WO2020125044A1 - 具有双动平台结构的四自由度并联机器人 - Google Patents

具有双动平台结构的四自由度并联机器人 Download PDF

Info

Publication number
WO2020125044A1
WO2020125044A1 PCT/CN2019/101545 CN2019101545W WO2020125044A1 WO 2020125044 A1 WO2020125044 A1 WO 2020125044A1 CN 2019101545 W CN2019101545 W CN 2019101545W WO 2020125044 A1 WO2020125044 A1 WO 2020125044A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving platform
platform
arch plate
fixed
rotating screw
Prior art date
Application number
PCT/CN2019/101545
Other languages
English (en)
French (fr)
Inventor
刘辛军
孟齐志
谢福贵
韩刚
汪劲松
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2020125044A1 publication Critical patent/WO2020125044A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/003Programme-controlled manipulators having parallel kinematics

Definitions

  • the present invention relates to the field of robots, and in particular to a four-degree-of-freedom parallel robot with a dual-action platform structure.
  • the early industrial robots used for the packaging, sorting, assembly and disassembly tasks of such light-weight production lines were realized by tandem mechanisms.
  • the serial mechanism is connected in series by the motion pair, which is an open-loop structure, with large industrial space and high flexibility, but it also has obvious disadvantages: the accumulation of errors of each motion pair leads to low terminal accuracy, low rigidity, and large inertia.
  • the dynamic performance is not good.
  • the parallel mechanism is a closed-loop structure, and the moving platform components are connected to the fixed platform through at least two independent kinematic chains. Compared with the series mechanism, the parallel mechanism has the advantages of high rigidity, high precision, good dynamic performance and compact structure.
  • CLAVEL proposed a Delta parallel mechanism (US4976582) composed of three symmetric branch chains that can realize three-dimensional translation, with high-speed motion characteristics.
  • ABB developed the "Flexpicker” parallel
  • the robot is also used in food packaging production lines instead of manually completing the rapid sorting operation of food, etc.
  • PIERROT et al. proposed the H4 with four branched chains and double-action platform components that can achieve SCARA motion Parallel mechanism (US2009019960 and EP1084802); then Adept successfully commercialized it, a typical representative is "AdeptQuattrro" parallel robot.
  • the patent CN202592386 points out that the multiple parts of the moving platform parts of the H4 mechanism in the patents US20090019960 and EP1084802 are in the same plane, which makes the moving platform parts larger in size and not compact enough, and two adjacent branches drive one part of the moving platform part.
  • the force effect is not good, which is not conducive to improving the efficiency of the mechanism;
  • the patent CN102229141 points out that only two driven parts are driven by the moving platform components in the patents US20090019960 and EP1084802.
  • These two components are equivalent to a set of opposite sides of a parallelogram, such a driving method is not flexible ,
  • the force is uneven, which is not conducive to the smooth operation of the organization.
  • the passive branch chains of existing high-speed parallel robots mostly use open spherical hinges and slender carbon rod structures, making it difficult to achieve high-precision operation.
  • the four-degree-of-freedom parallel robot with excellent design and development performance is still a hot issue in the field of robotics. It is characterized by good dynamic characteristics, high rigidity of the whole machine, high output end positioning and corner accuracy, and is easy to achieve high-speed and high-precision operation.
  • the high-performance four-degree-of-freedom parallel robot has broad scientific research and application prospects.
  • an object of the present invention is to propose a four-degree-of-freedom parallel robot with a dual-motion platform structure.
  • the four-degree-of-freedom parallel robot with a dual-motion platform structure has good dynamic characteristics, high rigidity of the whole machine, and positioning of the output end. And the characteristics of high corner precision, easy to achieve high-speed, high-precision operation.
  • the four-degree-of-freedom parallel robot with a dual-motion platform structure includes a fixed platform, four driving devices, four branch chains, and a moving platform component.
  • Four of the drive devices are provided on the fixed platform, each of the drive devices includes an active arm and a drive unit for driving the active arm to pivot, the drive unit is provided on the fixed platform;
  • Four branch chains are spaced along the circumferential direction of the fixed platform, four branch chains are connected to the four active arms in a one-to-one correspondence, and the upper end of each branch chain passes through the first Hook hinge Connected to the active arm, each of the branch chains is a single rod, and each of the first Hook hinges is composed of two vertically intersecting first and second rotating pairs;
  • the moving platform part Set under the fixed platform the moving platform component is connected to the lower ends of the four branch chains, each of the branch chains is connected to the moving platform component through a second Hook hinge, and each of the second The Hook hinge consists of two vertically intersecting first and second rotating pairs;
  • the fixed platform is connected to the dual-motion platform through four drive chains.
  • the fixed platform and the mobile are eliminated
  • the intermediate UPU suspension chain between the platforms increases the working space and extends the service life.
  • the four driving devices and the four branch chains are connected by the first Hook hinge, and the four branch chains and the moving platform components are connected by the second Hook hinge, which effectively avoids the open ball hinge and the slender carbon
  • the four-degree-of-freedom parallel robot with a dual-motion platform structure may also have the following additional technical features:
  • balls are provided between the rotating screw and the threaded hole.
  • the external moving platform includes: an upper arch plate and a lower arch plate, both ends of the upper arch plate are connected to both ends of the lower arch plate, and the middle of the upper arch plate Partially arched upward, the middle part of the lower arch plate arched downward, and the internal moving platform is located between the upper arch plate and the lower arch plate.
  • the center of the upper arch plate and the lower arch plate are provided with arch plate perforations, and the rotating screw is pivotally provided on the upper arch plate and the lower arch plate. Describe the perforation of the arch plate.
  • the upper arch plate and the lower arch plate are integrally formed pieces.
  • the inner moving platform, the outer moving platform, and the active arm are provided with weight reduction holes.
  • the fixed platform includes: a central ring and multiple pairs of fixed ears, the multiple pairs of fixed ears are connected to the outer peripheral wall of the central ring, and one pair is connected between each pair of fixed ears
  • the fixed shaft is connected with the driving arm.
  • FIG. 1 is a structural diagram of a four-degree-of-freedom parallel robot with a dual-action platform structure according to an embodiment of the present invention.
  • FIG. 2 is a structural diagram of a moving platform component according to an embodiment of the present invention.
  • Driving device 2 driving arm 21, pivoting shaft 211 of driving arm, driving unit 22,
  • the moving platform member 5 The moving platform member 5, the outer moving platform 51, the upper arch plate 511, the lower arch plate 512, the inner moving platform 52, the rotating screw 53, and the clamping table 531.
  • connection In the present invention, unless otherwise clearly specified and defined, the terms “installation”, “connection”, “connection”, “fixation” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , Or integrated; it can be mechanical connection, electrical connection or communication with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the connection between two components or the interaction between two components, Unless otherwise clearly defined. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention according to specific situations.
  • the four-degree-of-freedom parallel robot 100 having a dual-motion platform structure according to an embodiment of the present invention will be described below with reference to FIGS. 1-2.
  • the four-degree-of-freedom parallel robot 100 with a dual-motion platform structure includes a fixed platform 1, four driving devices 2, four branch chains 3, and a moving platform component 5.
  • Each driving device 2 includes a driving arm 21 and a driving unit 22 for driving the driving arm 21 to pivot.
  • Each driving unit 22 is fixed on the fixed platform 1.
  • the four branch chains 3 are spaced along the circumferential direction of the fixed platform 1, and the four branch chains 3 are connected to the four driving arms 21 in a one-to-one correspondence, that is to say, the driving unit 22 can drive the driving arm 21 to pivot.
  • the driving arm 21 drives the corresponding branch chain 3 to rotate and move, the driving unit 22, the driving arm 21 and the branch chain 3 corresponding to the driving arm 21 form a driving chain, four driving units 22, four driving arms 21 and four branch chains 3 Form four drive chains.
  • the moving platform component 5 is provided below the fixed platform 1, and the moving platform component 5 is connected to the lower ends of the four branch chains 3, that is, four independent drive chains can respectively control one end of the moving platform component 5.
  • One end of the four drive chains is connected to the fixed platform 1, and the other end of the four drive chains is connected to the moving platform part 5, thereby forming a closed ring structure, which is beneficial to the stability of the structure.
  • the Cartesian coordinate system composed of the X-axis, Y-axis, and Z-axis shown in FIG. 1 is also introduced.
  • the Z-axis direction is equivalent to the up-down direction.
  • each branch chain 3 is connected to the active arm 21 through a first Hook hinge 41.
  • the first Hook hinge 41 is cross-shaped, so that there are two degrees of freedom of rotation between the driving arm 21 and the branch chain 3.
  • Each branch chain 3 is connected to the moving platform part 5 through a second Hook hinge 42.
  • the second Hook hinge 42 is cross-shaped, so that the branch chain 3 and the connected moving platform member 5 have two degrees of freedom in rotation.
  • the moving platform component 5 includes an outer moving platform 51, an inner moving platform 52, and a rotating screw 53.
  • the inner moving platform 52 is located in the outer moving platform 51 and both ends extend from the outer moving platform 51.
  • the rotating screw 53 can pivotally It is provided on the external moving platform 51 and the internal moving platform 52.
  • the internal moving platform 52 is provided with threaded holes, the rotating screw 53 is threaded through the threaded holes, and the internal moving platform 52 and the rotating screw 53 are engaged by threads.
  • the two ends of the external moving platform 51 are connected to the two branch chains 3, and the two ends of the internal moving platform 52 are connected to the other two branch chains 3.
  • the two driving chains connected to the external moving platform 51 are both connected to the fixed platform 1, thus forming a closed chain.
  • the two driving chains connected to the internal moving platform 52 are both connected to the fixed platform 1, thus forming another closed chain.
  • the rotating screw 53 is pivotally provided on the outer moving platform 51 and the inner moving platform 52, the inner moving platform 52 and the rotating screw 53 are screwed together, so the outer moving platform 51 and the inner moving platform 52 are opposite in the Z-axis direction
  • the external moving platform 51 and the internal moving platform 52 will drive the rotating screw 53 to rotate, so that the end effector has a degree of freedom of rotation around the Z axis.
  • the four-degree-of-freedom parallel robot 100 has a dual-motion platform structure composed of an external motion platform 51 and an internal motion platform 52, and realizes four degrees of freedom by driving two closed drive chains.
  • the four-degree-of-freedom parallel robot 100 according to an embodiment of the present invention has many advantages as follows:
  • the outer moving platform 51 and the inner moving platform 52 are respectively driven by a closed drive chain. Compared with the open-loop transmission mode of the drive chain, the closed drive transmission is more stable and the control accuracy is higher.
  • the active arm 21 and the branch chain 3 composed of each drive chain are single-rod structures, rather than the double parallel link structure used in the existing design.
  • the problem that has to be mentioned here is that when the driving arm 21 rotates to a limit position, the double parallel link structure will twist to the limit shape with the driving arm 21. When the driving arm 21 rotates to another limit position, the double parallel link structure cannot be rotated due to being stuck in the limit shape.
  • the robot usually adopts this structure to reduce the amplitude of the active arm 21 to avoid being stuck.
  • the present invention adopts single-rod transmission, and the above limitation can be avoided. Therefore, whether the active arm 21 is turned up or down, the branch chain 3 can perform good followability, and its performance consistency and retention are very outstanding.
  • Both ends of the branch chain 3 are connected by a Hook hinge, and the closed Hook hinge replaces the open ball hinge of the common high-speed parallel robot. There is no risk of disengagement and the transmission is more stable, so it helps to improve the robot. Accuracy and stiffness.
  • the four-degree-of-freedom parallel robot 100 in the embodiment of the present invention uses four drive chains to drive the dual-action platform activities, instead of providing an intermediate UPU catenary like the Delta robot, which can extend the service life.
  • the Delta robot needs to realize the rotational freedom around the Z axis through the intermediate catenary, which is a reciprocating telescopic motion following the movement of the platform. This type of follower mechanism is destined for serious wear and short life.
  • the intermediate catenary will also affect the amplitude of the robot's end effector activity, resulting in a reduction in the robot's working space.
  • the intermediate catenary can be removed, which effectively increases the service life of the robot and obtains a larger working space.
  • the drive unit 22 is preferably a motor.
  • a hydraulic drive mechanism may be used instead of the motor.
  • hydraulic cylinders via pistons, gear systems, etc.
  • the linkage setting cost can be effectively controlled.
  • the first Hook hinge 41 is used for the connection between the driving device 2 and the branch chain 3
  • the second Hook hinge 42 is used for the connection between the moving platform member 5 and the branch chain 3
  • the first Hook The special structural characteristics of the gram hinge 41 and the second Hook hinge 42 have outstanding performance on the structural stability of the robot of the embodiment of the present invention.
  • the first Hook hinge 41 has a cross shape, and the cross shape is composed of two mutually perpendicular rod bodies.
  • the two rod bodies of the first Hook hinge 41 are respectively named upper ⁇ 411 and upper bearing rod 412.
  • the upper end of the branch chain 3 is split and connected to the upper chain rod 411, and the upper chain rod 411 is pivotable relative to the branch chain 3, forming the first rotating pair of the first Hook hinge 41.
  • the split end of the driving arm 21 is connected to the upper bearing rod 412, and the upper bearing rod 412 is pivotable relative to the driving arm 21, and constitutes a second rotating pair of the first Hook hinge 41.
  • the second Hook hinge 42 has a cross shape, and the cross shape is composed of two mutually perpendicular rod bodies.
  • the two rod bodies of the second Hook hinge 42 are named a lower chain rod 421 and a lower bearing rod 422, respectively.
  • the lower end of the branch chain 3 is split and connected to the lower chain rod 421, and the lower chain rod 421 is pivotable relative to the branch chain 3, forming the first rotating pair of the second Hook hinge 42.
  • the upper fork of the moving platform member 5 is connected to the lower bearing rod 422, and the lower bearing rod 422 is pivotable relative to the moving platform member 5, forming a second rotating pair of the second Hook hinge 42.
  • the upper supporting rod 412 and the pivot axis 211 of the active arm 21 are arranged parallel to each other.
  • the upper chain rod 411 is parallel to the lower chain rod 421
  • the upper support rod 412 is parallel to the lower support rod 422. That is, the first rotating pair of the first Hook hinge 41 and the first rotating pair of the second Hook hinge 42 are arranged in parallel, the second rotating pair of the first Hook hinge 41 and the second rotating pair of the second Hook hinge 42 Arranged in parallel.
  • the projections of the external motion platform 51 and the internal motion platform 52 on the XY plane are both rectangular, and the external motion platform 51 and the internal motion platform 52 are perpendicular to each other.
  • the upper end of the rotating screw 53 is connected to the outer moving platform 51, the rotating screw 53 passes through the inner moving platform 52, and the lower end of the rotating screw 53 is connected and passes through the outer moving platform 51, and Connect the end effector.
  • the four active arms 21 are connected to the fixed platform 1 in a cross shape, the lengths of the four active arms 21 are equal, and the lengths of the four branch chains 3 are also equal.
  • the external moving platform 51 includes: an upper arch plate 511 and a lower arch plate 512, both ends of the upper arch plate 511 are connected to both ends of the lower arch plate 512, and the upper arch The middle portion of the plate 511 is arched upward, the middle portion of the lower arch plate 512 is arched downward, and the internal moving platform 52 is located between the upper arch plate 511 and the lower arch plate 512.
  • the outer moving platform 51 is composed of an upper arch plate 511 and a lower arch plate 512
  • the inner moving platform 52 is provided between the upper arch plate 511 and the lower arch plate 512.
  • the upper arch plate 511 and the lower arch plate 512 define a movable space in the middle, so that the inner moving platform 52 moves in parallel along the Z axis.
  • the upper arch plate 511 and the lower arch plate 512 may be an integrally formed piece, thereby, the external moving platform 51 may have better structural rigidity and good stability.
  • the upper arch plate 511 and the lower arch plate 512 are connected by screw connection or riveting.
  • the center of the upper arch plate 511 and the lower arch plate 512 are provided with arch plate perforations, and the rotating screw 53 is passed through the arch plate perforations of the upper arch plate 511 and the lower arch plate 512. Therefore, the rotation screw 53 can be connected to the external moving platform 51 through the rotation coordination of the rotation screw 53 and the perforation of the arch plate.
  • the arch plate perforations on the upper arch plate 511 and the lower arch plate 512 are both light holes.
  • the rotating screw 53 is connected to one clamping platform 531 above the upper arch plate 511, and is connected to another clamping platform 531 below the lower arch plate 512. In this way, the rotation screw 53 can only rotate around the Z axis relative to the external moving platform 51, and cannot translate.
  • the inner moving platform 52 is provided with a screw hole, the rotating screw 53 is threaded through the screw hole, and a ball is provided between the rotating screw 52 and the screw hole. That is, the rotating screw 53 is a ball screw, which can greatly reduce wear and improve control accuracy.
  • the rotating screw 53 is connected to the upper arch plate 511 and the inner moving platform 52 through threaded holes, while the lower arch plate 512 cooperates with the rotating screw 53
  • the perforation of the arch plate is a light hole.
  • the outer movable platform 51, the inner movable platform 52 and the active arm 21 are provided with weight reduction holes, which can reduce the weight of the outer movable platform 51, the inner movable platform 52 and the active arm 21, Increase the dynamic characteristics of the robot.
  • the fixed platform 1 includes: a central ring 11 and multiple pairs of fixed ears 12.
  • the multiple pairs of fixed ears 12 are connected to the outer peripheral wall of the central ring 11, and each pair of fixed ears 12 A fixed shaft is connected between them, and the driving arm 21 is connected to the fixed shaft.
  • the center ring 11 is a circular ring, and the four pairs of fixed ears 12 are provided uniformly along the outer circumferential wall of the center ring 11, that is, four pairs of fixed ears 12 are arranged along the outer circumferential wall of the center ring 11 Symmetrically set two by two, each pair of fixed ears 12 is provided with two fixed ears 12, a fixed shaft is provided between the two fixed ears 12, the active arm 21 cooperates with the fixed shaft, the active arm 21 is rotatably installed on the two fixed ears Between the ears 12, four drive units 22 are provided, and the four drive units 22 are respectively installed on one side of each pair of fixed ears 12, the drive unit 22 drives the active arm 21 to rotate, and then controls the movement of the moving platform member 5, further The rotating screw 53 drives the end effector to generate a three-dimensional freedom of movement along the X-axis, Y-axis, and Z-axis directions relative to the fixed platform 1 and a one-dimensional rotation freedom around the Z-axis direction.
  • the four-degree-of-freedom parallel robot 100 Simple assembly and
  • a four-degree-of-freedom parallel robot 100 with a dual-motion platform structure includes a fixed platform 1, four driving devices 2, four branch chains 3, and a moving platform component 5.
  • the fixed platform 1 includes a central ring 11 and four pairs of fixed ears 12, four pairs of fixed ears 12 are circumferentially spaced apart, and four pairs of fixed ears 12 are arranged symmetrically along the outer peripheral wall of the central ring 11, and each pair of fixed ears 12 is provided with two fixed ears 12, and a fixed shaft is provided between the two fixed ears 12.
  • the driving device 2 includes a driving unit 22 and an active arm 21, the active arm 21 cooperates with the fixed shaft, the active arm 21 is rotatably provided between the two fixed ears 12, and the drive unit 22 is installed on one side of each pair of fixed ears 12, The driving unit 22 can drive the driving arm 21 to rotate.
  • the four active arms 21 are connected to the four branch chains 3 in one-to-one correspondence, that is, the upper end of each branch chain 3 is connected to the corresponding active arm 21 through the first Hook hinge 41.
  • the branch chain 3 is a single rod, and the upper end of the branch chain 3 is branched and connected to the first Hook hinge 41.
  • each branch chain 3 is connected to the moving platform member 5 through a second Hook hinge 42.
  • the movable platform component 5 includes an outer movable platform 51 and an inner movable platform 52, and a branch chain 3 is connected to both ends of the outer movable platform 51 and the inner movable platform 52, respectively.
  • the external moving platform 51 includes an upper arch plate 511 and a lower arch plate 512, and the upper arch plate 511 and the lower arch plate 512 are integrally formed pieces. Both the upper arch plate 511 and the lower arch plate 512 are provided with arch plate perforations at the centers, and the inner movable platform 52 is provided with threaded holes, and the inner movable platform 52 is passed between the upper arch plate 511 and the lower arch plate 512.
  • the moving platform component 5 includes a rotating screw 53 that connects the inner moving platform 52 and the outer moving platform 51 through the arch plate perforation and the threaded hole, and the threaded hole is provided with a ball.
  • the inner moving platform 52 is provided with a weight reduction hole to reduce weight.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Transmission Devices (AREA)

Abstract

一种具有双动平台结构的四自由度并联机器人,机器人(100)包括定平台(1)、四个驱动装置(2)、四个支链(3)和动平台部件(5)。驱动装置设在定平台上,驱动装置包括主动臂(21)和驱动单元(22);四个支链沿定平台的周向间隔开,四个支链的上端通过第一虎克铰(41)分别与四个主动臂相连,四个支链的下端分别通过第二虎克铰(42)与动平台部件相连,动平台部件包括外动平台(51)、内动平台(52)和转动丝杠(53)。

Description

具有双动平台结构的四自由度并联机器人
相关申请的交叉引用
本申请基于申请号为201811568968.9、申请日为2018年12月21日的中国专利申请“具有双动平台结构的四自由度并联机器人”提出,并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及机器人领域,尤其涉及一种具有双动平台结构的四自由度并联机器人。
背景技术
塑料工业、电子产品工业、药品工业和食品工业是对我国国民经济有重要贡献。早期用于此类轻型生产流水线货品的包装、分拣、组合和拆解任务的工业机器人由串联机构实现。串联机构通过运动副依次连接而成,为开环结构,具有大的工业空间和高的灵活度,但其也具有明显的缺点:各运动副误差累积导致末端精度低、刚度低、惯性大、动力学性能不好。并联机构是一种闭环结构,其动平台部件通过至少两个独立的运动链与定平台相连接。与串联机构相比,并联机构具有刚度高、精度高、动力学性能好、结构紧凑等优点。
基于并联机构的优点,CLAVEL提出了由三条对称支链构成的可实现三维平动的Delta并联机构(US4976582),具有高速运动特征,在此构型的基础上,ABB公司研发了“Flexpicker”并联机器人并应用于食品包装生产线中代替人工完成食品等的快速分拣操作;为进一步增加拾取动作的柔性和效率,PIERROT等提出了具有四条支链,双动平台部件特征的可实现SCARA运动的H4并联机构(US2009019960和EP1084802);随后Adept公司成功将其商业化,典型代表有“Adept Quattrro”并联机器人。
对于以上部分设计的优缺点,有文献进行了点评,不足之处总结如下:
专利CN202592386指出专利US20090019960和EP1084802中H4机构动平台部件的多个部件处于同一平面内,使得动平台部件尺寸较大,不够紧凑,且相邻的两条支链驱动动平台部件的一个部件,传力效果不好,不利于提高机构效率;专利CN102229141指出专利US20090019960和EP1084802中动平台部件受驱动的部件只有两个,这两个部件相当于平行四边形的一组对边,这样的驱动方式不灵活,受力情况不均匀,不利于机构的顺畅运行。此外,现有高速并联机器人被动支链多采用开放式球铰和细长碳杆结 构,难以实现高精度操作。
综上,设计研发性能优异的四自由度并联机器人仍是机器人领域关注的热点问题,一款具有动态特性好、整机刚度大、输出端定位和转角精度高等特点,易实现高速、高精度操作的高性能四自由度并联机器人具有广阔的科研及应用前景。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明的一个目的在于提出一种具有双动平台结构的四自由度并联机器人,所述具有双动平台结构的四自由度并联机器人具有动态特性好、整机刚度大、输出端定位和转角精度高等特点,易实现高速、高精度操作。
根据本发明实施例的具有双动平台结构的四自由度并联机器人,包括定平台、四个驱动装置、四个支链和动平台部件。四个所述驱动装置设在所述定平台上,每个所述驱动装置包括一个主动臂和用于驱动所述主动臂枢转的驱动单元,所述驱动单元设置在所述定平台上;四个所述支链沿所述定平台的周向间隔开,四个所述支链一一对应地与四个所述主动臂相连,每个所述支链的上端通过第一虎克铰与所述主动臂相连,每个所述支链均为单根杆,每个所述第一虎克铰由两个垂直相交的第一转动副和第二转动副组成;所述动平台部件设在所述定平台下方,所述动平台部件与四个所述支链的下端相连,每个所述支链通过第二虎克铰与所述动平台部件相连,每个所述第二虎克铰由两个垂直相交的第一转动副和第二转动副组成;所述动平台部件包括外动平台、内动平台和转动丝杠,所述内动平台位于所述外动平台内且两端从所述外动平台内伸出,所述转动丝杠可枢转地设在所述外动平台和所述内动平台上,所述内动平台上设有螺纹孔,所述转动丝杠穿设在所述螺纹孔内,所述转动丝杠与所述螺纹孔之间为螺纹配合,所述外动平台的两端与两个所述支链相连,所述内动平台的两端与另两个所述支链相连,所述外动平台和所述内动平台沿所述转动丝杠的轴向相对移动时,所述转动丝杠转动,所述转动丝杠用于连接末端执行器;其中同一根所述支链上,所述第一虎克铰的第一转动副与所述第二虎克铰的第一转动副相互平行,所述第一虎克铰的第二转动副与所述第二虎克铰的第二转动副相互平行。
根据本发明实施例的具有双动平台结构的四自由度并联机器人,定平台通过四个驱动链与双动平台相连,与传统的具有UPU支链的Delta机器人相比,取消了定平台与动平台之间的中间UPU悬链,工作空间增大,使用寿命延长。与Quattrro机器人相比,四个驱动装置与四个支链采用第一虎克铰相连,四个支链和动平台部件采用第二虎克铰相连,有效避免了开放式球铰和细长碳杆结构带来的低精度和低刚度问题。
另外,根据本发明的具有双动平台结构的四自由度并联机器人,还可以具有如下附加的技术特征:
在本发明的一些实施例中,所述转动丝杠与所述螺纹孔之间设有滚珠。
在本发明的一些实施例中,所述外动平台包括:上拱板和下拱板,所述上拱板的两端与所述下拱板的两端相连,所述上拱板的中间部分向上拱起,所述下拱板的中间部分向下拱起,所述内动平台位于所述上拱板和所述下拱板之间。
可选地,所述上拱板和所述下拱板的中心处均设有拱板穿孔,所述转动丝杠穿可枢转地设在所述上拱板、所述下拱板的所述拱板穿孔处。
可选地,所述上拱板和所述下拱板为一体成型件。
可选地,所述内动平台、所述外动平台、所述主动臂上设有减重孔。
在本发明的一些实施例中,所述定平台包括:中心环和多对定耳,所述多对定耳连接在所述中心环的外周壁上,每对所述定耳之间连接一个定轴,所述主动臂连接所述定轴。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明实施例的具有双动平台结构的四自由度并联机器人的结构图。
图2是根据本发明实施例的动平台部件的结构图。
附图标记:
机器人100、
定平台1、中心环11、定耳12、
驱动装置2、主动臂21、主动臂的枢转轴211、驱动单元22、
支链3、
第一虎克铰41、上链杆411、上承杆412、第二虎克铰42、下链杆421、下承杆422、
动平台部件5、外动平台51、上拱板511、下拱板512、内动平台52、转动丝杠53、卡台531。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下面参考图1-图2描述根据本发明实施例的具有双动平台结构的四自由度并联机器人100。
根据本发明实施例的具有双动平台结构的四自由度并联机器人100,如图1所示,包括定平台1、四个驱动装置2、四个支链3和动平台部件5。
四个驱动装置2设在定平台1上,每个驱动装置2包括一个主动臂21和用于驱动主动臂21枢转的驱动单元22,每个驱动单元22均固定在定平台1上。
四个支链3沿定平台1的周向间隔开,四个支链3一一对应地与四个主动臂21相连,也就是说,驱动单元22可以驱动主动臂21枢转,枢转的主动臂21带动对应的支链3转动及移动,驱动单元22、主动臂21和主动臂21对应的支链3形成一条驱动链,四个驱动单元22、四个主动臂21和四个支链3形成四条驱动链。
动平台部件5设在定平台1下方,动平台部件5与四个支链3的下端相连,也就是说,四条独立的驱动链可分别控制动平台部件5的一端。四条驱动链的一端均与定平台1相连,四条驱动链的另一端均与动平台部件5相连,由此可构成封闭环的结构形式,有利于结构的稳定。
这里需要说明的是,全文提到的“上”、“下”及相关词语,均是为了描述部件相对位置关系而引入的术语。本文中不是以相对地面的高度为参考而限定出的上下关系,而是相对定平台1和动平台部件5的位置引入的相对位置关系。因此,全文中限定某一部件,距离定平台1近的一端为其上端,距离定平台1远的一端为其下端,这与动平台部件5设在定平台1下方的描述均是相一致的。除此之外,下文中为便于参照附图描述四自由度并联机器人100的工作原理,还引入了图1所示的由X轴、Y轴、Z轴构成的笛卡尔坐标系。在笛卡尔坐标系中,Z轴方向相当于上下方向。但是,这些指示关系,并不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
具体地,每个支链3的上端通过第一虎克铰41与主动臂21相连。第一虎克铰41为十字形,使主动臂21与支链3之间具有两个转动自由度。每个支链3通过第二虎克铰42与动平台部件5相连。同样的,第二虎克铰42为十字形,使支链3与相连的动平台部件5之间具有两个转动自由度。
动平台部件5包括外动平台51、内动平台52和转动丝杠53,内动平台52位于外动平台51内且两端从外动平台51内伸出,转动丝杠53可枢转地设在外动平台51和内动平台52上。内动平台52上设有螺纹孔,转动丝杠53穿设在螺纹孔内,内动平台52与转动丝杠53通过螺纹配合。外动平台51的两端与两个支链3相连,内动平台52的两端与另两个支链3相连。
其中,外动平台51和内动平台52沿转动丝杠53的轴向相对移动时,转动丝杠53转动,转动丝杠53用于连接末端执行器。
在本发明实施例的四自由度并联机器人100中,连接外动平台51的两条驱动链,均连接在定平台1上,因此形成一条闭合链。连接内动平台52的两条驱动链,均连接在定平台1上,因此形成另一条闭合链。
由构件运动轨迹的分析可以看出,两条闭合链的配合,可以实现动平台部件5在X轴、Y轴和Z轴的三个方向的平动,从而末端执行器具有三个平动自由度。
而由于转动丝杠53可枢转地设在外动平台51和内动平台52上,内动平台52与转动丝杠53通过螺纹配合,因此外动平台51和内动平台52在Z轴方向相对移动时,外动平台51和内动平台52会带动转动丝杠53转动,从而末端执行器具有绕Z轴的一个转动自由度。
如图1所示,本发明实施例的四自由度并联机器人100,由外动平台51、内动平台52构成的双动平台结构,通过两条闭合驱动链的驱动实现四个自由度。本发明实施例的四自由度并联机器人100,具有如下诸多优点:
1、外动平台51、内动平台52分别由一条闭合驱动链驱动,相对于驱动链为开环的传动方式而言,闭合驱动传动更加稳定,控制精度更高。
2、动平台部件5上连接的四条驱动链中,每条驱动链组成的主动臂21、支链3均是单杆结构,而不是现有设计中采用的双平行连杆结构。这里不得不提的问题是,双平行连杆结构在主动臂21转动至一个极限位置时,双平行连杆结构随主动臂21会扭转到极限形状。当主动臂21向另一极限位置转动时,双平行连杆结构因卡在极限形状而无法回转。为避免这一问题,通常采用这一结构的机器人要减小主动臂21幅度,避免卡死。而本发明采用单杆传动,上述限制就能避免。因此主动臂21无论上转还是下转,支链3均能表现良好随动性,其性能一致性、保持性均非常突出。
3、支链3的两端均通过虎克铰相连,将闭合式的虎克铰替换常见高速并联机器人的开放式的球铰,不存在脱铰风险,传动更加稳定,因此有助于提高机器人精度和刚度。
4、将驱动单元22固定在定平台1上,而不像传统串联机器人一样随着驱动链的活动而活动。这样设置有利于实现驱动链的轻量化,提高驱动链的动态响应表现。而且驱动链摆脱了驱动单元22的负累后,还能够降低能耗。
5、本发明实施例中的四自由度并联机器人100,采用四条驱动链来带动双动平台活动,而不是像Delta机器人那样另设置中间UPU悬链,能够延长使用寿命。这是因为Delta机器人需要通过中间悬链实现绕Z轴的转动自由度,中间悬链是随动平台的活动而往复伸缩运动。这种随动机构注定其磨损严重、寿命较短。另外,中间悬链还会影响机器人末端执行器活动幅度,造成机器人工作空间减小。而本发明中能够去掉该中间悬链,有效提升了机器人的使用寿命,并获得了更大的工作空间。
优先地,驱动单元22以电机为佳,当然本发明其他实施例中,也可以采用液压驱动机构替代电机。例如,在生产线上多台四自由度并联机器人100操作时,可采用液压缸(通过活塞、齿轮系统等)对各主动臂21传输动力,联动设置成本可得到有效控制。
在本发明实施例中,将驱动装置2与支链3的连接处采用第一虎克铰41,将动平台部件5与支链3的连接处采用第二虎克铰42,采用第一虎克铰41、第二虎克铰42的特殊结构特性,对本发明实施例的机器人结构稳定性有着突出表现。
具体地,如图1所示,第一虎克铰41为十字形,该十字形由两个互相垂直的杆体构成,为方便说明,将第一虎克铰41的两个杆体分别命名为上链杆411和上承杆412。其中,支链3的上端开叉并与上链杆411相连,上链杆411相对支链3是可枢转的,构成第一虎克铰41的第一转动副。主动臂21的端部开叉与上承杆412相连,上承杆412相对主动臂21是可枢转的,构成第一虎克铰41的第二转动副。
第二虎克铰42为十字形,该十字形由两个互相垂直的杆体构成,为方便说明,将第二虎克铰42的两个杆体分别命名为下链杆421和下承杆422。其中,支链3的下端开叉并与下链杆421相连,下链杆421相对支链3是可枢转的,构成第二虎克铰42的第一转动副。动平台部件5上开叉与下承杆422相连,下承杆422相对动平台部件5是可枢转的,构成第二虎克铰42的第二转动副。
其中,上承杆412与主动臂21的枢转轴211相互平行布置。每个支链3的两端,上链杆411与下链杆421相平行,上承杆412与下承杆422平行。即第一虎克铰41的第一转动副与第二虎克铰42的第一转动副平行布置,第一虎克铰41的第二转动副与第二虎克铰42的第二转动副平行布置。
在一些实施例中,如图2所示,外动平台51和内动平台52在XY平面的投影均为长方形,外动平台51与内动平台52互相垂直设置。
具体地,如图2所示,转动丝杠53的上端连接在外动平台51上,转动丝杠53穿过内动平台52,转动丝杠53的下端再连接并穿过外动平台51,并连接末端执行器。
具体地,如图1所示,四个主动臂21呈十字形连接在定平台1上,四个主动臂21的长度相等,四个支链3的长度也相等。
在本发明的一些实施例中,如图2所示,外动平台51包括:上拱板511和下拱板512,上拱板511的两端与下拱板512的两端相连,上拱板511的中间部分向上拱起,下拱板512的中间部分向下拱起,内动平台52位于上拱板511和下拱板512之间。
也就是说,外动平台51由上拱板511和下拱板512构成,内动平台52设在上拱板511和下拱板512之间。上拱板511和下拱板512在中间限定出活动空间,使内动平台52沿Z轴相平动。
可选地,上拱板511和下拱板512可以为一体成型件,由此,可以使得外动平台51具有较好地结构刚度,稳定性能好。当然,本发明实施例中,也不排除上拱板511和下拱板512通过螺钉连接或者铆接等方式连接。
具体地,如图2所示,上拱板511和下拱板512的中心处均设有拱板穿孔,转动丝杠53穿设在上拱板511、下拱板512的拱板穿孔处。由此,通过转动丝杠53与拱板穿孔的转动配合,可以将转动丝杠53连接在外动平台51上。
更具体地,上拱板511和下拱板512上的拱板穿孔均是光孔。
如图2所示,转动丝杠53上位于上拱板511的上方连接一个卡台531,位于下拱板512的下方连接另一个卡台531。这样限制转动丝杠53相对外动平台51只能绕Z轴转动,不能平动。
具体地,内动平台52上设有螺纹孔,转动丝杠53穿设在螺纹孔内,转动丝杠52与螺纹孔之间设有滚珠。即该转动丝杠53为滚珠丝杠,可以极大程度减小磨损,提高控制精度。
当然,本发明实施例中不排除转动丝杠53其他连接方式,例如,转动丝杠53与上拱板511和内动平台52均通过螺纹孔连接,而下拱板512配合转动丝杠53的拱板穿孔为光孔。
在本发明的一些实施例中,外动平台51、内动平台52和主动臂21上设有减重孔,减重孔可以降低外动平台51、内动平台52和主动臂21的重量,增加机器人的动态特性。
在本发明的一些实施例中,如图1所示,定平台1包括:中心环11和多对定耳12, 多对定耳12连接在中心环11的外周壁上,每对定耳12之间连接一个定轴,主动臂21连接定轴。如图1所示,中心环11为圆环形,定耳12设有四对,四对定耳12沿中心环11的外周壁均匀设置,即四对定耳12沿中心环11的外周壁两两对称设置,每对定耳12设有两个定耳12,在两个定耳12之间设有定轴,主动臂21与定轴配合,主动臂21可转动地安装在两个定耳12之间,驱动单元22设有四个,四个驱动单元22分别安装在每对定耳12的一侧,驱动单元22驱动主动臂21进行转动,然后控制动平台部件5的移动,进而使得转动丝杠53带动末端执行器产生相对于定平台1沿着X轴、Y轴和Z轴方向的三维移动自由度和绕Z轴方向的一维转动自由度,该四自由度并联机器人100装配简单、控制方便。
根据本发明实施例的具有双动平台结构的四自由度并联机器人100的其他构成例如电机等以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
下面参考附图1描述本发明一个具体实施例中具有双动平台结构的四自由度并联机器人100的具体结构。
如图1所示,具有双动平台结构的四自由度并联机器人100包括定平台1、四个驱动装置2、四个支链3、动平台部件5。
具体地,定平台1包括中心环11和四对定耳12,四对定耳12沿周向间隔开设置,四对定耳12沿中心环11的外周壁两两对称设置,每对定耳12设有两个定耳12,两个定耳12之间设有定轴。
驱动装置2包括驱动单元22和主动臂21,主动臂21与定轴配合,主动臂21可转动地设在两个定耳12之间,驱动单元22安装在每对定耳12的一侧,驱动单元22可以驱动主动臂21转动。
四个主动臂21与四个支链3一一对应相连,即每个支链3的上端通过第一虎克铰41与对应的主动臂21相连。支链3为单根杆,支链3上端分叉与第一虎克铰41相连。
每个支链3的下端通过第二虎克铰42与动平台部件5相连。具体地,动平台部件5包括外动平台51、内动平台52,外动平台51、内动平台52两端分别连接一根支链3。
外动平台51包括上拱板511和下拱板512,上拱板511和下拱板512为一体成型件。上拱板511和下拱板512的中心处均设有拱板穿孔,内动平台52上设有螺纹孔,内动平台52穿在上拱板511和下拱板512之间。动平台部件5包括转动丝杠53,转动丝杠53穿过拱板穿孔和螺纹孔将内动平台52和外动平台51连接,螺纹孔内设有滚珠。内动平台52上设有减重孔以减轻重量。
在本说明书的描述中,参考术语“实施例”、“示例”等的描述意指结合该实施例 或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (7)

  1. 一种具有双动平台结构的四自由度并联机器人,其特征在于,包括:
    定平台;
    四个驱动装置,四个所述驱动装置设在所述定平台上,每个所述驱动装置包括一个主动臂和用于驱动所述主动臂枢转的驱动单元,所述驱动单元设置在所述定平台上;
    四个支链,四个所述支链沿所述定平台的周向间隔开,四个所述支链一一对应地与四个所述主动臂相连,每个所述支链的上端通过第一虎克铰与所述主动臂相连,每个所述支链均为单根杆,每个所述第一虎克铰由两个垂直相交的第一转动副和第二转动副组成;
    动平台部件,所述动平台部件设在所述定平台下方,所述动平台部件与四个所述支链的下端相连,每个所述支链通过第二虎克铰与所述动平台部件相连,每个所述第二虎克铰由两个垂直相交的第一转动副和第二转动副组成;其中,
    所述动平台部件包括外动平台、内动平台和转动丝杠,所述内动平台位于所述外动平台内且两端从所述外动平台内伸出,所述转动丝杠可枢转地设在所述外动平台和所述内动平台上,所述内动平台上设有螺纹孔,所述转动丝杠穿设在所述螺纹孔内,所述转动丝杠与所述螺纹孔之间为螺纹配合,所述外动平台的两端与两个所述支链相连,所述内动平台的两端与另两个所述支链相连,所述外动平台和所述内动平台沿所述转动丝杠的轴向相对移动时,所述转动丝杠转动,所述转动丝杠用于连接末端执行器;其中,
    同一根所述支链的两端,所述第一虎克铰的第一转动副与所述第二虎克铰的第一转动副相互平行,所述第一虎克铰的第二转动副与所述第二虎克铰的第二转动副相互平行。
  2. 根据权利要求1所述的具有双动平台结构的四自由度并联机器人,其特征在于,所述转动丝杠与所述螺纹孔之间设有滚珠。
  3. 根据权利要求1或2所述的具有双动平台结构的四自由度并联机器人,其特征在于,所述外动平台包括:上拱板和下拱板,所述上拱板的两端与所述下拱板的两端相连,所述上拱板的中间部分向上拱起,所述下拱板的中间部分向下拱起,所述内动平台位于所述上拱板和所述下拱板之间。
  4. 根据权利要求3所述的具有双动平台结构的四自由度并联机器人,其特征在于,所述上拱板和所述下拱板的中心处均设有拱板穿孔,所述转动丝杠可枢转地穿设在所述上拱板、所述下拱板的所述拱板穿孔处。
  5. 根据权利要求3或4所述的具有双动平台结构的四自由度并联机器人,其特征在 于,所述上拱板和所述下拱板为一体成型件。
  6. 根据权利要求1-5中任一项所述的具有双动平台结构的四自由度并联机器人,其特征在于,所述内动平台、所述外动平台、所述主动臂上设有减重孔。
  7. 根据权利要求1-6中任一项所述的具有双动平台结构的四自由度并联机器人,其特征在于,所述定平台包括:中心环和多对定耳,所述多对定耳连接在所述中心环的外周壁上,每对所述定耳之间连接一个定轴,所述主动臂连接所述定轴。
PCT/CN2019/101545 2018-12-21 2019-08-20 具有双动平台结构的四自由度并联机器人 WO2020125044A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811568968.9A CN109531543B (zh) 2018-12-21 2018-12-21 具有双动平台结构的四自由度并联机器人
CN201811568968.9 2018-12-21

Publications (1)

Publication Number Publication Date
WO2020125044A1 true WO2020125044A1 (zh) 2020-06-25

Family

ID=65856269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101545 WO2020125044A1 (zh) 2018-12-21 2019-08-20 具有双动平台结构的四自由度并联机器人

Country Status (2)

Country Link
CN (1) CN109531543B (zh)
WO (1) WO2020125044A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112192548A (zh) * 2020-09-24 2021-01-08 香港理工大学深圳研究院 一种仅含转动关节的三自由度一平两转并联机构
CN113855245A (zh) * 2021-09-30 2021-12-31 重庆工程职业技术学院 一种全转动副两转动一移动远中心运动并联机构
CN114227648A (zh) * 2022-01-06 2022-03-25 清华大学 一种高刚度五自由度并联驱动机器人
CN114227649A (zh) * 2022-01-06 2022-03-25 清华大学 一种三移两转五自由度并联驱动机器人
CN116652914A (zh) * 2023-07-04 2023-08-29 吉林大学 三平动冗余并联遥操作机械手

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109531543B (zh) * 2018-12-21 2022-08-30 清华大学 具有双动平台结构的四自由度并联机器人
CN110238821B (zh) * 2019-07-15 2020-11-27 燕山大学 一种含闭环单元高冗余驱动完全对称并联机构
CN110653794B (zh) * 2019-09-10 2021-10-01 烟台清科嘉机器人联合研究院有限公司 具有空间四自由度的双动平台并联机构及机器人
CN110576428B (zh) * 2019-09-29 2021-09-21 清华大学 过约束的四自由度高速并联机器人
CN110576427B (zh) * 2019-09-29 2021-09-21 清华大学 过约束高速并联机器人
CN111168649B (zh) * 2020-01-08 2021-04-27 清华大学 高速高精度并联机器人
CN111438683B (zh) * 2020-04-10 2021-05-14 燕山大学 具有三维移动和一维转动的四分支四自由度工业机器人
CN114454152A (zh) * 2022-02-21 2022-05-10 清华大学 绳索驱动堆垛机器人
CN114802521B (zh) * 2022-04-25 2023-04-07 清华大学 并联驱动的全肘式四足机器人
CN114701584B (zh) * 2022-04-25 2023-04-07 清华大学 并联驱动的腿部可折展四足机器人
CN115056207A (zh) * 2022-07-28 2022-09-16 江西农业大学 一种果园、林地及丘陵山地多功能智能运动作业平台设施

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4289506B2 (ja) * 2006-03-03 2009-07-01 株式会社ジェイテクト 四自由度パラレルロボット
EP2283983A1 (en) * 2005-02-17 2011-02-16 Fundacion Fatronik High-speed parallel robot with four degrees of freedom
CN102642205A (zh) * 2012-04-20 2012-08-22 清华大学 一种四自由度双动平台并联机构
CN102689305A (zh) * 2012-04-20 2012-09-26 清华大学 一种三移动一转动的四自由度双动平台并联机构
CN104802154A (zh) * 2015-03-23 2015-07-29 杭州娃哈哈集团有限公司 一种四自由度高速并联机械手
CN107139162A (zh) * 2017-06-12 2017-09-08 清华大学 具有双动平台结构的并联分拣机器人
CN109531543A (zh) * 2018-12-21 2019-03-29 清华大学 具有双动平台结构的四自由度并联机器人

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60154963A (ja) * 1984-01-23 1985-08-14 Sumitomo Electric Ind Ltd 管路内移動装置
JP3806273B2 (ja) * 1999-09-17 2006-08-09 株式会社ジェイテクト 四自由度パラレルロボット
CN102069497A (zh) * 2010-12-29 2011-05-25 天津大学 一种具有三维平动一维转动的并联机构
CN203460172U (zh) * 2013-07-25 2014-03-05 天津大学 一种高速六自由度并联机械手
CN105500347B (zh) * 2016-01-27 2017-08-04 燕山大学 一种可实现稳定纯平动的三自由度并联机构
WO2017144954A1 (en) * 2016-02-26 2017-08-31 Afrough Mohsen Six degrees of freedom parallel mechanism
CN106346446B (zh) * 2016-06-23 2018-11-13 南京理工大学 一种四自由度大工作空间双动平台并联机器人机构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2283983A1 (en) * 2005-02-17 2011-02-16 Fundacion Fatronik High-speed parallel robot with four degrees of freedom
JP4289506B2 (ja) * 2006-03-03 2009-07-01 株式会社ジェイテクト 四自由度パラレルロボット
CN102642205A (zh) * 2012-04-20 2012-08-22 清华大学 一种四自由度双动平台并联机构
CN102689305A (zh) * 2012-04-20 2012-09-26 清华大学 一种三移动一转动的四自由度双动平台并联机构
CN104802154A (zh) * 2015-03-23 2015-07-29 杭州娃哈哈集团有限公司 一种四自由度高速并联机械手
CN107139162A (zh) * 2017-06-12 2017-09-08 清华大学 具有双动平台结构的并联分拣机器人
CN109531543A (zh) * 2018-12-21 2019-03-29 清华大学 具有双动平台结构的四自由度并联机器人

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112192548A (zh) * 2020-09-24 2021-01-08 香港理工大学深圳研究院 一种仅含转动关节的三自由度一平两转并联机构
CN113855245A (zh) * 2021-09-30 2021-12-31 重庆工程职业技术学院 一种全转动副两转动一移动远中心运动并联机构
CN114227648A (zh) * 2022-01-06 2022-03-25 清华大学 一种高刚度五自由度并联驱动机器人
CN114227649A (zh) * 2022-01-06 2022-03-25 清华大学 一种三移两转五自由度并联驱动机器人
CN114227648B (zh) * 2022-01-06 2023-11-03 清华大学 一种高刚度五自由度并联驱动机器人
CN114227649B (zh) * 2022-01-06 2023-11-03 清华大学 一种三移两转五自由度并联驱动机器人
CN116652914A (zh) * 2023-07-04 2023-08-29 吉林大学 三平动冗余并联遥操作机械手
CN116652914B (zh) * 2023-07-04 2023-12-19 吉林大学 三平动冗余并联遥操作机械手

Also Published As

Publication number Publication date
CN109531543A (zh) 2019-03-29
CN109531543B (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
WO2020125044A1 (zh) 具有双动平台结构的四自由度并联机器人
CN101659059B (zh) 三平动一转动并联机器人机构
CN100410028C (zh) 可实现整周回转的四自由度混联抓放式机器人机构
CN103552059B (zh) 一种面向拾放操作的四自由度大工作空间并联机器人机构
CN100410029C (zh) 可实现整周回转的四自由度混联抓放式机器人机构
CN1326671C (zh) 并联机器人连接分支结构及六自由度并联机器人机构
US11312005B2 (en) Two-degree-of-freedom parallel robot with spatial kinematic chain
CN101698300B (zh) 大工作空间并联机器人机构
CN109531556B (zh) 四自由度柱坐标并联机器人
CN108972505A (zh) 一种3PcSS+RTR球铰链代换型并联机构
CN112123323B (zh) 一种4upu-up冗余驱动并联机器人
CN110171015A (zh) 一种运动解耦的液压驱动三自由度球型手腕
CN203210372U (zh) 一种并联机器人
CN102615641A (zh) 一种五自由度并联动力头
CN112720545A (zh) 一种仿人并联的机器人灵巧手
CN105563458B (zh) 一种平面四杆机构的并联机器人
CN111168649B (zh) 高速高精度并联机器人
CN103386681B (zh) 可实现三维平动三维转动的并联机构
CN203460173U (zh) 可实现三维平动三维转动的并联机构
CN103231362A (zh) 一种并联机器人
CN105234928A (zh) 一种三平二转五自由度并联机构
CN203460171U (zh) 可实现三维平动二维转动的并联机构
CN203228227U (zh) 一种并-串联工业机器人的结构
CN106625591B (zh) 一种三平两转五自由度并联机构
CN207495497U (zh) 一种三自由度高速搬运机械手

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19900291

Country of ref document: EP

Kind code of ref document: A1