WO2020125526A1 - 自激抵消方法、装置和系统 - Google Patents

自激抵消方法、装置和系统 Download PDF

Info

Publication number
WO2020125526A1
WO2020125526A1 PCT/CN2019/124669 CN2019124669W WO2020125526A1 WO 2020125526 A1 WO2020125526 A1 WO 2020125526A1 CN 2019124669 W CN2019124669 W CN 2019124669W WO 2020125526 A1 WO2020125526 A1 WO 2020125526A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
self
excitation cancellation
excitation
converted
Prior art date
Application number
PCT/CN2019/124669
Other languages
English (en)
French (fr)
Inventor
张文
蒋颜辉
吕辉
Original Assignee
京信通信系统(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信通信系统(中国)有限公司 filed Critical 京信通信系统(中国)有限公司
Publication of WO2020125526A1 publication Critical patent/WO2020125526A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • H04B1/1036Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal with automatic suppression of narrow band noise or interference, e.g. by using tuneable notch filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03159Arrangements for removing intersymbol interference operating in the frequency domain

Definitions

  • This application relates to the field of wireless communication technology, and in particular, to a self-excitation cancellation method, device, and system.
  • the repeater has both a receiving antenna and a transmitting antenna, after the signal is transmitted from the transmitting antenna of the repeater, due to the coupling effect, some signals will be reflected back to the receiving antenna after being reflected and delayed by the environment. This signal is called Coupling echo signals. If the isolation of the antenna is less than the gain of the repeater, the echo signal will be amplified to form positive feedback, which will cause oscillation, resulting in system instability and the self-excited problem of the repeater.
  • the traditional technology reflects the characteristics of the coupled channel through channel estimation.
  • the adaptive filter estimates the echo signal, cancels it with the real echo signal, and updates the coefficients of the adaptive filter in real time to ensure that the output signal is optimal. Using this method is called self-excitation cancellation.
  • self-excitation cancellation In the process of implementation, the inventor found that the use of a self-excitation cancellation algorithm in the device will cause deterioration of signal quality.
  • an embodiment of the present application provides a self-excitation cancellation method, including:
  • the reference echo signal self-excitation cancellation is performed on the down-converted signal to obtain a first signal; the down-converted signal includes an echo signal; and the first signal includes a spectrum regeneration signal.
  • Spurious filtering is performed on the first signal to eliminate the spectrally regenerated signal to obtain a second signal for conversion into an up-converted signal.
  • the step of performing spurious filtering on the first signal to eliminate the spectrally regenerated signal and obtaining the second signal for conversion into an up-converted signal includes:
  • Peak cancellation processing is performed on the first signal to obtain a peak cancellation signal.
  • the step of performing peak cancellation on the first signal to obtain a peak cancellation signal includes:
  • the first signal When the amplitude of the first signal is greater than a preset threshold, the first signal is peak-removed.
  • the method further includes the steps of:
  • the reference echo signal is updated.
  • the step of frequency shifting the second signal to obtain the reference signal includes:
  • the second signal is frequency shifted to obtain a frequency offset signal.
  • the step of updating the reference echo signal includes:
  • the filter coefficients are updated.
  • the reference echo signal is updated.
  • the step of performing self-excitation cancellation on the down-converted signal according to the reference echo signal to obtain the first signal includes:
  • the echo signal is fitted, and the echo signal is cancelled to obtain the first signal.
  • an embodiment of the present application further provides a self-excitation cancellation device, including:
  • the self-excitation cancellation module is used to perform self-excitation cancellation on the down-converted signal according to the reference echo signal to obtain a first signal;
  • the down-converted signal includes an echo signal;
  • the first signal includes a spectrum regeneration signal;
  • the spurious filtering module is used to perform spurious filtering on the first signal, eliminate the spectrum regeneration signal, and obtain a second signal for conversion into an up-converted signal.
  • a self-excitation cancellation system including: a first antenna, a second antenna, and a processor that executes the self-excitation cancellation method as described above.
  • the processor is connected to the first antenna and the second antenna respectively; the first antenna is used to obtain the input signal; the input signal is used to generate the down-converted signal; the second antenna is used to send the output signal; the output signal is generated based on the up-converted signal.
  • a computer storage medium is provided on which a computer program is stored, and when the program is executed by a processor, the self-excitation cancellation method as described above is implemented.
  • the reference echo signal perform self-excitation cancellation on the down-converted signal including the echo signal to obtain the first signal including the spectrum regenerated signal; perform spurious filtering on the first signal to eliminate the spectrum regenerated signal and obtain the converted signal The second signal of the frequency conversion signal.
  • the spectrum regeneration caused by the self-excitation cancellation is filtered out. Based on this, after the system input signal is processed by self-excitation cancellation, the degree of deterioration of the signal quality can be reduced to achieve the objective of optimizing the index of the self-excitation cancellation algorithm.
  • While ensuring the self-excitation cancellation function it can also effectively improve the adjacent channel power suppression ratio index of the output signal, optimize the signal index of the self-excitation cancellation algorithm system, can effectively improve the signal coverage quality of the device, increase the upload and download rate, and improve user experience.
  • FIG. 1 is a first schematic flowchart of a self-excitation cancellation method in an embodiment
  • FIG. 2 is a second schematic flowchart of a self-excitation cancellation method in an embodiment
  • FIG. 3 is a third schematic flowchart of a self-excitation cancellation method in an embodiment
  • FIG. 5 is a fourth schematic flowchart of a self-excitation cancellation method in an embodiment
  • FIG. 6 is a fifth schematic flowchart of a self-excitation cancellation method in an embodiment
  • FIG. 7 is a sixth schematic flowchart of a self-excitation cancellation method in an embodiment
  • FIG. 8 is a schematic structural diagram of a self-excitation cancellation device in an embodiment
  • FIG. 9 is a first schematic structural diagram of a self-excitation cancellation system in an embodiment
  • FIG. 10 is a second schematic flowchart of a self-excitation cancellation system in an embodiment.
  • the methods to solve the problem of self-excited wireless repeater equipment include:
  • An antenna with better directivity is used to improve the directivity of the donor antenna. It is also possible to control the direction of the donor antenna through digital beam forming (DBF, Digital Beam Forming) technology to ensure zero reception in the echo direction. This method requires more antenna elements to be combined into an array antenna, and uses a more complicated DOA (Direction Of Arrival) estimation algorithm.
  • DBF Digital Beam Forming
  • the self-excitation cancellation algorithm has become a basic device for high-performance digital repeaters.
  • the traditional self-excitation cancellation algorithm rarely involves the improvement of the signal quality after self-excitation cancellation. Therefore, in a system with self-excitation cancellation, how to achieve self-excitation cancellation through a specific algorithm while protecting and improving the signal quality to the greatest extent is a problem to be solved.
  • the embodiments of the present application provide a method that can target the self-excitation cancellation system.
  • the signal quality after the self-excitation cancellation is achieved optimization. Not only can the quality of the signal be ensured without enabling the self-excitation cancellation; it can also alleviate the deterioration of the quality of the original signal in the case of the self-excitation cancellation.
  • the embodiments of the present application may be implemented by a repeater device (device for short) or a processor located in the repeater device. Based on the embodiments of the present application, the location and opening of equipment such as repeaters can be greatly simplified.
  • FIG. 1 is a first schematic flowchart of a self-excitation cancellation method in an embodiment, including:
  • Step S110 Perform self-excitation cancellation on the down-converted signal according to the reference echo signal to obtain a first signal; the down-converted signal includes an echo signal; and the first signal includes a spectrum regeneration signal.
  • the device or processor obtains the down-converted signal, and performs self-excitation cancellation on the down-converted signal according to the reference echo signal stored by the device or processor to cancel the echo signal in the down-converted signal and obtain The first signal of the spectrum regenerated signal.
  • the reference echo signal can be used to cancel the echo signal; specifically, the reference echo signal can be obtained by estimating the echo signal that the device can generate from the output signal.
  • the echo signal is generated by the output signal sent by the device, and can be received by the device through the echo channel. Because the device needs to send different output signals, the echo signal will change accordingly. Therefore, the device needs to update the reference echo signal in real time according to the output signal sent to achieve accurate self-excitation cancellation to ensure the optimal output signal.
  • the down-converted signal can be obtained by processing the input signal through the down-conversion circuit; the input signal can be obtained by the first antenna of the repeater device.
  • the input signal may include a signal sent by a communication device such as a base station, and may also include an echo signal. It should be noted that the down-converted signal may or may not include the echo signal; when the down-converted signal does not include the echo signal, the reference echo signal in the self-excitation cancellation will not match the corresponding signal.
  • the first signal can be obtained from the down-converted signal through self-excitation cancellation processing, and can be used to convert into a second signal, an up-converted signal or an output signal. It should be noted that the first signal is generated by self-excitation cancellation; in the process of self-excitation cancellation, it will cause spectrum regeneration, and a spectrum regeneration signal will be generated in the first signal.
  • Step S120 performing spurious filtering on the first signal to eliminate the spectrum regenerated signal to obtain a second signal for conversion into an up-converted signal.
  • the device or the processor performs spurious filtering on the first signal containing the spectrum regeneration signal to eliminate the spectrum regeneration signal, so that the second signal can be obtained.
  • the second signal can be used to convert to an up-converted signal; the up-converted signal can be used to convert to an output signal, and the second antenna of the device sends the output signal to an external communication device to realize the function of a repeater.
  • the first signal can be spurious filtered to filter out the spectrum regeneration signal in the first signal to alleviate the deterioration of the original signal quality and effectively improve the signal adjacent channel Power rejection ratio index.
  • the adjacent channel power suppression ratio index of the output signal is effectively improved to optimize the self-excitation cancellation algorithm system Signal indicator.
  • FIG. 2 is a second schematic flow chart of the self-excitation cancellation method in an embodiment.
  • the spurious filtering is performed on the first signal to eliminate the spectrum regeneration signal, which is used for conversion into
  • the steps of the second signal of the up-converted signal include:
  • Step S122 Perform peak removal processing on the first signal to obtain a peak removal signal.
  • Step S126 performing spurious filtering on the peak cancellation signal to obtain a second signal.
  • the device or processor may first perform peak elimination processing on the first signal to obtain a peak elimination signal; and then perform spurious filtering on the peak elimination signal to filter out the peak elimination signal.
  • the signal in the spectrum is regenerated to obtain the second signal.
  • Peak elimination process can be used to perform amplitude control on the first signal to ensure the maximum peak-to-average ratio of the signal.
  • Peak removal processing may include peak windowing, noise shaping, and pulse injection, etc., without limitation.
  • the peak-removed signal obtained by peak-removal processing will still include the spectrum regenerated signal, and the spurious filtering of the peak-removed signal can eliminate the spectrum regenerated signal to obtain the second signal.
  • peak cancellation can be used to prevent the output signal of the device from being coupled to the input signal through the echo channel, causing the peak signal of the input signal to be too large and affecting the performance of the self-excitation cancellation link of the baseband.
  • the embodiment of the present application performs peak elimination processing on the signal after self-excitation cancellation, combined with the post-stage spurious filter processing, in the case of peak elimination, it can effectively prevent spectrum regeneration, and can also ensure the maximum peak value of the echo signal after peak elimination
  • the stability of the self-excitation cancellation module is improved, and the working robustness of the self-excitation cancellation system and the independence of the equipment are effectively improved.
  • FIG. 3 is a third schematic flow chart of the self-excitation cancellation method in an embodiment.
  • the step of performing peak removal processing on the first signal to obtain a peak removal signal includes:
  • Step S124 When the amplitude of the first signal is greater than a preset threshold, perform peak removal processing on the first signal.
  • the device or the processor may first perform peak detection on the first signal, and if the amplitude of the first signal is greater than a preset threshold, then perform peak reduction processing on the first signal; if the amplitude of the first signal is less than the preset threshold, There is no need to perform peak removal processing on the first signal.
  • the preset threshold can be used to detect the amplitude of the first signal; specifically, the preset threshold can be set according to the actual operating conditions and environment of the device, such as 8dB, 9dB, or 10dB, etc., without limitation.
  • the embodiment of the present application detects the peak state of the first signal and decides whether to perform hard peak elimination processing to ensure the maximum peak-to-average ratio of the signal. It should be noted that different peak-elimination methods can also be used to ensure the maximum peak-to-average ratio of the signal; different peak-elimination methods consume different resources and have different degrees of ease of implementation.
  • FIG. 4 is a schematic diagram of peak cancellation of the self-excitation cancellation method in an embodiment.
  • the peak cancellation circuit detects the amplitude of the signal after the self-excitation cancellation, And confirm whether to eliminate the peak according to the need; the time domain description after the peak removal operation is shown in Figure 4(b).
  • the preset threshold of the detection amplitude can be determined according to the average power of the input signal and the peak-to-average ratio of the signal to be achieved, for example: the peak-to-average ratio of the input signal is 9dB, if the peak cancellation needs to be 8dB, then you need Eliminate signals with a peak-to-average ratio greater than 8dB.
  • FIG. 5 is a fourth schematic flowchart of the self-excitation cancellation method in an embodiment.
  • the spurious filtering is performed on the first signal to eliminate the spectrum regenerated signal, which is used for conversion into After the step of upconverting the second signal of the signal, it also includes the steps of:
  • Step S130 Perform frequency offset on the second signal to obtain a reference signal.
  • Step S140 Update the reference echo signal based on the reference signal.
  • the second signal obtained by the device or processor performing spurious filtering can be used to convert into an up-converted signal; the device can further convert the up-converted signal into an output signal and send the output signal through the second antenna.
  • a reference signal can be obtained based on the second signal; wherein the reference signal is used to update the reference echo signal, and can be obtained by performing frequency offset processing on the second signal.
  • the reference echo signal can be updated in real time based on the second signal; specifically, the second signal can be frequency shifted to obtain the reference signal; and the reference echo signal can be updated based on the reference signal.
  • the feedback echo signal performance can be ensured, and the self-excitation cancellation effect can be improved.
  • the frequency offset can be determined according to the requirements of the operation index of the device; specifically, the adjustment range of the frequency offset can be an adjustment in the Hertz level; the frequency offset can be realized by a frequency offset control circuit, such as a digital frequency generator.
  • a frequency control process is added to perform a frequency offset to realize a changed function, reduce the correlation between the forward signal and the reference echo signal, and improve Signal demodulation performance under self-excitation cancellation.
  • the forward signal includes a useful signal coupled by the donor antenna of the device. While ensuring the stability of the self-excitation cancellation system, through the processing of the frequency of the second signal, the reference echo signal is effectively improved to the real echo signal, so that the reference echo signal is more real, and the equipment or processing is improved.
  • the offset performance of the device, and through the Hertz level calibration design of frequency offset can effectively guarantee the frequency offset index of the system.
  • FIG. 6 is a fifth schematic flowchart of the self-excitation cancellation method in an embodiment.
  • the step of frequency shifting the second signal to obtain the reference signal includes:
  • Step S132 Perform frequency offset on the second signal according to the signal system to obtain a frequency offset signal.
  • Step S134 Perform delay processing on the frequency offset signal to obtain a reference signal.
  • the step of performing frequency offset by the device or processor may include: performing delay processing on the frequency offset signal to obtain a reference signal.
  • the frequency offset signal is obtained from the second signal after frequency offset processing.
  • the signal is processed for time delay to obtain a reference signal, which can ensure the performance of the feedback reference echo signal and improve the self-excitation cancellation effect.
  • the size of the frequency offset can be determined according to the 3GPP (3rd Generation Partnership Project, Third Generation Partnership Project) index requirements of different standards and implemented in the self-excitation cancellation system; specifically, the frequency offset can be passed through a digital frequency generator, etc. Frequency deviation control circuit to achieve.
  • the step of updating the reference echo signal includes:
  • step S142 the filter coefficient is updated according to the reference signal.
  • step S144 the reference echo signal is updated based on the filter coefficient.
  • the step of updating the reference echo signal by the device or processor may include: updating the filter coefficient based on the reference signal; and updating the reference echo signal of the self-excitation cancellation link based on the filter coefficient.
  • the self-excitation cancellation link of the device can include an adaptive filter; by updating the filter coefficients of the adaptive filter, the reference echo signal can be updated in real time to achieve tracking, fitting and matching of the echo signal Dispel.
  • the filter coefficient can be automatically updated according to the change of the state of the echo channel.
  • FIG. 7 is a sixth schematic flowchart of the self-excitation cancellation method in an embodiment.
  • the down-converted signal is self-excitation canceled to obtain the first signal
  • the steps include:
  • Step S112 Fit the echo signal according to the reference echo signal, and cancel the echo signal to obtain the first signal.
  • the step of the device or processor performing self-excitation cancellation on the down-converted signal includes: based on the reference echo signal, fitting the echo signal in the down-converted signal; filtering out the fitted callback signal, Get the first signal and complete the self-excitation cancellation.
  • the device or processor can track, fit and cancel the echo signal through an adaptive filter.
  • the embodiment of the present application can ensure that the input signal of the system passes the self-excitation cancellation process after the self-excitation cancellation algorithm, and the signal quality is deteriorated to a lesser degree through the self-excitation cancellation process.
  • the specific related operations mainly include three kinds of processing optimization methods on the amplitude, frequency and filtering level.
  • the above processing optimization means can be realized by the baseband design of the device. Specifically, it may include: updating the real-time adaptive filter to track and fit the echo signal; detecting the peak state of the first signal and deciding whether to perform hard peak elimination processing to ensure the maximum peak-to-average ratio of the signal; adding noise Scatter filter processing improves the signal adjacent channel power suppression ratio; increase frequency offset processing to ensure the performance of the reference echo signal and improve the self-excitation cancellation effect. Based on this, the embodiments of the present application can effectively improve the signal coverage quality of the device, increase the upload and download rates, and improve the user experience.
  • steps in the flowcharts of FIGS. 1 to 7 are sequentially displayed in accordance with the arrows, the steps are not necessarily executed in the order indicated by the arrows. Unless clearly stated in this article, the execution of these steps is not strictly limited in order, and these steps may be executed in other orders. Moreover, at least some of the steps in FIGS. 1 to 7 may include multiple sub-steps or multiple stages. These sub-steps or stages are not necessarily executed at the same time, but may be executed at different times. These sub-steps or stages The execution order of is not necessarily performed sequentially, but may be executed in turn or alternately with at least a part of other steps or sub-steps or stages of other steps.
  • FIG. 8 is a schematic structural diagram of a self-excitation cancellation device in an embodiment, including:
  • the self-excitation cancellation module 110 is configured to perform self-excitation cancellation on the down-converted signal according to the reference echo signal to obtain a first signal; the down-converted signal includes an echo signal; the first signal includes a spectrum regeneration signal;
  • the spurious filtering module 120 is used to perform spurious filtering on the first signal to eliminate the spectrum regeneration signal and obtain a second signal for conversion into an up-converted signal.
  • the self-excitation cancellation module includes:
  • the peak elimination processing unit is configured to perform peak elimination processing on the first signal to obtain a peak elimination signal.
  • the spurious filtering unit is used to perform spurious filtering on the peak-elimination signal to obtain the second signal.
  • the peak elimination processing unit includes:
  • the peak elimination detection unit is configured to perform peak elimination processing on the first signal when the amplitude of the first signal is greater than a preset threshold.
  • it also includes:
  • the frequency offset module is used to perform frequency offset on the second signal to obtain a reference signal.
  • the signal update module is used to update the reference echo signal based on the reference signal.
  • the frequency offset module includes:
  • the frequency shift unit is used to shift the frequency of the second signal according to the signal system to obtain a frequency shift signal.
  • the delay processing unit is used for delay processing the frequency offset signal to obtain a reference signal.
  • the signal update module includes:
  • the coefficient updating unit is used to update the filter coefficient according to the reference signal.
  • the signal updating unit is used to update the reference echo signal based on the filter coefficient.
  • the self-excitation cancellation module includes:
  • the signal cancellation unit is used to fit the echo signal according to the reference echo signal and cancel the echo signal to obtain the first signal.
  • each module in the above self-excitation cancellation device may be implemented in whole or in part by software, hardware, and a combination thereof.
  • the above modules may be embedded in the hardware form or independent of the processor in the computer device, or may be stored in the memory in the computer device in the form of software so that the processor can call and execute the operations corresponding to the above modules.
  • FIG. 9 is a first schematic structural diagram of a self-excitation cancellation system in an embodiment, including: a first antenna and a second antenna, And a processor that executes the self-excitation cancellation method as described above.
  • the processor is connected to the first antenna and the second antenna respectively; the first antenna is used to obtain an input signal; the input signal is used to generate a down-converted signal; the second antenna is used to send an output signal; the output signal is generated based on the up-converted signal .
  • the self-excitation cancellation system obtains the input signal through the first antenna and converts the input signal to obtain a down-converted signal; the down-converted signal is subjected to self-excitation cancellation processing by the processor to obtain an up-converted signal; and the up-converted signal is converted to obtain Output signal; the second antenna sends the output signal to an external communication device.
  • the first antenna can be used to acquire uplink signals and downlink signals; the second antenna can be used to transmit uplink signals and downlink signals.
  • the processor may be an FPGA (Field-Programmable Gate Array).
  • the reference echo signal self-excitation cancellation is performed on the down-converted signal to obtain a first signal; the down-converted signal includes an echo signal; and the first signal includes a spectrum regeneration signal.
  • Spurious filtering is performed on the first signal to eliminate the spectrally regenerated signal to obtain a second signal for conversion into an up-converted signal.
  • the processor when the processor performs spurious filtering on the first signal to eliminate the spectrum regeneration signal and obtain the second signal for conversion into an up-converted signal, the following steps are also implemented:
  • Peak cancellation processing is performed on the first signal to obtain a peak cancellation signal.
  • the processor performs peak removal processing on the first signal to obtain the peak removal signal, and further implements the following steps:
  • the first signal When the amplitude of the first signal is greater than a preset threshold, the first signal is peak-removed.
  • the processor performs a step of performing spurious filtering on the first signal, eliminating the spectrum regeneration signal, and obtaining a second signal for conversion into an up-converted signal, the following steps are also implemented:
  • the reference echo signal is updated.
  • the processor performs the frequency shift on the second signal to obtain the reference signal, and implements the following steps:
  • the second signal is frequency shifted to obtain a frequency offset signal.
  • the processor implements the following steps when updating the reference echo signal based on the reference signal:
  • the filter coefficients are updated.
  • the reference echo signal is updated.
  • the processor performs the self-excitation cancellation of the down-converted signal according to the reference echo signal to obtain the first signal, and implements the following steps:
  • the echo signal is fitted, and the echo signal is cancelled to obtain the first signal.
  • FIG. 10 is a second schematic flow chart of the self-excitation cancellation system in an embodiment.
  • the processor may include a down-conversion and AD conversion (analog-to-digital conversion) module, DA conversion (Digital-to-analog conversion) and up-conversion module and self-excitation cancellation module.
  • AD conversion analog-to-digital conversion
  • DA conversion Digital-to-analog conversion
  • up-conversion module and self-excitation cancellation module.
  • an amplitude control module for peak removal processing
  • a frequency offset control module (for frequency offset) is added to realize the change function, reduce the correlation between the forward signal and the reference echo signal, and improve the self-excitation cancellation situation.
  • Signal demodulation performance Before the DA conversion and up-conversion modules, a spurious filter (used for spurious filtering) is added to filter out spectrum regeneration due to self-excitation cancellation, effectively improving the adjacent channel power suppression ratio index.
  • the system can realize the following steps: (1), real-time adaptive filter update, tracking and fitting of the echo signal; (2), detection of signal peak state, decide whether to perform hard peak removal operation, to ensure the maximum peak average signal Ratio; (3), after completing the detection of step (1) and step (2), increase the spurious filtering operation to improve the signal adjacent channel power suppression ratio; (4), increase the frequency offset operation to ensure that the feedback reference signal can be To improve the self-excitation offset effect.
  • a computer storage medium on which a computer program is stored, and when the program is executed by a processor, the following steps are realized:
  • the reference echo signal self-excitation cancellation is performed on the down-converted signal to obtain a first signal; the down-converted signal includes an echo signal; and the first signal includes a spectrum regeneration signal.
  • Spurious filtering is performed on the first signal to eliminate the spectrally regenerated signal to obtain a second signal for conversion into an up-converted signal.
  • the computer program is executed by the processor to perform spurious filtering on the first signal to eliminate the spectrally regenerated signal and obtain the second signal for conversion into an up-converted signal, the following steps are also implemented:
  • Peak cancellation processing is performed on the first signal to obtain a peak cancellation signal.
  • the computer program is executed by the processor to perform peak removal processing on the first signal, and if the peak removal signal is obtained, the following steps are also implemented:
  • the first signal When the amplitude of the first signal is greater than a preset threshold, the first signal is peak-removed.
  • the computer program is executed by the processor to perform spurious filtering on the first signal to eliminate the spectrally regenerated signal and obtain the second signal for conversion into an up-converted signal, and then implement the following steps:
  • the reference echo signal is updated.
  • the computer program is executed by the processor to frequency shift the second signal to obtain the reference signal, and further implements the following steps:
  • the second signal is frequency shifted to obtain a frequency offset signal.
  • the filter coefficients are updated.
  • the reference echo signal is updated.
  • the computer program is executed by the processor to perform self-excitation cancellation on the down-converted signal according to the reference echo signal, and when the first signal is obtained, the following steps are also implemented:
  • the echo signal is fitted, and the echo signal is cancelled to obtain the first signal.
  • Non-volatile memory may include read-only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory can include random access memory (RAM) or external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDRSDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous chain (Synchlink) DRAM
  • SLDRAM synchronous chain (Synchlink) DRAM
  • Rambus direct RAM
  • DRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

本申请涉及一种自激抵消方法、装置和系统。其中,自激抵消方法包括:根据参考回波信号,对包括回波信号的下变频信号进行自激抵消,得到包括频谱再生信号的第一信号;对第一信号进行杂散滤波,消除频谱再生信号,得到用于转换成上变频信号的第二信号。通过在自激抵消链路之后、在上变频链路之前,增加滤波操作,滤除因自激抵消导致的频谱再生。基于此,可在系统输入信号通过自激抵消处理后,降低信号质量恶化的程度,达到自激抵消算法的指标优化的目的。在保证自激抵消功能的同时,还可有效提升输出信号的邻道功率抑制比指标,优化自激抵消算法系统的信号指标,能够有效提高设备的信号覆盖质量,提升上载、下载的速率,提升用户体验。

Description

自激抵消方法、装置和系统 技术领域
本申请涉及无线通信技术领域,特别是涉及一种自激抵消方法、装置和系统。
背景技术
由于直放站既有接收天线又有发射天线,当信号从直放站的发射天线发射以后,由于耦合的作用,将有部分信号通过环境反射、延迟后,反馈回接收天线,该信号称为耦合回波信号。如果天线隔离度小于直放站增益,回波信号会被放大,形成正反馈,从而产生振荡,导致系统不稳定,形成直放站的自激问题。
传统技术通过信道估计反映耦合信道的特征,自适应滤波器估计出回波信号,与真实回波信号对消,并对自适应滤波器的系数进行实时地更新,确保输出信号达到最优。采用这种方法被称作自激抵消。在实现过程中,发明人发现:设备采用自激抵消算法会造成信号质量恶化。
发明内容
基于此,有必要针对设备采用自激抵消算法会造成信号质量恶化的问题,提供一种自激抵消方法、装置和系统。
为了实现上述目的,一方面,本申请实施例提供了一种自激抵消方法,包括:
根据参考回波信号,对下变频信号进行自激抵消,得到第一信号;下变频信号包括回波信号;第一信号包括频谱再生信号。
对第一信号进行杂散滤波,消除频谱再生信号,得到用于转换成上变频信号的第二信号。
在其中一个实施例中,对第一信号进行杂散滤波,消除频谱再生信号,得 到用于转换成上变频信号的第二信号的步骤包括:
对第一信号进行消峰处理,得到消峰信号。
对消峰信号进行杂散滤波,得到第二信号。
在其中一个实施例中,对第一信号进行消峰处理,得到消峰信号的步骤包括:
在第一信号的幅度大于预设门限时,对第一信号进行消峰处理。
在其中一个实施例中,对第一信号进行杂散滤波,消除频谱再生信号,得到用于转换成上变频信号的第二信号的步骤之后,还包括步骤:
对第二信号进行频率偏移,得到参考信号。
基于参考信号,更新参考回波信号。
在其中一个实施例中,对第二信号进行频率偏移,得到参考信号的步骤包括:
根据信号制式,对第二信号进行频率偏移,得到频偏信号。
对频偏信号进行时延处理,得到参考信号。
在其中一个实施例中,基于参考信号,更新参考回波信号的步骤包括:
根据参考信号,更新滤波器系数。
基于滤波器系数,更新参考回波信号。
在其中一个实施例中,根据参考回波信号,对下变频信号进行自激抵消,得到第一信号的步骤包括:
根据参考回波信号,拟合回波信号,并对回波信号进行对消,得到第一信号。
另一方面,本申请实施例还提供了一种自激抵消装置,包括:
自激抵消模块,用于根据参考回波信号,对下变频信号进行自激抵消,得到第一信号;下变频信号包括回波信号;第一信号包括频谱再生信号;
杂散滤波模块,用于对第一信号进行杂散滤波,消除频谱再生信号,得到用于转换成上变频信号的第二信号。
在其中一个实施例中,提供了一种自激抵消系统,包括:第一天线、第二 天线,以及执行如上述的自激抵消方法的处理器。
处理器分别连接第一天线和第二天线;第一天线用于获取输入信号;输入信号用于生成下变频信号;第二天线用于发送输出信号;输出信号基于上变频信号生成。
在其中一个实施例中,提供了一种计算机存储介质,其上存储有计算机程序,该程序被处理器执行时实现如上述的自激抵消方法。
上述技术方案中的一个技术方案具有如下优点和有益效果:
根据参考回波信号,对包括回波信号的下变频信号进行自激抵消,得到包括频谱再生信号的第一信号;对第一信号进行杂散滤波,消除频谱再生信号,得到用于转换成上变频信号的第二信号。通过在自激抵消链路之后、在上变频链路之前,增加滤波操作,滤除因自激抵消导致的频谱再生。基于此,可在系统输入信号通过自激抵消处理后,降低信号质量恶化的程度,达到自激抵消算法的指标优化的目的。在保证自激抵消功能的同时,还可有效提升输出信号的邻道功率抑制比指标,优化自激抵消算法系统的信号指标,能够有效提高设备的信号覆盖质量,提升上载、下载的速率,提升用户体验。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:
图1为一个实施例中自激抵消方法的第一示意性流程图;
图2为一个实施例中自激抵消方法的第二示意性流程图;
图3为一个实施例中自激抵消方法的第三示意性流程图;
图4为一个实施例中自激抵消方法的消峰示意图;
图5为一个实施例中自激抵消方法的第四示意性流程图;
图6为一个实施例中自激抵消方法的第五示意性流程图;
图7为一个实施例中自激抵消方法的第六示意性流程图;
图8为一个实施例中自激抵消装置的结构示意图;
图9为一个实施例中自激抵消系统的第一示意性结构图;
图10为一个实施例中自激抵消系统的第二示意性流程图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的首选实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容更加透彻全面。
需要说明的是,当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件并与之结合为一体,或者可能同时存在居中元件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
目前,解决无线直放站设备自激问题的方法包括:
1、增加直放站的施主天线和转发天线的距离,增加收发天线之间的物理隔离度,精心选择站址和调整收发天线朝向。但是收发天线距离拉远常常伴随着场地费和人工费的升高。
2、采用方向性较好的天线,提高施主天线的方向性。也可以通过数字波束形成(DBF,Digital Beam Forming)技术,对施主天线进行方向控制,确保回波方向上的零接收。这种方法要求较多的天线单元组合成阵列天线,采用较复杂的波达方向(DOA,Direction Of Arrival)估计算法。
3、采用自激抵消算法。自激抵消算法已经成为高性能数字直放站的一个基本装置。但传统的自激抵消算法极少涉及对自激抵消后的信号的质量改善。因此,如何在带有自激抵消的系统中,通过特定的算法实现自激抵消的同时,最大程度地保护并提升信号的质量,是有待解决的问题。
为此,本申请实施例提供了一种能够针对自激抵消系统的方法,在自激抵 消算法外围,通过在幅度、频率和滤波等方面对信号进行处理,实现对自激抵消后信号质量的优化。不仅能够在不开启自激抵消的情况下,保证信号的质量;还能够针对自激抵消的情况,缓解对原始信号的质量恶化。本申请实施例可由直放站设备(简称设备)或位于直放站设备内的处理器来实现。基于本申请的实施例,能够大大简化直放站等设备的选址和开站。
在一个实施例中,提供了一种自激抵消方法,如图1所示,图1为一个实施例中自激抵消方法的第一示意性流程图,包括:
步骤S110,根据参考回波信号,对下变频信号进行自激抵消,得到第一信号;下变频信号包括回波信号;第一信号包括频谱再生信号。
具体而言,设备或处理器获取到下变频信号,根据设备或处理器存储的参考回波信号,对下变频信号进行自激抵消,以对消下变频信号中的回波信号,并得到包括频谱再生信号的第一信号。
需要说明的是,参考回波信号可用于对消回波信号;具体地,参考回波信号可为设备对输出信号可生成的回波信号进行估计得到。其中,回波信号由设备发送的输出信号生成,可通过回波信道被设备接收。由于设备需要发送不同的输出信号,回波信号会随之改变,因此,设备需要根据发送出去的输出信号,实时更新参考回波信号,实现准确地自激抵消,确保输出信号最优。
下变频信号可由输入信号经下变频电路处理后得到;输入信号可由直放站设备的第一天线获得。具体地,输入信号可包括基站等通信设备发送的信号,还可包括回波信号。应该注意的是,下变频信号可包括回波信号,也可不包括回波信号;在下变频信号不包括回波信号时,则自激抵消中参考回波信号不会匹配到对应的信号。
第一信号可由下变频信号经自激抵消处理得到,可用于转换成第二信号、上变频信号或输出信号。应该注意的是,第一信号是由自激抵消生成;在自激抵消过程中,会导致频谱再生,在第一信号中产生频谱再生信号。
步骤S120,对第一信号进行杂散滤波,消除频谱再生信号,得到用于转换成上变频信号的第二信号。
具体而言,设备或处理器对包含了频谱再生信号的第一信号进行杂散滤波,以消除频谱再生信号,从而可以得到第二信号。第二信号可用于转换成上变频信号;上变频信号可用于转换成输出信号,并由设备的第二天线发送该输出信号给外部通信设备,实现直放站的功能。
需要说明的是,针对自激抵消导致的频谱再生,可通过对第一信号进行杂散滤波处理,滤除第一信号中的频谱再生信号,缓解对原始信号的质量恶化,有效提高信号邻道功率抑制比指标。
本申请实施例通过在自激抵消链路之后、上变频链路之前,增加滤波操作;在保证自激抵消功能的同时,有效提升输出信号的邻道功率抑制比指标,优化自激抵消算法系统的信号指标。
在一个实施例中,如图2所示,图2为一个实施例中自激抵消方法的第二示意性流程图,对第一信号进行杂散滤波,消除频谱再生信号,得到用于转换成上变频信号的第二信号的步骤包括:
步骤S122,对第一信号进行消峰处理,得到消峰信号。
步骤S126,对消峰信号进行杂散滤波,得到第二信号。
具体而言,设备或处理器在对第一信号进行杂散滤波之前,可先对第一信号进行消峰处理,得到消峰信号;再对消峰信号进行杂散滤波,滤除消峰信号中的频谱再生信号,得到第二信号。
需要说明的是,消峰处理可用于对第一信号进行幅度控制,保证信号最大峰均比。消峰处理可包括峰值加窗、噪声成形和脉冲注入等,在此不做限制。
经过消峰处理得到的消峰信号仍会包括频谱再生信号,对消峰信号进行杂散滤波,可消除频谱再生信号,得到第二信号。
对于自激抵消生成的第一信号,可通过消峰处理,防止设备的输出信号通过回波信道耦合到输入信号,造成输入信号的峰值信号过大,影响基带的自激抵消链路性能。
本申请实施例对自激抵消后的信号进行消峰处理,结合后级的杂散滤波处理,在消峰的情况下,可有效防止频谱再生,还能在消峰后保证回波信号最大 峰值的稳定性,改善自激抵消模块的性能稳定,有效提升自激抵消系统的工作鲁棒性和设备工作的独立性。
在一个实施例中,如图3所示,图3为一个实施例中自激抵消方法的第三示意性流程图,对第一信号进行消峰处理,得到消峰信号的步骤包括:
步骤S124,在第一信号的幅度大于预设门限时,对第一信号进行消峰处理。
具体而言,设备或处理器可先对第一信号进行峰值检测,若第一信号的幅度大于预设门限,则对第一信号进行消峰处理;若第一信号的幅度小于预设门限,则无需对第一信号进行消峰处理。
需要说明的是,预设门限可用于检测第一信号的幅度;具体地,预设门限可根据设备实际运行条件和环境进行设置,例如8dB、9dB或10dB等,在此不做限制。
采用直接判断第一信号的绝对幅度来确认是否进行消峰处理,简单易行。
本申请实施例检测第一信号的峰值状态,决定是否进行硬消峰处理,保证信号最大峰均比。应该注意的是,还可采用不同的消峰手段来保证信号最大峰均比;不同的消峰办法消耗的资源和实现的难易程度不同。
在一个示例中,如图4所示,图4为一个实施例中自激抵消方法的消峰示意图,如图4(a)所示,消峰电路检测自激抵消后的信号的幅度情况,并根据需要确认是否消峰;消峰操作后的时域描述如图4(b)所示。检测幅度的预设门限可根据输入信号的平均功率大小,和需要达到的信号的锋均比来确定的,比如:输入的信号的峰均比为9dB,如果需要消峰到8dB,那么就需要将大于8dB的峰均比的信号消除。
在一个实施例中,如图5所示,图5为一个实施例中自激抵消方法的第四示意性流程图,对第一信号进行杂散滤波,消除频谱再生信号,得到用于转换成上变频信号的第二信号的步骤之后,还包括步骤:
步骤S130,对第二信号进行频率偏移,得到参考信号。
步骤S140,基于参考信号,更新参考回波信号。
具体而言,设备或处理器进行杂散滤波得到的第二信号可用于转换成上变 频信号;设备可进一步将上变频信号转换成输出信号,通过第二天线发送输出信号。同时,可基于第二信号,得到参考信号;其中,参考信号用于更新参考回波信号,可由第二信号经频率偏移处理后得到。
需要说明的是,参考回波信号可基于第二信号进行实时更新;具体地,可对第二信号进行频率偏移,得到参考信号;基于参考信号来更新参考回波信号。通过增加频率偏移处理,可保证反馈的参考回波信号性能,提升自激抵消效果。
频率偏移可根据设备的运行指标要求来确定;具体地,频率偏移的调整范围可为赫兹级别的调整;频率偏移可由频偏控制电路来实现,例如数字频率发生器等。
本申请实施例在自激抵消链路后、反馈参考回波信号前,增加频率控制处理,用于执行频率偏移,实现变化的功能,降低前向信号和参考回波信号的相关性,提升自激抵消情况下的信号解调性能。其中,前向信号包括设备施主天线耦合的有用信号。在保证自激抵消系统的稳定性的同时,通过对第二信号的频率上的处理,有效提升参考回波信号对真实的回波信号的参考,使得参考回波信号更加真实,提升设备或处理器的抵消性能,并且,通过频率偏移的赫兹级别的定标设计,能够有效保证系统的频偏指标。
在一个实施例中,如图6所示,图6为一个实施例中自激抵消方法的第五示意性流程图,对第二信号进行频率偏移,得到参考信号的步骤包括:
步骤S132,根据信号制式,对第二信号进行频率偏移,得到频偏信号。
步骤S134,对频偏信号进行时延处理,得到参考信号。
具体而言,设备或处理器进行频率偏移的步骤可包括:对频偏信号进行时延处理,得到参考信号。其中,频偏信号由第二信号经频率偏移处理后得到。
需要说明的是,在频率偏移后,对信号进行时延处理,得到参考信号,可保证反馈的参考回波信号性能,提升自激抵消效果。
频率偏移的大小可根据不同制式的3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)指标要求来确定,在自激抵消系统中执行;具体地,频率偏移可通过数字频率发生器等频偏控制电路来实现。
在一个实施例中,如图6所示,基于参考信号,更新参考回波信号的步骤包括:
步骤S142,根据参考信号,更新滤波器系数。
步骤S144,基于滤波器系数,更新参考回波信号。
具体而言,设备或处理器进行参考回波信号更新的步骤可包括:基于参考信号,更新滤波器系数;基于滤波器系数,更新自激抵消链路的参考回波信号。
需要说明的是,设备的自激抵消链路可包括自适应滤波器;通过更新自适应滤波器的滤波器系数,可实时更新参考回波信号,实现对回波信号的跟踪、拟合和对消。
滤波器系数可根据回波信道的状态变化,自动更新。
在一个实施例中,如图7所示,图7为一个实施例中自激抵消方法的第六示意性流程图,根据参考回波信号,对下变频信号进行自激抵消,得到第一信号的步骤包括:
步骤S112,根据参考回波信号,拟合回波信号,并对回波信号进行对消,得到第一信号。
具体而言,设备或处理器对下变频信号进行自激抵消的步骤包括:基于参考回波信号,在下变频信号中,拟合出回波信号;将拟合得到的回拨信号滤除掉,得到第一信号,完成自激抵消。
需要说明的是,设备或处理器可通过自适应滤波器,对回波信号进行跟踪、拟合及对消。
本申请实施例能够在经过自激抵消算法后,通过特定的相关操作,保证系统的输入信号通过自激对消处理后,信号质量恶化的程度降低,实现自激抵消算法的指标优化的目的;其中,特定的相关操作主要包括幅度上、频率上和滤波层面上的三种处理优化手段。
上述处理优化手段可通过设备的基带设计来实现。具体地,可包括:实时自适应滤波器的更新,实现对回波信号的跟踪、拟合;检测第一信号的峰值状态,决定是否进行硬消峰处理,保证信号最大峰均比;增加杂散滤波处理,提 升信号邻道功率抑制比;增加频率偏移处理,保证参考回波信号的性能,提升自激抵消效果。基于此,本申请实施例能够有效提高设备的信号覆盖质量,提升上载、下载的速率,提升用户体验。
应该理解的是,虽然图1至7的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图1至7中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
在一个实施例中,还提供了一种自激抵消装置,如图8所示,图8为一个实施例中自激抵消装置的结构示意图,包括:
自激抵消模块110,用于根据参考回波信号,对下变频信号进行自激抵消,得到第一信号;下变频信号包括回波信号;第一信号包括频谱再生信号;
杂散滤波模块120,用于对第一信号进行杂散滤波,消除频谱再生信号,得到用于转换成上变频信号的第二信号。
在一个实施例中,自激抵消模块包括:
消峰处理单元,用于对第一信号进行消峰处理,得到消峰信号。
杂散滤波单元,用于对消峰信号进行杂散滤波,得到第二信号。
在一个实施例中,消峰处理单元包括:
消峰检测单元,用于在第一信号的幅度大于预设门限时,对第一信号进行消峰处理。
在一个实施例中,还包括:
频率偏移模块,用于对第二信号进行频率偏移,得到参考信号。
信号更新模块,用于基于参考信号,更新参考回波信号。
在一个实施例中,频率偏移模块包括:
频率偏移单元,用于根据信号制式,对第二信号进行频率偏移,得到频偏 信号。
时延处理单元,用于对频偏信号进行时延处理,得到参考信号。
在一个实施例中,信号更新模块包括:
系数更新单元,用于根据参考信号,更新滤波器系数。
信号更新单元,用于基于滤波器系数,更新参考回波信号。
在一个实施例中,自激抵消模块包括:
信号对消单元,用于根据参考回波信号,拟合回波信号,并对回波信号进行对消,得到第一信号。
关于自激抵消装置的具体限定可以参见上文中对于自激抵消方法的限定,在此不再赘述。上述自激抵消装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种自激抵消系统,如图9所示,图9为一个实施例中自激抵消系统的第一示意性结构图,包括:第一天线、第二天线,以及执行如上述的自激抵消方法的处理器。
处理器分别连接第一天线和第二天线;第一天线用于获取输入信号;所述输入信号用于生成下变频信号;第二天线用于发送输出信号;所述输出信号基于上变频信号生成。
具体而言,自激抵消系统通过第一天线获取输入信号,对输入信号进行转换得到下变频信号;下变频信号经处理器进行自激抵消处理后,得到上变频信号;转换上变频信号,得到输出信号;第二天线将输出信号发送给外部通信设备。
需要说明的是,第一天线可用于获取上行信号和下行信号;第二天线可用于发送上行信号和下行信号。
处理器可为FPGA(Field-Programmable Gate Array,现场可编程门阵列)等。
在一个实施例中,处理器执行自激抵消方法时,实现以下步骤:
根据参考回波信号,对下变频信号进行自激抵消,得到第一信号;下变频信号包括回波信号;第一信号包括频谱再生信号。
对第一信号进行杂散滤波,消除频谱再生信号,得到用于转换成上变频信号的第二信号。
在一个实施例中,处理器执行对第一信号进行杂散滤波,消除频谱再生信号,得到用于转换成上变频信号的第二信号时,还实现以下步骤:
对第一信号进行消峰处理,得到消峰信号。
对消峰信号进行杂散滤波,得到第二信号。
在一个实施例中,处理器执行对第一信号进行消峰处理,得到消峰信号时,还实现以下步骤:
在第一信号的幅度大于预设门限时,对第一信号进行消峰处理。
在一个实施例中,处理器执行对第一信号进行杂散滤波,消除频谱再生信号,得到用于转换成上变频信号的第二信号的步骤之后,还实现以下步骤:
对第二信号进行频率偏移,得到参考信号。
基于参考信号,更新参考回波信号。
在一个实施例中,处理器执行对第二信号进行频率偏移,得到参考信号时,实现以下步骤:
根据信号制式,对第二信号进行频率偏移,得到频偏信号。
对频偏信号进行时延处理,得到参考信号。
在一个实施例中,处理器执行基于参考信号,更新参考回波信号时,实现以下步骤:
根据参考信号,更新滤波器系数。
基于滤波器系数,更新参考回波信号。
在一个实施例中,处理器执行根据参考回波信号,对下变频信号进行自激抵消,得到第一信号时,实现以下步骤:
根据参考回波信号,拟合回波信号,并对回波信号进行对消,得到第一信号。
在一个示例中,如图10所示,图10为一个实施例中自激抵消系统的第二示意性流程图,可将处理器包括下变频及AD转换(模数-转换)模块、DA转换(数-模转换)及上变频模块和自激抵消模块。在自激抵消模块后、DA转换及上变频模块之前增加幅度控制模块(用于消峰处理),以防止输出的放大信号通过回波信道耦合到接收信号,造成峰值信号过大,影响到基带的自激抵消模块的性能。
在自激抵消模块后、反馈参考回波信号之前,增加频偏控制模块(用于频率偏移),实现变化功能,降低前向信号和参考回波信号的相关性,提升自激抵消情况下的信号解调性能。在DA转换及上变频模块之前,增加杂散滤波器(用于杂散滤波),滤除因自激抵消导致的频谱再生,有效提高邻道功率抑制比指标。
在实际应用中,使用该系统,能够有效提高信号覆盖质量,提升上载、下载的速率,提升用户体验。系统可实现以下步骤:(1)、实时自适应滤波器更新,实现对回波信号的跟踪、拟合;(2)、检测信号峰值状态,决定是否进行硬消峰操作,保证信号最大峰均比;(3)、完成步骤(1)和步骤(2)的检测后,增加杂散滤波操作,提升信号邻道功率抑制比;(4)、增加频率偏移操作,保证反馈参考信号性能够,提升自激抵消效果。
在一个实施例中,提供了一种计算机存储介质,其上存储有计算机程序,该程序被处理器执行时实现以下步骤:
根据参考回波信号,对下变频信号进行自激抵消,得到第一信号;下变频信号包括回波信号;第一信号包括频谱再生信号。
对第一信号进行杂散滤波,消除频谱再生信号,得到用于转换成上变频信号的第二信号。
在一个实施例中,计算机程序被处理器执行对第一信号进行杂散滤波,消除频谱再生信号,得到用于转换成上变频信号的第二信号时,还实现以下步骤:
对第一信号进行消峰处理,得到消峰信号。
对消峰信号进行杂散滤波,得到第二信号。
在一个实施例中,计算机程序被处理器执行对第一信号进行消峰处理,得 到消峰信号是,还实现以下步骤:
在第一信号的幅度大于预设门限时,对第一信号进行消峰处理。
在一个实施例中,计算机程序被处理器执行对第一信号进行杂散滤波,消除频谱再生信号,得到用于转换成上变频信号的第二信号之后,还实现以下步骤:
对第二信号进行频率偏移,得到参考信号。
基于参考信号,更新参考回波信号。
在一个实施例中,计算机程序被处理器执行对第二信号进行频率偏移,得到参考信号时,还实现以下步骤:
根据信号制式,对第二信号进行频率偏移,得到频偏信号。
对频偏信号进行时延处理,得到参考信号。
在一个实施例中,计算机程序被处理器执行基于参考信号,更新参考回波信号时,还实现以下步骤:
根据参考信号,更新滤波器系数。
基于滤波器系数,更新参考回波信号。
在一个实施例中,计算机程序被处理器执行根据参考回波信号,对下变频信号进行自激抵消,得到第一信号时,还实现以下步骤:
根据参考回波信号,拟合回波信号,并对回波信号进行对消,得到第一信号。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限, RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种自激抵消方法,其特征在于,包括:
    根据参考回波信号,对下变频信号进行自激抵消,得到第一信号;所述下变频信号包括回波信号;所述第一信号包括频谱再生信号;
    对所述第一信号进行杂散滤波,消除所述频谱再生信号,得到用于转换成上变频信号的第二信号。
  2. 根据权利要求1所述的自激抵消方法,其特征在于,对所述第一信号进行杂散滤波,消除所述频谱再生信号,得到用于转换成上变频信号的第二信号的步骤包括:
    对所述第一信号进行消峰处理,得到消峰信号;
    对所述消峰信号进行杂散滤波,得到所述第二信号。
  3. 根据权利要求2所述的自激抵消方法,其特征在于,对所述第一信号进行消峰处理,得到消峰信号的步骤包括:
    在所述第一信号的幅度大于预设门限时,对所述第一信号进行消峰处理。
  4. 根据权利要求1至3任意一项所述的自激抵消方法,其特征在于,对所述第一信号进行杂散滤波,消除所述频谱再生信号,得到用于转换成上变频信号的第二信号的步骤之后,还包括步骤:
    对所述第二信号进行频率偏移,得到参考信号;
    基于所述参考信号,更新所述参考回波信号。
  5. 根据权利要求4所述的自激抵消方法,其特征在于,对所述第二信号进行频率偏移,得到参考信号的步骤包括:
    根据信号制式,对所述第二信号进行频率偏移,得到频偏信号;
    对所述频偏信号进行时延处理,得到所述参考信号。
  6. 根据权利要求4所述的自激抵消方法,其特征在于,基于所述参考信号,更新所述参考回波信号的步骤包括:
    根据所述参考信号,更新滤波器系数;
    基于所述滤波器系数,更新所述参考回波信号。
  7. 根据权利要求1至3任意一项所述的自激抵消方法,其特征在于,根据参考回波信号,对下变频信号进行自激抵消,得到第一信号的步骤包括:
    根据所述参考回波信号,拟合所述回波信号,并对所述回波信号进行对消,得到所述第一信号。
  8. 一种自激抵消装置,其特征在于,包括:
    自激抵消模块,用于根据参考回波信号,对下变频信号进行自激抵消,得到第一信号;所述下变频信号包括回波信号;所述第一信号包括频谱再生信号;
    杂散滤波模块,用于对所述第一信号进行杂散滤波,消除所述频谱再生信号,得到用于转换成上变频信号的第二信号。
  9. 一种自激抵消系统,其特征在于,包括:第一天线、第二天线,以及执行如权利要求1至7任意一项所述的自激抵消方法的处理器;
    所述处理器分别连接所述第一天线和所述第二天线;
    所述第一天线用于获取输入信号;所述输入信号用于生成下变频信号;
    所述第二天线用于发送输出信号;所述输出信号基于上变频信号生成。
  10. 一种计算机存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1至7任意一项所述的自激抵消方法。
PCT/CN2019/124669 2018-12-19 2019-12-11 自激抵消方法、装置和系统 WO2020125526A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811555196.5 2018-12-19
CN201811555196.5A CN109600144B (zh) 2018-12-19 2018-12-19 自激抵消方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2020125526A1 true WO2020125526A1 (zh) 2020-06-25

Family

ID=65963936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124669 WO2020125526A1 (zh) 2018-12-19 2019-12-11 自激抵消方法、装置和系统

Country Status (2)

Country Link
CN (1) CN109600144B (zh)
WO (1) WO2020125526A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109600144B (zh) * 2018-12-19 2021-03-30 京信通信系统(中国)有限公司 自激抵消方法、装置和系统
CN111147418A (zh) * 2019-12-27 2020-05-12 京信通信系统(中国)有限公司 信号峰均比降低方法、装置、设备和存储介质
CN111769888B (zh) * 2020-07-21 2022-02-18 赛尔通信服务技术股份有限公司 一种移动通信射频装置智能自激检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1189093A2 (en) * 2000-09-14 2002-03-20 Seiko Instruments Inc. Optical switch and method of controlling the same
CN102045098A (zh) * 2010-12-03 2011-05-04 东莞电子科技大学电子信息工程研究院 Ics直放站中基于功率控制的快速收敛自适应方法
CN202085164U (zh) * 2010-12-03 2011-12-21 东莞电子科技大学电子信息工程研究院 自适应ics直放站中提高功放效率的基带数字化的装置
CN202713360U (zh) * 2012-07-04 2013-01-30 深圳格兰泰克科技有限公司 直放站及其自激干扰消除装置
CN109600144A (zh) * 2018-12-19 2019-04-09 京信通信系统(中国)有限公司 自激抵消方法、装置和系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201937586U (zh) * 2011-01-05 2011-08-17 成都福兰特电子技术有限公司 Ics无线直放站

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1189093A2 (en) * 2000-09-14 2002-03-20 Seiko Instruments Inc. Optical switch and method of controlling the same
CN102045098A (zh) * 2010-12-03 2011-05-04 东莞电子科技大学电子信息工程研究院 Ics直放站中基于功率控制的快速收敛自适应方法
CN202085164U (zh) * 2010-12-03 2011-12-21 东莞电子科技大学电子信息工程研究院 自适应ics直放站中提高功放效率的基带数字化的装置
CN202713360U (zh) * 2012-07-04 2013-01-30 深圳格兰泰克科技有限公司 直放站及其自激干扰消除装置
CN109600144A (zh) * 2018-12-19 2019-04-09 京信通信系统(中国)有限公司 自激抵消方法、装置和系统

Also Published As

Publication number Publication date
CN109600144A (zh) 2019-04-09
CN109600144B (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
RU2664392C2 (ru) Способ и устройство подавления помех
WO2020125526A1 (zh) 自激抵消方法、装置和系统
JP6339702B2 (ja) 干渉除去装置および方法
US10686517B2 (en) Interference cancellation relay device
RU2009136426A (ru) Повторитель физического уровня, использующий метрики измерений в реальном времени и антенную решетку для обеспечения целостности и усиления сигнала
EP2876853B1 (en) Extended bandwidth adaptive digital pre-distortion with reconfigurable analog front-ends
JP2017520192A5 (zh)
WO2017080345A1 (en) High performance pim cancellation with feedback
EP3092720B1 (en) Opportunistic active interference cancellation using rx diversity antenna
US20160094332A1 (en) Systems and Methods for Analog Cancellation for Division Free Duplexing for Radios Using MIMO
US20180248572A1 (en) Communication device, communication method, and cancellation device
US20180139032A1 (en) Communication device and receiving method
WO2017080349A1 (en) High performance pim cancellation with feed forward structure
US20180351588A1 (en) Cancellation device, cancellation method, and wireless communication apparatus
US10211908B2 (en) Multi-antenna relay device
CN111092633B (zh) 一种提高收发分离反向散射通信激励距离的系统及方法
EP2445122A1 (en) Wireless repeater and method of removing echo signal thereof
JP5431609B1 (ja) 基地局、干渉抑圧装置及び干渉抑圧方法
US10171120B2 (en) Apparatus and method for suppressing intermodulation distortion component in reception signal, and communication apparatus
US20210126817A1 (en) Channel estimation for wireless communication
KR100656786B1 (ko) 복수채널 수신기의 오차보정 기능을 가지는 기지국 시스템및 그 방법
KR101182146B1 (ko) 비선형 전력 증폭기를 포함하는 통신 시스템 및 그 제어 방법
CN113067630A (zh) 一种提高收发分离反向散射通信激励距离的系统及方法
JP2015019168A (ja) 基地局、干渉抑圧装置及び干渉抑圧方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/11/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19898098

Country of ref document: EP

Kind code of ref document: A1