WO2020124502A1 - 一种功率分配方法、终端设备及存储介质 - Google Patents

一种功率分配方法、终端设备及存储介质 Download PDF

Info

Publication number
WO2020124502A1
WO2020124502A1 PCT/CN2018/122422 CN2018122422W WO2020124502A1 WO 2020124502 A1 WO2020124502 A1 WO 2020124502A1 CN 2018122422 W CN2018122422 W CN 2018122422W WO 2020124502 A1 WO2020124502 A1 WO 2020124502A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization
terminal device
power
received signal
signal strength
Prior art date
Application number
PCT/CN2018/122422
Other languages
English (en)
French (fr)
Inventor
唐海
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201880097381.6A priority Critical patent/CN112673682B/zh
Priority to PCT/CN2018/122422 priority patent/WO2020124502A1/zh
Publication of WO2020124502A1 publication Critical patent/WO2020124502A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity

Definitions

  • the present invention relates to the field of wireless communication technology, and in particular, to a power distribution method, terminal equipment, and storage medium.
  • the antenna system of a millimeter wave terminal device usually has two polarizations, such as horizontal polarization and vertical polarization; different polarizations have different propagation characteristics, different losses in the spatial channel, and different received signals. For example, when horizontally polarized, the antenna can only receive horizontally polarized signals; when vertically polarized, the antenna can only receive vertically polarized signals. Therefore, in order to effectively use the radiated power of the terminal device, how to allocate the transmission power of the terminal device to the two polarizations is an urgent problem to be solved.
  • embodiments of the present invention provide a power distribution method, terminal equipment, and storage medium, which can differentiate power distribution between two polarizations, thereby effectively using the transmission power of the terminal equipment.
  • an embodiment of the present invention provides a power distribution method.
  • the method includes:
  • the terminal device allocates the transmission power of the terminal device at the first polarization and the second polarization based on the first information; the first information includes: received signal strength and/or maximum transmission power.
  • an embodiment of the present invention provides a terminal device.
  • the terminal device includes:
  • the first processing unit is configured to allocate the transmission power of the terminal device at the first polarization and the second polarization based on the first information; the first information includes: received signal strength and/or maximum transmission power.
  • an embodiment of the present invention provides a terminal device, including a processor and a memory for storing a computer program that can be run on the processor, where the processor executes the above when the processor is used to run the computer program Steps of the power distribution method.
  • an embodiment of the present invention provides a storage medium that stores an executable program.
  • the executable program is executed by a processor, the steps of the foregoing power distribution method are implemented.
  • the terminal device distributes the transmission power of the terminal device in the first polarization and the second polarization based on the received signal strength and/or the maximum transmission power;
  • the signal strength and/or the maximum transmit power allocates the transmit power for the first polarization, and the second polarized transmit power is allocated according to the received signal strength and/or the maximum transmit power of the second polarization; that is, according to the first polarization and the second
  • the characteristics of the polarization itself, the differentiated power distribution between the first polarization and the second polarization effectively uses the transmission power of the terminal device.
  • FIG. 1 is a schematic diagram of a terminal device interacting with a network device based on a first polarization and a second polarization in the related art
  • FIG. 2 is a schematic diagram of the structure of a communication system according to an embodiment of the invention.
  • FIG. 3 is a schematic diagram of an optional processing flow of a power distribution method provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the terminal device interacting with the network device based on the first polarization and the second polarization according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of the composition of a terminal device according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a hardware composition structure of a terminal device according to an embodiment of the present invention.
  • the schematic diagram of the interaction between the terminal device and the network device based on the first polarization and the second polarization As shown in FIG. 1, the horizontal polarization direction and the vertical polarization direction of the terminal device use the same power control mechanism, that is, distribution
  • the transmission power in the horizontal polarization direction of the terminal device is the same as the transmission power in the vertical polarization direction assigned to the terminal device; and a unified beam is formed to communicate with the network device.
  • the transmission power of the horizontal polarization direction assigned to the terminal device is the same as the transmission power of the vertical polarization direction assigned to the terminal device, the transmission power of the terminal device cannot be effectively used.
  • the present invention provides a power distribution method.
  • the power distribution method of the embodiment of the present application can be applied to various communication systems, such as: Global Mobile Communication (Global System of Mobile Communication (GSM) system, code division multiple access (GSM Code Division Multiple Access (CDMA) system, Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, LTE Frequency Division Duplex (FDD) system, LTE Time Division Duplex (TDD), Universal Mobile Telecommunications System (Universal Mobile Telecommunication System, UMTS), Worldwide Interoperability for Microwave Access, WiMAX) communication system or 5G system, etc.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • Universal Mobile Telecommunications System Universal Mobile Telecommunications System
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 2.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or referred to as a communication terminal, terminal).
  • the network device 110 can provide communication coverage for a specific geographic area, and can communicate with terminal devices located within the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or a wireless controller in the cloud radio access network (Cloud Radio Access Network, CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, an in-vehicle device, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks or network devices in future public land mobile networks (Public Land Mobile Network, PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B, eNB or eNodeB
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, an in-veh
  • the communication system 100 also includes at least one terminal device 120 within the coverage of the network device 110.
  • terminal equipment includes, but is not limited to, connections via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Lines (Digital Subscriber Line, DSL), digital cables, direct cable connections ; And/or another data connection/network; and/or via wireless interfaces, such as for cellular networks, wireless local area networks (Wireless Local Area Network, WLAN), digital TV networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and/or another terminal device configured to receive/transmit communication signals; and/or Internet of Things (IoT) equipment.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN wireless local area networks
  • DVB-H networks wireless local area networks
  • satellite networks satellite networks
  • AM- FM broadcast transmitter AM- FM broadcast transmitter
  • IoT Internet of Things
  • a terminal device configured to communicate through a wireless interface may be referred to as a "wireless communication terminal", “wireless terminal”, or “mobile terminal”.
  • mobile terminals include but are not limited to satellite or cellular telephones; Personal Communication Systems (PCS) terminals that can combine cellular radiotelephones with data processing, facsimile, and data communication capabilities; may include radiotelephones, pagers, Internet/internal PDA with networked access, web browser, notepad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palm-type receivers or others including radiotelephone transceivers Electronic device.
  • PCS Personal Communication Systems
  • GPS Global Positioning System
  • Terminal equipment can refer to access terminal, user equipment (User Equipment), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or User device.
  • Access terminals can be cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, wireless local loop (Wireless Local Loop, WLL) stations, personal digital processing (Personal Digital Assistant (PDA), wireless communication Functional handheld devices, computing devices, or other processing devices connected to a wireless modem, in-vehicle devices, wearable devices, terminal devices in a 5G network, or terminal devices in a PLMN that will evolve in the future, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • terminal device 120 may perform direct terminal (Device to Device, D2D) communication.
  • D2D Direct terminal
  • the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • FIG. 2 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and each network device may include other numbers of terminal devices within the coverage area. This application The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which is not limited in the embodiments of the present application.
  • network entities such as a network controller and a mobility management entity, which is not limited in the embodiments of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 and a terminal device 120 with a communication function, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities, and other network entities, which are not limited in the embodiments of the present application.
  • the optional processing flow of the power distribution method provided by the embodiment of the present invention, as shown in FIG. 3, includes the following steps:
  • Step S201 The terminal device allocates the transmission power of the terminal device at the first polarization and the second polarization based on the first information; the first information includes: received signal strength and/or maximum transmission power.
  • the terminal device allocates the transmission power of the terminal device at the first polarization and the second polarization based on the maximum transmission power.
  • the maximum transmit power includes: a first polarized first maximum transmit power and a second polarized second maximum transmit power.
  • the terminal device When the terminal device does not need to perform multi-stream transmission based on polarization, and the terminal device's to-be-transmitted power P total is less than or equal to the first maximum transmission power Pcmax polar of the first polarization, the terminal device The power to be transmitted is all allocated to the first polarization.
  • the first polarization is the optimal propagation polarization of the first polarization and the second polarization.
  • the strength of the first received signal is greater than that of the second polarization in the second
  • the intensity of the second received signal in the beam direction indicates that the first polarization is the optimal propagation polarization.
  • the first beam direction is the beam direction corresponding to the measured maximum received signal strength of the first polarization, that is, the optimal beam direction of the first polarization
  • the second beam direction is the measured maximum received signal strength of the second polarization
  • the corresponding beam direction is the optimal beam direction for the second polarization.
  • the terminal device When the terminal device does not need to perform multi-stream transmission based on polarization, and the terminal device's to-be-transmitted power P total is greater than the first maximum transmission power Pcmax polar of the first polarization, the terminal device responds to the first Full power is allocated for polarization, and the remaining power is allocated to the second polarization; the remaining power is the difference between the power to be transmitted and the first maximum transmission power of the first polarization.
  • the power allocated by the terminal device to the first polarization is Pcmax polar
  • the power allocated by the terminal device to the second polarization is P total -Pcmax polar .
  • the terminal device allocates the transmit power of the terminal device at the first polarization and the second polarization based on the received signal strength.
  • the received signal strength includes: a first received signal strength R 1 with a first polarization in the first beam direction, and a second received signal strength R 2 with a second polarization in the second beam direction.
  • the terminal device allocates the first transmission power to the first polarization, and the first transmission power is equal to the to-be-transmitted power of the terminal device and the first weight Product, the first weight is the second received signal strength of the second polarization in the second beam direction and the first received signal strength of the first polarization in the first beam direction and the second received signal The ratio of the sum of the intensities.
  • P 1 denote the first transmit power
  • P total denote the power to be transmitted from the terminal device
  • the terminal device allocates the second transmission power to the second polarization, and the second transmission power is equal to the to-be-transmitted power of the terminal device and the second weight Product, the second weight is the first received signal strength of the first polarization in the first beam direction and the first received signal strength and the second received signal of the second polarization in the second beam direction The ratio of the sum of the intensities.
  • the second transmit power is obtained according to the following formula:
  • the method before performing step S201, the method further includes:
  • step S200 the terminal device measures the first received signal strength and the second received signal strength.
  • the first polarization is turned on during downlink transmission, and the optimal receiving beam direction corresponding to the first polarization (first beam direction) is searched To measure the strength of the first received signal in the optimal receive beam direction.
  • the greater the strength of the first received signal the smaller the loss of the terminal equipment and network equipment in the first polarization.
  • the second received signal strength of the second polarization is the optimal receive beam direction (second beam direction). Comparing the magnitudes of the first received signal strength and the second received signal strength, the polarization corresponding to the greater of the first received signal strength and the second received signal strength is the optimal propagation polarization.
  • the first polarization and the second polarization are two orthogonal polarizations.
  • the first polarization is horizontal polarization and the second polarization is vertical polarization; or the first polarization is vertical polarization and the second polarization is horizontal polarization; or the first polarization is 45° polarization Polarization, the second polarization is 135° polarization; or the first polarization is 135° polarization and the second polarization is 45° polarization.
  • the terminal device interacts with the network device based on the first polarization and the second polarization.
  • the transmission power allocated to the first polarization is based on the first maximum transmission of the first polarization
  • the power or the first received signal strength of the first polarization is determined, and the transmission power allocated for the second polarization is determined according to the second maximum transmit power of the second polarization or the second received signal strength of the second polarization;
  • a power distribution that differentiates the first polarization and the second polarization based on the channel polarization characteristics is described.
  • the embodiments of the present invention can effectively utilize the transmission power of the terminal device.
  • An embodiment of the present invention further provides a terminal device.
  • a schematic structural diagram of the composition of the terminal device 300, as shown in FIG. 5, includes:
  • the first processing unit 301 is configured to allocate the transmission power of the terminal device at the first polarization and the second polarization based on the first information; the first information includes: received signal strength and/or maximum transmission power.
  • the first processing unit 301 when the terminal device does not need to perform polarization-based multi-stream transmission, the first processing unit 301 is configured when the power to be transmitted of the terminal device is less than or equal to the first polarization At the first maximum transmit power, all the power to be transmitted is allocated to the first polarization; the first received signal strength of the first polarization in the first beam direction is greater than that of the second polarization in the second The second received signal strength in the beam direction.
  • the first processing unit 301 when the terminal device does not need to perform polarization-based multi-stream transmission, the first processing unit 301 is configured such that when the to-be-transmitted power of the terminal device is greater than the first polarization At maximum transmit power,
  • the terminal device allocates full power to the first polarization and distributes the remaining power to the second polarization
  • the first received signal strength of the first polarization in the first beam direction is greater than the second received signal strength of the second polarization in the second beam direction, and the remaining power is the power to be transmitted and the first The difference of the first maximum transmit power of one polarization.
  • the first processing unit 301 is configured to allocate the first transmit power to the first polarization, the first transmit power is equal to the product of the power to be transmitted of the terminal device and a first weight, and the first weight is The ratio of the second received signal strength of the second polarization in the second beam direction to the sum of the first received signal strength of the first polarization in the first beam direction and the second received signal strength.
  • the first processing unit 301 is configured to allocate the second transmit power to the second polarization, the second transmit power is equal to the product of the power to be transmitted of the terminal device and a second weight, and the second weight is The ratio of the first received signal strength of the first polarization in the first beam direction to the sum of the first received signal strength and the second received signal strength of the second polarization in the second beam direction.
  • the terminal device further includes:
  • the second processing unit 302 is configured to measure the first received signal strength and the second received signal strength.
  • the first polarization and the second polarization are two orthogonal polarizations.
  • An embodiment of the present invention further provides a terminal device, including a processor and a memory for storing a computer program that can run on the processor, where the processor is used to execute Steps of the power distribution method.
  • the electronic device 700 includes: at least one processor 701, a memory 702, and at least one network interface 704.
  • the various components in the electronic device 700 are coupled together through a bus system 705. It can be understood that the bus system 705 is used to implement connection and communication between these components.
  • the bus system 705 also includes a power bus, a control bus, and a status signal bus. However, for the sake of clarity, various buses are marked as the bus system 705 in FIG. 6.
  • the memory 702 may be a volatile memory or a non-volatile memory, and may also include both volatile and non-volatile memory.
  • non-volatile memory may be ROM, programmable read-only memory (PROM, Programmable Read-Only Memory), erasable programmable read-only memory (EPROM, Erasable Programmable Read-Only Memory), electrically erasable Programmable read-only memory (EEPROM, Electrically Erasable, Programmable Read-Only Memory), magnetic random access memory (FRAM, ferromagnetic random access memory), flash memory (Flash), magnetic surface memory, compact disc, or read-only compact disc (CD -ROM, Compact, Disc, Read-Only, Memory); the magnetic surface memory can be disk storage or tape storage.
  • the volatile memory may be a random access memory (RAM, Random Access Memory), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • SSRAM synchronous static random access memory
  • DRAM Dynamic Random Access Memory
  • SDRAM Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Double Data Rate, Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM SyncLink Dynamic Random Access Memory
  • DRRAM Direct Rambus Random Access Random Access Memory
  • DRRAM Direct Rambus Random Access Random Access Memory
  • the memory 702 described in this embodiment of the present invention is intended to include, but is not limited to, these and any other suitable types of memory.
  • the memory 702 in the embodiment of the present invention is used to store various types of data to support the operation of the electronic device 700. Examples of these data include: any computer program for operating on the electronic device 700, such as an application program 7022.
  • the program for implementing the method of the embodiment of the present invention may be included in the application program 7022.
  • the method disclosed in the foregoing embodiment of the present invention may be applied to the processor 701, or implemented by the processor 701.
  • the processor 701 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 701 or an instruction in the form of software.
  • the foregoing processor 701 may be a general-purpose processor, a digital signal processor (DSP, Digital Processor), or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
  • the processor 701 may implement or execute the disclosed methods, steps, and logical block diagrams in the embodiments of the present invention.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented and completed by a hardware decoding processor, or may be implemented and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a storage medium.
  • the storage medium is located in the memory 702.
  • the processor 701 reads the information in the memory 702 and completes the steps of the foregoing method in combination with its hardware.
  • the electronic device 700 may be one or more application specific integrated circuits (ASIC, Application Integrated Circuit), DSP, programmable logic device (PLD, Programmable Logic Device), complex programmable logic device (CPLD , Complex Programmable Logic Device), FPGA, general-purpose processor, controller, MCU, MPU, or other electronic components to implement the aforementioned method.
  • ASIC Application specific integrated circuits
  • DSP digital signal processor
  • PLD programmable logic device
  • CPLD Complex programmable logic device
  • FPGA general-purpose processor
  • controller MCU, MPU, or other electronic components to implement the aforementioned method.
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the network device in the embodiments of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiments of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiments of the present application.
  • the computer-readable storage medium may be applied to the terminal device in the embodiments of the present application, and the computer program causes the computer to execute the corresponding process implemented by the terminal device in each method of the embodiments of the present application. No longer.
  • each flow and/or block in the flowchart and/or block diagram and a combination of the flow and/or block in the flowchart and/or block diagram may be implemented by computer program instructions.
  • These computer program instructions can be provided to the processor of a general-purpose computer, special-purpose computer, embedded processing machine, or other programmable data processing device to produce a machine that enables the generation of instructions executed by the processor of the computer or other programmable data processing device
  • These computer program instructions may also be stored in a computer readable memory that can guide a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer readable memory produce an article of manufacture including an instruction device, the instructions
  • the device implements the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and/or block diagrams.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device, so that a series of operating steps are performed on the computer or other programmable device to produce computer-implemented processing, which is executed on the computer or other programmable device
  • the instructions provide steps for implementing the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and/or block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种功率分配方法,所述方法包括:终端设备基于第一信息分配所述终端设备在第一极化和第二极化的发射功率;所述第一信息包括:接收信号强度和/或最大发射功率。本发明还公开了一种终端设备及存储介质。

Description

一种功率分配方法、终端设备及存储介质 技术领域
本发明涉及无线通信技术领域,尤其涉及一种功率分配方法、终端设备及存储介质。
背景技术
毫米波终端设备的天线系统通常具备两个极化,如水平极化和垂直极化;不同的极化在空间信道的传播特性不同、损耗不同、且接收的信号也不同。如水平极化时,天线只能接收水平极化的信号;垂直极化时,天线只能接收垂直极化的信号。因此,为了有效利用终端设备的辐射功率,如何对两个极化对终端设备的发射功率进行分配是亟需解决的问题。
发明内容
为解决上述技术问题,本发明实施例提供一种功率分配方法、终端设备及存储介质,能够差异化的对两个极化进行功率分配,进而有效地利用终端设备的发射功率。
第一方面,本发明实施例提供一种功率分配方法,所述方法包括:
终端设备基于第一信息分配所述终端设备在第一极化和第二极化的发射功率;所述第一信息包括:接收信号强度和/或最大发射功率。
第二方面,本发明实施例提供一种终端设备,所述终端设备包括:
第一处理单元,配置为基于第一信息分配所述终端设备在第一极化和第二极化的发射功率;所述第一信息包括:接收信号强度和/或最大发射功率。
第三方面,本发明实施例提供一种终端设备,包括处理器和用于存 储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述的功率分配方法的步骤。
第四方面,本发明实施例提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述的功率分配方法的步骤。
本发明实施例提供的功率分配方法,终端设备基于接收信号强度和/或最大发射功率,分配所述终端设备在第一极化和第二极化的发射功率;能够根据第一极化的接收信号强度和/或最大发射功率为第一极化分配发射功率,根据第二极化的接收信号强度和/或最大发射功率为第二极化发射分配功率;即根据第一极化和第二极化自身的特性,对第一极化和第二极化进行差异化的功率分配,有效地利用了终端设备的发射功率。
附图说明
图1为相关技术中终端设备基于第一极化和第二极化与网络设备交互的示意图;
图2为本发明实施例通信系统的组成结构示意图;
图3图为本发明实施例提供的功率分配方法的可选处理流程示意图;
图4为本发明实施例终端设备基于第一极化和第二极化与网络设备交互的示意图;
图5为本发明实施例终端设备的组成结构示意图;
图6为本发明实施例终端设备的硬件组成结构示意图。
具体实施方式
为了能够更加详尽地了解本发明实施例的特点和技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
在对本发明实施例进行详细描述之前,首先对相关技术中的终端设备 的功率分配进行简要说明。
相关技术中,终端设备基于第一极化和第二极化与网络设备交互的示意图,如图1所示,终端设备的水平极化方向和垂直极化方向采用相同的功率控制机制,即分配给终端设备的水平极化方向的发射功率与分配给终端设备的垂直极化方向的发射功率相同;并形成统一的波束与网络设备进行通信。但是,由于水平极化方向和垂直极化方向的信道特性差异,导致水平极化方向的功率有效性与垂直极化方向的功率有效性存在较大的差异。当分配给终端设备的水平极化方向的发射功率与分配给终端设备的垂直极化方向的发射功率相同时,将导致终端设备的发射功率不能得到有效的利用。
基于上述问题,本发明提供一种功率分配方法,本申请实施例的功率分配方法可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统或5G系统等。
示例性的,本申请实施例应用的通信系统100如图2所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver  Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话 启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图2示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图2示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
本发明实施例提供的功率分配方法的可选处理流程,如图3所示,包括以下步骤:
步骤S201,终端设备基于第一信息分配所述终端设备在第一极化和第二极化的发射功率;所述第一信息包括:接收信号强度和/或最大发射功率。
在一些实施例中,所述终端设备基于最大发射功率分配所述终端设备 在第一极化和第二极化的发射功率。所述最大发射功率包括:第一极化的第一最大发射功率和第二极化的第二最大发射功率。
当终端设备不需要进行基于极化的多流传输时,且终端设备的待发射功率P total小于或等于所述第一极化的第一最大发射功率Pcmax polar时,所述终端设备将所述待发射功率全部分配给所述第一极化。
这里,所述第一极化为第一极化和第二极化中的最优传播极化,当第一极化在第一波束方向的第一接收信号强度大于第二极化在第二波束方向的第二接收信号强度时,表征第一极化为最优传播极化。其中,第一波束方向为测量得到第一极化的最大接收信号强度对应的波束方向,即第一极化的最优波束方向,第二波束方向为测量得到第二极化的最大接收信号强度对应的波束方向,即第二极化的最优波束方向。
当终端设备不需要进行基于极化的多流传输时,且终端设备的待发射功率P total大于所述第一极化的第一最大发射功率Pcmax polar时,所述终端设备对所述第一极化进行满功率分配,将剩余功率分配至所述第二极化;所述剩余功率为所述待发射功率与所述第一极化的第一最大发射功率的差值。可以理解为,终端设备为第一极化分配的功率为Pcmax polar,终端设备为第二极化分配的功率为P total-Pcmax polar
在另一些实施例中,所述终端设备基于接收信号强度分配所述终端设备在第一极化和第二极化的发射功率。所述接收信号强度包括:第一极化在第一波束方向的第一接收信号强度R 1,以及第二极化在第二波束方向的第二接收信号强度R 2
当终端设备需要进行基于极化的多流传输时,所述终端设备将第一发射功率分配给第一极化,所述第一发射功率等于所述终端设备的待发射功率与第一权重的乘积,所述第一权重为所述第二极化在第二波束方向的第二接收信号强度与所述第一极化在第一波束方向的第一接收信号强度和所 述第二接收信号强度之和的比值。以P 1表示第一发射功率,P total表示终端设备的待发射功率,则根据下述公式得到第一发射功率:
P 1=P total*[R 2/(R 1+R 2)]             (1)
当终端设备需要进行基于极化的多流传输时,所述终端设备将第二发射功率分配给第二极化,所述第二发射功率等于所述终端设备的待发射功率与第二权重的乘积,所述第二权重为所述第一极化在第一波束方向的第一接收信号强度与所述第一接收信号强度和所述第二极化在第二波束方向的第二接收信号强度之和的比值。
根据下述公式得到第二发射功率:
P 2=P total*[R 1/(R 1+R 2)]             (2)
可选地,在执行步骤S201之前,所述方法还包括:
步骤S200,终端设备测量第一接收信号强度和第二接收信号强度。
在具体实施时,所述终端设备接入网络后,在低速移动的条件下,在下行传输时开启第一极化,并搜索对应第一极化的最优接收波束方向(第一波束方向),测量最优接收波束方向下的第一接收信号强度。第一接收信号强度越大,终端设备与网络设备在第一极化的损耗越小。基于同样的方法,能够测量第二极化在最优接收波束方向(第二波束方向)下的第二接收信号强度。比较第一接收信号强度和第二接收信号强度的大小,第一接收信号强度和第二接收信号强度中的较大者对应的极化为最优传播极化。
需要说明的是,本发明实施例中所述第一极化和所述第二极化是相互正交的两个极化。举例来说,第一极化为水平极化,第二极化为垂直极化;或者第一极化为垂直极化,第二极化为水平极化;或者第一极化为45°极化,第二极化为135°极化;或者第一极化为135°极化,第二极化为45°极化。
本发明实施例中,终端设备基于第一极化和第二极化与网络设备交互 的示意图,如图4所示,为第一极化分配的发射功率根据第一极化的第一最大发射功率或者第一极化的第一接收信号强度决定,为第二极化分配的发射功率根据第二极化的第二最大发射功率或者第二极化的第二接收信号强度决定;如此,实现了基于信道极化特性对第一极化和第二极化进行差异化的功率分配。与相关技术中为第一极化和第二极化分配相同的发射功率相比,本发明实施例能够有效地利用终端设备的发射功率。
本发明实施例还提供一种终端设备,所述终端设备300的组成结构示意图,如图5所示,包括:
第一处理单元301,配置为基于第一信息分配所述终端设备在第一极化和第二极化的发射功率;所述第一信息包括:接收信号强度和/或最大发射功率。
本发明实施例中,当终端设备不需要进行基于极化的多流传输时,所述第一处理单元301,配置为当所述终端设备的待发射功率小于或等于所述第一极化的第一最大发射功率时,将所述待发射功率全部分配给所述第一极化;所述第一极化在第一波束方向的第一接收信号强度大于所述第二极化在第二波束方向的第二接收信号强度。
本发明实施例中,当终端设备不需要进行基于极化的多流传输时,所述第一处理单元301,配置为当所述终端设备的待发射功率大于所述第一极化的第一最大发射功率时,
所述终端设备对所述第一极化进行满功率分配,将剩余功率分配至所述第二极化;
所述第一极化在第一波束方向的第一接收信号强度大于所述第二极化在第二波束方向的第二接收信号强度,所述剩余功率为所述待发射功率与所述第一极化的第一最大发射功率的差值。
本发明实施例中,当终端设备需要进行基于极化的多流传输时,
所述第一处理单元301,配置为将第一发射功率分配给第一极化,所述第一发射功率等于所述终端设备的待发射功率与第一权重的乘积,所述第一权重为所述第二极化在第二波束方向的第二接收信号强度与所述第一极化在第一波束方向的第一接收信号强度和所述第二接收信号强度之和的比值。
所述第一处理单元301,配置为将第二发射功率分配给第二极化,所述第二发射功率等于所述终端设备的待发射功率与第二权重的乘积,所述第二权重为所述第一极化在第一波束方向的第一接收信号强度与所述第一接收信号强度和所述第二极化在第二波束方向的第二接收信号强度之和的比值。
本发明实施例中,所述终端设备还包括:
第二处理单元302,配置为测量第一接收信号强度和第二接收信号强度。
本发明实施例中,所述第一极化和所述第二极化是相互正交的两个极化。
本发明实施例还提供一种终端设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述终端设备执行的功率分配方法的步骤。
图6是本发明实施例的终端设备的硬件组成结构示意图,电子设备700包括:至少一个处理器701、存储器702和至少一个网络接口704。电子设备700中的各个组件通过总线系统705耦合在一起。可理解,总线系统705用于实现这些组件之间的连接通信。总线系统705除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图6中将各种总线都标为总线系统705。
可以理解,存储器702可以是易失性存储器或非易失性存储器,也可 包括易失性和非易失性存储器两者。其中,非易失性存储器可以是ROM、可编程只读存储器(PROM,Programmable Read-Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)、电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read-Only Memory)、磁性随机存取存储器(FRAM,ferromagnetic random access memory)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(CD-ROM,Compact Disc Read-Only Memory);磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取存储器(RAM,Random Access Memory),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(SRAM,Static Random Access Memory)、同步静态随机存取存储器(SSRAM,Synchronous Static Random Access Memory)、动态随机存取存储器(DRAM,Dynamic Random Access Memory)、同步动态随机存取存储器(SDRAM,Synchronous Dynamic Random Access Memory)、双倍数据速率同步动态随机存取存储器(DDRSDRAM,Double Data Rate Synchronous Dynamic Random Access Memory)、增强型同步动态随机存取存储器(ESDRAM,Enhanced Synchronous Dynamic Random Access Memory)、同步连接动态随机存取存储器(SLDRAM,SyncLink Dynamic Random Access Memory)、直接内存总线随机存取存储器(DRRAM,Direct Rambus Random Access Memory)。本发明实施例描述的存储器702旨在包括但不限于这些和任意其它适合类型的存储器。
本发明实施例中的存储器702用于存储各种类型的数据以支持电子设备700的操作。这些数据的示例包括:用于在电子设备700上操作的任何计算机程序,如应用程序7022。实现本发明实施例方法的程序可以包含在应用程序7022中。
上述本发明实施例揭示的方法可以应用于处理器701中,或者由处理器701实现。处理器701可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器701中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器701可以是通用处理器、数字信号处理器(DSP,Digital Signal Processor),或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。处理器701可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于存储器702,处理器701读取存储器702中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,电子设备700可以被一个或多个应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、FPGA、通用处理器、控制器、MCU、MPU、或其他电子元件实现,用于执行前述方法。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (16)

  1. 一种功率分配方法,所述方法包括:
    终端设备基于第一信息分配所述终端设备在第一极化和第二极化的发射功率;
    所述第一信息包括:接收信号强度和/或最大发射功率。
  2. 根据权利要求1所述的方法,其中,所述终端设备基于第一信息分配所述终端设备在第一极化和第二极化的发射功率,包括:
    当所述终端设备的待发射功率小于或等于所述第一极化的第一最大发射功率时,
    所述终端设备将所述待发射功率全部分配给所述第一极化;
    所述第一极化在第一波束方向的第一接收信号强度大于所述第二极化在第二波束方向的第二接收信号强度。
  3. 根据权利要求1所述的方法,其中,所述终端设备基于第一信息分配所述终端设备在第一极化和第二极化的发射功率,包括:
    当所述终端设备的待发射功率大于所述第一极化的第一最大发射功率时,
    所述终端设备对所述第一极化进行满功率分配,将剩余功率分配至所述第二极化;
    所述第一极化在第一波束方向的第一接收信号强度大于所述第二极化在第二波束方向的第二接收信号强度,所述剩余功率为所述待发射功率与所述第一极化的第一最大发射功率的差值。
  4. 根据权利要求1所述的方法,其中,所述终端设备基于第一信息分配所述终端设备在第一极化和第二极化的发射功率,包括:
    所述终端设备将第一发射功率分配给第一极化,所述第一发射功率等于所述终端设备的待发射功率与第一权重的乘积,所述第一权重为所述第 二极化在第二波束方向的第二接收信号强度与所述第一极化在第一波束方向的第一接收信号强度和所述第二接收信号强度之和的比值。
  5. 根据权利要求1或4所述的方法,其中,所述终端设备基于第一信息分配所述终端设备在第一极化和第二极化的发射功率,包括:
    所述终端设备将第二发射功率分配给第二极化,所述第二发射功率等于所述终端设备的待发射功率与第二权重的乘积,所述第二权重为所述第一极化在第一波束方向的第一接收信号强度与所述第一接收信号强度和所述第二极化在第二波束方向的第二接收信号强度之和的比值。
  6. 根据权利要求1至5任一项所述的方法,其中,所述方法还包括:
    所述终端设备测量第一接收信号强度和第二接收信号强度。
  7. 根据权利要求1至6任一项所述的方法,其中,
    所述第一极化和所述第二极化是相互正交的两个极化。
  8. 一种终端设备,所述终端设备包括:
    第一处理单元,配置为基于第一信息分配所述终端设备在第一极化和第二极化的发射功率;
    所述第一信息包括:接收信号强度和/或最大发射功率。
  9. 根据权利要求8所述的终端设备,其中,所述第一处理单元,配置为当所述终端设备的待发射功率小于或等于所述第一极化的第一最大发射功率时,将所述待发射功率全部分配给所述第一极化;
    所述第一极化在第一波束方向的第一接收信号强度大于所述第二极化在第二波束方向的第二接收信号强度。
  10. 根据权利要求8所述的终端设备,其中,所述第一处理单元,配置为当所述终端设备的待发射功率大于所述第一极化的第一最大发射功率时,对所述第一极化进行满功率分配,将剩余功率分配至所述第二极化;
    所述第一极化在第一波束方向的第一接收信号强度大于所述第二极化 在第二波束方向的第二接收信号强度,所述剩余功率为所述待发射功率与所述第一极化的第一最大发射功率的差值。
  11. 根据权利要求8所述的终端设备,其中,所述第一处理单元,配置为将第一发射功率分配给第一极化,所述第一发射功率等于所述终端设备的待发射功率与第一权重的乘积,所述第一权重为所述第二极化在第二波束方向的第二接收信号强度与所述第一极化在第一波束方向的第一接收信号强度和所述第二接收信号强度之和的比值。
  12. 根据权利要求8或11所述的终端设备,其中,所述第一处理单元,配置为将第二发射功率分配给第二极化,所述第二发射功率等于所述终端设备的待发射功率与第二权重的乘积,所述第二权重为所述第一极化在第一波束方向的第一接收信号强度与所述第一接收信号强度和所述第二极化在第二波束方向的第二接收信号强度之和的比值。
  13. 根据权利要求8至12任一项所述的终端设备,其中,所述终端设备还包括:
    第二处理单元,配置为测量所述第一接收信号强度和所述第二接收信号强度。
  14. 根据权利要求8至13任一项所述的终端设备,其中,所述第一极化和所述第二极化是相互正交的两个极化。
  15. 一种终端设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,
    所述处理器用于运行所述计算机程序时,执行权利要求1至7任一项所述的功率分配方法的步骤。
  16. 一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现权利要求1至7任一项所述的功率分配方法的步骤。
PCT/CN2018/122422 2018-12-20 2018-12-20 一种功率分配方法、终端设备及存储介质 WO2020124502A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880097381.6A CN112673682B (zh) 2018-12-20 2018-12-20 一种功率分配方法、终端设备及存储介质
PCT/CN2018/122422 WO2020124502A1 (zh) 2018-12-20 2018-12-20 一种功率分配方法、终端设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/122422 WO2020124502A1 (zh) 2018-12-20 2018-12-20 一种功率分配方法、终端设备及存储介质

Publications (1)

Publication Number Publication Date
WO2020124502A1 true WO2020124502A1 (zh) 2020-06-25

Family

ID=71100973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122422 WO2020124502A1 (zh) 2018-12-20 2018-12-20 一种功率分配方法、终端设备及存储介质

Country Status (2)

Country Link
CN (1) CN112673682B (zh)
WO (1) WO2020124502A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101997591A (zh) * 2009-08-10 2011-03-30 雷凌科技股份有限公司 无线收发器、具有多输入多输出的无线通信系统及其方法
CN103259571A (zh) * 2012-02-15 2013-08-21 系通科技股份有限公司 多重输入多重输出无线通讯系统的扩充模块
WO2018038861A1 (en) * 2016-08-22 2018-03-01 Qualcomm Incorporated Methods and apparatuses for power control for independent links
CN108271175A (zh) * 2017-01-03 2018-07-10 华为技术有限公司 功率控制方法和通信设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE472200T1 (de) * 2003-09-18 2010-07-15 Nokia Siemens Networks Spa Sendeleistungsregelungsverfahren für orthogonal polarisierte signale
EP2795975B1 (en) * 2011-12-22 2015-12-16 Telefonaktiebolaget LM Ericsson (PUBL) Automatic transmit power control in xpic configuration for wireless applications
US10057796B2 (en) * 2014-11-25 2018-08-21 Intel Corporation Dual polarized antenna array

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101997591A (zh) * 2009-08-10 2011-03-30 雷凌科技股份有限公司 无线收发器、具有多输入多输出的无线通信系统及其方法
CN103259571A (zh) * 2012-02-15 2013-08-21 系通科技股份有限公司 多重输入多重输出无线通讯系统的扩充模块
WO2018038861A1 (en) * 2016-08-22 2018-03-01 Qualcomm Incorporated Methods and apparatuses for power control for independent links
CN108271175A (zh) * 2017-01-03 2018-07-10 华为技术有限公司 功率控制方法和通信设备

Also Published As

Publication number Publication date
CN112673682A (zh) 2021-04-16
CN112673682B (zh) 2023-02-28

Similar Documents

Publication Publication Date Title
WO2021026715A1 (zh) 用于传输侧行数据的方法、终端设备和网络设备
WO2020191683A1 (zh) 一种测量间隔配置方法及装置、终端、网络设备
WO2020118574A1 (zh) 一种上行传输的功率控制方法及终端设备
TW202013921A (zh) 發送上行信號的方法和設備
TW202002687A (zh) 信息測量方法、終端設備和網路設備
WO2021097698A1 (zh) 一种上行接入方法、电子设备及存储介质
WO2019242712A1 (zh) 一种能力交互方法及相关设备
WO2020029160A1 (zh) 信号上报的方法、终端设备和网络设备
EP3846517B1 (en) Terminal capability determination method and device, and terminal
WO2020258191A1 (zh) 一种接入控制方法及装置、终端
US11805563B2 (en) Wireless communication method and base station
WO2020093399A1 (zh) 无线通信方法、网络设备和终端设备
WO2020082248A1 (zh) 一种控制终端移动性的方法及装置、终端
US20240022942A1 (en) Measurement parameter determination method, electronic device and storage medium
KR20210047324A (ko) 정보 전송 방법, 장치 및 저장 매체
WO2021237531A1 (zh) 一种测量方法及装置、终端设备、网络设备
WO2020124506A1 (zh) 确定天线的发射功率的方法、终端设备和网络设备
WO2020087546A1 (zh) 一种网络信息传输方法、获取方法、网络设备及终端设备
WO2020029201A1 (zh) 信号上报的方法、终端设备和网络设备
WO2020087306A1 (zh) 一种窗口配置方法及装置、终端、网络设备
WO2020034161A1 (zh) 一种下行信号传输方法、终端和计算机可读存储介质
WO2020118722A1 (zh) 一种数据处理方法、设备及存储介质
US20220007425A1 (en) Method and apparatus for transmitting a system information request and system
US20210153084A1 (en) Wireless communication method, terminal device, and network device
WO2020124502A1 (zh) 一种功率分配方法、终端设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944106

Country of ref document: EP

Kind code of ref document: A1