and the positive electrode shaft portion 17b are in contact with each other. The intersection point between the perpendicular line L3 from the imaginary line L2 passing through the contact point X1 and the positive electrode insulating reinforcement holding portion 24a is defined as Y1. Further, the intersection point of the perpendicular line L4 from the imaginary line L2 passing through the contact point X2 and the positive electrode insulating reinforcement holding portion 24a is defined as Y2. A line passing through Y1 and Y2 is defined as a virtual line L5. An angle A1 formed by the surface of the positive electrode shaft portion 17a facing the inclined surface of the positive electrode insulating reinforcement holding portion 24a and the second exterior portion 6 is an angle formed by the virtual line L1 and the virtual line L2. An angle A2 formed by the inclined surface of the positive electrode insulating reinforcement holding portion 24a and the second exterior portion 6 is an angle formed by the virtual line L1 and the virtual line L2.
The angle formed between the second exterior portion 6 and the surface of the negative electrode shaft portion 32b that faces the slope of the negative insulation reinforcement holding portion 37a is B1, and the slope between the negative insulation reinforcement holding portion 37a and the second exterior portion 6 is formed. The angle B2 is similarly obtained.
 正極絶縁補強保持部24aの斜面と正極軸部17bとの距離が離れていると、正極絶縁補強保持部24aと正極軸部17bが接する際の衝撃が大きくなりやすく、電池100の強度向上の効果が少ない。そこで、正極絶縁補強保持部24aの斜面と正極軸部17bとの距離は、0.0mm以上1.0mm以下であることが好ましい。同様に、負極絶縁補強保持部37aの斜面と負極軸部32bとの距離は、0.0mm以上1.0mm以下であることが好ましい。 If the distance between the inclined surface of the positive electrode insulating reinforcement holding portion 24a and the positive electrode shaft portion 17b is large, the impact when the positive electrode insulating reinforcement holding portion 24a and the positive electrode shaft portion 17b come into contact with each other is likely to be large, and the strength of the battery 100 is improved. Less is. Therefore, it is preferable that the distance between the slope of the positive electrode insulating reinforcement holding portion 24a and the positive electrode shaft portion 17b is 0.0 mm or more and 1.0 mm or less. Similarly, the distance between the slope of the negative electrode insulating reinforcement holding portion 37a and the negative electrode shaft portion 32b is preferably 0.0 mm or more and 1.0 mm or less.
 正極絶縁補強保持部24aの斜面と正極軸部17bとの距離は、X1とY1の距離と、X2とY2の距離の平均値から求める。負極絶縁補強保持部37aの斜面と負極軸部32bとの距離も、X1とY1の距離と、X2とY2の距離の平均値から求める。 The distance between the slope of the positive electrode insulation reinforcement holding portion 24a and the positive electrode shaft portion 17b is obtained from the average value of the distance between X1 and Y1 and the distance between X2 and Y2. The distance between the slope of the negative electrode insulation reinforcement holding portion 37a and the negative electrode shaft portion 32b is also obtained from the average value of the distance between X1 and Y1 and the distance between X2 and Y2.
 正極絶縁補強保持部24aによる強度向上をより効果的にするために、正極絶縁補強保持部24aの斜面は、広い斜面であり、正極端子リード23(第3の延出部23d)とも対向していることが好ましい。同様に、負極絶縁補強保持部37aの斜面は、広い斜面であり、負極端子リード36(第3の延出部23d)とも対向していることが好ましい。 In order to make the strength improvement by the positive electrode insulation reinforcement holding part 24a more effective, the slope of the positive electrode insulation reinforcement holding part 24a is a wide slope and faces the positive electrode terminal lead 23 (third extension part 23d). Is preferred. Similarly, the slope of the negative electrode insulation reinforcement holding portion 37a is a wide slope and preferably faces the negative electrode terminal lead 36 (third extending portion 23d).
 正極絶縁補強保持部24aの斜面と正極端子リード23との距離が離れていると、正極絶縁補強保持部24aと正極端子リード23が接する際の衝撃が大きくなりやすいため、電池100の強度向上の効果が減少してしまう。そこで、正極絶縁補強保持部24aの斜面と正極端子リード23との距離0.0mm以上1.0mm以下であることが好ましい。同様に、負極絶縁補強保持部37aの斜面と負極端子リード36との距離は、0.0mm以上1.0mm以下であることが好ましい。 If the distance between the sloped surface of the positive electrode insulating reinforcing holding portion 24a and the positive electrode terminal lead 23 is large, the impact when the positive electrode insulating reinforcing holding portion 24a and the positive electrode terminal lead 23 come into contact with each other is likely to be large, so that the strength of the battery 100 is improved. The effect will decrease. Therefore, it is preferable that the distance between the inclined surface of the positive electrode insulating reinforcement holding portion 24a and the positive electrode terminal lead 23 is 0.0 mm or more and 1.0 mm or less. Similarly, the distance between the slope of the negative electrode insulation reinforcement holding portion 37a and the negative electrode terminal lead 36 is preferably 0.0 mm or more and 1.0 mm or less.
 正極絶縁補強保持部24aの斜面と正極端子リード23との距離は、仮想線L3と正極端子リード23の正極絶縁補強保持部24a側の交点とY1との距離と仮想線L4と正極端子リード23の正極絶縁補強保持部24a側の交点とY2との距離の平均値から求める。負極側についても同様に、負極絶縁補強保持部37aの斜面と負極端子リード36との距離は、仮想線L3と負極端子リード36の負極絶縁補強保持部37a側の交点とY1との距離と仮想線L4と負極端子リード36の負極絶縁補強保持部37a側の交点とY2との距離の平均値から求める。 The distance between the slope of the positive electrode insulation reinforcement holding portion 24a and the positive electrode terminal lead 23 is the distance between the intersection of the virtual line L3 and the positive electrode terminal lead 23 on the positive electrode insulation reinforcement holding portion 24a side and Y1, the virtual line L4 and the positive electrode terminal lead 23. It is calculated from the average value of the distance between the intersection point on the positive electrode insulation reinforcement holding portion 24a side and Y2. Similarly, on the negative electrode side, the distance between the slope of the negative electrode insulation reinforcement holding portion 37a and the negative electrode terminal lead 36 is the distance between the virtual line L3 and the intersection of the negative electrode terminal lead 36 on the negative electrode insulation reinforcement holding portion 37a side and Y1. It is calculated from the average value of the distance between the intersection of the line L4 and the negative electrode terminal lead 36 on the side of the negative electrode insulating reinforcement holding portion 37a and Y2.
 第1の外装部5の短辺側壁と底部とを繋ぐコーナ部においては、電極群2正極集電タブ7aとの間、負極集電タブ8aとの間、それぞれに隙間が存在する。第1の外装部5の短辺側壁と底部とを繋ぐコーナ部に内側に張り出した凹部を設け、凹部の底部を傾斜面5dとすることにより、第1の外装部5内のデッドスペースが少なくなるため、電池の体積エネルギー密度を高くすることが可能となる。また、傾斜面5dそれぞれに正極端子部3、負極端子部4を配置することにより、傾斜面を持たない短辺側面に正極端子部3及び負極端子部4を設ける場合よりも、端子部の設置面積を増やすことができる。そのため、正極端子17の正極軸部17b及び負極端子32の負極軸部32bの径を太くすることが可能になるため、低抵抗で大きな電流(ハイレート電流)を流すことが可能となる。 In the corner portion connecting the short side wall and the bottom portion of the first exterior portion 5, there are gaps between the electrode group 2 and the positive electrode current collecting tab 7a and between the negative electrode current collecting tab 8a. By providing a concave portion projecting inward at a corner portion connecting the short side wall and the bottom portion of the first exterior portion 5 and making the bottom portion of the concave portion an inclined surface 5d, the dead space in the first exterior portion 5 is reduced. Therefore, the volumetric energy density of the battery can be increased. Further, by disposing the positive electrode terminal portion 3 and the negative electrode terminal portion 4 on each of the inclined surfaces 5d, the terminal portion can be installed more than when the positive electrode terminal portion 3 and the negative electrode terminal portion 4 are provided on the short side surface having no inclined surface. The area can be increased. Therefore, the diameters of the positive electrode shaft portion 17b of the positive electrode terminal 17 and the negative electrode shaft portion 32b of the negative electrode terminal 32 can be increased, and a large current (high rate current) can be flowed with low resistance.
 電極群2が第1の外装部5内に収納された結果、第2の正極絶縁補強部材25の下端が第1の正極絶縁補強部材24の上端と接することにより形成された有底矩形筒状のカバーで正極集電タブ7aが被覆される。また、第2の負極絶縁補強部材38の下端が第1の負極絶縁補強部材37の上端と接することにより形成された有底矩形筒状のカバーで負極集電タブ8aが被覆される。 As a result of housing the electrode group 2 in the first exterior portion 5, a bottomed rectangular tubular shape formed by the lower end of the second positive electrode insulating reinforcing member 25 being in contact with the upper end of the first positive electrode insulating reinforcing member 24. The positive electrode current collecting tab 7a is covered with the cover. Further, the negative electrode current collecting tab 8a is covered with a bottomed rectangular tubular cover formed by the lower end of the second negative electrode insulating reinforcing member 38 being in contact with the upper end of the first negative electrode insulating reinforcing member 37.
 第2の外装部6は、第1の外装部5の蓋として機能する。第1の外装部5のフランジ部5bと第2の外装部6の四辺が溶接されることにより、電極群2が外装部材1内に封止される。 The second exterior part 6 functions as a lid for the first exterior part 5. The electrode group 2 is sealed in the exterior member 1 by welding the flange portion 5 b of the first exterior portion 5 and the four sides of the second exterior portion 6 to each other.
 以上説明した図1~図11に示す電池は、開口部にフランジ部を有する第1の外装部と第2の外装部が溶接されて形成された空間内に電極群が収納される外装部材を含むことが好ましい。正極絶縁補強保持部24aと負極絶縁補強保持部37aを有することで、第1、第2の外装部の板厚を薄くした際にも高い強度を保つことができる。その結果、外装部材の柔軟性を高めることができるため、減圧封止又は外装部材1の外側から荷重を加える等により電極群2を拘束しやすくなる。これにより、電極群2の極間距離が安定して抵抗を低くすることができると共に、耐振動性と耐衝撃性を有する電池パックの実現が容易になる。さらに、第1の外装部5及び第2の外装部6の柔軟性が高いと、第1,第2の外装部の内面から電極群2までの距離を縮めることが容易となるため、電池の放熱性を改善し得る。 The battery shown in FIGS. 1 to 11 described above is an exterior member in which the electrode group is housed in the space formed by welding the first exterior portion and the second exterior portion having the flange portion in the opening. It is preferable to include. By having the positive electrode insulation reinforcement holding part 24a and the negative electrode insulation reinforcement holding part 37a, high strength can be maintained even when the plate thickness of the first and second exterior parts is reduced. As a result, since the flexibility of the exterior member can be increased, it becomes easy to restrain the electrode group 2 by vacuum sealing or applying a load from the outside of the exterior member 1. As a result, the distance between the electrodes of the electrode group 2 can be stabilized and the resistance can be reduced, and a battery pack having vibration resistance and impact resistance can be easily realized. Furthermore, when the flexibility of the first exterior portion 5 and the second exterior portion 6 is high, it becomes easy to shorten the distance from the inner surface of the first and second exterior portions to the electrode group 2, and thus the battery The heat dissipation can be improved.
 ステンレス鋼製の第1の外装部5及び第2の外装部6は、溶接がし易く、安価な抵抗シーム溶接により封止が可能である。よって、ラミネートフィルム製容器よりも気体シール性の高い外装部材1を低コストで実現することができる。また、外装部材1の耐熱性を向上することができる。例えば、SUS304の融点が1400℃であるのに対し、Alの融点は650℃である。 The stainless steel first exterior part 5 and the second exterior part 6 are easily welded and can be sealed by inexpensive resistance seam welding. Therefore, the exterior member 1 having a higher gas sealing property than the laminated film container can be realized at low cost. Moreover, the heat resistance of the exterior member 1 can be improved. For example, the melting point of SUS304 is 1400°C, whereas the melting point of Al is 650°C.
 また、外部端子の軸部は、貫通孔にカシメ固定された結果、塑性変形を生じる。その結果、絶縁ガスケットの径方向に力が加わるが、バーリング部がその外側に配置されたリング状部材で補強されているため、絶縁ガスケットに圧縮応力が生じて外部端子を第1の外装部5に高い強度で接続することができる。第1の外装部5の板厚、すなわち、バーリング部の板厚を薄くしてもリング状部材でバーリング部を補強することができるため、第1の外装部5の板厚に拘らず、外部端子を第1の外装部5に高い強度で接続することができる。さらに、バーリング部が、貫通孔の縁部から外装部材1内に向けて延びているため、ガス発生等により外装部材1の内圧が上昇した際の液漏れを、外圧の作用によって抑えることが可能となる。よって、第1の外装部5及び第2の外装部6の板厚を薄くした際にも高い信頼性を実現することができる。 Also, the shaft portion of the external terminal is plastically deformed as a result of being caulked and fixed in the through hole. As a result, a force is applied in the radial direction of the insulating gasket, but since the burring portion is reinforced by the ring-shaped member arranged on the outer side of the insulating gasket, a compressive stress is generated in the insulating gasket, so that the external terminal is attached to the first exterior portion 5. Can be connected with high strength. Even if the plate thickness of the first exterior portion 5, that is, the thickness of the burring portion is reduced, the burring portion can be reinforced by the ring-shaped member, so that regardless of the thickness of the first exterior portion 5, the external The terminal can be connected to the first exterior portion 5 with high strength. Further, since the burring portion extends from the edge of the through hole toward the inside of the exterior member 1, it is possible to suppress liquid leakage when the internal pressure of the exterior member 1 rises due to gas generation or the like by the action of the external pressure. Becomes Therefore, high reliability can be realized even when the plate thickness of the first exterior portion 5 and the second exterior portion 6 is reduced.
 よって、第1の実施形態の電池によれば、第1の外装部5及び第2の外装部6の板厚を薄くした際にも高い強度と信頼性を得ることができるため、柔軟性と放熱性に優れ、かつ強度と信頼性の高い電池を提供することができる。 Therefore, according to the battery of the first embodiment, high strength and reliability can be obtained even when the plate thicknesses of the first exterior part 5 and the second exterior part 6 are reduced, and thus the flexibility and It is possible to provide a battery having excellent heat dissipation and high strength and reliability.
 第1の外装部5を、開口部の最大長以下の深さを有するものにすると、第1の外装部5の開口部面積が広くなる。第1の外装部の四辺に第2の外装部が溶接されるが、開口部面積が大きくなると、溶接される一辺の長さが長くなるため、三辺を先に溶接して残りの一辺の隙間から電解液を注液するのが容易となる。また、溶接強度が他よりも低い箇所を設ける等により外装部材1を仮封止することができるため、仮封止用の部品(例えばゴム栓)を不要にすることができる。さらに、外装部材1が扁平形状になるため、電池の放熱性を向上することができる。 When the first exterior part 5 has a depth equal to or less than the maximum length of the opening, the area of the opening of the first exterior part 5 becomes large. The second armor is welded to the four sides of the first armor, but when the opening area increases, the length of one side welded increases, so three sides are welded first and the remaining one side is welded. It becomes easy to inject the electrolytic solution through the gap. Moreover, since the exterior member 1 can be temporarily sealed by providing a portion having a welding strength lower than that of the other parts, a component for temporary sealing (for example, a rubber plug) can be eliminated. Furthermore, since the exterior member 1 has a flat shape, the heat dissipation of the battery can be improved.
 第1の外装部5が傾斜面5dを有する凹部を含み、傾斜面5dに端子部を配置することにより、第1の外装部5内のデッドスペースを削減することができる。 The dead space in the first exterior part 5 can be reduced by including the concave portion having the inclined surface 5d in the first exterior part 5 and disposing the terminal portion on the inclined surface 5d.
 なお、傾斜面5dは、外装部材1の短辺の中央部付近に設けるものに限定されず、外装部材の短辺全体に亘るものでも良い。 The inclined surface 5d is not limited to being provided in the vicinity of the central portion of the short side of the exterior member 1, and may be the entire short side of the exterior member.
 電極端子の頭部の端面が、四辺形の頂面と、頂面の互いに対向する二辺に連結された第1、第2の傾斜面とを有することにより、三つの面のいずれかを溶接面に選択することで溶接方向を変更することができる。また、電極端子の軸部が階段状の傾斜面を有しすることで、電極端子が強固に固定される。 Since the end face of the head of the electrode terminal has a quadrilateral top face and first and second inclined faces connected to two opposite sides of the top face, any one of the three faces is welded. The welding direction can be changed by selecting the surface. Further, since the shaft portion of the electrode terminal has the step-like inclined surface, the electrode terminal is firmly fixed.
 正極端子部3、負極端子部4又は両方のリング状部材の外郭と内径の差(肉厚)は、第1の外装部5の板厚と同じ又はそれ以上であることが望ましい。これにより、第1の外装部5の板厚に拘らず、外部端子を第1の外装部5に高い強度で接続することができる。具体的には、最短肉厚は0.1mm以上にすることができる。 The difference (wall thickness) between the outer and inner diameters of the positive electrode terminal portion 3, the negative electrode terminal portion 4, or both ring-shaped members is preferably equal to or greater than the plate thickness of the first exterior portion 5. This makes it possible to connect the external terminals to the first outer casing 5 with high strength regardless of the plate thickness of the first outer casing 5. Specifically, the shortest wall thickness can be 0.1 mm or more.
 また、リング状部材の外郭形状は必ずしもバーリング断面形状と同様形状である必要は無く、長方形や六角形などの多面体でも良く、単数又は複数の曲線と単数又は複数の直線の複合形状でも良い。 Also, the outer shape of the ring-shaped member does not necessarily have to be the same as the burring cross-sectional shape, and may be a polyhedron such as a rectangle or a hexagon, or may be a composite shape of one or more curved lines and one or more straight lines.
 第2の外装部6には、図5及び図6に例示されるような平板を使用することができるが、平板の代わりに、開口部にフランジ部を有するものを使用しても良い。このような構造の例には、第1の外装部5と同様なものを挙げることができる。 The flat plate as illustrated in FIGS. 5 and 6 can be used for the second exterior portion 6, but a plate having a flange portion at the opening may be used instead of the flat plate. An example of such a structure may be the same as that of the first exterior portion 5.
 バックアップ正極リード11及びバックアップ負極リード13は、U字形状の導電板に限定されず、導電性の平板を使用しても良い。また、バックアップ正極リード11またはバックアップ負極リード13あるいは両方を用いない構成にすることも可能である。 The backup positive electrode lead 11 and the backup negative electrode lead 13 are not limited to U-shaped conductive plates, and conductive flat plates may be used. Further, it is also possible to adopt a configuration in which neither the backup positive electrode lead 11 or the backup negative electrode lead 13 or both are used.
 外装部材1は、電池内圧が規定値以上に上昇した際に電池内部の圧力を開放することができる安全弁などを更に備えることもできる。 The exterior member 1 can further include a safety valve or the like that can release the pressure inside the battery when the internal pressure of the battery rises above a specified value.
 第1の実施形態に係る電池100は、一次電池であってもよいし、又は二次電池であってもよい。第1の実施形態に係る電池100の一例としては、リチウムイオン二次電池が挙げられる。 The battery 100 according to the first embodiment may be a primary battery or a secondary battery. A lithium ion secondary battery is an example of the battery 100 according to the first embodiment.
 第1の実施形態の電池100の正極7、負極8、セパレータ9及び電解質について、以下に説明する。 The positive electrode 7, the negative electrode 8, the separator 9, and the electrolyte of the battery 100 of the first embodiment will be described below.
 1)正極7
 正極7は、例えば、正極集電体と、正極集電体に保持された正極材料層と、正極集電タブ7aとを含むことができる。正極材料層は、例えば、正極活物質、導電剤、及び結着剤を含むことができる。
1) Positive electrode 7
The positive electrode 7 can include, for example, a positive electrode current collector, a positive electrode material layer held by the positive electrode current collector, and a positive electrode current collector tab 7 a. The positive electrode material layer can include, for example, a positive electrode active material, a conductive agent, and a binder.
 正極活物質としては、例えば、酸化物又は硫化物を用いることができる。酸化物及び硫化物の例には、リチウムを吸蔵する二酸化マンガン(MnO2)、酸化鉄、酸化銅、酸化ニッケル、リチウムマンガン複合酸化物(例えばLixMn24またはLixMnO2)、リチウムニッケル複合酸化物(例えばLixNiO2)、リチウムコバルト複合酸化物(例えばLixCoO2)、リチウムニッケルコバルト複合酸化物(例えばLiNi1-yCoy2)、リチウムマンガンコバルト複合酸化物(例えばLixMnyCo1-y2)、スピネル構造を有するリチウムマンガンニッケル複合酸化物(例えばLixMn2-yNiy4)、オリビン構造を有するリチウムリン酸化物(例えばLixFePO4、LixFe1-yMnyPO4、LixCoPO4)、硫酸鉄(Fe2(SO43)、バナジウム酸化物(例えばV25)及び、リチウムニッケルコバルトマンガン複合酸化物が挙げられる。上記の式において、0<x≦1であり、0<y≦1である。活物質として、これらの化合物を単独で用いてもよく、或いは、複数の化合物を組合せて用いてもよい。 As the positive electrode active material, for example, an oxide or a sulfide can be used. Examples of oxides and sulfides are lithium-occluding manganese dioxide (MnO 2 ), iron oxide, copper oxide, nickel oxide, lithium manganese composite oxide (for example, Li x Mn 2 O 4 or Li x MnO 2 ), Lithium nickel composite oxide (eg Li x NiO 2 ), lithium cobalt composite oxide (eg Li x CoO 2 ), lithium nickel cobalt composite oxide (eg LiNi 1-y Co y O 2 ), lithium manganese cobalt composite oxide (e.g. Li x Mn y Co 1-y O 2), lithium manganese nickel complex oxide having a spinel structure (e.g., Li x Mn 2-y Ni y O 4), lithium phosphates having an olivine structure (e.g., Li x FePO 4, Li x Fe 1- y Mn y PO 4, Li x CoPO 4), iron sulfate (Fe 2 (SO 4) 3 ), vanadium oxide (e.g. V 2 O 5) and lithium nickel-cobalt-manganese composite oxide Things can be mentioned. In the above formula, 0<x≦1 and 0<y≦1. As the active material, these compounds may be used alone, or a plurality of compounds may be used in combination.
 結着剤は、活物質と集電体とを結着させるために配合される。結着剤の例としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴムが挙げられる。 The binder is mixed to bind the active material and the current collector. Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and fluororubber.
 導電剤は、集電性能を高め、且つ、活物質と集電体との接触抵抗を抑えるために必要に応じて配合される。導電剤の例としては、アセチレンブラック、カーボンブラック及び黒鉛のような炭素質物が挙げられる。 The conductive agent is blended as necessary to improve the current collecting performance and to suppress the contact resistance between the active material and the current collector. Examples of the conductive agent include carbonaceous materials such as acetylene black, carbon black and graphite.
 正極材料層において、正極活物質及び結着剤は、それぞれ、80質量%以上98質量%以下及び2質量%以上20質量%以下の割合で配合することが好ましい。 In the positive electrode material layer, the positive electrode active material and the binder are preferably blended in the proportions of 80% by mass to 98% by mass and 2% by mass to 20% by mass, respectively.
 結着剤は、2質量%以上の量にすることにより十分な電極強度を得ることができる。また、20質量%以下にすることにより電極の絶縁材の配合量を減少させ、内部抵抗を減少できる。 ㆍSufficient electrode strength can be obtained by using the binder in an amount of 2% by mass or more. Further, when the content is 20% by mass or less, the compounding amount of the insulating material of the electrode can be reduced and the internal resistance can be reduced.
 導電剤を加える場合には、正極活物質、結着剤及び導電剤は、それぞれ、77質量%以上95質量%以下、2質量%以上20質量%以下、及び3質量%以上15質量%以下の割合で配合することが好ましい。導電剤は、3質量%以上の量にすることにより上述した効果を発揮することができる。また、15質量%以下にすることにより、高温保存下での正極導電剤表面での非水電解質の分解を低減することができる。 When a conductive agent is added, the positive electrode active material, the binder, and the conductive agent are 77% by mass or more and 95% by mass or less, 2% by mass or more and 20% by mass or less, and 3% by mass or more and 15% by mass or less, respectively. It is preferable to mix them in proportions. The conductive agent can exhibit the above-mentioned effects by adjusting the amount to 3% by mass or more. Further, when the content is 15% by mass or less, decomposition of the non-aqueous electrolyte on the surface of the positive electrode conductive agent under high temperature storage can be reduced.
 正極集電体は、アルミニウム箔、又は、Mg、Ti、Zn、Ni、Cr、Mn、Fe、Cu及びSiから選択される少なくとも1種類の元素を含むアルミニウム合金箔であることが好ましい。 The positive electrode current collector is preferably an aluminum foil or an aluminum alloy foil containing at least one element selected from Mg, Ti, Zn, Ni, Cr, Mn, Fe, Cu and Si.
 正極集電体は、正極集電タブと一体であることが好ましい。或いは、正極集電体は、正極集電タブと別体でもよい。 The positive electrode current collector is preferably integrated with the positive electrode current collector tab. Alternatively, the positive electrode current collector may be separate from the positive electrode current collector tab.
 2)負極8
 負極8は、例えば、負極集電体と、負極集電体に保持された負極材料層と、負極集電タブ8aとを含むことができる。負極材料層は、例えば、負極活物質、導電剤、及び結着剤を含むことができる。
2) Negative electrode 8
The negative electrode 8 can include, for example, a negative electrode current collector, a negative electrode material layer held by the negative electrode current collector, and a negative electrode current collector tab 8a. The negative electrode material layer can include, for example, a negative electrode active material, a conductive agent, and a binder.
 負極活物質としては、例えば、リチウムイオンを吸蔵及び放出することができる、金属酸化物、金属窒化物、合金、炭素等を用いることができる。0.4V以上(対Li/Li+)貴な電位でリチウムイオンの吸蔵及び放出が可能な物質を負極活物質として用いることが好ましい。 As the negative electrode active material, for example, a metal oxide, a metal nitride, an alloy, carbon or the like that can store and release lithium ions can be used. It is preferable to use a substance capable of inserting and extracting lithium ions at a noble potential of 0.4 V or higher (vs. Li/Li + ) as the negative electrode active material.
 負極活物質としては、例えば、黒鉛質材料もしくは炭素質材料(例えば、黒鉛、コークス、炭素繊維、球状炭素、熱分解気相炭素質物、樹脂焼成体など)、カルコゲン化合物(例えば、二硫化チタン、二硫化モリブデン、セレン化ニオブなど)、軽金属(例えば、アルミニウム、アルミニウム合金、マグネシウム合金、リチウム、リチウム合金など)、Li4+xTi12(xは充放電反応により-1≦x≦3の範囲で変化する)で表されるスピネル型チタン酸リチウム、ラムステライド型Li2+xTi(xは充放電反応により-1≦x≦3の範囲で変化する)、TiとP、V、Sn、Cu、NiおよびFeからなる群より選択される少なくとも1種類の元素を含有する金属複合酸化物及びニオブチタン複合酸化物などが挙げられる。 As the negative electrode active material, for example, a graphite material or a carbonaceous material (for example, graphite, coke, carbon fiber, spherical carbon, pyrolytic gas phase carbonaceous material, resin fired body, etc.), chalcogen compound (for example, titanium disulfide, Molybdenum disulfide, niobium selenide, etc.), light metals (for example, aluminum, aluminum alloys, magnesium alloys, lithium, lithium alloys, etc.), Li 4+x Ti 5 O 12 (x is in the range of −1≦x≦3 due to charge/discharge reaction) Of the spinel type lithium titanate, ramsteride type Li 2+x Ti 3 O 7 (x changes within the range of −1≦x≦3 due to charge/discharge reaction), Ti and P, V, Sn , A metal composite oxide and a niobium titanium composite oxide containing at least one element selected from the group consisting of Cu, Ni and Fe.
 TiとP、V、Sn、Cu、NiおよびFeからなる群より選択される少なくとも1種類の元素を含有する金属複合酸化物としては、例えば、TiO-P、TiO-V、TiO-P-SnO、TiO-P-MO(MはCu、Ni及びFeからなる群より選択される少なくとも1つの元素)を挙げることができる。これらの金属複合酸化物は、充電によりリチウムが挿入されることでリチウムチタン複合酸化物に変化する。リチウムチタン酸化物(例えば、スピネル型のチタン酸リチウム)、ケイ素とスズ等から成る群のうちの1以上の物質を含むことが好ましい。負極活物質層の結着剤は、正極活物質層の結着剤と共通する。負極活物質層の導電剤は、正極活物質層の導電剤と共通する。 Examples of the metal composite oxide containing Ti and at least one element selected from the group consisting of P, V, Sn, Cu, Ni and Fe include, for example, TiO 2 —P 2 O 5 and TiO 2 —V 2. O 5 , TiO 2 —P 2 O 5 —SnO 2 and TiO 2 —P 2 O 5 —MO (M is at least one element selected from the group consisting of Cu, Ni and Fe) can be mentioned. These metal composite oxides are changed into lithium titanium composite oxides by inserting lithium by charging. It is preferable to include one or more substances selected from the group consisting of lithium titanium oxide (eg, spinel type lithium titanate), silicon and tin. The binder for the negative electrode active material layer is the same as the binder for the positive electrode active material layer. The conductive agent of the negative electrode active material layer is common with the conductive agent of the positive electrode active material layer.
 ニオブチタン含有複合酸化物としては、例えば、一般式LiaTiMbNb2±β7±σ(ここで、各添字の値は、0≦a≦5、0≦b≦0.3、0≦β≦0.3の範囲内にあり、0≦σ≦0.3、MはFe、V、Mo及びTaからなる群より選ばれる少なくとも1種(1種でもよいし、又は複数種でもよい)である)で表される単斜晶型の結晶構造を有する複合酸化物、一般式Li2+a1M(I)2-b1Ti6-c1M(II)d114+σ1(ここで、各添字の値は、0≦a1≦6、0<b1<2、0<c1<6、0<d1<6、-0.5≦σ1≦0.5の範囲内にあり、M(I)はSr、Ba、Ca、Mg、Na、Cs及びKからなる群より選ばれる少なくとも1種(1種でもよいし、又は複数種でもよい)であり、M(II)はZr、Sn、V、Nb、Ta、Mo、W、Fe、Co、Mn及びAlからなる群より選ばれる少なくとも1種(1種でもよいし、又は複数種でもよい)であり、且つNbを含む)で表される斜方晶型の結晶構造を有する複合酸化物を用いることができる。上記一般式Li2+a1M(I)2-b1Ti6-c1M(II)d114+σ1において、各添字の値は、0≦a1≦6、0<b1<2、0<c1<6、0<d1<6、-0.5≦σ1≦0.5の範囲内にあり、M(I)はSr、Ba、Ca、Mg、Na、Cs及びKからなる群より選ばれる少なくとも1種(1種でもよいし、又は複数種でもよい)であり、M(II)はNbであるか、又はNbと、Zr、Sn、V、Ta、Mo、W、Fe、Co、Mn及びAlからなる群より選ばれる少なくとも1種(1種でもよいし、又は複数種でもよい)との組み合わせであることが好ましい。特に、単斜晶系ニオブチタン含有複合酸化物は、重量当たりの容量が大きく、電池容量を高めることができるのでより望ましい。 Examples of the niobium titanium-containing composite oxide include, for example, the general formula Li a TiM b Nb 2 ±β O 7 ±σ (where the value of each subscript is 0≦a≦5, 0≦b≦0.3, 0≦ It is within the range of β≦0.3, 0≦σ≦0.3, and M is at least one kind selected from the group consisting of Fe, V, Mo and Ta (may be one kind or plural kinds). A compound oxide having a monoclinic crystal structure represented by the general formula Li 2+a1 M(I) 2-b1 Ti 6-c1 M(II) d1 O 14+σ1 (where: The value of each subscript is within the range of 0≦a1≦6, 0<b1<2, 0<c1<6, 0<d1<6, −0.5≦σ1≦0.5, and M(I) Is at least one kind selected from the group consisting of Sr, Ba, Ca, Mg, Na, Cs and K (may be one kind or plural kinds), and M(II) is Zr, Sn, V, A slant represented by at least one kind (which may be one kind or plural kinds) selected from the group consisting of Nb, Ta, Mo, W, Fe, Co, Mn, and Al and including Nb. A composite oxide having a tetragonal crystal structure can be used. In the above general formula Li 2+a1 M(I) 2-b1 Ti 6-c1 M(II) d1 O 14+σ1 , the value of each subscript is 0≦a1≦6, 0<b1<2, 0<c1. <6, 0<d1<6, -0.5≦σ1≦0.5, and M(I) is at least selected from the group consisting of Sr, Ba, Ca, Mg, Na, Cs, and K. 1 type (may be 1 type or a plurality of types), M(II) is Nb, or Nb and Zr, Sn, V, Ta, Mo, W, Fe, Co, Mn and It is preferably a combination with at least one kind (may be one kind or plural kinds) selected from the group consisting of Al. In particular, the monoclinic niobium titanium-containing composite oxide is more preferable because it has a large capacity per weight and can increase the battery capacity.
 導電剤は、集電性能を高め、且つ、負極活物質と集電体との接触抵抗を抑えるために配合される。導電剤の例としては、アセチレンブラック、カーボンブラック及び黒鉛のような炭素質物が挙げられる。  The conductive agent is added to improve the current collecting performance and to suppress the contact resistance between the negative electrode active material and the current collector. Examples of the conductive agent include carbonaceous materials such as acetylene black, carbon black and graphite.
 結着剤は、分散された負極活物質の間隙を埋め、また、負極活物質と集電体とを結着させるために配合される。結着剤の例としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、及びスチレンブタジェンゴムが挙げられる。 The binder is mixed to fill the gap between the dispersed negative electrode active material and to bind the negative electrode active material and the current collector. Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine rubber, and styrene butadiene rubber.
 負極材料層中の活物質、導電剤及び結着剤は、それぞれ、68質量%以上96質量%以下、2質量%以上30質量%以下、及び2質量%以上30質量%以下の割合で配合することが好ましい。導電剤の量を2質量%以上とすることにより、負極層の集電性能を向上させることができる。また、結着剤の量を2質量%以上とすることにより、負極材料層と集電体との結着性を十分に発現することができ、優れたサイクル特性を期待できる。一方、導電剤及び結着剤はそれぞれ28質量%以下にすることが高容量化を図る上で好ましい。 The active material, the conductive agent, and the binder in the negative electrode material layer are mixed in the proportions of 68% by mass to 96% by mass, 2% by mass to 30% by mass, and 2% by mass to 30% by mass, respectively. It is preferable. By setting the amount of the conductive agent to 2% by mass or more, the current collecting performance of the negative electrode layer can be improved. Further, when the amount of the binder is 2% by mass or more, the binding property between the negative electrode material layer and the current collector can be sufficiently exhibited, and excellent cycle characteristics can be expected. On the other hand, it is preferable that the content of each of the conductive agent and the binder is 28% by mass or less in order to increase the capacity.
 集電体としては、負極活物質のリチウムの吸蔵電位及び放出電位において電気化学的に安定である材料が用いられる。集電体は、銅、ニッケル、ステンレス又はアルミニウム、或いは、Mg、Ti、Zn、Mn、Fe、Cu、及びSiから選択される少なくとも1種類の元素を含むアルミニウム合金から作られることが好ましい。集電体の厚さは5~20μmの範囲内にあることが好ましい。このような厚さを有する集電体は、負極の強度と軽量化とのバランスをとることができる。 As the current collector, a material that is electrochemically stable at the lithium storage and emission potentials of the negative electrode active material is used. The current collector is preferably made of copper, nickel, stainless steel, or aluminum, or an aluminum alloy containing at least one element selected from Mg, Ti, Zn, Mn, Fe, Cu, and Si. The thickness of the current collector is preferably in the range of 5 to 20 μm. The current collector having such a thickness can balance the strength and weight reduction of the negative electrode.
 負極集電体は、負極集電タブ8aと一体であることが好ましい。或いは、負極集電体は、負極集電タブ8aと別体でもよい。 The negative electrode current collector is preferably integrated with the negative electrode current collector tab 8a. Alternatively, the negative electrode current collector may be separate from the negative electrode current collector tab 8a.
 負極8は、例えば負極活物質、結着剤および導電剤を汎用されている溶媒に懸濁してスラリーを調製し、このスラリーを集電体に塗布し、乾燥させて、負極材料層を形成した後、プレスを施すことにより作製される。負極はまた、負極活物質、結着剤及び導電剤をペレット状に形成して負極材料層とし、これを集電体上に配置することにより作製されてもよい。 For the negative electrode 8, for example, a negative electrode active material, a binder, and a conductive agent are suspended in a commonly used solvent to prepare a slurry, and the slurry is applied to a current collector and dried to form a negative electrode material layer. Then, it is manufactured by pressing. The negative electrode may also be produced by forming a negative electrode active material, a binder and a conductive agent into a negative electrode material layer to form a negative electrode material layer, and disposing this on the current collector.
 3)セパレータ9
 多孔質で薄い絶縁性の薄膜である。セパレータ9としては、樹脂製の極薄ナノファイバー膜を含む不織布、フィルム、紙や無機粒子層などが含まれる。セパレータ9の構成材料の例に、ポリエチレンやポリプロピレンなどのポリオレフィン、セルロース、ポリエステル、ポリビニルアルコール、ポリイミド、ポリアミド、ポリアミドイミド、ポリテトラフルオロエチレン及びビニロンが含まれる。薄さと機械的強度の観点から好ましいセパレータ9の例に、セルロース繊維を含む不織布を挙げることができる。無機粒子層は、酸化物粒子、増粘剤、結着剤を含む。酸化物粒子には、酸化アルミ、酸化チタン、酸化マグネシウム、酸化亜鉛、硫酸バリウムなどの金属酸化物が使用できる。増粘剤にはカルボキシメチルセルロースが使用できる。結着剤には、アクリル酸メチルやそれを含むアクリル系共重合体、スチレンブタジエンゴム(SBR)などが使用できる。絶縁シート10もセパレータ9と同様に不織布、フィルム、紙を用いてもよい。絶縁シート10はさらに図示しないテープで固定されていることが好ましい。
3) Separator 9
It is a thin porous insulating film. The separator 9 includes a non-woven fabric including a resin-made ultra-thin nanofiber film, a film, paper, an inorganic particle layer, and the like. Examples of the constituent material of the separator 9 include polyolefin such as polyethylene and polypropylene, cellulose, polyester, polyvinyl alcohol, polyimide, polyamide, polyamideimide, polytetrafluoroethylene, and vinylon. An example of the separator 9 that is preferable from the viewpoint of thinness and mechanical strength is a nonwoven fabric containing cellulose fibers. The inorganic particle layer contains oxide particles, a thickener, and a binder. For the oxide particles, metal oxides such as aluminum oxide, titanium oxide, magnesium oxide, zinc oxide, and barium sulfate can be used. Carboxymethyl cellulose can be used as a thickener. As the binder, methyl acrylate, an acrylic copolymer containing the same, styrene-butadiene rubber (SBR) or the like can be used. As with the separator 9, the insulating sheet 10 may be made of non-woven fabric, film, or paper. The insulating sheet 10 is preferably further fixed with a tape (not shown).
 4)電解質
 電解質は、電解質塩と非水溶媒を含む溶液、電解質塩と非水溶媒を含む溶液に高分子材料を複合化した非水系ゲル状電解質、電解質塩と水を含む溶液又は電解質塩と水を含む溶液に高分子材料を複合化した水系ゲル状電解質を用いることが好ましい。
4) Electrolyte Electrolytes include a solution containing an electrolyte salt and a non-aqueous solvent, a non-aqueous gel electrolyte in which a polymer material is combined with a solution containing an electrolyte salt and a non-aqueous solvent, a solution containing an electrolyte salt and water, or an electrolyte salt. It is preferable to use an aqueous gel electrolyte in which a polymer material is combined with a solution containing water.
 非水系溶液に含まれる電解質塩は、例えばLiPF、LiBF、Li(CFSON(ビストリフルオロメタンスルホニルアミドリチウム;通称LiTFSI)、LiCFSO(通称LiTFS)、Li(CSON(ビスペンタフルオロエタンスルホニルアミドリチウム;通称LiBETI)、LiClO、LiAsF、LiSbF、LiB(C(ビスオキサラトホウ酸リチウム;通称LiBOB)、ジフルオロ(トリフルオロ-2-オキシド-2-トリフルオロ-メチルプロピオナト(2-)-0,0)、LiBFOCOOC(CF(ホウ酸リチウム;通称LiBF(HHIB))のようなリチウム塩を用いることができる。これらの電解質塩は一種類で使用してもよいし二種類以上を混合して用いてもよい。特にLiPF、LiBFが好ましい。リチウム塩には、イオンを導電する支持塩を使用することができる。例えば、六フッ化リン酸リチウム(LiPF)や四フッ化ホウ酸リチウム、イミド系支持塩などが挙げられる。リチウム塩は1種類、または2種類以上を含んでいても良い。 The electrolyte salt contained in the non-aqueous solution is, for example, LiPF 6 , LiBF 4 , Li(CF 3 SO 2 ) 2 N (lithium bistrifluoromethanesulfonylamide; commonly known as LiTFSI), LiCF 3 SO 3 (commonly LiTFS), Li(C). 2 F 5 SO 2) 2 N ( bis pentafluoroethanesulfonyl amide lithium; called LiBETI), LiClO 4, LiAsF 6 , LiSbF 6, LiB (C 2 O 4) 2 ( bis oxa Lato lithium borate; called LiBOB), difluoro Lithium such as (trifluoro-2-oxide-2-trifluoro-methylpropionato(2-)-0,0), LiBF 2 OCOOC(CF 3 ) 2 (lithium borate; commonly known as LiBF 2 (HHIB)) Salts can be used. These electrolyte salts may be used alone or in combination of two or more. LiPF 6 and LiBF 4 are particularly preferable. A supporting salt that conducts ions can be used as the lithium salt. Examples thereof include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate, and imide-based supporting salts. The lithium salt may contain one kind or two or more kinds.
 非水系の電解質塩濃度は、0.5mol/L以上3mol/L以下の範囲内にすることが好ましく、0.7mol/L以上2mol/L以下の範囲内にすることがより好ましい。このような電解質濃度の規定によって、電解質塩濃度の上昇による粘度増加の影響を抑えつつ、高負荷電流を流した場合の性能をより向上することが可能になる。 The non-aqueous electrolyte salt concentration is preferably in the range of 0.5 mol/L or more and 3 mol/L or less, and more preferably in the range of 0.7 mol/L or more and 2 mol/L or less. Such regulation of the electrolyte concentration makes it possible to further improve the performance when a high load current is passed while suppressing the influence of the viscosity increase due to the increase of the electrolyte salt concentration.
 非水溶媒は、特に限定されるものではないが、例えば、プロピレンカーボネート(PC)やエチレンカーボネート(EC)などの環状カーボネート、ジエチルカーボネート(DEC)やジメチルカーボネート(DMC)あるいはメチルエチルカーボネート(MEC)もしくはジプロピルカーボネート(DPC)などの鎖状カーボネート、1,2-ジメトキシエタン(DME)、γ-ブチロラクトン(GBL)、テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン(2-MeHF)、1,3-ジオキソラン、スルホラン、アセトニトリル(AN)を用いることができる。これらの溶媒は一種類で使用してもよいし二種類以上を混合して用いてもよい。環状カーボネート及び/または鎖状カーボネートを含む非水溶媒が好ましい。非水系ゲル状電解質に含まれる高分子材料としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリアクリロニトリル(PAN)、ポリエチレンオキサイド(PEO)やポリメタクリレート等を挙げることができる。 The non-aqueous solvent is not particularly limited, but examples thereof include cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC) or methyl ethyl carbonate (MEC). Or chain carbonate such as dipropyl carbonate (DPC), 1,2-dimethoxyethane (DME), γ-butyrolactone (GBL), tetrahydrofuran (THF), 2-methyltetrahydrofuran (2-MeHF), 1,3-dioxolane , Sulfolane, and acetonitrile (AN) can be used. These solvents may be used alone or in combination of two or more. A non-aqueous solvent containing a cyclic carbonate and/or a chain carbonate is preferable. Examples of the polymer material contained in the non-aqueous gel electrolyte include polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyethylene oxide (PEO), polymethacrylate, and the like.
 水系溶液に含まれる電解質塩は、LiCl、LiBr、LiOH、LiSO、LiNO、LiN(SOCF)(リチウムトリフルオロメタンスルホニルアミド;通称LiTFSA)、LiN(SO)(リチウムビスペンタフルオロエタンスルホニルアミド;通称LiBETA)、LiN(SOF)(リチウムビスフルオロスルホニルアミド;通称LiFSA)、LiB[(OCO)]などが挙げられる。使用するリチウム塩の種類は、1種類または2種類以上にすることができる。水系のゲル状電解質に含まれる高分子材料としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリアクリロニトリル(PAN)、ポリエチレンオキサイド(PEO)やポリメタクリレート等を挙げることができる。 The electrolyte salt contained in the aqueous solution is LiCl, LiBr, LiOH, Li 2 SO 4 , LiNO 3 , LiN(SO 2 CF 3 ) 2 (lithium trifluoromethanesulfonylamide; commonly known as LiTFSA), LiN(SO 2 C 2 F 5 ) 2 (lithium bispentafluoroethanesulfonylamide; commonly called LiBETA), LiN(SO 2 F) 2 (lithium bisfluorosulfonylamide; commonly called LiFSA), LiB[(OCO) 2 ] 2 and the like. The type of lithium salt used may be one type or two or more types. Examples of the polymer material contained in the water-based gel electrolyte include polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyethylene oxide (PEO), polymethacrylate, and the like.
 水系の電解質塩濃度は、1mol/L以上12mol/Lが好ましく、より好ましく112mol/L以上10mol/L以下である。電解液の電気分解を抑制させるために、LiOHやLiSOを添加し、pHを調整することができる。pH値は3以上13以下が好ましく、さらに好ましくはpH4以上12以下の範囲である。 The concentration of the aqueous electrolyte salt is preferably 1 mol/L or more and 12 mol/L or more, and more preferably 112 mol/L or more and 10 mol/L or less. In order to suppress electrolysis of the electrolytic solution, LiOH or Li 2 SO 4 can be added to adjust the pH. The pH value is preferably 3 or more and 13 or less, and more preferably pH 4 or more and 12 or less.
 或いは、非水系電解質として、リチウムイオンを含有した常温溶融塩(イオン性融体)、高分子固体電解質、無機固体電解質等を用いてもよい。 Alternatively, as the non-aqueous electrolyte, a room temperature molten salt containing lithium ions (ionic melt), a polymer solid electrolyte, an inorganic solid electrolyte, or the like may be used.
 常温溶融塩(イオン性融体)は、有機物カチオンとアニオンとの組合せからなる有機塩のうち、常温(15~25℃)で液体として存在し得る化合物を指す。常温溶融塩には、単体で液体として存在する常温溶融塩、電解質と混合させることで液体となる常温溶融塩、及び有機溶媒に溶解させることで液体となる常温溶融塩が含まれる。一般に、非水電解質電池に用いられる常温溶融塩の融点は、25℃以下である。また、有機物カチオンは、一般に4級アンモニウム骨格を有する。
The room temperature molten salt (ionic melt) refers to a compound that can exist as a liquid at room temperature (15 to 25° C.) among organic salts composed of a combination of organic cations and anions. The room-temperature molten salt includes a room-temperature molten salt that exists alone as a liquid, a room-temperature molten salt that becomes a liquid when mixed with an electrolyte, and a room-temperature molten salt that becomes a liquid when dissolved in an organic solvent. Generally, the melting point of the room temperature molten salt used in the non-aqueous electrolyte battery is 25° C. or lower. The organic cation generally has a quaternary ammonium skeleton.
 図13に第1の実施形態の電池100の変形例である電池101の正極部分を示す。正極側と負極側は対称であるため、負極側の図示及び一部説明を省略する。図13は、変形例における図6のA-A’面の断面図を示している。図13に示す電池101の正極端子部3側では、第1の正極絶縁補強部材24の正極集電タブ7a側の端部側が第2の正極絶縁補強部材25側に突出しており、第2の正極絶縁補強部材25の正極集電タブ7a側の端部側が第1の正極絶縁補強部材24側に突出している。第1の正極絶縁補強部材24の突出した部分を突出部24dとする。第2の正極絶縁補強部材25の突出した部分を突出部25fとする。第1の正極絶縁補強部材24の突出部24dと第2の正極絶縁補強部材25の突出部25fは対向することが好ましい。突出部24dと突出部25fによって、正極集電タブ7aが正極端子部3側に近接することを防ぐことで、電池101の奥行き方向への力による電池101の変形を防ぐことができる。負極端子部4側についても同様であり、図示していないが、第1の負極絶縁補強部材37の負極集電タブ8a側の端部側が第2の負極絶縁補強部材38側に突出しており、第2の負極絶縁補強部材38の負極集電タブ8a側の端部側が第1の負極絶縁補強部材37側に突出していることで、電池101の奥行き方向への力による電池101の変形を防ぐことができる。 FIG. 13 shows a positive electrode portion of a battery 101 which is a modified example of the battery 100 of the first embodiment. Since the positive electrode side and the negative electrode side are symmetrical, illustration and partial description of the negative electrode side are omitted. FIG. 13 shows a cross-sectional view of the A-A′ plane of FIG. 6 in the modified example. On the positive electrode terminal portion 3 side of the battery 101 shown in FIG. 13, the end portion side of the first positive electrode insulating reinforcing member 24 on the positive electrode current collecting tab 7a side projects to the second positive electrode insulating reinforcing member 25 side, and An end portion side of the positive electrode insulating reinforcing member 25 on the positive electrode current collecting tab 7a side projects to the first positive electrode insulating reinforcing member 24 side. The protruding portion of the first positive electrode insulating reinforcing member 24 is referred to as a protruding portion 24d. The protruding portion of the second positive electrode insulating reinforcing member 25 is referred to as a protruding portion 25f. It is preferable that the protruding portion 24d of the first positive electrode insulating reinforcing member 24 and the protruding portion 25f of the second positive electrode insulating reinforcing member 25 face each other. The protrusion 24d and the protrusion 25f prevent the positive electrode current collector tab 7a from approaching the positive electrode terminal portion 3 side, so that the deformation of the battery 101 due to the force in the depth direction of the battery 101 can be prevented. The same applies to the negative electrode terminal portion 4 side, and although not shown, the end portion side of the first negative electrode insulating reinforcing member 37 on the negative electrode current collecting tab 8a side projects to the second negative electrode insulating reinforcing member 38 side, Since the end portion side of the second negative electrode insulating reinforcing member 38 on the negative electrode current collecting tab 8a side projects toward the first negative electrode insulating reinforcing member 37 side, deformation of the battery 101 due to force in the depth direction of the battery 101 is prevented. be able to.
 図14に第1の実施形態の電池100の変形例である電池102の正極端子部3側を示す。正極端子部3側と負極端子部4側は対称であるため、負極端子部4側の図示及び一部説明を省略する。図14に示す電池102の正極端子部3側では、第1の正極絶縁補強部材24及び第2の正極絶縁補強部材25は嵌合している。図14は、変形例における図6のA-A’面の断面図を示している。嵌合について、具体的に説明すると、第1の正極絶縁補強部材24における第1の外装部5のフランジ部5bと傾斜部5dの間の側壁5eに沿っている第1側面24cの凸部24eと第2の正極絶縁補強部材25における第1の外装部5のフランジ部5bと傾斜部5dの間の側壁5eに沿っていて、第1の正極絶縁補強部材24の第1側面24cと対向する第1側面部25bの凹部25gが嵌合していることが好ましい。凸部24eが凹部25gよりも第1の外装部5側に配置していることで、カシメ固定されていない第1の正極絶縁補強部材24がカシメ固定された第2の正極絶縁補強部材25によって、固定することができる。第1の正極絶縁補強部材24の固定によって、第1の正極絶縁補強部材24が正極集電タブ7a側に近接することを防ぐことで、電池102の奥行き方向への力による電池102の変形を防ぐことができる。図示は、省略するが、負極端子部4側も同様に第1の負極絶縁補強部材37及び第2の負極絶縁補強部材38は嵌合している。負極端子部4側の嵌合によって、正極端子部3側と同様に負極端子部4側においても電池102の奥行き方向への力による電池102の変形を防ぐことができる。嵌合の凹凸の形状やどちらを凸部とするかは任意に選択することができる。 FIG. 14 shows a positive electrode terminal portion 3 side of a battery 102 which is a modified example of the battery 100 of the first embodiment. Since the positive electrode terminal portion 3 side and the negative electrode terminal portion 4 side are symmetrical, illustration and partial description of the negative electrode terminal portion 4 side are omitted. On the side of the positive electrode terminal portion 3 of the battery 102 shown in FIG. 14, the first positive electrode insulating reinforcing member 24 and the second positive electrode insulating reinforcing member 25 are fitted. FIG. 14 shows a cross-sectional view of the A-A′ plane of FIG. 6 in the modified example. The fitting will be specifically described. The convex portion 24e of the first side surface 24c along the side wall 5e between the flange portion 5b of the first exterior portion 5 and the inclined portion 5d of the first positive electrode insulating reinforcing member 24. And along the side wall 5e between the flange portion 5b and the inclined portion 5d of the first exterior portion 5 of the second positive electrode insulating reinforcing member 25 and faces the first side surface 24c of the first positive electrode insulating reinforcing member 24. It is preferable that the recess 25g of the first side surface portion 25b is fitted. By disposing the convex portion 24e on the first exterior portion 5 side with respect to the concave portion 25g, the first positive electrode insulating reinforcing member 25 that is not crimped is fixed by the second positive electrode insulating reinforcing member 25 that is crimped and fixed. , Can be fixed. By fixing the first positive electrode insulating reinforcing member 24 to prevent the first positive electrode insulating reinforcing member 24 from approaching the positive electrode current collecting tab 7a side, the deformation of the battery 102 due to the force in the depth direction of the battery 102 is prevented. Can be prevented. Although illustration is omitted, the first negative electrode insulating reinforcing member 37 and the second negative electrode insulating reinforcing member 38 are similarly fitted on the negative electrode terminal portion 4 side. By fitting the negative electrode terminal portion 4 side, the deformation of the battery 102 due to the force in the depth direction of the battery 102 can be prevented on the negative electrode terminal portion 4 side as well as on the positive electrode terminal portion 3 side. It is possible to arbitrarily select the shape of the fitting concavity and convexity and which is the convexity.
 図15に第1の実施形態の電池100の変形例である電池103の正極端子部3側を示す。正極端子部3側と負極端子部4側は対称であるため、負極端子部4側の図示及び一部説明を省略する。図15は、変形例における図6のB-B’面の断面図を示している。図15に示す電池103の正極端子部3側では、第1の正極絶縁補強部材24及び第2の正極絶縁補強部材25は、支柱となる突出部を設け、正極端子17の直下以外において、第1の正極絶縁補強部材24及び第2の正極絶縁補強部材25の変形を防ぐことで、電池103の強度を向上させている。図15では、第1の正極絶縁補強部材24の突出部24fと第2の正極絶縁補強部材25の突出部25hが支柱を構成しているが、突出部24f又は突出部25hのみによって支柱を構成することも出来る。正極端子部3側と同様に負極端子部4側においても支柱を設けることで電池103の厚さ方向への力による電池103の変形を防ぐことができる。 FIG. 15 shows a positive electrode terminal portion 3 side of a battery 103 which is a modified example of the battery 100 of the first embodiment. Since the positive electrode terminal portion 3 side and the negative electrode terminal portion 4 side are symmetrical, illustration and partial description of the negative electrode terminal portion 4 side are omitted. FIG. 15 shows a cross-sectional view of the B-B′ plane of FIG. 6 in the modified example. On the positive electrode terminal portion 3 side of the battery 103 shown in FIG. By preventing the deformation of the first positive electrode insulating reinforcing member 24 and the second positive electrode insulating reinforcing member 25, the strength of the battery 103 is improved. In FIG. 15, the projecting portion 24f of the first positive electrode insulating reinforcing member 24 and the projecting portion 25h of the second positive electrode insulating reinforcing member 25 form a column, but the projecting portion 24f or the projecting portion 25h alone forms a column. You can also do it. By providing the support pillars on the negative electrode terminal portion 4 side similarly to the positive electrode terminal portion 3 side, the deformation of the battery 103 due to the force in the thickness direction of the battery 103 can be prevented.
 図16に第1の実施形態の電池100の変形例である電池104の正極端子部3側を示す。正極端子部3側と負極端子部4側は対称であるため、負極端子部4側の図示及び一部説明を省略する。図16に示す電池104の正極端子部3側では、第1の正極絶縁補強部材24及び第2の正極絶縁補強部材25は嵌合している。図16は、変形例における図6のE-E’面の断面図を示している。嵌合について、具体的に説明すると、第1の正極絶縁補強部材24における第1の外装部5の幅方向の面を向く第2側面24dの凹部24gと第2の正極絶縁補強部材25における第1の外装部5の幅方向の側面(長辺側側壁)側を向く第2側面部25eの凸部25iが嵌合していることが好ましい。凸部24eと凹部25gによる嵌合によって、カシメ固定されていない第1の正極絶縁補強部材24がカシメ固定された第2の正極絶縁補強部材25によって、固定することができる。第1の正極絶縁補強部材24の固定によって、第1の正極絶縁補強部材24が正極集電タブ7a側に近接することを防ぐことで、電池102の奥行き方向への力による電池104の変形を防ぐことができる。図示は、省略するが、負極端子部4側も同様に第1の負極絶縁補強部材37及び第2の負極絶縁補強部材38は嵌合している。負極端子部4側の嵌合によって、正極端子部3側と同様に負極端子部4側においても電池104の奥行き方向への力による電池102の変形を防ぐことができる。嵌合の凹凸の形状やどちらを凸部とするかは任意に選択することができる。 FIG. 16 shows the positive electrode terminal portion 3 side of a battery 104 which is a modified example of the battery 100 of the first embodiment. Since the positive electrode terminal portion 3 side and the negative electrode terminal portion 4 side are symmetrical, illustration and partial description of the negative electrode terminal portion 4 side are omitted. On the positive electrode terminal portion 3 side of the battery 104 shown in FIG. 16, the first positive electrode insulating reinforcing member 24 and the second positive electrode insulating reinforcing member 25 are fitted. FIG. 16 shows a cross-sectional view of the E-E′ plane of FIG. 6 in the modified example. The fitting will be specifically described. The recess 24g of the second side surface 24d facing the widthwise surface of the first exterior portion 5 of the first positive electrode insulating reinforcing member 24 and the first positive electrode insulating reinforcing member 25 of the second positive electrode insulating reinforcing member 25. It is preferable that the convex portion 25i of the second side surface portion 25e facing the side surface (long side side wall) in the width direction of the first exterior portion 5 is fitted. By fitting the convex portion 24e and the concave portion 25g, the first positive electrode insulating reinforcing member 24 which is not fixed by crimping can be fixed by the second positive electrode insulating reinforcing member 25 which is fixed by crimping. By fixing the first positive electrode insulating reinforcing member 24 to prevent the first positive electrode insulating reinforcing member 24 from approaching the positive electrode current collecting tab 7a side, deformation of the battery 104 due to force in the depth direction of the battery 102 is prevented. Can be prevented. Although illustration is omitted, the first negative electrode insulating reinforcing member 37 and the second negative electrode insulating reinforcing member 38 are similarly fitted on the negative electrode terminal portion 4 side. By fitting the negative electrode terminal portion 4 side, the deformation of the battery 102 due to the force in the depth direction of the battery 104 can be prevented on the negative electrode terminal portion 4 side as well as on the positive electrode terminal portion 3 side. It is possible to arbitrarily select the shape of the fitting concavity and convexity and which is the convexity.
 図17に第1の実施形態の電池100の変形例である電池105の正極端子部3側を示す。正極側と負極側は対称であるため、負極側の図示及び一部説明を省略する。図17に示す電池105は、図14に示す電池102の変形例であって、第1の正極絶縁補強部材24と第2の正極絶縁補強部材25が嵌合している。第1の正極絶縁補強部材24の突出部24fに設けた凹部24hと第2の正極絶縁補強部材25の突出部25hに設けた凸部25jが嵌合して、支柱による厚さ方向と嵌合による奥行き方向の電池105の強度が向上する。負極端子部4側に関しても正極端子部3側と同様に電池105の厚さ方向と奥行き方向への力による変形を防ぐことができる。嵌合の凹凸の形状やどちらを凸部とするかは任意に選択することができる。 FIG. 17 shows the positive electrode terminal portion 3 side of a battery 105 which is a modified example of the battery 100 of the first embodiment. Since the positive electrode side and the negative electrode side are symmetrical, illustration and partial description of the negative electrode side are omitted. A battery 105 shown in FIG. 17 is a modified example of the battery 102 shown in FIG. 14, in which the first positive electrode insulating reinforcing member 24 and the second positive electrode insulating reinforcing member 25 are fitted together. The concave portion 24h provided on the protruding portion 24f of the first positive electrode insulating reinforcing member 24 and the convex portion 25j provided on the protruding portion 25h of the second positive electrode insulating reinforcing member 25 are fitted to each other, and are fitted in the thickness direction of the supporting column. As a result, the strength of the battery 105 in the depth direction is improved. As with the positive electrode terminal portion 3 side, the negative electrode terminal portion 4 side can also prevent the battery 105 from being deformed by forces in the thickness direction and the depth direction. It is possible to arbitrarily select the shape of the fitting concavity and convexity and which is the convexity.
 図18及び19に第1の実施形態の電池100の変形例である電池106の正極端子部3側を示す。正極側と負極側は対称であるため、負極側の図示及び一部説明を省略する。図18は、変形例における図6のA-A’面の断面図を示している。図19は、変形例における図6のB-B’面の断面図を示している。電池106に占める電極群2の比率を高められるように、正極集電タブ7aの幅方向の中央部分が切り欠けられている。図18及び図19に示す電池106は、電池100の変形例であって、正極集電タブ7aの幅方向中央の正極絶縁補強保持部24aと対向する部分が切り欠けられている。つまり、正極集電タブ7aは、正極絶縁補強保持部24aと対向しない。ここで言う対向の方向は、正極外部端子17から負極外部端子32に向かう方向である。同様に、正極バックアップリード11及び電極群側正極リード12もそれぞれ正極絶縁補強保持部24aと対向しない。つまり、正極集電タブ7aが存在しない部分には、バックアップ正極リード11及び電極群側正極リード12が設けられておらず、バックアップ正極リード11及び電極群側正極リード12は、2部に分かれている。負極側も同様に、負極集電タブ8aは、負極絶縁補強保持部37aと対向しない。そして、バックアップ負極リード13及び電極群側負極リード14もそれぞれ負極絶縁補強保持部37aと対向しない。かかる構成とすることで、電池強度を高めつつ、より容量の多い電池106を得ることが出来る。 18 and 19 show the positive electrode terminal portion 3 side of a battery 106 which is a modified example of the battery 100 of the first embodiment. Since the positive electrode side and the negative electrode side are symmetrical, illustration and partial description of the negative electrode side are omitted. FIG. 18 shows a cross-sectional view of the A-A′ plane of FIG. 6 in the modified example. FIG. 19 shows a cross-sectional view of the B-B′ plane of FIG. 6 in the modified example. The center portion in the width direction of the positive electrode current collector tab 7a is cut away so that the ratio of the electrode group 2 in the battery 106 can be increased. The battery 106 shown in FIGS. 18 and 19 is a modified example of the battery 100, and a portion facing the positive electrode insulating reinforcement holding portion 24a in the widthwise center of the positive electrode current collector tab 7a is cut away. That is, the positive electrode current collecting tab 7a does not face the positive electrode insulating reinforcement holding portion 24a. The facing direction referred to here is a direction from the positive electrode external terminal 17 to the negative electrode external terminal 32. Similarly, the positive electrode backup lead 11 and the electrode group side positive electrode lead 12 do not face the positive electrode insulating reinforcement holding portion 24a, respectively. That is, the backup positive electrode lead 11 and the electrode group side positive electrode lead 12 are not provided in the portion where the positive electrode current collecting tab 7a does not exist, and the backup positive electrode lead 11 and the electrode group side positive electrode lead 12 are divided into two parts. There is. Similarly, on the negative electrode side, the negative electrode current collecting tab 8a does not face the negative electrode insulating reinforcement holding portion 37a. The backup negative electrode lead 13 and the electrode group side negative electrode lead 14 also do not face the negative electrode insulation reinforcement holding portion 37a. With such a configuration, it is possible to obtain a battery 106 having a larger capacity while increasing the battery strength.
 次に、第1の実施形態の電池の製造方法を以下に説明する。図21(a)から図21(b)及び図22(a)から図22(d)には、電池の製造する工程図を示す。 Next, a method of manufacturing the battery according to the first embodiment will be described below. 21(a) to 21(b) and 22(a) to 22(d) are process diagrams for manufacturing a battery.
 図4に例示されるような、電極群2を作製する。また、図20に例示されるような、正極端子部3及び負極端子部4が固定された第1の外装部5を作製する。なお、第1の外装部5及び第2の外装部6それぞれに、位置決め用の案内穴を少なくとも1つ開口する。その一例を図21(a)及び図21(b)に示す。図21(a)には、第2の外装部6の四隅に位置決め用の案内穴39が開口された例が示されている。図21(b)には、第1の外装部5の四隅に位置決め用の案内穴39が開口された例が示されている。 An electrode group 2 as shown in FIG. 4 is prepared. Further, as illustrated in FIG. 20, the first exterior portion 5 to which the positive electrode terminal portion 3 and the negative electrode terminal portion 4 are fixed is manufactured. At least one guide hole for positioning is opened in each of the first exterior part 5 and the second exterior part 6. An example thereof is shown in FIGS. 21(a) and 21(b). FIG. 21A shows an example in which guide holes 39 for positioning are opened at the four corners of the second exterior portion 6. FIG. 21B shows an example in which guide holes 39 for positioning are opened at the four corners of the first exterior part 5.
 電極群2を第1の外装部5内に収納し、電極群側正極リード12を正極端子リード23に溶接等して接合し、また、電極群側負極リード14を負極端子リード36に溶接等して接合する。接合には、例えばレーザ溶接、TIG溶接、摩擦撹拌接合を用いることができる。実施形態では、いずれによる接合も溶接として取り扱う。 The electrode group 2 is housed in the first outer casing 5, the electrode group side positive electrode lead 12 is joined to the positive electrode terminal lead 23 by welding or the like, and the electrode group side negative electrode lead 14 is welded to the negative electrode terminal lead 36 or the like. And join. Laser welding, TIG welding, and friction stir welding can be used for joining, for example. In the embodiment, any joint is treated as welding.
 次いで、第2の正極絶縁補強部材25及び第2の負極絶縁補強部材38を、電極群2の正極集電タブ7a及び負極集電タブ8aに被せる。ひきつづき、第2の外装部6を第1の外装部5上に配置する。第1の外装部5及び第2の外装部6それぞれの四隅に案内穴39が開口されているため、第1の外装部5に対する第2の外装部6の位置を定めることが容易である。 Next, the second positive electrode insulating reinforcing member 25 and the second negative electrode insulating reinforcing member 38 are covered on the positive electrode current collecting tab 7a and the negative electrode current collecting tab 8a of the electrode group 2. Subsequently, the second exterior portion 6 is arranged on the first exterior portion 5. Since the guide holes 39 are opened at the four corners of each of the first exterior portion 5 and the second exterior portion 6, it is easy to determine the position of the second exterior portion 6 with respect to the first exterior portion 5.
 次いで、図22(a)に示すように、第1の外装部5及び第2の外装部6の三辺(例えば、長辺と短辺二辺)を溶接する。溶接には、例えば、抵抗シーム溶接が用いられる。溶接箇所を符号40で示す。溶接箇所40は、第1の外装部5及び第2の外装部6の外縁よりも内側に位置することが望ましい。 Next, as shown in FIG. 22A, the three sides (for example, the long side and the two short sides) of the first exterior portion 5 and the second exterior portion 6 are welded. For the welding, for example, resistance seam welding is used. The welded portion is indicated by reference numeral 40. It is desirable that the welding location 40 be located inside the outer edges of the first exterior portion 5 and the second exterior portion 6.
 未溶接の一辺の開口から電解液を注液した後、図22(b)に示すように、この一辺を例えば抵抗シーム溶接で溶接する。溶接箇所41は、第1の外装部5及び第2の外装部6の外縁部にすることが望ましい。 After injecting the electrolytic solution from the opening on one side of the unwelded side, as shown in FIG. 22(b), this side is welded by, for example, resistance seam welding. It is desirable that the welded portion 41 be an outer edge portion of the first exterior portion 5 and the second exterior portion 6.
 次いで、エージング、初回充放電を施した後、図22(c)に示すように、溶接箇所41の一部を切り取ることで切り取り部分42を作り、外装部材1内のガスを放出させる。その後、図22(d)に示すように、溶接箇所41よりもさらに内側の溶接箇所(第2の外装部6の長辺)43を抵抗シーム溶接等で溶接する。この溶接は、減圧雰囲気で行うことが望ましい。 Next, after aging and initial charging/discharging, as shown in FIG. 22(c), a cut-out portion 42 is created by cutting off a part of the welded portion 41, and the gas in the exterior member 1 is released. After that, as shown in FIG. 22D, a welding portion 43 (long side of the second exterior portion 6) further inside than the welding portion 41 is welded by resistance seam welding or the like. It is desirable to perform this welding in a reduced pressure atmosphere.
 その後、必要に応じ、第1の外装部5及び第2の外装部6の外縁付近を裁断することにより、案内穴39を取り除くことができる。なお、案内穴39を残したままでも良い。 After that, if necessary, the guide hole 39 can be removed by cutting the vicinity of the outer edges of the first exterior part 5 and the second exterior part 6. The guide hole 39 may be left as it is.
 以上説明した方法により、第1の実施形態の電池を高い生産性で製造することが可能である。 By the method described above, the battery of the first embodiment can be manufactured with high productivity.
 第1の実施形態の電池は、1つの外装部材1内に複数の電極群2を備えることができる。この場合、第2の外装部6として、第1の外装部5と同様に、開口部にフランジ部を有するものを用いることが望ましい。電池100の強度を考慮すると、1つの外装部材1内に1個だけの電極群2を備えることが好ましい。 The battery according to the first embodiment can include a plurality of electrode groups 2 in one exterior member 1. In this case, it is desirable to use, as the second exterior portion 6, one having a flange portion in the opening, as in the case of the first exterior portion 5. Considering the strength of the battery 100, it is preferable that only one electrode group 2 is provided in one exterior member 1.
 1つの外装部材1内に1つの電極群2を収納する場合の電池100を製造する正極端子部3側の工程図を図23に示す。電極群2を用意し、バックアップ正極リード11で正極集電タブ7aの中央先端を束ねる。次いで、図23Aの工程図のようにバックアップ正極リード11と電極群側正極リード12を溶接する。溶接後、電極群側正極リード12を曲げて、図23Bのように第1の延出部12とする。なお、あらかじめ折り曲げた電極側正極リードをバックアップ正極リード11と溶接して図23Bのような部材を得てもよい。 FIG. 23 shows a process diagram on the positive electrode terminal portion 3 side for manufacturing the battery 100 in the case where one electrode group 2 is housed in one outer casing member 1. The electrode group 2 is prepared, and the backup positive electrode lead 11 bundles the central tips of the positive electrode current collecting tabs 7a. Next, as shown in the process diagram of FIG. 23A, the backup positive electrode lead 11 and the electrode group side positive electrode lead 12 are welded. After welding, the electrode group side positive electrode lead 12 is bent to form the first extending portion 12 as shown in FIG. 23B. The electrode-side positive electrode lead bent in advance may be welded to the backup positive electrode lead 11 to obtain a member as shown in FIG. 23B.
 そして、正極端子部3をあらかじめ組み込んだ第1の外装材5の開口部側から図23Bの部材を挿入する。挿入後、電極群側正極リード12の第1の延出部12bと正極端子リード23の第1の延出部をレーザ溶接して固定して図23Cのように1個の電極群2が第1の外装部5内に固定される。そして、第2の外装部6で蓋をすることで、電池100を得ることができる。 Then, the member shown in FIG. 23B is inserted from the opening side of the first exterior material 5 in which the positive electrode terminal portion 3 is incorporated in advance. After the insertion, the first extension portion 12b of the electrode group side positive electrode lead 12 and the first extension portion of the positive electrode terminal lead 23 are fixed by laser welding to fix one electrode group 2 to the first as shown in FIG. 23C. It is fixed in the exterior portion 5 of 1. Then, by covering the second exterior portion 6 with the lid, the battery 100 can be obtained.
 以上説明した第1の実施形態の電池は、薄型の電池であっても外装部材1内のリードの厚さを厚くすることができ、大電流向きなである。 The battery of the first embodiment described above is suitable for a large current because the lead in the exterior member 1 can have a large thickness even if it is a thin battery.
(第2の実施形態)
 第2の実施形態の電池パックは、第1の実施形態の電池を1つ以上含む。第1の実施形態の電池の組電池の例を図24及び図25に示す。
(Second embodiment)
The battery pack of the second embodiment includes one or more batteries of the first embodiment. An example of the assembled battery of the battery of the first embodiment is shown in FIGS. 24 and 25.
 図24に示すように、電池パック200は、単位セルとして第1の実施形態の電池100~106を用いている。電池パック200は、図示しないラミネートにより被覆されている場合がある。第1の単位セル60の負極端子32の頂面と、第2の単位セル61の負極端子32の頂面の間に、三角柱状の導電性連結部材62が配置されている。また、第1の単位セル60の正極端子17の頂面と、第2の単位セル61の正極端子17の頂面の間に、三角柱状の導電性連結部材62が配置されている。二つの頂面と導電性連結部材62は、それぞれ、溶接により電気的に接続されている。溶接には、例えばレーザ溶接、アーク溶接、抵抗溶接が用いられる。これにより、第1の単位セル60と第2の単位セル61が並列接続された組電池のユニット63が得られる。組電池のユニット63同士をバスバー64により直列に接続することにより、電池パック200が得られる。 As shown in FIG. 24, the battery pack 200 uses the batteries 100 to 106 of the first embodiment as unit cells. The battery pack 200 may be covered with a laminate (not shown). A triangular columnar conductive connecting member 62 is disposed between the top surface of the negative electrode terminal 32 of the first unit cell 60 and the top surface of the negative electrode terminal 32 of the second unit cell 61. Further, a triangular columnar conductive connecting member 62 is arranged between the top surface of the positive electrode terminal 17 of the first unit cell 60 and the top surface of the positive electrode terminal 17 of the second unit cell 61. The two top surfaces and the conductive connecting member 62 are electrically connected by welding. Laser welding, arc welding, or resistance welding is used for welding. As a result, an assembled battery unit 63 in which the first unit cell 60 and the second unit cell 61 are connected in parallel is obtained. The battery pack 200 is obtained by connecting the units 63 of the assembled battery to each other in series by the bus bar 64.
 図25に示す電池パック201は、単位セルとして第1の実施形態の電池100~106を用いている。第1の単位セル60と第2の単位セル61を導電性連結部材62を用いて直列に接続したものを組電池のユニット65とし、組電池のユニット65同士をバスバー64により直列に接続することで電池パックを構成する。第1の単位セル60と第2の単位セル61間を導電性連結部材62を用いて電気的接続する方法は、図20で説明したのと同様である。 The battery pack 201 shown in FIG. 25 uses the batteries 100 to 106 of the first embodiment as unit cells. A battery unit 65 is formed by connecting the first unit cell 60 and the second unit cell 61 in series using a conductive connecting member 62, and the battery unit units 65 are connected in series by a bus bar 64. The battery pack is composed of. The method of electrically connecting the first unit cell 60 and the second unit cell 61 using the conductive connecting member 62 is the same as that described with reference to FIG.
 図24及び図25に示す組電池では、隣り合う第1の単位セル60と第2の単位セル61が、互いの外装部材1の主面同士が面した状態で積層されている。例えば図20に示す組電池のユニット63では、第1の単位セル60の第1の外装部5の主面と、第2の単位セル61の第1の外装部5の主面とが面している。また、隣り合う組電池のユニット63において、一方の組電池のユニット63の第2の単位セル61の第2の外装部6の主面と、他方の組電池のユニット63の第2の単位セル61の第2の外装部6の主面とが面している。このように外装部材の主面同士を対面させて電池を積層することにより、組電池の体積エネルギー密度を高くすることができる。 In the assembled battery shown in FIGS. 24 and 25, the first unit cell 60 and the second unit cell 61 which are adjacent to each other are stacked with the main surfaces of the exterior members 1 facing each other. For example, in the unit 63 of the assembled battery shown in FIG. 20, the main surface of the first exterior portion 5 of the first unit cell 60 and the main surface of the first exterior portion 5 of the second unit cell 61 face each other. ing. In addition, in the unit 63 of the adjacent battery pack, the main surface of the second exterior portion 6 of the second unit cell 61 of the unit battery 63 of one of the battery packs and the second unit cell of the unit 63 of the other battery pack The main surface of the second exterior portion 6 of 61 faces. By stacking the batteries so that the main surfaces of the exterior members face each other in this manner, the volume energy density of the battery pack can be increased.
 また、図24及び図25に図示されているように単位セル60と単位セル61、又は単位セル60、60や単位セル61、61のセル間には絶縁空間があるほうが望ましく、0.03mm以上の隙間を設けるか、絶縁部材(例えば、樹脂であるポリプロピレンやポリフェニレンサルファイドやエポキシ、ファインセラミックスであるアルミナやジルコニアなど)等を間に挟むことが出来る。 Further, as shown in FIG. 24 and FIG. 25, it is desirable that there is an insulating space between the unit cell 60 and the unit cell 61, or between the unit cells 60, 60 and the unit cells 61, 61, 0.03 mm or more. Or an insulating member (for example, resin such as polypropylene, polyphenylene sulfide, epoxy, or fine ceramics such as alumina or zirconia) can be sandwiched therebetween.
 正極外部端子17及び負極端子32が角錐台形状の頭部を持つことにより、1つの頭部の二ヶ所(例えば第1、第2の傾斜面)の一方(第1の傾斜面)に単位セルの外部端子を、他方(第2の傾斜面)にバスバーを接続することができる。つまり、1つの頭部で二方向の接続が可能となる。その結果、電池間を電気的に接続する経路を短縮することができるので、電池パックに低抵抗で大電流を流すことが容易となる。 Since the positive electrode external terminal 17 and the negative electrode terminal 32 have a truncated pyramid-shaped head portion, the unit cell is provided at one of two positions (for example, the first and second inclined surfaces) (first inclined surface) of one head. The external terminal can be connected to the other (the second inclined surface) of the bus bar. In other words, one head can be connected in two directions. As a result, the path for electrically connecting the batteries can be shortened, so that a large current can be easily passed through the battery pack with low resistance.
 第2の実施形態の電池パックは、第1の実施形態の電池を少なくとも一つ含むため、薄型化及び柔軟性の向上が可能で、電池そのものの強度が高いため信頼性に優れ、製造コストの削減が可能な電池パックを提供することができる。
 電池パックは、例えば、電子機器、車両(鉄道車両、自動車、原動機付自転車、軽車両、トロリーバス等)の電源として使用される。
 上述の通り、組電池は、複数の電池を直列、並列、あるいは直列及び並列を組み合わせて電気的に接続したものを含み得る。また、電池パックは、組電池に加え、電池制御ユニット(Battery Control Unit, BMU)等の回路を備えることができるが、組電池が搭載されるもの(例えば車両など)が有する回路を電池制御ユニットとして使用することができる。電池制御ユニットは、単電池及び組電池の電圧または電流あるいは両方を監視して過充電及び過放電を防止する機能等を有する。
Since the battery pack of the second embodiment includes at least one battery of the first embodiment, it is possible to reduce the thickness and improve the flexibility, and since the battery itself has high strength, it has excellent reliability and low manufacturing cost. A battery pack that can be reduced can be provided.
The battery pack is used, for example, as a power source for electronic devices and vehicles (railroad vehicles, automobiles, motorbikes, light vehicles, trolleybuses, etc.).
As described above, the assembled battery may include a plurality of batteries connected in series, parallel, or a combination of series and parallel and electrically connected. In addition to the battery pack, the battery pack may include circuits such as a battery control unit (BMU), but the battery pack unit has a circuit included in a battery pack unit (for example, a vehicle). Can be used as The battery control unit has a function of monitoring the voltage or current or both of the unit cells and the assembled battery to prevent overcharge and overdischarge.
(第3の実施形態)
 第3の実施形態は蓄電装置に関する。第2の実施形態の電池パック200、201を蓄電装置300に搭載することができる。図26の概念図に示す蓄電装置300は、電池パック200、201と、インバーター302と、コンバーター301とを備える。外部交流電源303をコンバーター301で直流変換し、電池パック200、201を充電し、電池パック200、201からの直流電源のインバーター302で交流変換し、蓄電装置300に接続した負荷304に電気を供給する構成となっている。実施形態の電池パック200、201を有する本構成の蓄電装置300とすることで、電池特性に優れた蓄電装置が提供される。なお、電池パック200、201の代わりに、電池100~106を使用することもできる。電池パック200,201の信頼性向上によって、蓄電池300の信頼性も向上する。
(Third Embodiment)
The third embodiment relates to a power storage device. The battery packs 200 and 201 of the second embodiment can be mounted on the power storage device 300. A power storage device 300 shown in the conceptual diagram of FIG. 26 includes battery packs 200 and 201, an inverter 302, and a converter 301. An external AC power source 303 is converted into a direct current by a converter 301, the battery packs 200 and 201 are charged, an alternating current is converted into an alternating current by an inverter 302 of a direct current power source from the battery packs 200 and 201, and electricity is supplied to a load 304 connected to a power storage device 300 It is configured to do. By using the power storage device 300 of this configuration including the battery packs 200 and 201 of the embodiment, a power storage device having excellent battery characteristics is provided. The batteries 100 to 106 may be used instead of the battery packs 200 and 201. By improving the reliability of the battery packs 200 and 201, the reliability of the storage battery 300 is also improved.
(第4の実施形態)
 第4の実施形態は車両に関する。第4の実施形態の車両は、第2の実施形態の電池パック200、201を用いている。本実施形態にかかる車両の構成を、図27の車両400の模式図を用いて簡単に説明する。車両400は、電池パック200、201、車体401、モーター402、車輪403と、制御ユニット404を有する。電池パック200、201、モーター402、車輪403と、制御ユニット404は、車体401に配置されている。制御ユニット404は、電池パック200、201から出力した電力を変換したり、出力調整したりする。モーター402は電池パック200、201から出力された電力を用いて、車輪403を回転させる。なお、車両400は、電車などの電動車両やエンジンなどの他の駆動源を有するハイブリッド車も含まれる。モーター402からの回生エネルギーによって、電池パック200、201を充電してもよい。電池パック200、201からの電気エネルギーによって駆動されるものはモーターに限られず、車両400に含まれる電気機器を動作させるための動力源に用いても良い。また車両400の減速時に回生エネルギーを得て、得られた回生エネルギーを用いて電池パック200、201を充電することが好ましい。実施形態の電池パック200、201を有する本構成の車両400とすることで、電池特性に優れた車両が提供される。なお、電池パック200、201の代わりに、電池100~106を使用することもできる。電池パック200,201の信頼性向上によって、車両400の信頼性も向上する。
(Fourth Embodiment)
The fourth embodiment relates to a vehicle. The vehicle of the fourth embodiment uses the battery packs 200 and 201 of the second embodiment. The configuration of the vehicle according to this embodiment will be briefly described with reference to the schematic diagram of the vehicle 400 in FIG. 27. The vehicle 400 includes battery packs 200 and 201, a vehicle body 401, a motor 402, wheels 403, and a control unit 404. The battery packs 200 and 201, the motor 402, the wheels 403, and the control unit 404 are arranged on the vehicle body 401. The control unit 404 converts the power output from the battery packs 200 and 201 and adjusts the output. The motor 402 rotates the wheel 403 using the electric power output from the battery packs 200 and 201. Vehicle 400 also includes an electric vehicle such as a train and a hybrid vehicle having another drive source such as an engine. The battery packs 200, 201 may be charged by the regenerative energy from the motor 402. What is driven by the electric energy from the battery packs 200 and 201 is not limited to the motor, and may be used as a power source for operating the electric devices included in the vehicle 400. Further, it is preferable that regenerative energy is obtained when the vehicle 400 is decelerated and the battery packs 200 and 201 are charged using the obtained regenerative energy. By providing the vehicle 400 of this configuration including the battery packs 200 and 201 of the embodiment, a vehicle having excellent battery characteristics is provided. The batteries 100 to 106 may be used instead of the battery packs 200 and 201. As the reliability of the battery packs 200 and 201 is improved, the reliability of the vehicle 400 is also improved.
(第5の実施形態)
 第5の実施形態は飛翔体(例えば、マルチコプター)に関する。第5の実施形態の飛翔体は、第2の実施形態の電池パック200、201を用いている。本実施形態にかかる飛翔体の構成を、図28の飛翔体(クアッドコプター)500の模式図を用いて簡単に説明する。飛翔体500は、電池パック200、201、機体骨格501、モーター502、回転翼503と制御ユニット504を有する。電池パック200、201、モーター502、回転翼503と制御ユニット504は、機体骨格501に配置している。制御ユニット504は、電池パック200、201から出力した電力を変換したり、出力調整したりする。モーター502は電池パック200、201から出力された電力を用いて、回転翼503を回転させる。実施形態の電池パック200、201を有する本構成の飛翔体500とすることで、信頼性が向上した飛翔体が提供される。なお、電池パック200、201の代わりに、電池100~106を使用することもできる。
(Fifth Embodiment)
The fifth embodiment relates to a flying object (for example, a multicopter). The flying vehicle of the fifth embodiment uses the battery packs 200 and 201 of the second embodiment. The configuration of the flying object according to the present embodiment will be briefly described with reference to the schematic view of the flying object (quadcopter) 500 in FIG. The flying body 500 includes battery packs 200 and 201, a body skeleton 501, a motor 502, a rotary wing 503, and a control unit 504. The battery packs 200 and 201, the motor 502, the rotor 503, and the control unit 504 are arranged in the body skeleton 501. The control unit 504 converts the electric power output from the battery packs 200 and 201 and adjusts the output. The motor 502 rotates the rotor 503 using the electric power output from the battery packs 200 and 201. By using the flying body 500 of this configuration including the battery packs 200 and 201 of the embodiment, a flying body with improved reliability is provided. The batteries 100 to 106 may be used instead of the battery packs 200 and 201.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and the gist of the invention, and are also included in the invention described in the claims and an equivalent range thereof.
 1…外装部材、2…電極群、3…正極端子部、4…負極端子部、5…第1の外装部、5a…開口部、5b…フランジ部、5c…底面、5d…傾斜面、5e…側壁、6…第2の外装部、7…正極、7a…正極集電タブ、7b…正極材料層、8…負極、8a…負極集電タブ、8b…負極材料層、9…セパレータ、10…絶縁シート、11…バックアップ正極リード、12…電極群側正極リード、13…バックアップ負極リード、14…電極群側負極リード、15,30…第1の外装部の貫通孔、16,31…バーリング部、17…正極外部端子、17a…正極頭部、17b…正極軸部、18a…正極絶縁部材、18b…正極補強部材、19,34…絶縁ガスケット、20…正極端子絶縁部材、21…頭部、23…正極端子リード、24…第1の正極絶縁補強部材、24a…正極絶縁補強保持部、25…第2の正極絶縁補強部材、32…負極外部端子、32a…負極頭部、32b…負極軸部、33a…負極絶縁部材、33b…負極補強部材、35…負極端子絶縁部材、36…負極端子リード、37…第1の負極絶縁補強部材、37a…負極絶縁補強保持部、38…第2の絶縁補強部材、39…案内穴、40,41,43…溶接箇所、42…切り取り部分、60…第1の単位セル、61…第2の単位セル、62…導電性連結部材、63,65…組電池のユニット、64…バスバー100~106…電池、200,201…電池パック、300…蓄電装置、301…コンバーター、302…インバーター、303…外部交流電源、304…負荷、400…車両、401…車体、402…モーター、403…車輪、404…制御ユニット、500…飛翔体、501…機体骨格、502…モーター、503…回転翼、504…制御ユニット DESCRIPTION OF SYMBOLS 1... Exterior member, 2... Electrode group, 3... Positive electrode terminal part, 4... Negative electrode terminal part, 5... 1st exterior part, 5a... Opening part, 5b... Flange part, 5c... Bottom surface, 5d... Inclined surface, 5e ... Side wall, 6... Second exterior part, 7... Positive electrode, 7a... Positive electrode current collecting tab, 7b... Positive electrode material layer, 8... Negative electrode, 8a... Negative electrode collecting tab, 8b... Negative electrode material layer, 9... Separator, 10 Insulating sheet, 11... Backup positive electrode lead, 12... Electrode group side positive electrode lead, 13... Backup negative electrode lead, 14... Electrode group side negative electrode lead, 15, 30... Through hole of first exterior part, 16, 31... Burring Part, 17... Positive electrode external terminal, 17a... Positive electrode head part, 17b... Positive electrode shaft part, 18a... Positive electrode insulating member, 18b... Positive electrode reinforcing member, 19, 34... Insulating gasket, 20... Positive electrode terminal insulating member, 21... Head , 23... Positive electrode terminal lead, 24... First positive electrode insulating reinforcing member, 24a... Positive electrode insulating reinforcing member, 25... Second positive electrode insulating reinforcing member, 32... Negative electrode external terminal, 32a... Negative electrode head part, 32b... Negative electrode Shaft part, 33a... Negative electrode insulating member, 33b... Negative electrode reinforcing member, 35... Negative electrode terminal insulating member, 36... Negative electrode terminal lead, 37... First negative electrode insulating reinforcing member, 37a... Negative electrode insulating reinforcing holding part, 38... Second Insulation reinforcing member, 39... Guide hole, 40, 41, 43... Welding spot, 42... Cutout portion, 60... First unit cell, 61... Second unit cell, 62... Conductive connecting member, 63, 65 ... assembled battery unit, 64... busbars 100 to 106... batteries, 200, 201... battery pack, 300... power storage device, 301... converter, 302... inverter, 303... external AC power supply, 304... load, 400... vehicle, 401 ... vehicle body, 402... motor, 403... wheel, 404... control unit, 500... flying body, 501... airframe, 502... motor, 503... rotor, 504... control unit

Claims (19)

  1.  正極、前記正極と電気的に接続された正極集電タブ、負極、及び、前記負極と電気的に接続された負極集電タブを含み、扁平形状に捲回された前記正極集電タブが第一端面に位置し、かつ扁平形状に捲回された前記負極集電タブが第二端面に位置する、扁平形状の電極群と、
     前記正極集電タブと電気的に接続した電極群側正極リードと、
     前記負極集電タブと電気的に接続した電極群側負極リードと、
     開口部にフランジ部を有する第1の外装部と、第2の外装部とを含み、前記第1の外装部の前記フランジ部と前記第2の外装部が溶接されて形成された空間内に前記電極群が収納された外装部材と、
     前記第1の外装部は前記正極集電タブ側に貫通孔を有し、正極頭部及び前記正極頭部から延び出た正極軸部を含む正極外部端子と、貫通孔を有し前記電極群側正極リードと電気的に接続した正極端子リードを含み、前記正極頭部が前記第1の外装部の外側に突出し、前記正極軸部が前記正極端子リードの貫通孔に挿入されて前記正極軸部が前記第1の外装部及び前記正極端子リードにカシメ固定された正極端子部と、
     前記第1の外装部は前記負極集電タブ側に貫通孔を有し、負極頭部及び前記負極頭部から延び出た負極軸部を含む負極外部端子と、貫通孔を有し前記電極群側負極リードと電気的に接続した負極端子リードを含み、前記負極頭部が前記第1の外装部の外側に突出し、前記負極軸部が前記負極端子リードの貫通孔に挿入されて前記負極軸部が前記第1の外装部及び前記負極端子リードにカシメ固定された負極端子部と、
     前記第1の外装部の内面側及び前記第2の外装部の内面側に配置され、前記正極端子と前記第2の外装部の間に配置された第1の正極絶縁補強部材と、
     前記第1の外装部の内面側及び前記第2の外装部の内面側に配置され、前記負極端子と前記第2の外装部の間に配置された第1の負極絶縁補強部材と、
    を含み、
     前記第1の正極絶縁補強部材は、前記正極軸部の前記正極頭部側とは反対側の端部と対向する斜面を有する正極絶縁補強保持部を含み、
     前記第1の負極絶縁補強部材は、前記負極軸部の前記負極頭部側とは反対側の端部と対向する斜面を有する負極絶縁補強保持部を含む電池。
    A positive electrode current collecting tab electrically connected to the positive electrode, a negative electrode, and a negative electrode current collecting tab electrically connected to the negative electrode, wherein the positive electrode current collecting tab wound in a flat shape is Located on one end surface, and the negative electrode current collecting tab wound in a flat shape is located on the second end surface, a flat electrode group,
    An electrode group side positive electrode lead electrically connected to the positive electrode current collecting tab,
    An electrode group side negative electrode lead electrically connected to the negative electrode current collecting tab,
    A first exterior portion having a flange portion in the opening and a second exterior portion, and in a space formed by welding the flange portion and the second exterior portion of the first exterior portion. An exterior member accommodating the electrode group,
    The first exterior part has a through hole on the positive electrode current collector tab side, a positive electrode external terminal including a positive electrode head part and a positive electrode shaft part extending from the positive electrode head part, and a through hole, and the electrode group. A positive electrode terminal lead electrically connected to a side positive electrode lead, the positive electrode head portion protruding outside the first exterior portion, and the positive electrode shaft portion being inserted into a through hole of the positive electrode terminal lead. A positive electrode terminal portion having a portion fixed by crimping to the first outer packaging portion and the positive electrode terminal lead;
    The first exterior portion has a through hole on the negative electrode current collecting tab side, a negative electrode external terminal including a negative electrode head portion and a negative electrode shaft portion extending from the negative electrode head portion, and a through hole, and the electrode group. A negative electrode terminal lead electrically connected to the side negative electrode lead, the negative electrode head portion protruding to the outside of the first exterior portion, the negative electrode shaft portion being inserted into a through hole of the negative electrode terminal lead, and the negative electrode shaft. A portion of the negative electrode terminal portion fixed by crimping to the first exterior portion and the negative electrode terminal lead;
    A first positive electrode insulating and reinforcing member that is disposed on the inner surface side of the first outer packaging portion and the inner surface side of the second outer packaging portion and that is disposed between the positive electrode terminal and the second outer packaging portion;
    A first negative electrode insulating reinforcing member that is disposed on the inner surface side of the first outer packaging portion and on the inner surface side of the second outer packaging portion and that is disposed between the negative electrode terminal and the second outer packaging portion;
    Including,
    The first positive electrode insulating reinforcing member includes a positive electrode insulating reinforcing holding portion having an inclined surface facing an end portion of the positive electrode shaft portion opposite to the positive electrode head side,
    The said 1st negative electrode insulation reinforcement member is a battery containing the negative electrode insulation reinforcement holding|maintenance part which has a slope which opposes the edge part of the said negative electrode shaft part on the opposite side to the said negative electrode head side.
  2.  前記正極軸部が前記正極絶縁補強保持部の前記斜面と対向する面と前記第2の外装部とのなす角度をA1とし、
     前記正極絶縁補強保持部の前記斜面と前記第2の外装部とのなす角度をA2とし、
     前記負極軸部が前記負極絶縁補強保持部の前記斜面と対向する面と前記第2の外装部とのなす角度をB1とし、
     前記負極絶縁補強保持部の前記斜面と前記第2の外装部とのなす角度をB2とし、
     |A1-A2|≦8度、及び、|B1-B2|≦8度を満たす請求項1に記載の電池。
    The angle formed between the surface of the positive electrode shaft portion facing the inclined surface of the positive electrode insulating reinforcement holding portion and the second exterior portion is A1,
    The angle formed by the inclined surface of the positive electrode insulating reinforcement holding portion and the second exterior portion is A2,
    The angle formed by the surface of the negative electrode shaft portion facing the inclined surface of the negative electrode insulating reinforcement holding portion and the second exterior portion is B1,
    The angle formed by the slope of the negative electrode insulating reinforcement holding portion and the second exterior portion is B2,
    The battery according to claim 1, wherein |A1-A2|≦8 degrees and |B1-B2|≦8 degrees are satisfied.
  3.  前記正極絶縁補強保持部の前記斜面と前記正極軸部との距離は、0.0mm以上1.0mm以下であり、
     前記負極絶縁補強保持部の前記斜面と前記負極軸部との距離は、0.0mm以上1.0mm以下である請求項1又は2に記載の電池。
    The distance between the inclined surface of the positive electrode insulation reinforcement holding portion and the positive electrode shaft portion is 0.0 mm or more and 1.0 mm or less,
    The battery according to claim 1 or 2, wherein a distance between the inclined surface of the negative electrode insulating reinforcement holding portion and the negative electrode shaft portion is 0.0 mm or more and 1.0 mm or less.
  4.  前記正極絶縁補強保持部の前記斜面は、前記正極端子リードと対向し、
     前記負極絶縁補強保持部の前記斜面は、前記負極端子リードと対向している請求項1ないし3のいずれか1項に記載の電池。
    The inclined surface of the positive electrode insulation reinforcement holding portion faces the positive electrode terminal lead,
    The battery according to any one of claims 1 to 3, wherein the sloped surface of the negative electrode insulating reinforcement holding portion faces the negative electrode terminal lead.
  5.  前記正極絶縁補強保持部の前記斜面と前記正極端子リードとの距離は、0.0mm以上1.0mm以下であり、
     前記負極絶縁補強保持部の前記斜面と前記負極端子リードとの距離は、0.0mm以上1.0mm以下である請求項1ないし4のいずれか1項に記載の電池。
    The distance between the inclined surface of the positive electrode insulation reinforcement holding portion and the positive electrode terminal lead is 0.0 mm or more and 1.0 mm or less,
    The battery according to any one of claims 1 to 4, wherein a distance between the sloped surface of the negative electrode insulation reinforcement holding portion and the negative electrode terminal lead is 0.0 mm or more and 1.0 mm or less.
  6.  前記第1の外装部の内面側であって、前記正極端子リードと前記第1の外装部との間に配置され、前記第1の正極絶縁補強部材と対向した第2の正極絶縁補強部材と、
     前記第1の外装部の内面側であって、前記負極端子リードと前記第1の外装部との間に配置され、前記第1の負極絶縁補強部材と対向した第2の負極絶縁補強部材と、をさらに含み、
     前記第2の正極絶縁補強部材は、前記正極軸部、前記第1の外装部及び前記正極端子リードにカシメ固定され、
     前記第2の負極絶縁補強部材は、前記負極軸部、前記第1の外装部及び前記負極端子リードにカシメ固定された請求項1ないし5のいずれか1項に記載の電池。
    A second positive electrode insulation reinforcing member that is disposed on the inner surface side of the first outer case part and between the positive electrode terminal lead and the first outer case part, and faces the first positive electrode insulation reinforcing member; ,
    A second negative electrode insulation reinforcing member that is arranged on the inner surface side of the first outer case part and between the negative electrode terminal lead and the first outer case part, and faces the first negative electrode insulation reinforcing member; Further including,
    The second positive electrode insulating reinforcing member is fixed to the positive electrode shaft portion, the first outer casing portion and the positive electrode terminal lead by crimping,
    The battery according to claim 1, wherein the second negative electrode insulating reinforcing member is fixed to the negative electrode shaft portion, the first outer casing portion, and the negative electrode terminal lead by crimping.
  7.  前記第1の正極絶縁補強部材の前記正極集電タブ側の端部側が前記第2の正極絶縁補強部材側に突出しており、
     前記第2の正極絶縁補強部材の前記正極集電タブ側の端部側が前記第1の正極絶縁補強部材側に突出しており、
     前記第1の負極絶縁補強部材の前記負極集電タブ側の端部側が前記第2の負極絶縁補強部材側に突出しており、
     前記第2の負極絶縁補強部材の前記負極集電タブ側の端部側が前記第1の負極絶縁補強部材側に突出している請求項6に記載の電池。
    An end portion side of the first positive electrode insulating reinforcing member on the positive electrode current collecting tab side projects toward the second positive electrode insulating reinforcing member side,
    An end portion side of the second positive electrode insulating reinforcing member on the side of the positive electrode current collecting tab projects toward the first positive electrode insulating reinforcing member side,
    An end portion side of the first negative electrode insulation reinforcing member on the side of the negative electrode current collecting tab projects toward the second negative electrode insulation reinforcing member side,
    The battery according to claim 6, wherein an end portion side of the second negative electrode insulation reinforcing member on the side of the negative electrode current collecting tab projects toward the first negative electrode insulation reinforcing member side.
  8.  前記第1の正極絶縁補強部材、前記第2の正極絶縁補強部材、前記第1の負極絶縁補強部材及び前記第2の負極絶縁補強部材は、樹脂であり、
     前記第1の外装部及び前記第2の外装部の前記正極端子から前記正極集電タブの間の内面側は、前記第1の正極絶縁補強部材及び前記第2の正極絶縁補強部材で覆われ、
     前記第1の外装部及び前記第2の外装部の前記負極端子から前記負極集電タブの間の内面側は、前記第1の負極絶縁補強部材及び前記第2の負極絶縁補強部材で覆われている請求項6又は7に記載の電池。
    The first positive electrode insulating reinforcing member, the second positive electrode insulating reinforcing member, the first negative electrode insulating reinforcing member, and the second negative electrode insulating reinforcing member are resin,
    Inner surface sides of the first exterior part and the second exterior part between the positive electrode terminal and the positive electrode current collecting tab are covered with the first positive electrode insulation reinforcing member and the second positive electrode insulation reinforcing member. ,
    Inner surface sides of the first exterior portion and the second exterior portion between the negative electrode terminal and the negative electrode current collecting tab are covered with the first negative electrode insulation reinforcing member and the second negative electrode insulation reinforcing member. The battery according to claim 6 or 7, wherein.
  9.  前記第1の正極絶縁補強部材及び前記第2の正極絶縁補強部材は嵌合し、
     前記第1の負極絶縁補強部材及び前記第2の負極絶縁補強部材は嵌合している請求項6ないし8のいずれか1項に記載の電池。
    The first positive electrode insulating reinforcing member and the second positive electrode insulating reinforcing member are fitted to each other,
    The battery according to any one of claims 6 to 8, wherein the first negative electrode insulating reinforcing member and the second negative electrode insulating reinforcing member are fitted together.
  10.  前記正極集電タブの幅は、前記電極群の幅のよりも狭く、
     前記負極集電タブの幅は、前記電極群の幅のよりも狭い請求項1ないし9のいずれか1項に記載の電池。
    The width of the positive electrode current collecting tab is narrower than the width of the electrode group,
    The battery according to any one of claims 1 to 9, wherein a width of the negative electrode current collecting tab is narrower than a width of the electrode group.
  11.  前記正極集電タブは、両端からそれぞれ5mm以上切り欠けられていて、
     前記負極集電タブは、両端からそれぞれ5mm以上切り欠けられている請求項1ないし10のいずれか1項に記載の電池。
    The positive electrode current collecting tab is cut out from both ends by 5 mm or more,
    The battery according to any one of claims 1 to 10, wherein the negative electrode current collecting tab is cut out from both ends by 5 mm or more.
  12.  前記第1の外装部及び前記第2の外装部は、ステンレス、アルミラミネート及びアルミニウムからなる群より選ばれるいずれかからなり、
     前記第1の外装部及び前記第2の外装部の板厚は、0.02mm以上0.3mm以下である請求項1ないし11のいずれか1項に記載の電池。
    The first exterior portion and the second exterior portion are made of any one selected from the group consisting of stainless steel, aluminum laminate and aluminum,
    The battery according to any one of claims 1 to 11, wherein a plate thickness of the first exterior portion and the second exterior portion is 0.02 mm or more and 0.3 mm or less.
  13.  前記正極集電タブは、前記正極絶縁補強保持部と対向せず、
     前記負極集電タブは、前記負極絶縁補強保持部と対向しない請求項1ないし12のいずれか1項に記載の電池。
    The positive electrode current collecting tab does not face the positive electrode insulating reinforcement holding portion,
    The battery according to claim 1, wherein the negative electrode current collecting tab does not face the negative electrode insulating reinforcement holding portion.
  14.  前記正極端子又は前記負極端子に対して前記第1の外装部から前記第2の外装部に向かう方向に10Nの負荷を加えた際の前記電池の変位が1.0mm未満である請求項1ないし13のいずれか1項に記載の電池。 The displacement of the battery is less than 1.0 mm when a load of 10 N is applied to the positive electrode terminal or the negative electrode terminal in the direction from the first exterior portion toward the second exterior portion. 13. The battery according to any one of 13 above.
  15.  前記電極群は1個であり、
     前記電池の厚さは、5mm以上30mm以下である請求項1ないし14のいずれか1項に記載の電池。
    The electrode group is one,
    The battery according to claim 1, wherein the battery has a thickness of 5 mm or more and 30 mm or less.
  16.  請求項1ないし15に記載の電池を1つ以上含む電池パック。 A battery pack containing one or more batteries according to claims 1 to 15.
  17.  請求項1ないし15に記載の電池又は請求項16に記載の電池パックを含む蓄電装置。 An electric storage device including the battery according to claim 1 or the battery pack according to claim 16.
  18.  請求項1ないし15に記載の電池又は請求項16に記載の電池パックを含む車両。 A vehicle including the battery according to claim 1 to 15 or the battery pack according to claim 16.
  19.  請求項1ないし15に記載の電池又は請求項16に記載の電池パックを含む飛翔体。
     


     
    A flying vehicle including the battery according to claim 1 or the battery pack according to claim 16.



PCT/JP2018/046374 2018-12-17 2018-12-17 Battery, battery pack, electrical storage device, vehicle, and flying object WO2020129128A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020560658A JP7155290B2 (en) 2018-12-17 2018-12-17 Batteries, battery packs, power storage devices, vehicles and flying objects
CN201880100276.3A CN113169368B (en) 2018-12-17 2018-12-17 Battery, battery pack, power storage device, vehicle, and flying body
PCT/JP2018/046374 WO2020129128A1 (en) 2018-12-17 2018-12-17 Battery, battery pack, electrical storage device, vehicle, and flying object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/046374 WO2020129128A1 (en) 2018-12-17 2018-12-17 Battery, battery pack, electrical storage device, vehicle, and flying object

Publications (1)

Publication Number Publication Date
WO2020129128A1 true WO2020129128A1 (en) 2020-06-25

Family

ID=71102220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046374 WO2020129128A1 (en) 2018-12-17 2018-12-17 Battery, battery pack, electrical storage device, vehicle, and flying object

Country Status (3)

Country Link
JP (1) JP7155290B2 (en)
CN (1) CN113169368B (en)
WO (1) WO2020129128A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4231420A3 (en) * 2022-01-24 2023-09-27 Samsung SDI Co., Ltd. Secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195475A (en) * 1998-12-25 2000-07-14 Mitsubishi Chemicals Corp Secondary battery
JP2015115210A (en) * 2013-12-12 2015-06-22 日立マクセル株式会社 Nonaqueous electrolyte secondary battery
WO2016204147A1 (en) * 2015-06-15 2016-12-22 株式会社 東芝 Battery and battery pack

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100947977B1 (en) * 2006-03-28 2010-03-15 삼성에스디아이 주식회사 Secondary Battery
JP5618515B2 (en) * 2009-09-25 2014-11-05 株式会社東芝 battery
WO2014054733A1 (en) * 2012-10-03 2014-04-10 新神戸電機株式会社 Secondary battery
JP6837796B2 (en) * 2016-09-30 2021-03-03 三洋電機株式会社 Non-aqueous electrolyte secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195475A (en) * 1998-12-25 2000-07-14 Mitsubishi Chemicals Corp Secondary battery
JP2015115210A (en) * 2013-12-12 2015-06-22 日立マクセル株式会社 Nonaqueous electrolyte secondary battery
WO2016204147A1 (en) * 2015-06-15 2016-12-22 株式会社 東芝 Battery and battery pack

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4231420A3 (en) * 2022-01-24 2023-09-27 Samsung SDI Co., Ltd. Secondary battery

Also Published As

Publication number Publication date
CN113169368A (en) 2021-07-23
JPWO2020129128A1 (en) 2021-09-27
JP7155290B2 (en) 2022-10-18
CN113169368B (en) 2023-08-04

Similar Documents

Publication Publication Date Title
JP6794502B2 (en) Batteries and battery packs
JP4416770B2 (en) Assembled battery
US9673440B2 (en) Battery including current collector tabs
JP6972175B2 (en) Battery pack
JP7011043B2 (en) Batteries, battery packs, power storage devices, vehicles and flying objects
EP3709422B1 (en) Battery and battery pack
JP7011044B2 (en) Batteries, battery packs, power storage devices, vehicles and flying objects
JP7024109B2 (en) Batteries, battery packs, battery modules, power storage devices, vehicles and flying objects
WO2019186932A1 (en) Battery and battery pack
WO2020129128A1 (en) Battery, battery pack, electrical storage device, vehicle, and flying object
CN111801829A (en) Secondary battery, battery module, vehicle, and flying object
JP6382336B2 (en) Prismatic secondary battery
WO2019049377A1 (en) Battery and battery pack
WO2019187024A1 (en) Battery and battery pack
WO2019186868A1 (en) Battery and battery pack
JP2023135284A (en) Power storage element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943830

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020560658

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18943830

Country of ref document: EP

Kind code of ref document: A1