WO2020124529A1 - 充电控制装置和方法、电子设备 - Google Patents

充电控制装置和方法、电子设备 Download PDF

Info

Publication number
WO2020124529A1
WO2020124529A1 PCT/CN2018/122575 CN2018122575W WO2020124529A1 WO 2020124529 A1 WO2020124529 A1 WO 2020124529A1 CN 2018122575 W CN2018122575 W CN 2018122575W WO 2020124529 A1 WO2020124529 A1 WO 2020124529A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
unit
voltage
battery unit
module
Prior art date
Application number
PCT/CN2018/122575
Other languages
English (en)
French (fr)
Inventor
陈社彪
张加亮
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201880099578.3A priority Critical patent/CN113056855B/zh
Priority to PCT/CN2018/122575 priority patent/WO2020124529A1/zh
Priority to EP18944035.7A priority patent/EP3902086A4/en
Publication of WO2020124529A1 publication Critical patent/WO2020124529A1/zh
Priority to US17/351,224 priority patent/US11476680B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices

Definitions

  • the present application relates to the technical field of charging, in particular to a charging control device and method, and electronic equipment.
  • the general electronic equipment is mainly powered by a single cell, which has limited capacity and limited usage scenarios.
  • Embodiments of the present application provide a charging control device and method, and electronic equipment, which can realize multi-cell power supply for electronic equipment, and improve the efficiency of power supply for electronic equipment.
  • a charging control device for powering electronic equipment includes:
  • Interface module used to connect with external charging equipment
  • the battery unit includes a plurality of battery cells connected in series;
  • a controller connected to the interface module, is used to identify the charging mode of the external charging device and issue corresponding control instructions according to the charging mode;
  • the charging module is respectively connected to the controller and the battery unit, and is used for receiving the control instruction to charge the battery unit according to the charging signal output by the external charging device;
  • a voltage dividing module connected in series with the battery unit, is used to divide the output voltage of the battery unit to obtain a power supply voltage suitable for powering the electronic device
  • An electronic device includes a system to be powered, and further includes the charging control device, and the charging control device is configured to supply power to the system to be powered.
  • a charging control method is applied to a charging control device.
  • the charging control device includes: an interface module for connecting to an external charging device, a battery unit of a plurality of cells connected in series, a charging module, and a voltage dividing module.
  • the charging module is respectively connected to the interface module and the battery unit, and is used to charge the battery unit according to the charging signal output by the external charging device;
  • the voltage dividing module is connected in series with the battery unit to charge the battery unit Divides the output voltage of to obtain a power supply voltage suitable for powering the electronic device; the method includes:
  • the charging module is controlled to charge the battery unit according to the control instruction and the charging signal output by the external charging device.
  • the above charging control device and method, and electronic equipment can identify the charging mode of the external charging device connected to the interface module, and then control the charging module to charge the battery unit according to the charging signal provided by the external charging device and the charging module, and then use the partial voltage
  • the module converts the discharge voltage of the battery unit into a power supply voltage that can supply power to the electronic device, can supply power to the system to be powered in the electronic device, realizes multi-cell power supply for the electronic device, and improves the efficiency of power supply for the electronic device.
  • FIG. 1 is a schematic structural diagram of a charging control device in an embodiment
  • FIG. 2 is a second structural schematic diagram of a charging control device in an embodiment
  • FIG. 3 is a third structural schematic diagram of a charging control device in an embodiment
  • FIG. 4 is a fourth structural diagram of a charging control device in an embodiment
  • FIG. 5 is a fifth schematic structural diagram of a charging control device in an embodiment
  • FIG. 6 is a sixth structural diagram of a charging control device in an embodiment
  • FIG. 7 is a schematic structural diagram of an electronic device in an embodiment
  • FIG. 9 is a block diagram of a partial structure of a mobile phone related to an electronic device provided by an embodiment of the present application.
  • first”, “second”, etc. used in this application may be used herein to describe various elements, but these elements are not limited by these terms. These terms are only used to distinguish the first element from another element.
  • the first charging unit may be referred to as the second charging unit, and similarly, the second charging unit may be referred to as the first charging unit. Both the first charging unit and the second charging unit are charging units, but they are not the same charging unit.
  • the electronic device may be an electronic device with the built-in charging control device, for example, a mobile terminal, a tablet computer, a PDA (Personal Digital Assistant), a POS (Point of Sales), an on-board computer, and a wearable device , Mobile power, etc. can receive external charging equipment to charge it, and store electrical energy to any terminal device that can supply power to the system to be powered of the electronic device.
  • a mobile terminal for example, a mobile terminal, a tablet computer, a PDA (Personal Digital Assistant), a POS (Point of Sales), an on-board computer, and a wearable device , Mobile power, etc.
  • PDA Personal Digital Assistant
  • POS Point of Sales
  • Mobile power etc.
  • the charging control device includes an interface module 110, a battery unit 120, a controller 130, a charging module 140 and a voltage dividing module 150.
  • the interface module 110 is used to connect with an external charging device.
  • the interface module 110 is used to connect with an external charging device.
  • the interface module 110 includes charging interfaces such as VBUS, USB+, USB-, and GND.
  • the external charging device may include a fast charging charger or a quick charging adapter and a common adapter that can provide fast charging for the electronic device.
  • the fast charging charger or quick charging adapter can provide a charging power greater than 15W.
  • Common adapters can be 5V1A, 5V2A adapters.
  • this application does not limit the interface type in the interface module 110, for example, it may be a Micro usb interface, a Type-C interface, a 30-pin interface, a lightning interface, or the like.
  • the battery unit 120 includes a plurality of cells connected in series. In one embodiment, the number of cells included in the battery unit 120 may be 2, 3, 4 or more, and multiple cells are connected in series.
  • the battery cell type of the battery unit 120 may include at least one of a lead-acid battery, a nickel-metal hydride battery, a sodium-sulfur battery, a flow battery, a super capacitor, a lithium battery, and a flexible battery.
  • the battery unit 120 may include three lithium batteries connected in series, or the battery unit 120 may include four lithium batteries connected in series, and the like.
  • the output voltage of each cell can be in the range of 2.0-4.4 volts. It should be understood that the output voltage of each cell in the battery unit 120 can be balanced to balance the voltage between multiple cells signal. It should be noted that, in the present application, multiple can be understood as at least 2 (greater than or equal to 2), that is, multiple, 2, 3 or more.
  • the controller 130 is connected to the interface module 110 and used to identify the charging mode of the external charging device and issue a corresponding control instruction according to the charging mode.
  • the controller 130 can recognize the charging mode of the external charging device, and the controller 130 can also issue a corresponding control command according to the recognized charging mode, the control command is used to instruct the charging module 140 charges the battery unit 120 according to the charging signal output by the external charging device.
  • the USB signal in the external charging device is a differential signal, and its signal lines are D+ and D-, and the D+ or D- of the external charging device is provided with a pull-up and pull-down fixed resistor.
  • the USB1.0/1.1/2.0 protocol defines high and low speed devices to meet the needs of different situations. For example, D+ of high-speed devices is connected to a 1.5kohm pull-up resistor, and D- is not connected; the opposite is true for low-speed devices.
  • the controller 130 can quickly identify the resistance value of the fixed resistor on D+ or D- of the external charging device, and then determine whether the external charging device is a fast charging adapter. When the external charging device is a fast charging adapter, the corresponding charging mode is the fast charging mode; if the external charging device is a normal adapter, the corresponding charging mode is the normal mode.
  • the controller 130 can perform two-way communication with an external adapter connected to the connecting module, by accepting an inquiry command sent by an external charging device, the inquiry command is used to Inquiring whether the charging control device turns on the fast charging mode, the controller 130 sends a confirmation command to the external charging device according to the querying instruction, and the confirmation command is used to instruct the charging control device to agree to turning on the fast charging mode, so that the external charging device can be recognized Charging mode.
  • the charging speed in the fast charging mode is higher than that in the normal mode.
  • the charging current in the fast charging mode is greater than the charging current in the normal mode.
  • the fast charging mode can be understood as a high-current charging mode, that is, the corresponding charging current can be higher than 2.5A and can reach 5-10A, and the fast charging mode is a direct charging mode, which can directly output the output voltage of the external charging device It is directly loaded on both ends of the battery unit 120.
  • the normal mode can be understood as a charging mode where the rated output voltage is 5V and the rated output current is less than or equal to 2.5A.
  • the charging voltage of the fast charging mode is higher than the charging voltage of the normal mode, that is, the charging voltage of 9V, 15V, 20V, etc. is generally provided, which is higher than the charging of the normal mode Voltage (5V), when the high-voltage fast-charge mode is used to supply power to electronic devices, a step-down circuit for step-down processing needs to be added in the electronic device.
  • the step-down circuit can step down the charging voltage of the fast charging mode Then, apply the charging voltage suitable for powering the electronic equipment.
  • the charging module 140 is respectively connected to the controller 130 and the battery unit 120, and is configured to receive the control instruction to charge the battery unit 120 according to the charging signal output by the external charging device.
  • the controller 130 may recognize that the charging mode is the fast charging mode, and then output a first charging control command to the charging module 140, and the charging module 140 may receive the fast charging
  • the charging voltage provided by the adapter is directly applied to both ends of the plurality of cells connected in series within the battery unit 120 to directly charge the plurality of cells.
  • the terms “direct”, “direct charging”, “direct loading” and “direct charging” as used in this application mean that the charging voltage from the fast charging charger or the fast charging adapter can match the output voltage of the battery unit 120 Matching, or it means that the charging voltage from the fast charging charger or the fast charging adapter can be applied to both ends of multiple cells for charging without going through voltage conversion.
  • Matching can be understood as the charging voltage of the fast charging adapter can be equal to the output voltage of the battery unit 120, or the difference between the charging voltage of the fast charging adapter and the output voltage of the battery unit 120 can be within a preset floating range, for example , Within tens of millivolts and so on.
  • the controller 130 can recognize that its charging mode is the ordinary mode, and then output a second charging control command to the charging module 140, and the charging module 140 can receive the ordinary adapter.
  • buck circuit or boost circuit boost circuit
  • the voltage dividing module 150 is connected in series with the battery unit 120 and is used to divide the output voltage of the battery unit 120 to obtain a power supply voltage suitable for powering the electronic device.
  • the voltage dividing module 150 includes a voltage dividing circuit, and the input terminal of the voltage dividing circuit may be connected in series with the battery unit 120. That is, the battery unit 120 includes a plurality of cells connected in series, wherein the number of cells is N, and each cell includes a positive electrode and a negative electrode.
  • the first input terminal of the voltage divider circuit can be connected to the positive electrode of the first cell
  • the second input terminal of the voltage divider circuit can be connected to the negative electrode of the Nth cell
  • the output terminal of the voltage divider circuit can be connected to the power supply system of the electronic device , For converting the output voltage of the battery unit 120 to the power supply voltage, wherein the power supply voltage is one-nth (1/N) times the output voltage, where the N is The number of the batteries currently powering the electronic device.
  • the battery unit 120 can be changed into a discharge voltage after being divided by a voltage divider circuit (1/3 divider) It discharges one-third of the total voltage of the three series-connected cells to supply power to the system to be powered of electronic equipment.
  • the battery unit 120 includes series-connected cells, referring to FIG. 3, respectively B1, B2, B3, and B4, the battery unit 120 can be changed into a discharge voltage after being divided by a voltage divider circuit (1/4 divider) It discharges one-quarter of the total voltage of the four series-connected cells to supply power to the system to be powered of electronic equipment.
  • the output terminal of the voltage dividing circuit may be connected to the system to be powered of the electronic device, and used to convert the output voltage of the battery unit 120 into the power supply voltage, wherein the power supply voltage is also
  • the voltage required by the power supply system can be supplied, that is, the voltage divider circuit can convert the output voltage of the battery unit 120 according to the voltage requirements of each module of the power supply system.
  • the voltage required by different modules in the system to be powered is different, for example, the required voltage may be 3.3V, 1.5V, etc.
  • the voltage dividing circuit may be a charge pump with a voltage dividing or step-down function, a voltage dividing module composed of a plurality of resistors, a step-down converter, etc.
  • the specific form of the voltage divider circuit is not further limited.
  • N is the number of the battery cells currently supplying power to the electronic device, which can be understood as the number of battery cells currently in the working state. For example, if the total number of cells in the battery unit 120 is M, but it is currently in the working state, that is, the number of cells that can power the electronic device is N, where N is less than or equal to M.
  • the above charging control device including the interface module 110, the battery unit 120, the controller 130, the charging module 140 and the voltage dividing module 150, can recognize the charging mode of the external charging device connected to the interface module 110, and then control the charging module 140 according to The charging signal provided by the external charging device and the charging module 140 charge the battery unit 120, and then use the voltage dividing module 150 to convert the discharge voltage of the battery unit 120 into a power supply voltage that can supply power to the electronic device, which can be a system to be powered in the electronic device Power supply can solve the problem of multi-cell power supply for electronic equipment and improve the efficiency of power supply for electronic equipment.
  • the charging module 140 includes a first charging unit 132, a second charging unit 134, and a first switching unit 146.
  • the first charging unit 132 is respectively connected to the interface module 110 and the battery unit 120;
  • the second charging unit 134 is respectively connected to the interface module 110 and the battery unit 120;
  • the first switching unit 146 is respectively connected to the controller 130,
  • the first charging unit 132 and the second charging unit 134 are connected.
  • the controller 130 may recognize the charging mode of the external charging device connected to the interface module 110.
  • the charging mode includes a fast charging mode and a normal mode.
  • the controller 130 issues a first control command, and the first control command is used to control the first switch unit 146 to turn on the interface module A first path formed by 110 and the first charging unit 132. That is, the first charging unit 132 is in the charging state, and the battery unit 120 can be directly charged at the first charging speed according to the charging signal output by the external charging device.
  • the charging signal received by the first charging unit 132 is a pulsed DC current signal or an AC current signal. That is, the external charging device may adopt a constant current charging mode based on the first charging unit 132, that is, use a constant current to charge the charging unit.
  • the controller 130 issues a second control command, and the second control command is used to control the second switch unit to turn on the interface module 110 and The second path formed by the second charging unit 134. That is, the second charging unit 134 is in an operating state and can charge the battery unit 120 at a second charging speed according to the charging signal of the external charging device, wherein the first charging speed is greater than the second charging speed.
  • the second charging unit 134 includes a boost circuit, an input terminal of the boost circuit is connected to the interface module 110, and an output terminal of the boost circuit is connected to the battery unit 120.
  • the charging signal received by the second charging unit 134 is a voltage signal. That is, the charging voltage output by the ordinary adapter cannot directly charge the battery unit 120, and a boosting circuit included in the second charging unit 134 needs to be used to boost the output charging voltage to obtain the battery unit 120 suitable for the battery unit 120.
  • the charged charging voltage then charges a plurality of cells in series. Among them, the charging voltage output by the ordinary adapter is 5V, but the charging voltage range required by each battery cell is between 2.2-4.5V, that is, the charging voltage output by the ordinary adapter is 5V less than that of multiple serially connected batteries The total voltage.
  • the boosting circuit can convert the charging voltage (for example, 5V) output from a common adapter to a charging voltage (12V) suitable for charging the battery unit 120 (three cells in series). The charging voltage is greater than the sum of the voltages of all the cells connected in series in the battery unit 120.
  • the boost circuit may use a Boost boost circuit, or a charge pump may be used to perform boost processing.
  • the first switch unit 146 may be of various types, wherein the switch unit 120 may have two power output terminals, and the switch unit 120 may control the power output to two different power output terminals.
  • the switch with two power output terminals can be a single-pole double-throw switch, a relay, etc.
  • the first switching unit 146 may further include a plurality of electronic switch tubes, for example, at least one of diodes, transistors, relays, thyristors, thyristors, MOS tubes, and IGBTs. By controlling the conduction or disconnection of the electronic switch tube, the first passage or the second passage is further turned on.
  • the controller 130 can identify the charging mode of the external charging device connected to the interface module 110.
  • the charging mode is the fast charging mode
  • the first charging unit 132 can be automatically selected to directly charge the battery unit 120 to provide Charging efficiency
  • the second charging unit 134 can be automatically selected to charge the battery unit 120 after boosting, so that a common adapter can be used to charge multiple cells connected in series, and That is, different charging units can be adaptively selected to simultaneously charge multiple cells, which improves the charging efficiency.
  • the charging control device further includes a plurality of second switch units 160.
  • the plurality of second switch units 160 are respectively connected to the control module and the battery unit 120.
  • the plurality of second switch units 160 are connected to the plurality of cells to form a plurality of charging branches for turning on or off the charging branch where the cells are located according to the switching instruction ,
  • the charging branch includes at least two of the batteries.
  • the control module may issue a switching instruction to control the number of cells currently in the charging state by controlling the on or off of the plurality of second switch units 160.
  • a plurality of charging branches can be formed by controlling the turning on or off of the plurality of second switching units 160.
  • one charging branch may include two batteries, one charging branch may include three batteries; one charging branch may include four batteries.
  • the cells included in the charging branch are in a charged state, and the remaining cells that do not appear in the charging branch are in a non-charged state.
  • the second charging unit 134 may charge at least two cells in the charging state in the charging branch.
  • the control module can be formed by controlling the on or off of the plurality of second switching units 160 A charging branch (ie, controlling the second switching unit 160' to be turned off and controlling the second switching unit 160" to be turned on), the charging branch includes cells B1, B2. That is, the cells B1, B2 are in charge While the batteries B3 and B4 are in a non-charging state, when the second charging unit 134 charges the charging unit, the batteries B1 and B2 in the charging branch can be charged.
  • the controller 130 when the charging module 140 and the second charging unit 134 form a second path, the controller 130 is also connected to the second charging unit 134 for receiving the second charging unit 134 The provided charging voltage for charging the battery unit 120, and issuing the switching instruction according to the charging voltage.
  • the controller 130 may receive the boosted charging voltage of the second charging unit 134 and issue a corresponding switching instruction according to the charging voltage.
  • the switching instruction is used to control the turning on and off of the plurality of second switching units 160 to determine the number of cells connected in series in the charging branch. For example, when the charging voltage is within the first preset range, the number of cells connected in series in the charging branch can be determined to be two; when the charging voltage is within the second preset range, the series connected in the charging branch can be determined The number of cells is three, and when the charging voltage is within the third preset range, it can be determined that the number of cells in series in the charging branch is four.
  • the first preset range, the second preset range, and the third preset range increase in sequence.
  • the controller 130 may also issue a corresponding on-off command to control the on-off of the plurality of second switch units 160 so that The battery cell in the non-charged state is in the charged state, and the battery cell in the charged state is in the non-charged state, thereby forming a new charging branch.
  • each preset range may be divided according to at least one factor among the charging voltage, the voltage of each cell, and the number of cells in the battery unit 120.
  • the number of cells of the charging branch corresponding to each preset range can also be set according to actual needs.
  • the division of each preset range and the series branch corresponding to each preset range are not further limited.
  • the number of second switching units 160 can be controlled according to the magnitude of the charging voltage, thereby controlling the number of cells connected in series in the charging branch, and the battery cells 120 can be batched. All batteries are charged to provide charging efficiency. At the same time, it can also provide power supply efficiency for powering electronic devices.
  • the device further includes an equalization module 170 connected to the battery unit 120, for equalizing voltage signals between the plurality of cells.
  • the equalization module 170 includes multiple equalization units, wherein the equalization unit is connected in series with the battery cells, that is, one battery cell corresponds to one equalization unit.
  • the balancing unit may balance the voltage signals between the plurality of cells by using capacitive balancing, inductive balancing, and transformer balancing.
  • the voltage and current between each cell can be enabled by the balancing module 170 Efficient and timely balance can improve the overall performance of multiple cells and facilitate the unified management of multiple cells.
  • the charging control device when the charging control device charges the battery unit 120, it can control the turning on and off of the plurality of second switching units 160 according to the magnitude of the charging voltage, thereby controlling the number of cells connected in series in the charging branch. If the number of cells in the charging branch is less than the total number of all cells in the battery unit 120, it can also transfer part of the energy of the cells with high voltage based on the equalization module 170 in an active equalization manner Core, thereby delaying the lowest cell voltage to reach the discharge to achieve a balanced process.
  • the charging control device further includes an energy storage module 180 connected in parallel with the battery unit 120 for storing part of the electric energy of the battery unit 120 to extract pre-charges from the electronic device When the current signal is set, the battery unit 120 maintains the normal power supply of the electronic device.
  • the energy storage module 180 includes a super-capacitor.
  • Farad capacitor is also called electric double layer capacitor, gold capacitor, super capacitor.
  • Farad capacitors store energy through polarized electrolyte, but no chemical reaction occurs, and the energy storage process is reversible, precisely because Farad capacitors can be repeatedly charged and discharged hundreds of thousands of times.
  • Farad capacitors have a larger capacitance than ordinary capacitors, and their maximum capacity can reach thousands of farads. Using its characteristics can provide a stable voltage output.
  • a farad capacitor can generate a large discharge current in an instant to meet the power demand of the electronic device, improve the performance of the electronic device, and avoid battery cells
  • the drastic change of the 120 output current extends the life of the battery unit 120.
  • the number of farad capacitors included in the energy storage module 180 may be one or more. Multiple Farad capacitors can be connected in parallel or in series.
  • the energy storage module 180 may be connected in parallel with the battery unit 120.
  • the energy storage module 180 may also be connected to the voltage dividing module 150, that is, may be provided at both ends of the voltage dividing module 150, that is, may be provided at the input end of the system to be powered of the electronic device.
  • the number of farad capacitors included in the energy storage module 180 may be multiple, wherein the number of farad capacitors is the same as the number of cells, and one farad capacitor is correspondingly connected in parallel with one cell.
  • the internal resistance of a lithium battery will increase at low temperatures or after long-term use. At this time, if the voltage of the cell is relatively low, the electronic device draws a large current (short-term large current). Due to the large internal resistance of the cell, the cell voltage will drop sharply. If it falls to the voltage threshold at which the electronic device can work normally The following will cause the electronic device to shut down suddenly, and some user data cannot be saved.
  • a farad capacitor is used in parallel with the battery cell (lithium battery).
  • the farad capacitor has good ultra-low temperature characteristics and low impedance.
  • the electronic device needs to draw a large current (short-time large current), it can maintain the voltage without occurring.
  • the drastic drop can make the shutdown voltage point of the electronic device and the low temperature shutdown point lower, thereby avoiding the waste of battery capacity and the automatic shutdown of the electronic device at low temperature.
  • the present application also provides an electronic device, including a system to be powered 710, and further including a charging control device 720 according to any of the above-mentioned embodiments of the claims.
  • the charging control device 720 is used to The power supply system supplies power.
  • the output terminal of the charging control device 720 is connected to the input terminal of the system to be powered 710 of the electronic device, and is used to supply power to the system to be powered 710.
  • the system to be powered 710 can be understood as all devices in an electronic device that require electrical power to support operation or a module or system composed of devices. In this application, the power supply system 710 is not further limited.
  • the voltages of the plurality of cells in the battery unit 120 can be converted into a supply voltage suitable for supplying power to the system to be powered 710, and the feasibility of supplying electronic devices with multiple cells is realized.
  • the backlight driving module is connected to the positive output terminal of the battery unit 120 and is used to receive the output of the charging unit Voltage to drive the backlight driving module.
  • the backlight driving module includes a backlight driving chip and a light emitting module connected to the driving chip.
  • the driving voltage of the backlight driving chip is relatively high (for example, 16, 18V), and the driving of the driving voltage can drive the backlight driving chip to control the light emitting module to emit light.
  • the battery unit 120 includes a plurality of series-connected cells (for example, a series of three cells or a series of four cells), and the total output voltage of the battery unit 120 is the voltage of a plurality of series-connected cells with. For example, if the output voltage of one cell is 4V and the total output voltage of the four cells in series is 16V, it is only necessary to increase the total output voltage to the driving voltage to drive the backlight driving chip to control the light emitting unit to emit light. Compared with a single cell, the output voltage (4V) needs to be increased to the driving voltage, and there is a relatively large voltage difference which makes the conversion efficiency of the backlight driving chip relatively low. In this embodiment, the difference between the total output voltage of the battery unit 120 and the driving voltage is small, which reduces the voltage difference between the total output voltage and the driving voltage, thereby improving the conversion efficiency of the backlight driving chip.
  • the present application also provides a charging control method, which is applied to a charging control device.
  • the charging control device includes: an interface module for connecting to an external charging device, a battery unit of a plurality of cells connected in series, a charging module, and a voltage dividing module , Wherein the charging module is connected to the interface module and the battery unit, respectively, for charging the battery unit according to the charging signal output by the external charging device; the voltage dividing module is connected in series with the battery unit for The output voltage of the battery unit is divided to obtain a power supply voltage suitable for powering the electronic device.
  • FIG. 8 is a flowchart of a charging control method in an embodiment.
  • the charging control method in this embodiment will be described by taking the electronic device in FIG. 7 as an example. As shown in FIG. 8, the charging control method includes steps 802 to 804.
  • Step 802 identify the charging mode of the external charging device, and issue a corresponding control instruction according to the charging mode.
  • the interface module of the electronic device When the interface module of the electronic device is connected to an external charging device, it can recognize the charging mode of the external charging device, and can also issue a corresponding control command according to the recognized charging mode.
  • the control command is used to instruct the charging module to output according to the external charging device 'S charging signal charges the battery unit.
  • the USB signal in the external charging device is a differential signal, and its signal lines are D+ and D-, and the D+ or D- of the external charging device is provided with a pull-up and pull-down fixed resistor.
  • the USB1.0/1.1/2.0 protocol defines high and low speed devices to meet the needs of different situations. For example, D+ of high-speed devices is connected to a 1.5kohm pull-up resistor, and D- is not connected; the opposite is true for low-speed devices.
  • the interface module When the interface module is connected to an external charging device, it can quickly identify the resistance value of the fixed resistor on D+ or D- of the external charging device, and then determine whether the external charging device is a fast charging adapter. When the external charging device is a fast charging adapter, the corresponding charging mode is the fast charging mode; if the external charging device is a normal adapter, the corresponding charging mode is the normal mode.
  • the two-way communication can be performed with the external adapter connected to the interface module, by receiving an inquiry command sent by the external charging device, the inquiry command is used to query the charging control Whether the device turns on the fast charging mode, a confirmation command is sent to the external charging device according to the query instruction, the confirmation command is used to instruct the charging control device to agree to turn on the fast charging mode, and then the charging mode of the external charging device can be recognized.
  • the charging speed in the fast charging mode is higher than that in the normal mode.
  • the charging current in the fast charging mode is greater than the charging current in the normal mode.
  • the fast charging mode can be understood as a high-current charging mode, that is, the corresponding charging current can be higher than 2.5A and can reach 5-10A, and the fast charging mode is a direct charging mode, which can directly output the output voltage of the external charging device Load directly on both ends of the battery cell.
  • the fast charging mode can also be a high voltage fast charging mode, that is, the charging voltage of the fast charging mode is higher than the charging voltage of the normal mode, that is, the charging voltage of 9V, 15V, 20V, etc.
  • the step-down circuit can step down the charging voltage of the fast charging mode After the treatment, apply the charging voltage suitable for powering the electronic equipment.
  • the normal mode can be understood as a charging mode where the rated output voltage is 5V and the rated output current is less than or equal to 2.5A.
  • Step 804 Control the charging module to charge the battery unit according to the control instruction and the charging signal output by the external charging device.
  • the external charging device when the external charging device is a fast charging adapter, it can recognize that its charging mode is a fast charging mode, and then output a first charging control command to the charging module, which can receive the charging voltage provided by the fast charging adapter, The charging voltage is directly applied to both ends of a plurality of cells connected in series within the battery cell, and the cells are directly charged.
  • the terms “direct”, “direct charging”, “direct loading” and “direct charging” used in this application mean that the charging voltage from the fast charging charger or fast charging adapter can be related to the output voltage of the battery unit Matching, or, means that the charging voltage from the fast charging charger or the fast charging adapter can be applied to both ends of multiple cells for charging without going through voltage conversion.
  • Matching can be understood as the charging voltage of the fast charging adapter can be equal to the output voltage of the battery unit 120, or the difference between the charging voltage of the fast charging adapter and the output voltage of the battery unit 120 can be within a preset floating range, for example , Within tens of millivolts and so on.
  • the charging mode when the external charging device is an ordinary adapter, the charging mode can be recognized as an ordinary mode, and then a second charging control instruction is output to the charging module.
  • the charging module can receive the charging voltage provided by the ordinary adapter and The charging voltage is converted to provide a charging voltage that can be adapted to charge multiple cells. For example, by adding a voltage conversion circuit (buck circuit or boost circuit), the output voltage provided by a common adapter can be converted into a charging voltage suitable for charging multiple cells, and the converted charging voltage can be loaded on Ends of each cell.
  • buck circuit or boost circuit boost circuit
  • the charging module includes a first charging unit, a second charging unit, and a first switching unit.
  • Identify the charging mode of the external charging device and issue corresponding control instructions according to the charging mode including:
  • a first control command is issued, and the first control command is used to control the first switch unit to turn on the first path formed by the interface module and the first charging unit .
  • a first control command is issued, and the first control command is used to control the first switch unit to turn on the interface module and the first charging
  • the first path constituted by the unit That is, the first charging unit is in the charging state, and the battery unit can be directly charged at the first charging speed according to the charging signal output by the external charging device.
  • the charging signal received by the first charging unit is a pulsed DC current signal or an AC current signal.
  • the first charging unit may also adopt a constant current charging mode, that is, a constant current is used to charge the charging unit.
  • a second control command is issued, and the second control command is used to control the first switching unit to turn on the second path formed by the interface module and the second charging unit.
  • the charging mode when the charging mode is the normal mode, a second control command is issued, and the second control command is used to control the second switch unit to turn on the interface module and the second charging unit Constitute the second passage. That is, the second charging unit is in the working state and can charge the battery unit at a second charging speed according to the charging signal of the external charging device, wherein the first charging speed is greater than the second charging speed.
  • the second charging unit includes a booster circuit, an input terminal of the booster circuit is connected to the interface module, and an output terminal of the booster circuit is connected to the battery unit.
  • the charging signal received by the second charging unit is a voltage signal. That is, the charging voltage output by the ordinary adapter cannot directly charge the battery unit, and the charging voltage output by the boosting circuit included in the second charging unit needs to be boosted to obtain a charge suitable for charging the battery unit Voltage, which then charges multiple cells in series.
  • the charging voltage output by the ordinary adapter is 5V, but the charging voltage range required by each battery cell is between 2.2-4.5V, that is, the charging voltage output by the ordinary adapter is 5V less than that of multiple serially connected batteries The total voltage.
  • the cell voltage is 4V, if three cells are connected in series, the total charging voltage required is greater than 12V, and if four cells are connected in series, the total charging voltage required is greater than 16V.
  • the booster circuit can boost the charging voltage (e.g. 5V) output from a common adapter to a charging voltage (12V) suitable for charging battery cells (three cells in series).
  • the charging voltage is greater than the sum of the voltages of all the cells connected in series in the battery unit.
  • the boost circuit may use a Boost boost circuit, or a charge pump may be used to perform boost processing.
  • the type of the first switch unit may be multiple, wherein the switch unit 120 may have two power output terminals, and the switch unit 120 may control the power output to two different power output terminals.
  • the switch with two power output terminals can be a single-pole double-throw switch, a relay, etc.
  • the first switching unit may further include a plurality of electronic switch tubes, for example, at least one of diodes, transistors, relays, thyristors, thyristors, MOS tubes, and IGBTs. By controlling the conduction or disconnection of the electronic switch tube, the first passage or the second passage is further turned on.
  • the charging mode of the external charging device connected to the interface module can be identified.
  • the charging mode is the fast charging mode
  • the first charging unit can be automatically selected to directly charge the battery unit to provide charging efficiency
  • the second charging unit can be automatically selected to charge the battery unit after boosting, so that a common adapter can be used to charge multiple cells connected in series, that is, different charging can be adaptively selected
  • the unit charges multiple cells at the same time, improving the charging efficiency.
  • the charging control device further includes a plurality of second switch units connected to the battery unit, and the plurality of second switch units are connected to the plurality of cells to form a plurality of charging branches.
  • the charging control method further includes: when the first switching unit turns on the second path formed by the interface module and the second charging unit, issuing a switching instruction; turning on or off the power according to the switching instruction
  • the charging branch where the core is located, the charging branch includes at least two of the battery cells.
  • a switching instruction may be issued to control the number of cells currently in a charged state by controlling the conduction or disconnection of the plurality of second switch units.
  • a plurality of charging branches may be formed by controlling the conduction or disconnection of the plurality of second switching units.
  • one charging branch may include two batteries, one charging branch may include three batteries; one charging branch may include four batteries.
  • the cells included in the charging branch are in a charged state, and the remaining cells that do not appear in the charging branch are in a non-charged state.
  • the second charging unit may charge at least two batteries in the charging state in the charging branch.
  • the charging branch includes cells B1, B2. That is, the cells B1, B2 are in a charged state, and the electricity The cores B3 and B4 are in a non-charging state.
  • the second charging unit charges the charging unit, the cells B1 and B2 in the charging branch can be charged.
  • the electronic device may receive the boosted charging voltage of the second charging unit and issue a corresponding switching instruction according to the charging voltage.
  • the switching instruction is used to control the turning on and off of the plurality of second switching units to determine the number of cells connected in series in the charging branch. For example, when the charging voltage is within the first preset range, the number of cells connected in series in the charging branch can be determined to be two; when the charging voltage is within the second preset range, the series connected in the charging branch can be determined The number of cells is three, and when the charging voltage is within the third preset range, it can be determined that the number of cells in series in the charging branch is four.
  • the first preset range, the second preset range, and the third preset range increase in sequence.
  • the controller may also issue a corresponding on-off command to control the on-off of the plurality of second switching units, so that the battery is in a non-charging state
  • the battery cell in the state of being in a charged state, and the battery cell in the state of being in a charged state are in a non-charged state, thereby forming a new charging branch.
  • each preset range may be divided according to at least one factor among the charging voltage, the voltage of each cell, and the number of cells in the battery unit.
  • the number of cells of the charging branch corresponding to each preset range can also be set according to actual needs.
  • the division of each preset range and the series branch corresponding to each preset range are not further limited.
  • the number of second switching units can be controlled according to the size of the charging voltage, thereby controlling the number of cells connected in series in the charging branch, and then all the batteries in the battery unit can be batched.
  • the core is charged to provide charging efficiency. At the same time, it can also provide power supply efficiency for powering electronic devices.
  • steps in the flowchart of FIG. 8 are displayed in order according to the arrows, the steps are not necessarily executed in the order indicated by the arrows. Unless clearly stated in this article, the execution of these steps is not strictly limited in order, and these steps may be executed in other orders. Moreover, at least a part of the steps in FIG. 8 may include multiple sub-steps or multiple stages. These sub-steps or stages are not necessarily executed and completed at the same time, but may be executed at different times. The execution of these sub-steps or stages The order is not necessarily sequential, but may be executed in turn or alternately with at least a part of other steps or sub-steps or stages of other steps.
  • the embodiments of the present application also provide a computer-readable storage medium.
  • One or more non-volatile computer-readable storage media containing computer-executable instructions, which when executed by one or more processors, cause the processors to perform the steps of the charging control method.
  • a computer program product containing instructions that, when run on a computer, causes the computer to execute a charging control method.
  • An embodiment of the present application also provides an electronic device. As shown in FIG. 9, for ease of description, only parts related to the embodiments of the present application are shown, and specific technical details are not disclosed, please refer to the method part of the embodiments of the present application.
  • the electronic device may be any terminal device including a mobile phone, tablet computer, PDA (Personal Digital Assistant), POS (Point of Sales), in-vehicle computer, wearable device, etc. Taking the electronic device as a mobile phone for example :
  • the mobile phone includes: a radio frequency (Radio Frequency) circuit 910, a memory 920, an input unit 930, a display unit 940, a sensor 950, an audio circuit 960, a wireless fidelity (WiFi) module 970, a processor 980 , And power supply 990 and other components.
  • a radio frequency (Radio Frequency) circuit 910 the mobile phone includes: a radio frequency (Radio Frequency) circuit 910, a memory 920, an input unit 930, a display unit 940, a sensor 950, an audio circuit 960, a wireless fidelity (WiFi) module 970, a processor 980 , And power supply 990 and other components.
  • WiFi wireless fidelity
  • FIG. 9 does not constitute a limitation on the mobile phone, and may include more or less components than those shown in the figure, or a combination of certain components, or a different component arrangement.
  • the RF circuit 910 can be used to receive and send signals during the sending and receiving of information or during a call. It can receive the downlink information of the base station and process it to the processor 980; it can also send the uplink data to the base station.
  • the RF circuit includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier (LNA), a duplexer, and the like.
  • the RF circuit 910 can also communicate with other devices via a wireless communication network.
  • the above wireless communication can use any communication standard or protocol, including but not limited to Global System of Mobile (GSM), General Packet Radio Service (GPRS), and Code Division Multiple Access Multiple Access (CDMA), Wideband Code Division Multiple Access (Wideband Code Division Multiple Access, WCDMA), Long Term Evolution (LTE), e-mail, Short Message Service (SMS), etc.
  • GSM Global System of Mobile
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • SMS Short Message Service
  • the memory 920 may be used to store software programs and modules, and the processor 980 executes various functional applications and data processing of the mobile phone by running the software programs and modules stored in the memory 920.
  • the memory 920 may mainly include a program storage area and a data storage area, where the program storage area may store an operating system and applications required for at least one function (such as an application program for a sound playback function, an application program for an image playback function, etc.), etc.;
  • the data storage area can store data (such as audio data, address book, etc.) created according to the use of the mobile phone.
  • the memory 920 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the input unit 930 may be used to receive input numeric or character information, and generate key signal input related to user settings and function control of the mobile phone 900.
  • the input unit 930 may include a touch panel 931 and other input devices 932.
  • the touch panel 931 also known as a touch screen, can collect user's touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc. on or near the touch panel 931 Operation), and drive the corresponding connection device according to the preset program.
  • the touch panel 931 may include a touch detection device and a touch controller.
  • the touch detection device detects the user's touch orientation, and detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives touch information from the touch detection device and converts it into contact coordinates, and then sends It is given to the processor 980 and can receive the commands sent by the processor 980 and execute them.
  • the touch panel 931 may be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 930 may also include other input devices 932.
  • other input devices 932 may include, but are not limited to, one or more of a physical keyboard, function keys (such as volume control keys, switch keys, etc.), and the like.
  • the display unit 940 may be used to display information input by the user or information provided to the user and various menus of the mobile phone.
  • the display unit 940 may include a display panel 941.
  • the display panel 941 may be configured in the form of a liquid crystal display (Liquid Crystal) (LCD), an organic light-emitting diode (Organic Light-Emitting Diode, OLED), or the like.
  • the touch panel 931 may cover the display panel 941, and when the touch panel 931 detects a touch operation on or near it, it is transmitted to the processor 980 to determine the type of touch event, and then the processor 980 according to The type of touch event provides a corresponding visual output on the display panel 941.
  • the touch panel 931 and the display panel 941 are implemented as two independent components to realize the input and input functions of the mobile phone, in some embodiments, the touch panel 931 and the display panel 941 may be integrated and Realize the input and output functions of the mobile phone.
  • the mobile phone 900 may further include at least one sensor 950, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the ambient light sensor may adjust the brightness of the display panel 941 according to the brightness of the ambient light, and the proximity sensor may close the display panel 941 and/or when the mobile phone moves to the ear Or backlight.
  • the motion sensor may include an acceleration sensor. The acceleration sensor can detect the magnitude of acceleration in various directions, and can detect the magnitude and direction of gravity when at rest.
  • the mobile phone can be used for applications that recognize mobile phone gestures (such as horizontal and vertical screen switching), and vibration recognition-related functions (such as Pedometer, percussion, etc.; in addition, the mobile phone can also be equipped with other sensors such as gyroscope, barometer, hygrometer, thermometer, infrared sensor, etc.
  • the audio circuit 960, the speaker 991, and the microphone 992 may provide an audio interface between the user and the mobile phone.
  • the audio circuit 960 can transmit the converted electrical signal of the received audio data to the speaker 991, which converts the speaker 991 into a sound signal output; on the other hand, the microphone 992 converts the collected sound signal into an electrical signal, which is converted by the audio circuit 960 After receiving, it is converted into audio data, and after processing the audio data output processor 980, it can be sent to another mobile phone through the RF circuit 910, or the audio data is output to the memory 920 for subsequent processing.
  • WiFi is a short-distance wireless transmission technology.
  • the mobile phone can help users send and receive emails, browse web pages, and access streaming media through the WiFi module 970. It provides users with wireless broadband Internet access.
  • FIG. 9 shows the WiFi module 970, it can be understood that it is not a necessary component of the mobile phone 900, and may be omitted as needed.
  • the processor 980 is the control center of the mobile phone, and uses various interfaces and lines to connect the various parts of the entire mobile phone, by running or executing the software programs and/or modules stored in the memory 920, and calling the data stored in the memory 920 to execute Various functions and processing data of the mobile phone, so as to monitor the mobile phone as a whole.
  • the processor 980 may include one or more processing units.
  • the processor 980 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, user interface, application programs, and the like; the modem processor mainly processes wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 980.
  • the mobile phone 900 further includes a power supply 990 (such as a battery) that supplies power to various components.
  • a power supply 990 (such as a battery) that supplies power to various components.
  • the power supply can be logically connected to the processor 980 through a power management system, so as to realize functions such as charging, discharging, and power management through the power management system.
  • the mobile phone 900 may further include a camera, a Bluetooth module, and the like.
  • the processor 980 included in the electronic device implements the steps of the charging control method when the computer program stored on the memory is executed.
  • Non-volatile memory may include read-only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory can include random access memory (RAM), which acts as external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), synchronous Link (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM).
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous Link (Synchlink) DRAM
  • Rambus direct RAM
  • DRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供一种充电控制装置和方法、电子设备。充电控制装置,用于为电子设备供电,充电控制装置包括:接口模块(110),用于与外部充电设备连接;电池单元(120),包括多个串联的电芯;控制器(130),与接口模块(110)连接,用于识别外部充电设备的充电模式,并根据充电模式发出相应的控制指令;充电模块(140),分别与控制器(130)、电池单元(120)连接,用于接收控制指令以根据外部充电设备输出的充电信号为电池单元充电;分压模块(150),与电池单元(120)串联,用于对电池单元的输出电压进行分压处理以获取适用于为电子设备供电的供电电压。

Description

充电控制装置和方法、电子设备 技术领域
本申请涉及充电技术领域,特别是涉及一种充电控制装置和方法、电子设备。
背景技术
目前,电子设备越来越受到消费者的青睐,但是电子设备的耗电量大,需要进行充电以满足用户对电子设备的使用需求。
一般电子设备主要采用单电芯供电,其容量有限,使用场景受限。
发明内容
本申请实施例提供一种充电控制装置和方法、电子设备,可以实现多电芯为电子设备供电,提高了为电子设备供电的效率。
一种充电控制装置,用于为电子设备供电,所述装置包括:
接口模块,用于与外部充电设备连接;
电池单元,包括多个串联的电芯;
控制器,与所述接口模块连接,用于识别所述外部充电设备的充电模式,并根据所述充电模式发出相应的控制指令;
充电模块,分别与所述控制器、电池单元连接,用于接收所述控制指令以根据所述外部充电设备输出的充电信号为所述电池单元充电;
分压模块,与所述电池单元串联,用于对所述电池单元的输出电压进行分压处理以获取适用于为所述电子设备供电的供电电压
一种电子设备,包括待供电系统,进一步包括所述充电控制装置,所述充电控制装置用于为所述待供电系统进行供电。
一种充电控制方法,应用于充电控制装置,所述充电控制装置包括:用于与外部充电设备连接的接口模块、多个串联的电芯的电池单元、充电模块和分压模块,其中,所述充电模块分别与接口模块、电池单元连接,用于根据所述外部充电设备输出的充电信号为所述电池单元充电;所述分压模块与所述电池单元串联,用于对所述电池单元的输出电压进行分压处理以获取适用于为所述电子设备供电的供电电压;所述方法包括:
识别所述外部充电设备的充电模式,并根据所述充电模式发出相应的控制指令;
根据所述控制指令和所述外部充电设备输出的充电信号控制所述充电模块为所述电池单元充电。
上述充电控制装置和方法、电子设备,能够识别接入至接口模块中的外部充电设备的充电模式,进而控制充电模块根据外部充电设备提供的充电信号以及充电模块为电池单元充电,继而利用分压模块将电池单元的放电电压转换为能够为电子设备供电的供电电压,能够为电子设备中的待供电系统供电,实现了多电芯为电子设备的供电,提高了为电子设备供电的效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1为一实施例中的充电控制装置的结构示意图之一;
图2为一个实施例中充电控制装置的结构示意图之二;
图3为一个实施例中充电控制装置的结构示意图之三;
图4为一个实施例中充电控制装置的结构示意图之四;
图5为一个实施例中充电控制装置的结构示意图之五;
图6为一个实施例中充电控制装置的结构示意图之六;
图7为一个实施例中电子设备的结构示意图;
图8为一个实施例中充电控制方法的流程图;
图9为与本申请实施例提供的电子设备相关的手机的部分结构的框图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分。举例来说,在不脱离本申请的范围的情况下,可以将第一充电单元称为第二充电单元,且类似地,可将第二充电单元称为第一充电单元。第一充电单元和第二充电单元两者都是充电单元,但其不是同一充电单元。
本申请提供一种充电控制装置,用于为电子设备供电。其中,电子设备可为内置该充电控制装置的电子设备,例如,移动终端、平板电脑、PDA(Personal Digital Assistant,个人数字助理)、POS(Point of Sales,销售终端)、车载电脑、穿戴式设备、移动电源等可接收外部充电设备为其充电,并将电能进行存储,以能够为电子设备的待供电系统进行供电的任意终端设备。
如图1所示,在一实施例中,充电控制装置包括接口模块110、电池单元120、控制器130、充电模块140和分压模块150。
接口模块110,用于与外部充电设备连接。接口模块110,用于与外部充电设备连接,其中,接口模块110中包括VBUS、USB+、USB-、GND等充电接口。其中,外部充电设备可包括能够为电子设备提供快速充电的快充充电器或快充适配器和普通适配器。例如,该快充充电器或快充适配器可提供的充电功率大于15W。普通适配器可为5V1A、5V2A适配器。
需要说明的是,本申请对接口模块110中接口类型不做限定,例如,可以为Micro usb接口、Type-C接口、30-pin接口、lightning接口等。
电池单元120,包括多个串联的电芯。在一个实施例中,电池单元120中包括的电芯数量可以为2个、3个、4个或者更多,且多个电芯串联。电池单元120的电芯类型可以包括铅酸电池、镍氢电池、钠硫电池、液流电池、超级电容器、锂电池和柔性电池中的至少一种。例如,电池单元120中可包括三个串联的锂电池,或,电池单元120中可包括四个串联的锂电池等。
在一个实施例中,每个电芯的输出电压的范围可为2.0-4.4伏特,应理解,电池单元120中每个电芯的输出电压可通过均衡处理,均衡多个电芯之间的电压信号。需要说明的是,本申请中,多个可以理解为至少2个(大于等于2),也即,多个为2个、3个甚至更多个。
控制器130,与所述接口模块110连接,用于识别所述外部充电设备的充电模式,并根据所述充电模式发出相应的控制指令。当接口模块110接入外部充电式设备时,该控制器130可以识别该外部充电设备的充电模式,控制器130还可根据识别的充电模式发出相应的控制指令,该控制指令用于指示充电模块140根据外部充电设备输出的充电信号为所述电池单元120充电。
在一实施例中,外部充电设备中的USB信号为差分信号,其信号线为D+、D-,外部充电设备的D+或D-上设有上下拉固定电阻。USB1.0/1.1/2.0协议中定义了高低速设备以满足不同情况的需求,例如,高速设备的D+接一个1.5kohm的上拉电阻,D-不接;低速设备的则相反。当接口模块110接入外部充电式设备时,控制器130可以快速识别外部充电设备的D+或D-上的固定电阻的阻值,进而判断该外部充电设备是否为快充适配器。当该外部充电设备为快充适配器时, 其对应的充电模式为快充模式;若该外部充电设备为普通适配器时,对则对应的充电模式为普通模式。
可选的,当接口模块110接入外部充电式设备时,该控制器130可以与接入至该接模块的外部适配器进行双向通信,通过接受外部充电设备发送的询问指令,该询问指令用于询问该充电控制装置是否开启该快充模式,控制器130根据该询问指令向外部充电设备发送确认指令,该确认指令用于指示该充电控制装置同意开启快充模式,进而可以识别外部充电设备的充电模式。
需要说明的是,快充模式的充电速度大于普通模式的充电速度。例如,快充模式的充电电流大于普通模式的充电电流。例如,快充模式可以理解为大电流充电模式,也即,对应的充电电流可以高于2.5A,可达到5-10A,且快充模式是直充模式,可以直接将外部充电设备的输出电压直接加载在电池单元120的两端。普通模式可以理解为额定输出电压为5V,额定输出电流小于或等于2.5A的充电模式。例如,还可以为高电压快充模式,也即,快充模式的充电电压高于普通模式的充电电压,也即一般可提供9V、15V、20V等的充电电压,其高于普通模式的充电电压(5V),当采用高电压快充模式为电子设备供电时,需要在电子设备内增加用于降压处理的降压电路,该降压电路可将快充模式的充电电压进行降压处理后,以适用于为电子设备供电的充电电压。
充电模块140,分别与所述控制器130、电池单元120连接,用于接收所述控制指令以根据所述外部充电设备输出的充电信号为所述电池单元120充电。
在一实施例中,当外部充电设备为快充适配器时,该控制器130可识别其充电模式为快充模式,继而输出第一充电控制指令给充电模块140,该充电模块140可接收快充适配器提供的充电电压,并将该充电电压直接加载在电池单元120内的相互串联的多个电芯的两端,对多个电芯进行直充。
需要说明的是,本申请中所使用的术语“直接”、“直接充电”“直接加载”“直充”,表示来自快充充电器或快充适配器的充电电压能够与电池单元120的输出电压相匹配,或者,表示来自快充充电器或快充适配器的充电电压可以加载到多个电芯的两端用于充电而无需经过电压转换。其中,相匹配可以理解为快充适配器的充电电压能够与电池单元120的输出电压相等,或是快充适配器的充电电压能够与电池单元120的输出电压的差值在预设浮动范围内,例如,几十毫伏之内等。
在一实施例中,当外部充电设备为普通适配器时,该控制器130可识别其充电模式为普通模式,继而输出第二充电控制指令给充电模块140,该充电模块140可可接收普通适配器提供的充电电压,并对该充电电压进行转换,以提供能够适用于为多个电芯充电的充电电压。例如,可以通过增加电压转换电路(降压电路 或升压电路),将普通适配器提供的输出电压转换为能够适用于为多个电芯充电的充电电压,并将转换后的充电电压加载在多个电芯的两端。
分压模块150,与所述电池单元120串联,用于对所述电池单元120的输出电压进行分压处理以获取适用于为所述电子设备供电的供电电压。
在一实施例中,分压模块150包括分压电路,分压电路的输入端可以与电池单元120串联。也即,电池单元120包括多个串联的电芯,其中,电芯的数量为N个,且每个电芯包括正极和负极。分压电路的第一输入端可以第一电芯的正极连接,分压电路的第二输入端可以第N电芯的负极连接,分压电路的输出端可与该电子设备的待供电系统连接,用于将所述电池单元120的所述输出电压转换为所述供电电压,其中,所述供电电压为所述输出电压的N分之一(1/N)倍,其中,所述N为当前为所述电子设备供电的所述电芯的数量。
例如,若当前电池单元120包括串联的电芯,参考图2,分别为B1、B2、B3,则该电池单元120经过分压电路的分压处理(1/3divider)后,可将放电电压变为三节串联电芯放电总电压的三分之一,从而为电子设备的待供电系统供电。若当前电池单元120包括串联的电芯,参考图3,分别为B1、B2、B3、B4,则该电池单元120经过分压电路的分压处理(1/4divider)后,可将放电电压变为四节串联电芯放电总电压的四分之一,从而为电子设备的待供电系统供电。
在一实施例中,分压电路的输出端可与该电子设备的待供电系统连接,用于将所述电池单元120的所述输出电压转换为所述供电电压,其中,所述供电电压还可以为待供电系统供电所需求的电压,也即,分压电路可以根据待供电系统各个模块的电压需求,对其电池单元120的输出电压转换。待供电系统中不同的模块需求的电压是不相同的,例如,需求电压可以为3.3V、1.5V等。
在一实施例中,该分压电路可以为具有分压或降压功能的电荷泵、多个电阻构成的分压模组、降压变换器等。在本申请中,对分压电路的具体形式不做进一步的限定。
需要说明的是,N为当前为所述电子设备供电的所述电芯的数量,可以理解为,当前处于工作状态的电芯的数量。例如,若电池单元120中总的电芯数量为M个,但是,当前处于工作状态,也即能够为电子设备供电的电芯数量为N个,其中,N小于等于M。
上述充电控制装置,包括接口模块110、电池单元120、控制器130、充电模块140和分压模块150,能够识别接入至接口模块110中的外部充电设备的充电模式,进而控制充电模块140根据外部充电设备提供的充电信号以及充电模块140为电池单元120充电,继而利用分压模块150将电池单元120的放电电压转换为能够为电子设备供电的供电电压,能够为电子设备中的待供电系统供电,能 够解决多电芯为电子设备供电的问题,提高了为电子设备供电的效率。
参考图2和图3,在一实施例中,所述充电模块140包括第一充电单元132、第二充电单元134和第一开关单元146。其中,第一充电单元132分别与所述接口模块110、电池单元120连接;第二充电单元134,分别与所述接口模块110、电池单元120连接;第一开关单元146分别与控制器130、第一充电单元132、第二充电单元134连接。
控制器130可以识别接入至接口模块110的外部充电设备的充电模式。其中,充电模式包括快充模式和普通模式。
在一实施例中,当所述充电模式为快充模式时,所述控制器130发出第一控制指令,所述第一控制指令用于控制所述第一开关单元146导通所述接口模块110与所述第一充电单元132构成的第一通路。也即,第一充电单元132处于充电状态,可以根据外部充电设备输出的充电信号以第一充电速度直接为所述电池单元120充电。
在一实施例中,所述第一充电单元132接收的所述充电信号为脉冲直流电流信号或交流电流信号。也即,外部充电设备可以基于第一充电单元132采用恒流充电模式,也即,采用恒定电流为充电单元进行充电。
在一实施例中,当所述充电模式为普通模式时,所述控制器130发出第二控制指令,所述第二控制指令用于控制所述第二开关单元导通所述接口模块110与所述第二充电单元134构成的第二通路。也即,第二充电单元134处于工作状态,可根据外部充电设备的充电信号并以第二充电速度为所述电池单元120充电,其中,所述第一充电速度大于所述第二充电速度。
在一实施例中,所述第二充电单元134包括升压电路,所述升压电路的输入端与所述接口模块110连接,所述升压电路的输出端与所述电池单元120连接。
所述第二充电单元134接收的所述充电信号为电压信号。也即,普通适配器输出的充电电压不能直接为电池单元120充电,需要经过第二充电单元134包括的升压电路对其输出的充电电压进行升压处理,以获取适用于为所述电池单元120充电的充电电压,继而为多个串联的电芯进行充电。其中,普通适配器输出的充电电压为5V,但是每个电芯所需要的充电电压的范围在2.2-4.5V之间,也即,普通适配器输出的充电电压为5V小于多个串联的电芯的总电压。当电芯的电压为4V时,若三个电芯串联,其所需要的总充电电压大于12V,若四个电芯串联,其所需要的总充电电压大于16V。也即,总充电电压大于各个电芯的电压之和。通过该升压电路可以将普通适配器输出的充电电压(例如5V)升压转换为适用于为电池单元120(三个电芯串联)充电的充电电压(12V)。其中,充电电压大于电池单元120中所有串联的电芯的电压之和。
例如,该升压电路可以采用Boost升压电路,还可以采用电荷泵进行升压处理。
在一实施例中,第一开关单元146的类型可以为多种,其中,开关单元120可具有两个电源输出端,通过开关单元120可以控制电源向两个不同的电源输出端输出。具有两个电源输出端的开关可以为单刀双掷开关、继电器等。可选的,第一开关单元146还可包括多个电子开关管,例如,二极管、三极管、继电器、晶闸管、可控硅、MOS管和IGBT中的至少一种。通过控制电子开关管的导通或断开,进而导通第一通路或第二通路。
本实施例中,可以通过控制器130识别接入至接口模块110的外部充电设备的充电模式,当充电模式为快充模式时可自动选择第一充电单元132直接为电池单元120充电,以提供充电效率,或,当充电模式为普通模式时可自动选择第二充电单元134经升压处理后为电池单元120充电,从而能够采用普通适配器为多个相互串联的多个电芯进行充电,也即,可以自适应选择不同的充电单元为多个电芯同时充电,提高了充电效率。
如图4所示,在一实施例中,所述充电控制装置进一步包括多个第二开关单元160。多个第二开关单元160分别与所述控制模块、所述电池单元120连接。其中,多个所述第二开关单元160与多个所述电芯连接以构成多个充电支路,用于根据所述切换指令导通或断开所述电芯所在的所述充电支路,其中,所述充电支路至少包括两个所述电芯。
当需要给电池单元120的多个电芯充电时,控制模块可以发出切换指令进而通过控制多个第二开关单元160的导通或断开进而控制当前处于充电状态的电芯的数量。例如,若电池单元120中串联的电芯的数量为四个,可通过控制多个第二开关单元160的导通或断开以构成多个充电支路。其中,一个充电支路可包括两个电芯,一个充电支路可包括三个电芯;一个充电支路可包括四个电芯。充电支路中所包括的电芯均处于充电状态,而剩余未出现在充电支路中的电芯则处于非充电状态。其中,第二充电单元134可以为充电支路中处于充电状态的至少两个电芯进行充电。例如,若电池单元120中串联的电芯的数量为四个,分别记为B1、B2、B3和B4,其中,制模块可以通过控制多个第二开关单元160的导通或断开进而构成一个充电支路(也即,控制第二开关单元160’断开,控制第二开关单元160”导通),该充电支路包括电芯B1、B2。也即,电芯B1、B2处于充电状态,而电芯B3、B4处于非充电状态。当第二充电单元134为充电单元充电时,则可以为充电支路中的电芯B1、B2进行充电。
在一实施例中,充电模块140与所述第二充电单元134构成的第二通路时,所述控制器130还与所述第二充电单元134连接,用于接收所述第二充电单元134 为所述电池单元120充电的提供的充电电压,并根据所述充电电压发出所述切换指令。
控制器130可以接收第二充电单元134升压处理后的充电电压,并根据该充电电压发出相应的切换指令。该切换指令用于控制多个第二开关单元160的通断以确定充电支路中串联的电芯的数量。例如,当充电电压在第一预设范围内时,可以确定充电支路中串联的电芯的数量为2个;当充电电压在第二预设范围内时,可以确定充电支路中串联的电芯的数量为3个,当充电电压在第三预设范围内时,可以确定充电支路中串联的电芯的数量为4个等。其中,第一预设范围、第二预设范围、第三预设范围依次增大。
在一实施例中,当充电支路中的电芯的电量达到阈值时,则控制器130也可对应发出相应的通断指令,以控制多个第二开关单元160的通断,以使处于非充电状态的电芯处于充电状态,而试处于充电状态的电芯处于非充电状态,进而构成新的充电支路。
需要说明的是,各个预设范围可根据充电电压、各个电芯的电压以及电池单元120中电芯的数量中的至少一个因素来划分。同时,每个预设范围对应的充电支路的电芯数量也可以根据实际需求来设定。在本申请实施例中,对各个预设范围的划分,以及各预设范围对应的串联支路不做进一步的限定。
本实施例中,可以根据充电电压的大小来控制多个第二开关单元160的通断,进而控制构成的充电支路中串联的电芯的数量,进而可以分批次对电池单元120中的所有电芯进行充电,以提供充电效率。同时,也可以提供为电子设备供电的供电效率。
如图5所示,在一实施例中,所述装置进一步包括与所述电池单元120连接的均衡模块170,用于均衡多个所述电芯之间的电压信号。
在一实施例中,该均衡模块170包括多个均衡单元,其中,均衡单元与电芯串联,也即,一个电芯对应于一个均衡单元。均衡单元可以采用电容式均衡、电感式均衡、变压器式均衡的均衡方式来均衡多个所述电芯之间的电压信号。
本实施例中,为了使串联的多个电芯挥更好的优势,如放出更多的电量和拥有更长的使用寿命,可以通过该均衡模块170让各个电芯之间的电压、电流能够有效及时地得到均衡,可以提高多个电芯的整体性能,便于对多个电芯的统一管理。
在一实施例中,充电控制设备给电池单元120充电时,可以据充电电压的大小来控制多个第二开关单元160的通断,进而控制构成的充电支路中串联的电芯的数量。若充电支路中电芯的数量小于电池单元120所有电芯的总数量时,也可以基于该均衡模块170采用主动均衡的方式把电压高的电芯的能量转移一部分出 来,给电压低的电芯,从而推迟最低单体电压触及放电,以实现均衡处理。
如图6所示,在一实施例中,充电控制装置进一步包括与所述电池单元120并联的储能模块180,用于存储部分所述电池单元120的电能,以在所述电子设备抽取预设电流信号时维持所述电池单元120为所述电子设备的正常供电。
在一实施例中,储能模块180包括法拉电容(super-capacitor)。法拉电容又叫双电层电容器、黄金电容、超级电容器。法拉电容通过极化电解质来储能,但不发生化学反应,而且储能过程是可逆的,也正因为法拉电容可以反复充放电数十万次。法拉电容比普通的电容具有更大的电容,其最大容量可达数千法拉。利用其特性可以提供稳定的电压输出,当电子设备瞬间需要大电流时,法拉电容可在瞬间产生大的放电电流,以满足电子设备的用电需求,改善电子设备的性能,并且可避免电池单元120输出电流的激烈变化,延长电池单元120的寿命。
在一实施例中,储能模块180中包括的法拉电容的数量可以为一个或多个。多个法拉电容的可以并联连接,也可以串联连接。例如,储能模块180可以与电池单元120并联连接。储能模块180还可以与分压模块150连接,也即,可设置在该分压模块150的两端,也即,可以设置在电子设备的待供电系统的输入端。
在一实施例中,储能模块180中包括的法拉电容的数量可以多个,其中,法拉电容的数量与电芯的数量相同,且一个法拉电容与一个电芯对应并联连接。
由于锂电池在低温情况下,或者长期使用后,其内阻会增大。此时,若电芯的电压比较低,电子设备抽取大电流(短时大电流),由于电芯的内阻大,电芯电压会急剧下降,若是下降到电子设备能够正常工作的电压阀值以下,则会导致电子设备突然关机,部分用户数据无法保存。
本实施例中,采用法拉电容与电芯(锂电池)并联,法拉电容具有超低温特性好、低阻抗等性能,在电子设备需要抽取大电流(短时大电流)时,能够维持电压不会发生激烈的跌落,从而能够使得电子设备关机电压点以及低温关机点设置地更低,进而可以避免电池容量浪费、低温时电子设备自动关机的情况的发生。
如图7所示,本申请还提供一种电子设备,包括待供电系统710,进一步包括如权利要求上述任一实施例中的充电控制装置720,所述充电控制装置720用于为所述待供电系统进行供电。
该充电控制装置720的输出端与电子设备的待供电系统710的输入端连接,用于为该待供电系统710供电。该待供电系统710可以理解为电子设备中所有需要电能支持才能运行的器件或器件构成的模组、系统等。在本申请中对待供电系统710不做进一步的限定。
基于上述充电控制装置720,能够将电池单元120中多个电芯的电压转换为适用于为待供电系统710供电的供电电压,实现了多电芯为电子设备供电的可行 性。
如图7所示,在一实施例中,其中,电子设备进一步包括背光驱动模组,所述背光驱动模块与所述电池单元120的正向输出端连接,用于接收所述充电单元的输出电压以驱动所述背光驱动模块。
在一实施例中,背光驱动模块包括背光驱动芯片以及与该驱动芯片连接的发光模块。其中,背光驱动芯片的驱动电压比较高(例如,16、18V),在该驱动电压的驱动下,才能驱动该背光驱动芯片控制发光模块发光。
本实施例中,电池单元120中包括多个串联的电芯(例如,串联的三电芯或串联的四电芯),其电池单元120的输出总电压为多个串联的电芯的电压之和。例如,若一个电芯的输出电压为4V,在串联的四电芯的输出总电压为16V,只需要将输出总电压提高至驱动电压,则可以驱动该背光驱动芯片以控制发光单元发光。相对于单电芯,需要将输出电压(4V)提高至驱动电压,存在比较大的压差使得背光灯驱动芯片的转换效率比较低。在本实施例中,电池单元120的输出总电压与驱动电压的差值较小,减小了输出总电压与驱动电压的压差,进而可以提高背光灯驱动芯片的转换效率。
本申请还提供一种充电控制方法,应用于充电控制装置,所述充电控制装置包括:用于与外部充电设备连接的接口模块、多个串联的电芯的电池单元、充电模块和分压模块,其中,所述充电模块分别与接口模块、电池单元连接,用于根据所述外部充电设备输出的充电信号为所述电池单元充电;所述分压模块与所述电池单元串联,用于对所述电池单元的输出电压进行分压处理以获取适用于为所述电子设备供电的供电电压。
图8为一个实施例中充电控制方法的流程图。本实施例中的充电控制方法,以运行于图7中的电子设备上为例进行描述。如图8所示,充电控制方法包括步骤802至步骤804。
步骤802,识别外部充电设备的充电模式,并根据所述充电模式发出相应的控制指令。
当电子设备的接口模块接入外部充电式设备时,可以识别该外部充电设备的充电模式,还可根据识别的充电模式发出相应的控制指令,该控制指令用于指示充电模块根据外部充电设备输出的充电信号为所述电池单元充电。
在一实施例中,外部充电设备中的USB信号为差分信号,其信号线为D+、D-,外部充电设备的D+或D-上设有上下拉固定电阻。USB1.0/1.1/2.0协议中定义了高低速设备以满足不同情况的需求,例如,高速设备的D+接一个1.5kohm的上拉电阻,D-不接;低速设备的则相反。当接口模块接入外部充电式设备时, 可以快速识别外部充电设备的D+或D-上的固定电阻的阻值,进而判断该外部充电设备是否为快充适配器。当该外部充电设备为快充适配器时,其对应的充电模式为快充模式;若该外部充电设备为普通适配器时,对则对应的充电模式为普通模式。
可选的,当接口模块接入外部充电式设备时,该可以与接入至该接模块的外部适配器进行双向通信,通过接受外部充电设备发送的询问指令,该询问指令用于询问该充电控制装置是否开启该快充模式,根据该询问指令向外部充电设备发送确认指令,该确认指令用于指示该充电控制装置同意开启快充模式,进而可以识别外部充电设备的充电模式。
需要说明的是,快充模式的充电速度大于普通模式的充电速度。例如,快充模式的充电电流大于普通模式的充电电流。例如,快充模式可以理解为大电流充电模式,也即,对应的充电电流可以高于2.5A,可达到5-10A,且快充模式是直充模式,可以直接将外部充电设备的输出电压直接加载在电池单元的两端。快充模式还可以为高电压快充模式,也即,快充模式的充电电压高于普通模式的充电电压,也即一般可提供9V、15V、20V等的充电电压,其高于普通模式的充电电压(5V),当采用高电压快充模式为电子设备供电时,需要在电子设备内增加用于降压处理的降压电路,该降压电路可将快充模式的充电电压进行降压处理后,以适用于为电子设备供电的充电电压。
普通模式可以理解为额定输出电压为5V,额定输出电流小于或等于2.5A的充电模式。
步骤804,根据所述控制指令和所述外部充电设备输出的充电信号控制所述充电模块为所述电池单元充电。
在一实施例中,当外部充电设备为快充适配器时,可识别其充电模式为快充模式,继而输出第一充电控制指令给充电模块,该充电模块可接收快充适配器提供的充电电压,并将该充电电压直接加载在电池单元内的相互串联的多个电芯的两端,对多个电芯进行直充。
需要说明的是,本申请中所使用的术语“直接”、“直接充电”“直接加载”“直充”,表示来自快充充电器或快充适配器的充电电压能够与电池单元的输出电压相匹配,或者,表示来自快充充电器或快充适配器的充电电压可以加载到多个电芯的两端用于充电而无需经过电压转换。其中,相匹配可以理解为快充适配器的充电电压能够与电池单元120的输出电压相等,或是快充适配器的充电电压能够与电池单元120的输出电压的差值在预设浮动范围内,例如,几十毫伏之内等。
在一实施例中,当外部充电设备为普通适配器时,可识别其充电模式为普通模式,继而输出第二充电控制指令给充电模块,该充电模块可接收普通适配器提 供的充电电压,并对该充电电压进行转换,以提供能够适用于为多个电芯充电的充电电压。例如,可以通过增加电压转换电路(降压电路或升压电路),将普通适配器提供的输出电压转换为能够适用于为多个电芯充电的充电电压,并将转换后的充电电压加载在多个电芯的两端。
在一实施例中,所述充电模块包括第一充电单元、第二充电单元和第一开关单元。
识别所述外部充电设备的充电模式,并根据所述充电模式发出相应的控制指令,包括:
当所述充电模式为快充模式时,发出第一控制指令,所述第一控制指令用于控制所述第一开关单元导通所述接口模块与所述第一充电单元构成的第一通路。
在一实施例中,当所述充电模式为快充模式时,发出第一控制指令,所述第一控制指令用于控制所述第一开关单元导通所述接口模块与所述第一充电单元构成的第一通路。也即,第一充电单元处于充电状态,可以根据外部充电设备输出的充电信号以第一充电速度直接为所述电池单元充电。
在一实施例中,所述第一充电单元接收的所述充电信号为脉冲直流电流信号或交流电流信号。第一充单元还可以采用恒流充电模式,也即采用恒定电流为充电单元进行充电。
当所述充电模式为普通模式时,发出第二控制指令,所述第二控制指令用于控制所述第一开关单元导通所述接口模块与所述第二充电单元构成的第二通路。
在一实施例中,当所述充电模式为普通模式时,发出第二控制指令,所述第二控制指令用于控制所述第二开关单元导通所述接口模块与所述第二充电单元构成的第二通路。也即,第二充电单元处于工作状态,可根据外部充电设备的充电信号并以第二充电速度为所述电池单元充电,其中,所述第一充电速度大于所述第二充电速度。
在一实施例中,所述第二充电单元包括升压电路,所述升压电路的输入端与所述接口模块连接,所述升压电路的输出端与所述电池单元连接。
所述第二充电单元接收的所述充电信号为电压信号。也即,普通适配器输出的充电电压不能直接为电池单元充电,需要经过第二充电单元包括的升压电路对其输出的充电电压进行升压处理,以获取适用于为所述电池单元充电的充电电压,继而为多个串联的电芯进行充电。其中,普通适配器输出的充电电压为5V,但是每个电芯所需要的充电电压的范围在2.2-4.5V之间,也即,普通适配器输出的充电电压为5V小于多个串联的电芯的总电压。当电芯的电压为4V时,若三个电芯串联,其所需要的总充电电压大于12V,若四个电芯串联,其所需要的总充电电压大于16V。也即,总充电电压大于各个电芯的电压之和。通过该升压电 路可以将普通适配器输出的充电电压(例如5V)升压转换为适用于为电池单元(三个电芯串联)充电的充电电压(12V)。其中,充电电压大于电池单元中所有串联的电芯的电压之和。
例如,该升压电路可以采用Boost升压电路,还可以采用电荷泵进行升压处理。
在一实施例中,第一开关单元的类型可以为多种,其中,开关单元120可具有两个电源输出端,通过开关单元120可以控制电源向两个不同的电源输出端输出。具有两个电源输出端的开关可以为单刀双掷开关、继电器等。可选的,第一开关单元还可包括多个电子开关管,例如,二极管、三极管、继电器、晶闸管、可控硅、MOS管和IGBT中的至少一种。通过控制电子开关管的导通或断开,进而导通第一通路或第二通路。
本实施例中,可以识别接入至接口模块的外部充电设备的充电模式,当充电模式为快充模式时可自动选择第一充电单元直接为电池单元充电,以提供充电效率,或,当充电模式为普通模式时可自动选择第二充电单元经升压处理后为电池单元充电,从而能够采用普通适配器为多个相互串联的多个电芯进行充电,也即,可以自适应选择不同的充电单元为多个电芯同时充电,提高了充电效率。
在一实施例中,充电控制装置进一步包括与所述电池单元连接的多个第二开关单元,多个所述第二开关单元与多个所述电芯连接以构成多个充电支路。
充电控制方法进一步包括:当所述第一开关单元导通所述接口模块与所述第二充电单元构成的第二通路时,发出切换指令;根据所述切换指令导通或断开所述电芯所在的所述充电支路,所述充电支路至少包括两个所述电芯。
当需要给电池单元的多个电芯充电时,可以发出切换指令进而通过控制多个第二开关单元的导通或断开进而控制当前处于充电状态的电芯的数量。例如,若电池单元中串联的电芯的数量为四个,可通过控制多个第二开关单元的导通或断开以构成多个充电支路。其中,一个充电支路可包括两个电芯,一个充电支路可包括三个电芯;一个充电支路可包括四个电芯。充电支路中所包括的电芯均处于充电状态,而剩余未出现在充电支路中的电芯则处于非充电状态。其中,第二充电单元可以为充电支路中处于充电状态的至少两个电芯进行充电。例如,若电池单元中串联的电芯的数量为四个,分别记为B1、B2、B3和B4,其中,制模块可以通过控制多个第二开关单元的导通或断开进而构成一个充电支路(也即,控制第二开关单元断开,控制第二开关单元160”导通),该充电支路包括电芯B1、B2。也即,电芯B1、B2处于充电状态,而电芯B3、B4处于非充电状态。当第二充电单元为充电单元充电时,则可以为充电支路中的电芯B1、B2进行充电。
在一实施例中,电子设备可以接收第二充电单元升压处理后的充电电压,并 根据该充电电压发出相应的切换指令。该切换指令用于控制多个第二开关单元的通断以确定充电支路中串联的电芯的数量。例如,当充电电压在第一预设范围内时,可以确定充电支路中串联的电芯的数量为2个;当充电电压在第二预设范围内时,可以确定充电支路中串联的电芯的数量为3个,当充电电压在第三预设范围内时,可以确定充电支路中串联的电芯的数量为4个等。其中,第一预设范围、第二预设范围、第三预设范围依次增大。
在一实施例中,当充电支路中的电芯的电量达到阈值时,则控制器也可对应发出相应的通断指令,以控制多个第二开关单元的通断,以使处于非充电状态的电芯处于充电状态,而试处于充电状态的电芯处于非充电状态,进而构成新的充电支路。
需要说明的是,各个预设范围可根据充电电压、各个电芯的电压以及电池单元中电芯的数量中的至少一个因素来划分。同时,每个预设范围对应的充电支路的电芯数量也可以根据实际需求来设定。在本申请实施例中,对各个预设范围的划分,以及各预设范围对应的串联支路不做进一步的限定。
本实施例中,可以根据充电电压的大小来控制多个第二开关单元的通断,进而控制构成的充电支路中串联的电芯的数量,进而可以分批次对电池单元中的所有电芯进行充电,以提供充电效率。同时,也可以提供为电子设备供电的供电效率。
应该理解的是,虽然图8的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图8中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
本申请实施例还提供了一种计算机可读存储介质。一个或多个包含计算机可执行指令的非易失性计算机可读存储介质,当所述计算机可执行指令被一个或多个处理器执行时,使得所述处理器执行充电控制方法的步骤。
一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行充电控制方法。
本申请实施例还提供了一种电子设备。如图9所示,为了便于说明,仅示出了与本申请实施例相关的部分,具体技术细节未揭示的,请参照本申请实施例方法部分。该电子设备可以为包括手机、平板电脑、PDA(Personal Digital Assistant, 个人数字助理)、POS(Point of Sales,销售终端)、车载电脑、穿戴式设备等任意终端设备,以电子设备为手机为例:
图9为与本申请实施例提供的电子设备相关的手机的部分结构的框图。参考图9,手机包括:射频(Radio Frequency,RF)电路910、存储器920、输入单元930、显示单元940、传感器950、音频电路960、无线保真(wireless fidelity,WiFi)模块970、处理器980、以及电源990等部件。本领域技术人员可以理解,图9所示的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
其中,RF电路910可用于收发信息或通话过程中,信号的接收和发送,可将基站的下行信息接收后,给处理器980处理;也可以将上行的数据发送给基站。通常,RF电路包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(Low Noise Amplifier,LNA)、双工器等。此外,RF电路910还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(Global System of Mobile communication,GSM)、通用分组无线服务(General Packet Radio Service,GPRS)、码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、长期演进(Long Term Evolution,LTE))、电子邮件、短消息服务(Short Messaging Service,SMS)等。
存储器920可用于存储软件程序以及模块,处理器980通过运行存储在存储器920的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。存储器920可主要包括程序存储区和数据存储区,其中,程序存储区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能的应用程序、图像播放功能的应用程序等)等;数据存储区可存储根据手机的使用所创建的数据(比如音频数据、通讯录等)等。此外,存储器920可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元930可用于接收输入的数字或字符信息,以及产生与手机900的用户设置以及功能控制有关的键信号输入。具体地,输入单元930可包括触控面板931以及其他输入设备932。触控面板931,也可称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板931上或在触控面板931附近的操作),并根据预先设定的程式驱动相应的连接装置。在一个实施例中,触控面板931可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触 点坐标,再送给处理器980,并能接收处理器980发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板931。除了触控面板931,输入单元930还可以包括其他输入设备932。具体地,其他输入设备932可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)等中的一种或多种。
显示单元940可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单。显示单元940可包括显示面板941。在一个实施例中,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板941。在一个实施例中,触控面板931可覆盖显示面板941,当触控面板931检测到在其上或附近的触摸操作后,传送给处理器980以确定触摸事件的类型,随后处理器980根据触摸事件的类型在显示面板941上提供相应的视觉输出。虽然在图9中,触控面板931与显示面板941是作为两个独立的部件来实现手机的输入和输入功能,但是在某些实施例中,可以将触控面板931与显示面板941集成而实现手机的输入和输出功能。
手机900还可包括至少一种传感器950,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板941的亮度,接近传感器可在手机移动到耳边时,关闭显示面板941和/或背光。运动传感器可包括加速度传感器,通过加速度传感器可检测各个方向上加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换)、振动识别相关功能(比如计步器、敲击)等;此外,手机还可配置陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器等。
音频电路960、扬声器991和传声器992可提供用户与手机之间的音频接口。音频电路960可将接收到的音频数据转换后的电信号,传输到扬声器991,由扬声器991转换为声音信号输出;另一方面,传声器992将收集的声音信号转换为电信号,由音频电路960接收后转换为音频数据,再将音频数据输出处理器980处理后,经RF电路910可以发送给另一手机,或者将音频数据输出至存储器920以便后续处理。
WiFi属于短距离无线传输技术,手机通过WiFi模块970可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图9示出了WiFi模块970,但是可以理解的是,其并不属于手机900的必须构成,可以根据需要而省略。
处理器980是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器920内的软件程序和/或模块,以及调用存储在 存储器920内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。在一个实施例中,处理器980可包括一个或多个处理单元。在一个实施例中,处理器980可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等;调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器980中。
手机900还包括给各个部件供电的电源990(比如电池),优选的,电源可以通过电源管理系统与处理器980逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
在一个实施例中,手机900还可以包括摄像头、蓝牙模块等。
在本申请实施例中,该电子设备所包括的处理器980执行存储在存储器上的计算机程序时实现充电控制方法的步骤。
本申请所使用的对存储器、存储、数据库或其它介质的任何引用可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM),它用作外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDR SDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种充电控制装置,用于为电子设备供电,所述装置包括:
    接口模块,用于与外部充电设备连接;
    电池单元,包括多个串联的电芯;
    控制器,与所述接口模块连接,用于识别所述外部充电设备的充电模式,并根据所述充电模式发出相应的控制指令;
    充电模块,分别与所述控制器、电池单元连接,用于接收所述控制指令以根据所述外部充电设备输出的充电信号为所述电池单元充电;
    分压模块,与所述电池单元串联,用于对所述电池单元的输出电压进行分压处理以获取适用于为所述电子设备供电的供电电压。
  2. 根据权利要求1所述的装置,其中,所述充电模块包括:
    第一充电单元;分别与所述接口模块、电池单元连接,用于接收所述充电信号并以第一充电速度直接为所述电池单元充电;
    第二充电单元,分别与所述接口模块、电池单元连接,用于接收所述外部充电设备的充电信号并以第二充电速度为所述电池单元充电,其中,所述第一充电速度大于所述第二充电速度;
    第一开关单元,分别与所述控制器、第一充电单元、第二充电单元连接,用于接收所述控制指令以导通所述接口模块与所述第一充电单元构成的第一通路,或,导通所述接口模块与所述第二充电单元构成的第二通路。
  3. 根据权利要求2所述的装置,其中,所述充电模式包括快充模式和普通模式,其中,
    当所述充电模式为快充模式时,所述控制器发出第一控制指令,所述第一控制指令用于控制所述第一开关单元导通所述接口模块与所述第一充电单元构成的第一通路;
    当所述充电模式为普通模式时,所述控制器发出第二控制指令,所述第二控制指令用于控制所述第二开关单元导通所述接口模块与所述第二充电单元构成的第二通路。
  4. 根据权利要求2所述的装置,其中,所述第一充电单元接收的所述充电信号为脉冲直流电流信号或交流电流信号。
  5. 根据权利要求2所述的装置,其中,所述第二充电单元包括升压电路,所述升压电路的输入端与所述接口模块连接,所述升压电路的输出端与所述电池单元连接;所述升压电路用于接收所述外部充电设备的充电信号,并对所述充电信号进行升压处理以获取适用于为所述电池单元充电的充电电压。
  6. 根据权利要求2所述的装置,其中,所述装置进一步包括分别与所述控制模块、所述电池单元连接的多个第二开关单元,多个所述第二开关单元 与多个所述电芯连接以构成多个充电支路,其中,
    当导通所述接口模块与所述第二充电单元构成的第二通路时,所述控制器还用于发出切换指令;
    所述第二开关单元,用于根据所述切换指令导通或断开所述电芯所在的所述充电支路,其中,所述充电支路至少包括两个所述电芯。
  7. 根据权利要求6所述的装置,其中,所述控制器还与所述第二充电单元连接,用于接收所述第二充电单元为所述电池单元提供的充电电压,并根据所述充电电压发出所述切换指令。
  8. 根据权利要求1所述的装置,其中,分压模块包括分压电路,所述分压电路的输入端与所述电池单元连接,所述分压电路的输出端与所述电子设备连接,用于将所述电池单元的所述输出电压分压所述供电电压,其中,所述供电电压为所述输出电压的N分之一倍,其中,所述N为当前为所述电子设备供电的所述电芯的数量。
  9. 根据权利要求1所述的装置,其中,所述装置进一步包括与所述电池单元连接的均衡模块,用于均衡多个所述电芯之间的电压信号。
  10. 根据权利要求1-9任一项所述的装置,其中,所述装置进一步包括与所述电池单元并联的储能模块,用于存储部分所述电池单元的电能,以在所述电子设备抽取预设电流信号时维持所述电池单元为所述电子设备的正常供电。
  11. 根据权利要求10所述的装置,其中,储能模块包括法拉电容。
  12. 一种电子设备,包括待供电系统,进一步包括如权利要求1-11任一项所述充电控制装置,所述充电控制装置用于为所述待供电系统进行供电。
  13. 根据权利要求12所述的电子设备,其中,所述电子设备进一步包括背光驱动模组,所述背光驱动模块与所述电池单元的正向输出端连接,用于接收所述充电单元的输出电压以驱动所述背光驱动模块。
  14. 一种充电控制方法,应用于充电控制装置,所述方法包括:
    识别外部充电设备的充电模式,并根据所述充电模式发出相应的控制指令;
    根据所述控制指令和所述外部充电设备输出的充电信号控制充电模块为所述电池单元充电。
  15. 根据权利要求14所述的方法,其中,所述充电模式包括快充模式和普通模式,所述识别所述外部充电设备的充电模式,并根据所述充电模式发出相应的控制指令,包括:
    当所述充电模式为快充模式时,发出第一控制指令,所述第一控制指令用于控制第一开关单元导通接口模块与第一充电单元构成的第一通路;
    当所述充电模式为普通模式时,发出第二控制指令,所述第二控制指令用于控制所述第一开关单元导通接口模块与第二充电单元构成的第二通路。
  16. 根据权利要求15所述的方法,其中,所述根据所述控制指令和所述外部充电设备输出的充电信号控制所述充电模块为所述电池单元充电,包括:
    根据所述第一控制指令控制所述第一充电单元根据接收的所述充电信号以第一充电速度直接为所述电池单元充电;
    根据所述第二控制指令控制所述第二充电单元根据接收的所述充电信号以第二充电速度直接为所述电池单元充电,其中,所述第一充电速度大于所述第二充电速度。
  17. 根据权利要求16所述的方法,其中,所述方法进一步包括:
    当所述第一开关单元导通所述接口模块与所述第二充电单元构成的第二通路时,发出切换指令;
    根据所述切换指令导通或断开所述电芯所在的充电支路,所述充电支路至少包括两个所述电芯,其中,所述充电支路由多个第二开关单元与多个电芯连接构成。
  18. 根据权利要求17所述的方法,其中,所述方法进一步包括:
    接收所述第二充电单元为所述电池单元充电的充电电压,并根据所述充电电压发出所述切换指令。
  19. 一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如权利要求14至18中任一项所述的充电控制方法。
  20. 一种电子设备,包括存储器,处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如权利要求14至18中任一项所述的充电控制方法。
PCT/CN2018/122575 2018-12-21 2018-12-21 充电控制装置和方法、电子设备 WO2020124529A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880099578.3A CN113056855B (zh) 2018-12-21 充电控制装置和方法、电子设备
PCT/CN2018/122575 WO2020124529A1 (zh) 2018-12-21 2018-12-21 充电控制装置和方法、电子设备
EP18944035.7A EP3902086A4 (en) 2018-12-21 2018-12-21 LOAD CONTROL APPARATUS AND METHOD, AND ELECTRONIC DEVICE
US17/351,224 US11476680B2 (en) 2018-12-21 2021-06-17 Device and method for charging control, electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/122575 WO2020124529A1 (zh) 2018-12-21 2018-12-21 充电控制装置和方法、电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/351,224 Continuation US11476680B2 (en) 2018-12-21 2021-06-17 Device and method for charging control, electronic device

Publications (1)

Publication Number Publication Date
WO2020124529A1 true WO2020124529A1 (zh) 2020-06-25

Family

ID=71101949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122575 WO2020124529A1 (zh) 2018-12-21 2018-12-21 充电控制装置和方法、电子设备

Country Status (3)

Country Link
US (1) US11476680B2 (zh)
EP (1) EP3902086A4 (zh)
WO (1) WO2020124529A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117595467A (zh) * 2024-01-18 2024-02-23 杭州高特电子设备股份有限公司 一种电池组的主动均衡系统及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102655974B1 (ko) * 2022-08-10 2024-04-09 엘아이지넥스원 주식회사 공통 전원 잡음에 강인한 능동 소나 시스템 및 전원 잡음 제거 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080054846A1 (en) * 2006-09-06 2008-03-06 Chih-Min Hsu Charging control system for lithium battery
CN204732902U (zh) * 2015-05-12 2015-10-28 深圳市金立通信设备有限公司 一种供电电路及终端
CN105375557A (zh) * 2015-05-26 2016-03-02 深圳天珑无线科技有限公司 电子设备及其充电电路、充电方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPQ750500A0 (en) * 2000-05-15 2000-06-08 Energy Storage Systems Pty Ltd A power supply
US7417405B2 (en) * 2004-10-04 2008-08-26 Black & Decker Inc. Battery monitoring arrangement having an integrated circuit with logic controller in a battery pack
US20090033293A1 (en) * 2007-08-01 2009-02-05 Intersil Americas Inc. Voltage converter with combined capacitive voltage divider, buck converter and battery charger
JP5529652B2 (ja) * 2009-08-27 2014-06-25 セイコーインスツル株式会社 充放電制御回路及び充電式電源装置
CN201574868U (zh) 2009-12-15 2010-09-08 沈英立 一种汽车节能装置
KR102158288B1 (ko) * 2012-07-09 2020-09-21 삼성전자주식회사 배터리를 충전하기 위한 방법 및 그 전자 장치
KR102320853B1 (ko) * 2014-09-02 2021-11-02 삼성전자 주식회사 전자 장치, 전자 장치의 충전 제어 방법, 전원 공급 장치, 및 전원 공급 장치의 전력 공급 방법
CN105140985B (zh) * 2015-08-05 2017-08-25 青岛海信移动通信技术股份有限公司 移动终端、可直充电源适配器及充电方法
CN105934865B (zh) * 2015-09-22 2018-06-12 广东欧珀移动通信有限公司 控制充电的方法和装置以及电子设备
JP6581494B2 (ja) * 2015-12-18 2019-09-25 キヤノン株式会社 電子機器およびプログラム
CN113131565A (zh) * 2016-06-01 2021-07-16 华为技术有限公司 一种充电的方法及终端
CN107947252B (zh) 2016-10-12 2020-09-22 Oppo广东移动通信有限公司 终端和设备
WO2018068243A1 (zh) * 2016-10-12 2018-04-19 广东欧珀移动通信有限公司 移动终端
KR102657535B1 (ko) * 2016-11-24 2024-04-15 삼성전자주식회사 전자 장치 및 그의 동작 방법
KR20180085313A (ko) * 2017-01-18 2018-07-26 삼성전자주식회사 충전 제어 방법 및 이를 지원하는 전자 장치
KR102371184B1 (ko) * 2017-03-06 2022-03-08 삼성전자주식회사 배터리의 이상 여부를 확인하는 전자 장치 및 전자 장치 제어 방법
US10263449B2 (en) * 2017-06-30 2019-04-16 Bose Corporation Battery charging systems and methods
CN107546808B (zh) * 2017-09-27 2020-11-10 努比亚技术有限公司 一种充电识别电路、识别方法及终端设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080054846A1 (en) * 2006-09-06 2008-03-06 Chih-Min Hsu Charging control system for lithium battery
CN204732902U (zh) * 2015-05-12 2015-10-28 深圳市金立通信设备有限公司 一种供电电路及终端
CN105375557A (zh) * 2015-05-26 2016-03-02 深圳天珑无线科技有限公司 电子设备及其充电电路、充电方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3902086A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117595467A (zh) * 2024-01-18 2024-02-23 杭州高特电子设备股份有限公司 一种电池组的主动均衡系统及方法
CN117595467B (zh) * 2024-01-18 2024-05-03 杭州高特电子设备股份有限公司 一种电池组的主动均衡系统及方法

Also Published As

Publication number Publication date
US11476680B2 (en) 2022-10-18
US20210313812A1 (en) 2021-10-07
EP3902086A4 (en) 2022-01-12
EP3902086A1 (en) 2021-10-27
CN113056855A (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
EP3800761B1 (en) Battery control system and method, and electronic device
US9859725B2 (en) Charging device with auto-on circuit and system
US9509160B2 (en) Fast charging terminal
CN108649658B (zh) 多电池的切换方法、供电装置、电子设备
CN110797924B (zh) 电池控制系统和方法、电子设备
TW571452B (en) Charging-type electrical potential balance device
US20160020621A1 (en) Bidirectional voltage converter for multi-cell series batteries
CN109217409B (zh) 充电方法、装置和电子设备
US11476680B2 (en) Device and method for charging control, electronic device
EP3893352A1 (en) Wireless charging method, device to be charged, wireless charging apparatus and storage medium
US20150123594A1 (en) Charging Device with Auto-On Circuit and System
CN202712913U (zh) 一种充放电共接口的移动电源
CN109217411B (zh) 充电方法和装置、电子设备
CN111478378B (zh) 保护电路、充电控制装置和方法、电子设备
WO2020168940A1 (zh) 电子设备和放电控制方法
CN113056855B (zh) 充电控制装置和方法、电子设备
CN101958572A (zh) 电源电路和其电源管理方法
WO2020168980A1 (zh) 电池组、电子设备和充放电控制方法
CN208062815U (zh) 一种锂电池电路和装置
CN113859552B (zh) 一种电池管理系统
WO2022194179A1 (zh) 储能系统、主储能装置和副储能装置
CN215009602U (zh) 线控器和电气设备
CN206559095U (zh) 一种多功能移动电源
CN108879844B (zh) 一种供电装置、供电方法及电子设备
CN207053237U (zh) 一种多功能移动电源控制电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018944035

Country of ref document: EP

Effective date: 20210721