WO2020122303A1 - Ceramic hollow fiber membrane module for contact film process - Google Patents

Ceramic hollow fiber membrane module for contact film process Download PDF

Info

Publication number
WO2020122303A1
WO2020122303A1 PCT/KR2018/016283 KR2018016283W WO2020122303A1 WO 2020122303 A1 WO2020122303 A1 WO 2020122303A1 KR 2018016283 W KR2018016283 W KR 2018016283W WO 2020122303 A1 WO2020122303 A1 WO 2020122303A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
ceramic hollow
fluid
fiber membrane
housing
Prior art date
Application number
PCT/KR2018/016283
Other languages
French (fr)
Korean (ko)
Inventor
박정훈
이홍주
이승환
박유강
김민광
Original Assignee
주식회사 앱스필
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180162293A external-priority patent/KR102203813B1/en
Priority claimed from KR1020180162272A external-priority patent/KR102203817B1/en
Application filed by 주식회사 앱스필 filed Critical 주식회사 앱스필
Publication of WO2020122303A1 publication Critical patent/WO2020122303A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/04Hollow fibre modules comprising multiple hollow fibre assemblies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material

Definitions

  • the present invention relates to a ceramic hollow fiber module for a contact membrane process, and more particularly, to a ceramic hollow fiber module that enables stable operation while maintaining material transfer efficiency without separation membrane wetting.
  • the contact separation membrane technology is a process of selectively separating one or more components by contacting an absorbent and a gas through a separation membrane, and is a hybrid technology combining the advantages of liquid absorption (high selectivity) and membrane separation (modularity and miniaturization).
  • the concept of the contact separator was introduced by Schaffer in 1960 for water treatment of food and medicine, and has been actively researched in the field of gas separation since it was used for CO 2 separation by Qi and Cussler in the 1980s.
  • the contact separator is applied to various applications such as liquid liquid extraction, gas absorption and stripping, high-density gas extraction, isomer separation, fermentation and enzyme modification, protein extraction, pharmaceutical field, wastewater treatment, metal ion recovery, semiconductor process, and osmotic distillation.
  • absorption processes such as a filling tower, a spray tower, and a bubble tower are commercialized.
  • the absorption process has been able to achieve high acid gas removal efficiency even at normal pressure and low gas concentration, and relatively stable operation is possible, so many developments have been made.
  • the acidic gas capture process based on these liquid absorbents is a relatively efficient technique, but it has some significant limitations: specifically, the energy consumption required for absorbent regeneration is excessive, and a large site size requires a large site. It can cause problems such as corrosion of equipment, loss of solvent, overflow, foam, drift, and entrainment.
  • the contact separation membrane process is regarded as a promising alternative to overcome the disadvantages of the existing absorption process.
  • the membrane serves to separate the gas phase and the liquid phase instead of providing selectivity for separation, and to increase the effective contact area for mass transfer. It has the great advantage of being able to reduce device size through high contact area per unit volume while providing high selectivity by absorbent.
  • the gas phase and the liquid phase can be controlled independently, and since the gas flow rate can be increased without operational problems such as overflow and foam, it is possible to increase the processing capacity of the device in the same volume.
  • the contact area can be easily controlled by adjusting the number of unit modules, and system prediction is relatively easy, which is advantageous for process scale up.
  • Membrane contactors are known to provide about 30 times more effective contact area than conventional absorption processes, and have been reported to reduce the size of absorption unit processes by up to 10 times.
  • the separation membrane module has a flat plate type, a spiral type, a tubular type, a hollow fiber type, etc., but the hollow fiber membrane has received the most attention recently because it can maximize the membrane area per unit volume and compact module configuration compared to other formulations.
  • the conventional hollow fiber module as shown in Figure 1, the housing 100 for receiving the hollow fiber membrane 10, shell side (Shell side) fluid injection unit (110a, 110b), lumen side (Lumen side) fluid injection unit ( 120a, 120b), and a potting part 400.
  • the membrane resistance existed in the contact separation membrane in the conventional hollow fiber module, especially during long-term operation using the basic unit module, as shown in FIG. 2(a), the pressure is applied at the shell side injection part, so that it breaks through.
  • a wetting phenomenon caused by the absorbent occurs in the separator.
  • the mass transfer resistance increases rapidly.
  • the hollow fiber bundles are ported in parallel in a row, in which case, in most cases, the gap between the separators has an uneven distribution. Therefore, severe fluid drift and bypass may occur on the shell side of the module, which may cause a decrease in mass transfer characteristics.
  • the overall performance may be influenced by membrane resistance rather than gas phase and liquid phase. This indicates that it is important to consider the structure of the separator and the absorbent, as well as the module structure that controls the fluid flow, when designing the contact separator process. Accordingly, the development of a module design in which regular arrangement of the hollow fiber membrane, filling rate, and flow direction of the fluid are considered as important factors is emerging as a major issue.
  • the present invention has been devised to improve the above problems, and the object of the present invention is to prevent the breakage of the ceramic hollow fiber membrane, to be evenly disposed in the space inside the housing, and the first fluid and the second fluid. It is to provide a ceramic hollow fiber module that is uniformly injected through a shell side dispersion injection unit and a lumen side dispersion injection unit to maintain high mass transfer efficiency without separation membrane wetting.
  • the present invention is a hollow fiber membrane bundle comprising a plurality of ceramic hollow fiber membranes, a hydrophilic metal mesh surrounding each hollow fiber membrane in the hollow fiber membrane bundle, and a ceramic hollow fiber membrane bundle surrounded by the hydrophilic metal mesh.
  • the housing is accommodated, a cylindrical housing in which a plurality of through holes through which the first fluid is movable is formed at both ends, coupled to one end of the housing, and an entrance through which the second fluid enters and exits the lumen side of the hollow fiber membrane.
  • the lumen side dispersion injection unit is formed a communication space between the lumenside entrance and the hollow fiber membrane, and surrounding the periphery of the outer circumferential surface at one end of the cylindrical housing, a communication space is formed to communicate with the through hole of the housing ,
  • a ceramic hollow fiber module including a shell side dispersion injection unit having an entrance through which a first fluid enters and exits a shell side is formed.
  • a hollow fiber membrane bundle made of a plurality of ceramic hollow fiber membrane, a hydrophilic metal mesh (mesh) surrounding each hollow fiber membrane in the hollow fiber membrane bundle, the ceramic hollow fiber membrane bundle surrounded by the hydrophilic metal mesh is accommodated, cylindrical A cylindrical shape in which a baffle unit in which a plurality of through holes are formed on the surface, a bundle of ceramic hollow fiber membranes surrounded by the hydrophilic metal mesh, and a baffle unit are accommodated, and a plurality of through holes in which the first fluid is movable at both ends are respectively formed.
  • a housing a shell side dispersion injecting unit that surrounds an outer circumferential surface at one end of the cylindrical housing, communicates with a through hole of the housing, and provides a passage for a first fluid, and an entrance through which a first fluid is introduced and exits at one side. It provides a ceramic hollow fiber module that is coupled to the upper and lower parts of the housing and includes a funnel-shaped lumen side dispersion injection unit having an entrance through which a second fluid enters and exits a lumen side.
  • the ceramic hollow fiber membranes in the ceramic hollow fiber module, can be arranged on a hydrophilic metal mesh and rolled to prevent damage to the ceramic hollow fiber membranes, and can be evenly disposed in the space inside the housing, and the shell side.
  • the gas/liquid flow path of the ceramic hollow fiber module is improved to maximize mass transfer and distribute pressure. , It has the effect that stable operation is possible while maintaining the efficiency of mass transfer without wetting the separator.
  • FIG. 1 is a conceptual diagram showing the overall structure of a conventional ceramic hollow fiber module.
  • FIG. 2 is a photograph showing a flow of fluid at a shell side injection part and (b) wetting phenomenon by an absorbent in a conventional ceramic hollow fiber module.
  • FIG. 3 is a perspective view showing the overall structure of a ceramic hollow fiber module according to an embodiment of the present invention.
  • FIG. 4 is a perspective view showing the overall structure of a ceramic hollow fiber module according to another embodiment of the present invention.
  • FIG. 5 is an exploded perspective view schematically showing the configuration of a ceramic hollow fiber module according to another embodiment of the present invention.
  • Figure 6 shows the problem of the existing ceramic hollow fiber membrane porting, and in the ceramic hollow fiber module according to an embodiment of the present invention, the formation of a ceramic hollow fiber membrane bundle formed using a hydrophilic metal mesh.
  • FIG. 7 shows a ceramic hollow fiber membrane bundle formed using a hydrophilic metal mesh in a ceramic hollow fiber module according to an embodiment of the present invention.
  • Figure 8 in the ceramic hollow fiber module according to an embodiment of the present invention shows the flow of fluid in the shell side dispersion injection unit.
  • FIG. 9 is a ceramic hollow fiber module according to an embodiment of the present invention, showing the flow of fluid in the shell side dispersion injection unit.
  • FIG. 10 is a ceramic hollow fiber membrane module according to another embodiment of the present invention, showing the configuration of the lumen side dispersion injection unit.
  • FIG. 11 is a ceramic hollow fiber module according to an embodiment of the present invention, showing the flow of fluid in the lumen side dispersion injection unit.
  • FIG. 12 is a ceramic hollow fiber module according to an embodiment of the present invention, showing the flow of the fluid according to the presence or absence of the dispersion unit in the lumen side dispersion injection unit.
  • FIG. 13 is a ceramic hollow fiber module according to an embodiment of the present invention, a state in which a baffle unit is mounted on a bundle of ceramic hollow fiber membranes formed using a hydrophilic metal mesh.
  • FIG. 14 is a view of a ceramic hollow fiber module according to an embodiment of the present invention, in which a baffle unit is mounted on a bundle of ceramic hollow fiber membranes formed using a hydrophilic metal mesh, and combined with a housing by O-ring sealing.
  • 15 is a photograph showing a connection portion of a ceramic hollow fiber module according to an embodiment of the present invention.
  • 16 is a view showing a state in which a plurality of unit modules of a ceramic hollow fiber module according to an embodiment of the present invention are connected.
  • FIG. 17 is a view showing a method of operating a ceramic hollow fiber module according to an embodiment of the present invention.
  • FIG. 18 is a view provided with an auxiliary pump in the ceramic hollow fiber module according to an embodiment of the present invention.
  • the present invention is a hollow fiber membrane bundle made of a plurality of ceramic hollow fiber membranes, a hydrophilic metal mesh surrounding each hollow fiber membrane in the hollow fiber membrane bundle, and a ceramic hollow fiber membrane bundle surrounded by the hydrophilic metal mesh
  • the housing is accommodated, a cylindrical housing in which a plurality of through holes through which the first fluid is movable is formed at both ends, coupled to one end of the housing, and an entrance through which the second fluid enters and exits the lumen side of the hollow fiber membrane.
  • the lumen side dispersion injection unit is formed a communication space between the lumenside entrance and the hollow fiber membrane, and surrounding the periphery of the outer peripheral surface at one end of the cylindrical housing, a communication space is formed to communicate with the through hole of the housing ,
  • a ceramic hollow fiber module including a shell side dispersion injection unit having an entrance through which a first fluid enters and exits a shell side is formed.
  • a hollow fiber membrane bundle made of a plurality of ceramic hollow fiber membrane, a hydrophilic metal mesh (mesh) surrounding each hollow fiber membrane in the hollow fiber membrane bundle, the ceramic hollow fiber membrane bundle surrounded by the hydrophilic metal mesh is accommodated, cylindrical A cylindrical shape in which a baffle unit in which a plurality of through holes are formed on the surface, a bundle of ceramic hollow fiber membranes surrounded by the hydrophilic metal mesh, and a baffle unit are accommodated, and a plurality of through holes in which the first fluid is movable at both ends are respectively formed.
  • a housing a shell side dispersion injecting unit that surrounds an outer circumferential surface at one end of the cylindrical housing, communicates with a through hole of the housing, and provides a passage for a first fluid, and an entrance through which a first fluid is introduced and exits at one side. It provides a ceramic hollow fiber module that is coupled to the upper and lower parts of the housing and includes a funnel-shaped lumen side dispersion injection unit having an entrance through which a second fluid enters and exits a lumen side.
  • the bundle of ceramic hollow fiber membranes surrounded by the hydrophilic metal mesh may be formed by aligning the ceramic hollow fiber membranes in line with the hydrophilic metal mesh and then rolling them.
  • the hollow fiber membrane bundle may be formed so that the filling rate of the ceramic hollow fiber membrane in the housing is 10 to 60%.
  • the hydrophilic metal mesh may be a hydrophilic stainless mesh.
  • the ceramic hollow fiber module may contact the first fluid and the second fluid in a cross-flow manner.
  • the first fluid may be a liquid containing an absorbent
  • the second fluid may be a gas containing an object to be adsorbed.
  • the first fluid is an amine-based solution that absorbs CO 2
  • the second fluid may be a gas including CO 2 and N 2 .
  • the ceramic hollow fiber module is injected through a through hole in a state in which pressure is evenly distributed as the fluid spreads around the periphery of the housing through a communication space in the shell side dispersion injection unit during fluid injection. Can contact you.
  • the ceramic hollow fiber module is injected through a through hole in a state in which pressure is evenly distributed while the fluid spreads around the periphery of the housing and around the baffle through the shell side dispersion injection unit and the baffle unit during fluid injection. It can come into contact with the hollow fiber membrane.
  • a ring-shaped protrusion may be formed at one point of the top, bottom, and middle portions of the baffle unit to be sealed with the interior of the housing.
  • the sealing may be performed using a silicone O-ring.
  • the lumen side dispersion injection unit is a first dispersion unit for dispersing the injection of fluid at the lumen side fluid inlet and a plurality of through the shower head in order for the injected fluid to be evenly distributed in the hollow fiber membrane bundle in the housing. It may include a second dispersion unit having a hole.
  • the ceramic hollow fiber module may further include a connection portion for connection of the unit module.
  • the ceramic hollow fiber module may further include an auxiliary pump to control the pressure difference between the liquid phase and the gas phase.
  • first, second, etc. can be used to describe various elements, components, regions, layers and/or regions, these elements, components, regions, layers and/or regions It will be understood that it should not be limited by these terms.
  • FIG. 3 is a perspective view showing the overall structure of a ceramic hollow fiber module according to an embodiment of the present invention.
  • Figure 4 is a perspective view showing the overall structure of a ceramic hollow fiber module according to another embodiment of the present invention
  • Figure 5 is an exploded perspective view schematically showing the configuration of a ceramic hollow fiber module according to another embodiment of the present invention.
  • the ceramic hollow fiber module includes a housing 100 in which the hollow fiber membrane bundle is accommodated, a shell side dispersion injection unit 102 and a lumen side dispersion injection It includes a unit 200.
  • the housing 100 has a cylindrical large tube shape, and a hollow housing space portion is formed therein, so that a plurality of hollow fiber membranes 10 are accommodated in the housing space portion.
  • the hollow fiber membrane 10 is a separation membrane formed in a tubular shape having a surface and a hollow on which fine pores are formed, wherein the hollow fiber membrane 10 is a ceramic hollow fiber membrane.
  • FIG. 6 and 7 show a ceramic hollow fiber membrane bundle formed using a hydrophilic metal mesh in the ceramic hollow fiber module according to an embodiment of the present invention.
  • Both ends of the bundle of the hollow fiber membrane 10 are fixed by a potting part 400 formed by curing the synthetic resin.
  • the liquid synthetic resin fills the voids between the hollow fiber membranes.
  • the ceramic hollow fiber membrane 10 is arranged in a row in a hydrophilic metal mesh (mesh) 500, rolled and rolled hollow fiber membrane 10 It is characterized by forming.
  • the hydrophilic metal mesh 500 is formed in a form surrounding the hollow fiber membrane 10 to prevent the hollow fiber membrane from breaking when the potting part 400 is formed, and to maintain proper spacing between the hollow fiber membranes, thereby performing gas/liquid mass transfer. It is possible to secure a space where the adhesive can enter and seal between the hollow fiber membranes when porting the module, and to prevent drift of the shell side.
  • the hydrophilic metal mesh 500 may be used generally used in the art.
  • a hydrophilic stainless mesh was used.
  • the bundle of the hollow fiber membrane 10 is preferably formed so that the filling ratio of the ceramic hollow fiber membrane in the housing is 10 to 60%. If the filling rate exceeds 60%, there is a problem in that the sealing agent is not properly sealed because the sealing agent is not well injected between the hollow fiber membranes during module production.
  • a plurality of through-holes 101 through which fluid can move is formed at both ends of the housing 100.
  • a shell side dispersion injection unit 102 is installed in the region where the through hole 101 is formed.
  • the shell side dispersion injection unit 102 includes an area in which the through hole 101 of the housing is formed, surrounds an outer circumferential surface at one end of the cylindrical housing, and a communication space is formed to communicate with the through hole of the housing. , On one side, the outlets 110a and 110b through which the fluid enters and exits are formed.
  • the fluid injected into the first inlet 110a is discharged to the second inlet 110b.
  • the fluid injected into the second entrance 110b is discharged to the first entrance 110a.
  • the fluid may be a gas containing an object to be adsorbed or a liquid containing an absorbent, but is not limited thereto.
  • the ceramic hollow fiber module according to the present invention is characterized by applying a cross-flow method for the purpose of efficiently meeting the liquid absorbent and the gas to improve the material transfer characteristics.
  • Conventional contact membrane modules used a parallel-flow method in which the gas phase and liquid phase meet in parallel in countercurrent or co-current flow through the separation membrane, but the cross-flow method used in the ceramic hollow fiber module according to the present invention is a gas phase It is a method that is induced so that the liquid phase and the liquid phase can be contacted at a specific angle or vertically rather than horizontally. This cross-flow method minimizes bypass of the shell side of the module and improves mass transfer characteristics because fluid flow can be formed in a direction hitting the surface of the separator.
  • the fluid injected into the outlets 110a and 110b of the shell side dispersion injection unit 102 directly contacts the hollow fiber contact membrane. Rather, it spreads around the periphery of the housing through a communication space surrounding the housing and is injected into the hollow fiber contact membrane inside the housing through a plurality of through holes 101 and 101a formed in the housing. Therefore, when the fluid is injected, the pressure is evenly distributed and injected, and it is injected in a cross-flow manner, so that stable operation is possible while maintaining high mass transfer efficiency without wetting the separator.
  • the fluid in contact with the hollow fiber contact membrane moves in the longitudinal direction of the hollow fiber contact membrane and exits out of the housing through a plurality of through holes 101b formed at the ends of the housing.
  • the ceramic hollow fiber module according to the present invention can be used in one stage, and can also be connected in two stages. If the ceramic hollow fiber module is connected in two stages, the fluid that has flowed out of the housing on the same principle moves through the connection part and then contacts the hollow fiber inside the housing through the through hole 101c formed at one end of the housing of the next module. It is injected into the membrane and moves in the longitudinal direction of the hollow fiber contact membrane and exits through the housing through a plurality of through holes 101d formed at the ends of the housing.
  • the lumen side dispersion injection unit 200 may be coupled to the upper and lower portions of the housing 100, and on one side, entrances 120a and 120b through which fluid enters and exits the lumen side of the hollow fiber membrane are formed. , A communication space is formed between the lumen side entrances 120a and 120b and the hollow fiber membrane.
  • FIG. 10 is a ceramic hollow fiber membrane module according to another embodiment of the present invention, showing the configuration of the lumen side dispersion injection unit.
  • the lumen side dispersion injection unit 200 is mounted on the lumen side dispersion injection unit main body at the lumen side fluid inlets 120a and 120b to form a through hole to disperse the fluid injection.
  • the dispersing unit 201 and the injected fluid may further include a second dispersing unit 202 having a plurality of through-holes in the form of a shower head in order to be dispersively injected into the hollow fiber membrane bundle in the housing.
  • the fluid injected into the first entrance 120a is discharged to the second entrance 120b, and conversely to the second entrance 120b
  • the injected fluid is discharged to the first entrance (120a).
  • the fluid may be a gas containing an object to be adsorbed or a liquid containing an absorbent, but is not limited thereto.
  • the lumen side dispersion injection unit 200 A gas containing an adsorption object is injected into the formed fluid inlets 120a and 120b, and if a gas containing an adsorption object is injected into the fluid inlets 110a and 110b formed in the shell side dispersion injection unit 102, A liquid containing an absorbent may be injected into the fluid inlets 120a and 120b formed in the lumen side dispersion injection unit 200.
  • a liquid containing an absorbent is injected into the fluid inlets 110a and 110b formed in the shell side dispersion injecting unit 102, and adsorbed to the fluid inlets 120a and 120b formed in the lumen side dispersion injecting unit 200.
  • the gas containing the object may be injected.
  • the gas containing the object to be adsorbed may be a gas containing CO 2 and N 2
  • the liquid containing the absorbent may use an amine-based solution capable of absorbing CO 2 .
  • the lumen side dispersion injection unit 200 since the lumen side dispersion injection unit 200 also forms a communication space, the fluid injected into the outlets 210a and 210b of the lumen side dispersion injection unit 200 directly contacts the hollow fiber membrane. Rather, it moves while filling the communication space, so pressure can be evenly distributed and injected.
  • the first dispersing unit 201 and the second dispersing unit 202 dispersing the injection of fluid into the body of the lumen side dispersing injection unit 200 are not included (a) By being biased and injected, a drift phenomenon may occur on the lumen side of the contact membrane module and the entire separation area may not be used and a dead zone may occur, but according to the present invention, the lumen side dispersion injection unit 200 )
  • the first dispersing unit 201 and the second dispersing unit 202 are mounted on the body (b), it is possible to distribute the injected fluid evenly to all hollow fiber membranes of the module without dead zones. The contact area can be maximized by contacting the fluid.
  • FIG. 13 is a state in which a baffle unit is mounted on a bundle of ceramic hollow fiber membranes formed using a hydrophilic metal mesh.
  • the baffle unit 300 surrounds the bundle of the ceramic hollow fiber membrane 10 inside the housing 100 in a cylindrical shape, and a plurality of through holes 301 are formed on the surface as a whole. Accordingly, the pressure is partially distributed through the through-hole 101 of the housing, and the introduced fluid hits the housing wall due to the baffle unit and spreads, and is transmitted to the hollow fiber membrane through the through-hole 301. Therefore, the fluid can be uniformly injected into the entire hollow fiber membrane.
  • a ring-shaped protrusion 302 is provided at the top, bottom, and middle of the baffle unit 300.
  • the protrusion 302 is detachable to the baffle unit 300 and sealed to the inner wall of the housing 100 to prevent the injected fluid from leaking out.
  • the middle protrusion 302 prevents the flow of fluid flowing out of the baffle so that the fluid has sufficient time to contact the hollow fiber membrane inside the baffle through the through-hole 301 of the baffle to improve the material transfer efficiency. .
  • sealing the protrusion there is a method using an adhesive, but since the adhesive is dissolved in an amine solution that is a CO 2 absorber in the long term, as shown in FIG. 14, sealing is performed using a silicone O-ring 401. can do.
  • the silicone O-ring 401 it is also economical because the outer housing 100 can be continuously recycled.
  • the ceramic hollow fiber module according to the present invention since the ceramic hollow fiber membrane is fragile when the length is increased, unlike the polymer hollow fiber membrane, efficient connection of the unit modules is important for large area. Accordingly, the ceramic hollow fiber module according to the present invention may further include connecting parts 600 and 601 for connecting the unit modules.
  • 15 is a photograph showing a connection portion of a ceramic hollow fiber module according to an embodiment of the present invention.
  • the ceramic hollow fiber module according to the present invention can be connected through a lumen side connection portion 601 and a shell side connection portion 600, and the lumen side connection portion 601 and the shell side connection portion 600 are also Since the communication space is formed, the moving fluid moves while filling the communication space, so that the pressure in the module is evenly distributed.
  • 16 is a view showing a state in which a plurality of unit modules of a ceramic hollow fiber module according to an embodiment of the present invention are connected.
  • the ceramic hollow fiber module according to the present invention can be adjusted in length by connecting in multiple stages using the connecting parts 600 and 601.
  • a fluid entrance 602 may be formed at one side of the shell side connection part 600. This concentration polarization can be minimized by dispersing and supplying new fluid at the fluid inlet 602 of the connection part.
  • FIG. 17 is a view showing a method of operating a ceramic hollow fiber module according to an embodiment of the present invention.
  • the ceramic hollow fiber module according to the present invention can perform all 8 operation methods according to gas/liquid flow, and can select an operation condition suitable for a purpose to perform operation.
  • a ceramic hollow fiber module according to the present invention may be additionally provided with an auxiliary pump.
  • FIG. 18 is a view provided with an auxiliary pump in the ceramic hollow fiber module according to an embodiment of the present invention.
  • the height of the liquid phase can be adjusted according to the height of the auxiliary pump 700, and thus the pressure difference ( ⁇ P) between the liquid phase and the gas phase can be adjusted.
  • the ceramic hollow fiber membranes in the ceramic hollow fiber module, can be arranged on a hydrophilic metal mesh and rolled to prevent damage to the ceramic hollow fiber membranes, and can be evenly disposed in the space inside the housing, and the shell side.
  • the gas/liquid flow path of the ceramic hollow fiber module is improved to maximize mass transfer and distribute pressure. , It has the effect that stable operation is possible while maintaining the efficiency of mass transfer without wetting the separator.

Abstract

The present invention relates to a ceramic hollow fiber membrane module. According to the present invention, the ceramic hollow fiber membrane module has ceramic hollow fiber membranes that are aligned on a hydrophilic metal mesh, and then rolled and potted so as to be prevented from being damaged and be uniformly arranged in the inner space of a housing, and forms communicating spaces in a shell-side dispersed injection unit and a lumen-side dispersed injection unit, or additionally introduces a dispersion unit and a baffle unit so as to improve a gas/liquid flow path of the ceramic hollow fiber membrane module, thereby maximizing mass transfer, and distribute pressure, thereby enabling a stable operation while maintaining mass transfer efficiency without wetting of a separator.

Description

접촉막 공정을 위한 세라믹 중공사 모듈Ceramic hollow fiber module for contact membrane process
본 발명은 접촉막 공정을 위한 세라믹 중공사 모듈에 관한 것으로, 더욱 상세하게는 분리막 젖음 현상 없이 물질전달 효율을 유지하면서 안정적인 운전이 가능하도록 한 세라믹 중공사 모듈에 관한 것이다.The present invention relates to a ceramic hollow fiber module for a contact membrane process, and more particularly, to a ceramic hollow fiber module that enables stable operation while maintaining material transfer efficiency without separation membrane wetting.
접촉분리막 기술은 분리막을 통하여 흡수제와 기체를 접촉시켜 하나 이상의 성분을 선택적으로 분리하는 공정이며, 액체 흡수(높은 선택도)와 막 분리(모듈성 및 소형화)의 장점을 결합한 하이브리드 기술이다. 접촉분리막은 1960년도 Schaffer에 의해 식품, 의약 등의 수처리용으로 개념이 도입되었으며, 1980년대 Qi와 Cussler에 의해 CO2 분리를 위해 활용된 이후로 기체 분리 분야에서 활발한 연구가 수행되어 오고 있다. 현재 접촉분리막은 액액 추출, 기체 흡수 및 탈거, 고밀도 가스 추출, 이성질체 분리, 발효 및 효소 변형, 단백질 추출, 제약 분야, 폐수 처리, 금속 이온 회수, 반도체 공정, 삼투 증류법 등 다양한 응용 분야에 적용되어 개발되고 있다. 맥주 생산 라인에서 CO2와 O2를 제거하고, 보일러의 수명을 늘리기 위하여 용수에서 CO2를 탈거하는 시스템, 반도체 산업에서 초순수 제조 등에 상용화된 접촉분리막 공정이 가동되고 있다. 최근에는 천연가스, 산업 공정, 화석연료의 연소 과정에서 발생하는 CO2, H2S, SO2 등의 산성 가스를 저감하기 위한 접촉분리막 기술 개발이 주목받고 있다. 특히, CO2는 지구온난화의 주범으로 지목되어, 전 세계적으로 CO2 포집 기술 연구가 많이 수행되고 있다. 따라서 최근 접촉분리막 연구는 대부분 CO2를 포집하기 위한 기술 개발에 초점이 맞춰져있다.The contact separation membrane technology is a process of selectively separating one or more components by contacting an absorbent and a gas through a separation membrane, and is a hybrid technology combining the advantages of liquid absorption (high selectivity) and membrane separation (modularity and miniaturization). The concept of the contact separator was introduced by Schaffer in 1960 for water treatment of food and medicine, and has been actively researched in the field of gas separation since it was used for CO 2 separation by Qi and Cussler in the 1980s. Currently, the contact separator is applied to various applications such as liquid liquid extraction, gas absorption and stripping, high-density gas extraction, isomer separation, fermentation and enzyme modification, protein extraction, pharmaceutical field, wastewater treatment, metal ion recovery, semiconductor process, and osmotic distillation. Is becoming. In order to remove CO 2 and O 2 from the beer production line and extend the life of the boiler, a system for commercially removing CO 2 from water and ultrapure water production in the semiconductor industry is being operated. Recently, the development of a contact separator technology for reducing acid gases such as CO 2 , H 2 S, and SO 2 generated during combustion of natural gas, industrial processes, and fossil fuels has attracted attention. In particular, CO 2 has been identified as a major cause of global warming, and many CO 2 capture technology studies have been conducted worldwide. Therefore, most recent researches on contact separators have focused on developing technologies to capture CO 2 .
CO2를 포함한 산성 가스를 저감하기 위한 기술로는 충전탑, 분무탑, 기포탑 등의 흡수 공정이 상용화되어 있다. 흡수 공정은 상압과 낮은 기체 농도에서도 높은 산성 가스 제거 효율을 달성할 수 있으며, 비교적 안정적인 운전이 가능하기 때문에 많은 개발이 이루어져 왔다. 이러한 액체 흡수제를 기반으로 한 산성 가스 포집 공정은 비교적 효율이 높은 기술이지만, 몇 가지 중대한 제한사항을 가지고 있는데, 구체적으로 흡수제 재생에 필요한 에너지 소비가 과다하고, 큰 장치 규모로 인해 넓은 부지를 필요로 하며, 장비 부식, 용매 손실, 범람, 거품, 편류, 비말동반 등의 문제가 발생할 수 있다는 것이다. 반면에 접촉분리막 공정은 이와 같은 기존 흡수 공정의 단점들을 극복할 수 있는 유망한 대안으로 꼽히고 있다.As a technique for reducing acid gas including CO 2 , absorption processes such as a filling tower, a spray tower, and a bubble tower are commercialized. The absorption process has been able to achieve high acid gas removal efficiency even at normal pressure and low gas concentration, and relatively stable operation is possible, so many developments have been made. The acidic gas capture process based on these liquid absorbents is a relatively efficient technique, but it has some significant limitations: specifically, the energy consumption required for absorbent regeneration is excessive, and a large site size requires a large site. It can cause problems such as corrosion of equipment, loss of solvent, overflow, foam, drift, and entrainment. On the other hand, the contact separation membrane process is regarded as a promising alternative to overcome the disadvantages of the existing absorption process.
접촉분리막에서 막은 분리를 위한 선택성을 제공하는 대신에 기상과 액상을 분리하고, 물질 전달을 위한 유효 접촉 면적을 증가시키는 역할을 한다. 흡수제에 의한 높은 선택도 제공과 동시에 단위 부피당 높은 접촉면적을 통해 장치 크기를 줄일 수 있다는 큰 장점을 가진다. 또한, 기상과 액상은 독립적으로 제어가 가능하고, 범람, 거품 등의 운전상 문제없이 기체 유속을 늘릴 수 있기 때문에 동일 부피에서 장치의 처리 용량 증가가 가능하다. 또한, 단위 모듈의 개수 조절을 통해 접촉 면적을 쉽게 제어 가능하고, 시스템 예측이 비교적 수월하기 때문에 공정 격상(scale up)에 유리하다. 막 접촉기는 기존의 흡수 공정에 비해 약 30배의 유효 접촉 면적을 제공하는 것으로 알려져 있으며, 흡수 단위공정의 크기를 10배까지 줄일 수 있다고 보고되고 있다.In the contact separation membrane, the membrane serves to separate the gas phase and the liquid phase instead of providing selectivity for separation, and to increase the effective contact area for mass transfer. It has the great advantage of being able to reduce device size through high contact area per unit volume while providing high selectivity by absorbent. In addition, the gas phase and the liquid phase can be controlled independently, and since the gas flow rate can be increased without operational problems such as overflow and foam, it is possible to increase the processing capacity of the device in the same volume. In addition, the contact area can be easily controlled by adjusting the number of unit modules, and system prediction is relatively easy, which is advantageous for process scale up. Membrane contactors are known to provide about 30 times more effective contact area than conventional absorption processes, and have been reported to reduce the size of absorption unit processes by up to 10 times.
분리막 모듈은 평판형, 나권형, 관형, 중공사형 등이 있으나, 중공사막은 다른 제형에 비해 단위 부피당 막면적을 극대화할 수 있고 컴팩트한 모듈 구성이 가능하기 때문에 최근 가장 주목을 받고 있다.The separation membrane module has a flat plate type, a spiral type, a tubular type, a hollow fiber type, etc., but the hollow fiber membrane has received the most attention recently because it can maximize the membrane area per unit volume and compact module configuration compared to other formulations.
종래 중공사 모듈은 도 1에 나타낸 바와 같이, 중공사막(10)을 수용하는 하우징(100), 쉘 사이드(Shell side) 유체 주입부(110a, 110b), 루멘 사이드(Lumen side) 유체 주입부(120a, 120b), 포팅부(400)를 포함한다. The conventional hollow fiber module, as shown in Figure 1, the housing 100 for receiving the hollow fiber membrane 10, shell side (Shell side) fluid injection unit (110a, 110b), lumen side (Lumen side) fluid injection unit ( 120a, 120b), and a potting part 400.
그런데, 종래 중공사 모듈 내의 접촉분리막에서는 막 저항이 존재하였는데, 특히 기본 단위 모듈을 이용한 장기 운전 시, 도 2(a)에 나타낸 바와 같이, 쉘 사이드(Shell side) 주입부에서 압력이 걸리기 때문에 파과 압력(breakthrough pressure) 이상으로 압력이 올라가서 도 2(b)에 나타낸 바와 같이, 분리막에 흡수제에 의한 젖음 현상이 발생하였다. 분리막이 흡수제에 의해 젖었을 때 물질전달 저항은 급격하게 증가한다. 또한, 종래의 일반적인 중공사 모듈에서는 중공사 다발을 일렬로 평행하게 포팅하는데, 이때 대부분의 경우에는 분리막 사이 간격이 불균일한 분포를 갖게 된다. 따라서 모듈의 쉘 사이드(shell side)에 심한 유체 편류 및 바이패스 현상이 발생하여 물질전달 특성 감소를 야기할 수 있다. 이는 실험실 규모에서는 잘 나타나지 않지만, 대형 공정 설계 시 심각한 문제를 야기할 수 있다. 또한, 세라믹 중공사막은 깨지기 쉽기 때문에 포팅시에 파손되어 제조가 어려운 문제가 있었다. 또한, 분리막 기공과 모듈화에 사용된 씰링 물질이 흡수제에 의해 손상될 수 있으며, 모듈 수명에 따른 교체 비용이 추가적으로 발생한다. 그리고 중공사막의 작은 내경으로 유체가 흐르면서 발생하는 압력 강하 증가 현상은 공정 운전비용을 상승시킨다. 이와 같은 단점들은 접촉분리막의 상용화에 큰 걸림돌으로 작용하고 있으며, 산업 현장 적용에 많은 제약을 초래해왔다. By the way, the membrane resistance existed in the contact separation membrane in the conventional hollow fiber module, especially during long-term operation using the basic unit module, as shown in FIG. 2(a), the pressure is applied at the shell side injection part, so that it breaks through. As the pressure rises above the breakthrough pressure, as shown in Fig. 2(b), a wetting phenomenon caused by the absorbent occurs in the separator. When the separator is wet by the absorbent, the mass transfer resistance increases rapidly. In addition, in the conventional common hollow fiber module, the hollow fiber bundles are ported in parallel in a row, in which case, in most cases, the gap between the separators has an uneven distribution. Therefore, severe fluid drift and bypass may occur on the shell side of the module, which may cause a decrease in mass transfer characteristics. This does not appear well on a laboratory scale, but it can cause serious problems when designing large processes. In addition, since the ceramic hollow fiber membrane is fragile, it is damaged during potting, and thus it is difficult to manufacture. In addition, the sealing material used for the membrane pores and modularization may be damaged by the absorbent, and an additional replacement cost is incurred depending on the module life. And the increase in pressure drop caused by the flow of fluid with a small inner diameter of the hollow fiber membrane increases the process operation cost. These shortcomings act as a major obstacle to the commercialization of the contact separator, and have caused many limitations in industrial field applications.
따라서, 접촉분리막에서 유체 흐름에 따라서 기상과 액상보다 막 저항에 의해 전체 성능이 좌우될 수 있다. 이는 접촉분리막 공정 설계 시, 분리막과 흡수제의 구조 및 특성뿐만 아니라 유체 흐름을 제어한 모듈 구조를 고려가 중요함을 나타낸다. 이에, 중공사막의 규칙적인 배열, 충진률, 유체의 흐름 방향 등이 중요한 요소로 고려된 모듈 디자인 개발이 주요한 이슈로 떠오르고 있다.Therefore, depending on the fluid flow in the contact separation membrane, the overall performance may be influenced by membrane resistance rather than gas phase and liquid phase. This indicates that it is important to consider the structure of the separator and the absorbent, as well as the module structure that controls the fluid flow, when designing the contact separator process. Accordingly, the development of a module design in which regular arrangement of the hollow fiber membrane, filling rate, and flow direction of the fluid are considered as important factors is emerging as a major issue.
본 발명은 상기와 같은 문제점을 개선하기 위하여 안출된 것으로, 본 발명의 목적은 세라믹 중공사막의 파손을 방지할 수 있고, 하우징 내부 공간에 균등하게 배치할 수 있으며, 제1 유체 및 제2 유체가 각각 쉘 사이드 분산 주입 유닛 및 루멘 사이드 분산 주입 유닛을 통해 골고루 주입되어 분리막 젖음 현상 없이 높은 물질전달 효율을 유지하는 세라믹 중공사 모듈을 제공하는 것이다.The present invention has been devised to improve the above problems, and the object of the present invention is to prevent the breakage of the ceramic hollow fiber membrane, to be evenly disposed in the space inside the housing, and the first fluid and the second fluid. It is to provide a ceramic hollow fiber module that is uniformly injected through a shell side dispersion injection unit and a lumen side dispersion injection unit to maintain high mass transfer efficiency without separation membrane wetting.
상기 목적을 달성하기 위하여, 본 발명은 복수 개의 세라믹 중공사막으로 이루어진 중공사막 다발, 상기 중공사막 다발 내의 각각의 중공사막을 둘러싸는 친수성 금속 메쉬(mesh), 상기 친수성 금속 메쉬로 둘러싸인 세라믹 중공사막 다발이 수용되고, 양단부에 제1 유체가 이동가능한 복수 개의 관통홀이 각각 형성되는 원통형의 하우징, 상기 하우징의 일단부에 결합되며 제2 유체가 중공사막의 루멘 사이드(Lumen side)로 출입되는 출입구가 형성되고, 상기 루멘사이드 출입구와 중공사막 간에 연통공간이 형성되는 루멘 사이드 분산 주입 유닛, 및 상기 원통형 하우징의 일단부에 외주면의 주위를 둘러싸며, 상기 하우징의 관통홀과 연통되도록 연통공간이 형성되고, 일측에는 제1 유체가 쉘 사이드(shell side)로 출입되는 출입구가 형성된 쉘 사이드 분산 주입 유닛을 포함하는 세라믹 중공사 모듈을 제공한다.In order to achieve the above object, the present invention is a hollow fiber membrane bundle comprising a plurality of ceramic hollow fiber membranes, a hydrophilic metal mesh surrounding each hollow fiber membrane in the hollow fiber membrane bundle, and a ceramic hollow fiber membrane bundle surrounded by the hydrophilic metal mesh. The housing is accommodated, a cylindrical housing in which a plurality of through holes through which the first fluid is movable is formed at both ends, coupled to one end of the housing, and an entrance through which the second fluid enters and exits the lumen side of the hollow fiber membrane. It is formed, the lumen side dispersion injection unit is formed a communication space between the lumenside entrance and the hollow fiber membrane, and surrounding the periphery of the outer circumferential surface at one end of the cylindrical housing, a communication space is formed to communicate with the through hole of the housing , On one side, a ceramic hollow fiber module including a shell side dispersion injection unit having an entrance through which a first fluid enters and exits a shell side is formed.
또한, 본 발명은 복수 개의 세라믹 중공사막으로 이루어진 중공사막 다발, 상기 중공사막 다발 내의 각각의 중공사막을 둘러싸는 친수성 금속 메쉬(mesh), 상기 친수성 금속 메쉬로 둘러싸인 세라믹 중공사막 다발이 수용되는, 원통형이고 표면에는 다수의 관통홀이 형성된 배플(baffle) 유닛, 상기 친수성 금속 메쉬로 둘러싸인 세라믹 중공사막 다발 및 배플 유닛이 수용되고, 양단부에 제1 유체가 이동가능한 복수 개의 관통홀이 각각 형성되는 원통형의 하우징, 상기 원통형 하우징의 일단부에 외주면의 주위를 둘러싸며, 상기 하우징의 관통홀과 연통되어 제1 유체의 통로를 제공하고 일측에는 제1 유체가 출입되는 출입구가 형성된 쉘 사이드 분산 주입 유닛 및 상기 하우징의 상부 및 하부에 결합되며 제2 유체가 루멘 사이드(Lumen side)로 출입되는 출입구가 형성된 깔대기 형태의 루멘 사이드 분산 주입 유닛을 포함하는 세라믹 중공사 모듈을 제공한다.In addition, the present invention, a hollow fiber membrane bundle made of a plurality of ceramic hollow fiber membrane, a hydrophilic metal mesh (mesh) surrounding each hollow fiber membrane in the hollow fiber membrane bundle, the ceramic hollow fiber membrane bundle surrounded by the hydrophilic metal mesh is accommodated, cylindrical A cylindrical shape in which a baffle unit in which a plurality of through holes are formed on the surface, a bundle of ceramic hollow fiber membranes surrounded by the hydrophilic metal mesh, and a baffle unit are accommodated, and a plurality of through holes in which the first fluid is movable at both ends are respectively formed. A housing, a shell side dispersion injecting unit that surrounds an outer circumferential surface at one end of the cylindrical housing, communicates with a through hole of the housing, and provides a passage for a first fluid, and an entrance through which a first fluid is introduced and exits at one side. It provides a ceramic hollow fiber module that is coupled to the upper and lower parts of the housing and includes a funnel-shaped lumen side dispersion injection unit having an entrance through which a second fluid enters and exits a lumen side.
본 발명에 따르면, 세라믹 중공사 모듈에 있어서, 세라믹 중공사막들을 친수성 금속 메쉬에 배열시킨 후 말아서 포팅함으로써 세라믹 중공사막의 파손을 방지할 수 있고, 하우징 내부 공간에 균등하게 배치할 수 있으며, 쉘 사이드 분산 주입 유닛 및 루멘 사이드 분산 주입 유닛에 연통 공간을 형성시키거나, 추가적으로 분산 유닛 및 배플 유닛을 도입함으로써, 세라믹 중공사 모듈의 기/액의 유로를 개선해서 물질전달을 극대화 시키고, 압력을 분배하여, 분리막 젖음 현상 없이 물질전달 효율을 유지하면서 안정적인 운전이 가능한 효과가 있다.According to the present invention, in the ceramic hollow fiber module, the ceramic hollow fiber membranes can be arranged on a hydrophilic metal mesh and rolled to prevent damage to the ceramic hollow fiber membranes, and can be evenly disposed in the space inside the housing, and the shell side. By forming a communication space in the dispersion injection unit and the lumen side dispersion injection unit, or by introducing a dispersion unit and a baffle unit, the gas/liquid flow path of the ceramic hollow fiber module is improved to maximize mass transfer and distribute pressure. , It has the effect that stable operation is possible while maintaining the efficiency of mass transfer without wetting the separator.
도 1은 종래 세라믹 중공사 모듈의 전체적인 구조를 나타내는 개념도이다.1 is a conceptual diagram showing the overall structure of a conventional ceramic hollow fiber module.
도 2는 종래 세라믹 중공사 모듈에 있어서, (a) 쉘 사이드 주입부에서의 유체의 흐름과, (b) 흡수제에 의한 젖음 현상을 나타내는 사진이다.FIG. 2 is a photograph showing a flow of fluid at a shell side injection part and (b) wetting phenomenon by an absorbent in a conventional ceramic hollow fiber module.
도 3은 본 발명의 일 실시예에 따른 세라믹 중공사 모듈의 전체적인 구조를 나타내는 사시도이다.3 is a perspective view showing the overall structure of a ceramic hollow fiber module according to an embodiment of the present invention.
도 4는 본 발명의 다른 실시예에 따른 세라믹 중공사 모듈의 전체적인 구조를 나타내는 사시도이다.4 is a perspective view showing the overall structure of a ceramic hollow fiber module according to another embodiment of the present invention.
도 5는 본 발명의 다른 실시예에 따른 세라믹 중공사 모듈의 구성을 개략적으로 나타내는 분해사시도이다.5 is an exploded perspective view schematically showing the configuration of a ceramic hollow fiber module according to another embodiment of the present invention.
도 6은 기존 세라믹 중공사막 포팅의 문제점과, 본 발명의 일 실시예에 따른 세라믹 중공사 모듈에 있어서, 친수성 금속 메쉬를 이용하여 형성된 세라믹 중공사막 다발의 형성 모습을 나타낸다.Figure 6 shows the problem of the existing ceramic hollow fiber membrane porting, and in the ceramic hollow fiber module according to an embodiment of the present invention, the formation of a ceramic hollow fiber membrane bundle formed using a hydrophilic metal mesh.
도 7은 본 발명의 일 실시예에 따른 세라믹 중공사 모듈에 있어서, 친수성 금속 메쉬를 이용하여 형성된 세라믹 중공사막 다발을 나타낸다.7 shows a ceramic hollow fiber membrane bundle formed using a hydrophilic metal mesh in a ceramic hollow fiber module according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 세라믹 중공사 모듈에 있어서, 쉘 사이드 분산 주입 유닛에서 유체의 흐름을 나타낸다.Figure 8 in the ceramic hollow fiber module according to an embodiment of the present invention, shows the flow of fluid in the shell side dispersion injection unit.
도 9는 본 발명의 일 실시예에 따른 세라믹 중공사 모듈에 있어서, 쉘 사이드 분산 주입 유닛에서 유체의 흐름을 나타낸다.9 is a ceramic hollow fiber module according to an embodiment of the present invention, showing the flow of fluid in the shell side dispersion injection unit.
도 10은 본 발명의 다른 실시예에 따른 세라믹 중공사막 모듈에 있어서, 루멘 사이드 분산 주입 유닛의 구성을 나타낸다.10 is a ceramic hollow fiber membrane module according to another embodiment of the present invention, showing the configuration of the lumen side dispersion injection unit.
도 11은 본 발명의 일 실시예에 따른 세라믹 중공사 모듈에 있어서, 루멘 사이드 분산 주입 유닛에서 유체의 흐름을 나타낸다.11 is a ceramic hollow fiber module according to an embodiment of the present invention, showing the flow of fluid in the lumen side dispersion injection unit.
도 12는 본 발명의 일 실시예에 따른 세라믹 중공사 모듈에 있어서, 루멘 사이드 분산 주입 유닛에서 분산 유닛의 유무에 따른 유체의 흐름을 나타낸다.12 is a ceramic hollow fiber module according to an embodiment of the present invention, showing the flow of the fluid according to the presence or absence of the dispersion unit in the lumen side dispersion injection unit.
도 13은 본 발명의 일 실시예에 따른 세라믹 중공사 모듈에 있어서, 친수성 금속 메쉬를 이용하여 형성된 세라믹 중공사막 다발에 배플 유닛을 장착한 모습이다.13 is a ceramic hollow fiber module according to an embodiment of the present invention, a state in which a baffle unit is mounted on a bundle of ceramic hollow fiber membranes formed using a hydrophilic metal mesh.
도 14는 본 발명의 일 실시예에 따른 세라믹 중공사 모듈에 있어서, 친수성 금속 메쉬를 이용하여 형성된 세라믹 중공사막 다발에 배플 유닛을 장착하고, 오링 씰링으로 하우징과 결합한 모습이다.14 is a view of a ceramic hollow fiber module according to an embodiment of the present invention, in which a baffle unit is mounted on a bundle of ceramic hollow fiber membranes formed using a hydrophilic metal mesh, and combined with a housing by O-ring sealing.
도 15는 본 발명의 일 실시예에 따른 세라믹 중공사 모듈의 연결부를 나타내는 사진이다.15 is a photograph showing a connection portion of a ceramic hollow fiber module according to an embodiment of the present invention.
도 16은 본 발명의 일 실시예에 따른 세라믹 중공사 모듈의 단위 모듈이 여러 개 연결된 모습을 나타내는 도면이다.16 is a view showing a state in which a plurality of unit modules of a ceramic hollow fiber module according to an embodiment of the present invention are connected.
도 17은 본 발명의 일 실시예에 따른 세라믹 중공사 모듈의 운전방법을 나타내는 도면이다.17 is a view showing a method of operating a ceramic hollow fiber module according to an embodiment of the present invention.
도 18은 본 발명의 일 실시예에 따른 세라믹 중공사 모듈에 보조 펌프가 구비된 도면이다.18 is a view provided with an auxiliary pump in the ceramic hollow fiber module according to an embodiment of the present invention.
상기 목적을 달성하기 위하여, 본 발명은 복수 개의 세라믹 중공사막으로 이루어진 중공사막 다발, 상기 중공사막 다발 내의 각각의 중공사막을 둘러싸는 친수성 금속 메쉬(mesh), 상기 친수성 금속 메쉬로 둘러싸인 세라믹 중공사막 다발이 수용되고, 양단부에 제1 유체가 이동가능한 복수 개의 관통홀이 각각 형성되는 원통형의 하우징, 상기 하우징의 일단부에 결합되며 제2 유체가 중공사막의 루멘 사이드(Lumen side)로 출입되는 출입구가 형성되고, 상기 루멘사이드 출입구와 중공사막 간에 연통공간이 형성되는 루멘 사이드 분산 주입 유닛, 및 상기 원통형 하우징의 일단부에 외주면의 주위를 둘러싸며, 상기 하우징의 관통홀과 연통되도록 연통공간이 형성되고, 일측에는 제1 유체가 쉘 사이드(shell side)로 출입되는 출입구가 형성된 쉘 사이드 분산 주입 유닛을 포함하는 세라믹 중공사 모듈을 제공한다.In order to achieve the above object, the present invention is a hollow fiber membrane bundle made of a plurality of ceramic hollow fiber membranes, a hydrophilic metal mesh surrounding each hollow fiber membrane in the hollow fiber membrane bundle, and a ceramic hollow fiber membrane bundle surrounded by the hydrophilic metal mesh The housing is accommodated, a cylindrical housing in which a plurality of through holes through which the first fluid is movable is formed at both ends, coupled to one end of the housing, and an entrance through which the second fluid enters and exits the lumen side of the hollow fiber membrane. It is formed, the lumen side dispersion injection unit is formed a communication space between the lumenside entrance and the hollow fiber membrane, and surrounding the periphery of the outer peripheral surface at one end of the cylindrical housing, a communication space is formed to communicate with the through hole of the housing , On one side, a ceramic hollow fiber module including a shell side dispersion injection unit having an entrance through which a first fluid enters and exits a shell side is formed.
또한, 본 발명은 복수 개의 세라믹 중공사막으로 이루어진 중공사막 다발, 상기 중공사막 다발 내의 각각의 중공사막을 둘러싸는 친수성 금속 메쉬(mesh), 상기 친수성 금속 메쉬로 둘러싸인 세라믹 중공사막 다발이 수용되는, 원통형이고 표면에는 다수의 관통홀이 형성된 배플(baffle) 유닛, 상기 친수성 금속 메쉬로 둘러싸인 세라믹 중공사막 다발 및 배플 유닛이 수용되고, 양단부에 제1 유체가 이동가능한 복수 개의 관통홀이 각각 형성되는 원통형의 하우징, 상기 원통형 하우징의 일단부에 외주면의 주위를 둘러싸며, 상기 하우징의 관통홀과 연통되어 제1 유체의 통로를 제공하고 일측에는 제1 유체가 출입되는 출입구가 형성된 쉘 사이드 분산 주입 유닛 및 상기 하우징의 상부 및 하부에 결합되며 제2 유체가 루멘 사이드(Lumen side)로 출입되는 출입구가 형성된 깔대기 형태의 루멘 사이드 분산 주입 유닛을 포함하는 세라믹 중공사 모듈을 제공한다.In addition, the present invention, a hollow fiber membrane bundle made of a plurality of ceramic hollow fiber membrane, a hydrophilic metal mesh (mesh) surrounding each hollow fiber membrane in the hollow fiber membrane bundle, the ceramic hollow fiber membrane bundle surrounded by the hydrophilic metal mesh is accommodated, cylindrical A cylindrical shape in which a baffle unit in which a plurality of through holes are formed on the surface, a bundle of ceramic hollow fiber membranes surrounded by the hydrophilic metal mesh, and a baffle unit are accommodated, and a plurality of through holes in which the first fluid is movable at both ends are respectively formed. A housing, a shell side dispersion injecting unit that surrounds an outer circumferential surface at one end of the cylindrical housing, communicates with a through hole of the housing, and provides a passage for a first fluid, and an entrance through which a first fluid is introduced and exits at one side. It provides a ceramic hollow fiber module that is coupled to the upper and lower parts of the housing and includes a funnel-shaped lumen side dispersion injection unit having an entrance through which a second fluid enters and exits a lumen side.
또한 바람직하게는, 상기 친수성 금속 메쉬로 둘러싸인 세라믹 중공사막 다발은 상기 세라믹 중공사막을 친수성 금속 메쉬에 일렬로 정렬한 후 말아서 형성할 수 있다.In addition, preferably, the bundle of ceramic hollow fiber membranes surrounded by the hydrophilic metal mesh may be formed by aligning the ceramic hollow fiber membranes in line with the hydrophilic metal mesh and then rolling them.
또한 바람직하게는, 상기 중공사막 다발은 하우징 내 세라믹 중공사막 충진률이 10~60%가 되도록 형성할 수 있다.In addition, preferably, the hollow fiber membrane bundle may be formed so that the filling rate of the ceramic hollow fiber membrane in the housing is 10 to 60%.
또한 바람직하게는, 상기 친수성 금속 메쉬는 친수성 스테인레스 메쉬일 수 있다.Also preferably, the hydrophilic metal mesh may be a hydrophilic stainless mesh.
또한 바람직하게는, 상기 세라믹 중공사 모듈은 제1 유체와 제2 유체가 교차 흐름(cross-flow) 방식으로 접촉할 수 있다.In addition, preferably, the ceramic hollow fiber module may contact the first fluid and the second fluid in a cross-flow manner.
또한 바람직하게는, 상기 제1 유체는 흡수제를 포함하는 액체이고, 상기 제2 유체는 흡착대상을 포함하는 기체일 수 있다.Also preferably, the first fluid may be a liquid containing an absorbent, and the second fluid may be a gas containing an object to be adsorbed.
또한 바람직하게는, 상기 제1 유체는 CO2를 흡수하는 아민계 용액이고, 상기 제2 유체는 CO2와 N2를 포함하는 기체일 수 있다.Also preferably, the first fluid is an amine-based solution that absorbs CO 2 , and the second fluid may be a gas including CO 2 and N 2 .
또한 바람직하게는, 상기 세라믹 중공사 모듈은 유체 주입시 유체가 쉘 사이드 분산 주입 유닛 내의 연통 공간을 통해 하우징의 둘레를 둘러싸면서 퍼져 나가 압력이 골고루 분산된 상태로 관통홀을 통해 주입되어 중공사막과 접촉할 수 있다.In addition, preferably, the ceramic hollow fiber module is injected through a through hole in a state in which pressure is evenly distributed as the fluid spreads around the periphery of the housing through a communication space in the shell side dispersion injection unit during fluid injection. Can contact you.
또한 바람직하게는, 상기 세라믹 중공사 모듈은 유체 주입시 쉘 사이드 분산 주입 유닛 및 배플 유닛을 통해 유체가 하우징의 둘레 및 배플 둘레를 둘러싸면서 퍼져 나가 압력이 골고루 분산된 상태로 관통홀을 통해 주입되어 중공사막과 접촉할 수 있다.Also, preferably, the ceramic hollow fiber module is injected through a through hole in a state in which pressure is evenly distributed while the fluid spreads around the periphery of the housing and around the baffle through the shell side dispersion injection unit and the baffle unit during fluid injection. It can come into contact with the hollow fiber membrane.
또한 바람직하게는, 상기 배플 유닛의 상단, 하단과 중간부의 일 지점에는 링 형태의 돌출부가 형성되어 하우징 내부와 씰링될 수 있다.In addition, preferably, a ring-shaped protrusion may be formed at one point of the top, bottom, and middle portions of the baffle unit to be sealed with the interior of the housing.
또한 바람직하게는, 상기 씰링은 실리콘 오링을 이용하여 수행할 수 있다.In addition, preferably, the sealing may be performed using a silicone O-ring.
또한 바람직하게는, 상기 루멘 사이드 분산 주입 유닛은 루멘 사이드 유체 출입구에서 유체의 주입을 분산시키는 제1 분산 유닛 및 주입된 유체가 하우징 내의 중공사막 다발에 골고루 분산 주입되기 위해 샤워기 헤드 형태로 복수 개의 관통홀을 갖는 제2 분산 유닛을 포함할 수 있다.In addition, preferably, the lumen side dispersion injection unit is a first dispersion unit for dispersing the injection of fluid at the lumen side fluid inlet and a plurality of through the shower head in order for the injected fluid to be evenly distributed in the hollow fiber membrane bundle in the housing. It may include a second dispersion unit having a hole.
또한 바람직하게는, 상기 세라믹 중공사 모듈은 단위 모듈의 연결을 위해 연결부를 더 포함할 수 있다.In addition, preferably, the ceramic hollow fiber module may further include a connection portion for connection of the unit module.
또한 바람직하게는, 상기 세라믹 중공사 모듈은 액상과 기상의 압력 차이를 조절하기 위하여 보조 펌프를 더 포함할 수 있다.In addition, preferably, the ceramic hollow fiber module may further include an auxiliary pump to control the pressure difference between the liquid phase and the gas phase.
본 발명이 여러 가지 수정 및 변형을 허용하면서도, 그 특정 실시예들이 도면들로 예시되어 나타내어지며, 이하에서 상세히 설명될 것이다. 그러나 본 발명을 개시된 특별한 형태로 한정하려는 의도는 아니며, 오히려 본 발명은 청구항들에 의해 정의된 본 발명의 사상과 합치되는 모든 수정, 균등 및 대용을 포함한다. While the invention allows for various modifications and variations, specific embodiments thereof are illustrated and illustrated in the drawings, which will be described in detail below. However, it is not intended to limit the invention to the specific forms disclosed, but rather the invention includes all modifications, equivalents, and substitutes consistent with the spirit of the invention as defined by the claims.
층, 영역 또는 기판과 같은 요소가 다른 구성요소 "상(on)"에 존재하는 것으로 언급될 때, 이것은 직접적으로 다른 요소 상에 존재하거나 또는 그 사이에 중간 요소가 존재할 수도 있다는 것을 이해할 수 있을 것이다.When an element, such as a layer, region, or substrate, is referred to as being “on” another component, it will be understood that it may be directly on another element or intermediate elements may be present therebetween. .
비록 제1, 제2 등의 용어가 여러 가지 요소들, 성분들, 영역들, 층들 및/또는 지역들을 설명하기 위해 사용될 수 있지만, 이러한 요소들, 성분들, 영역들, 층들 및/또는 지역들은 이러한 용어에 의해 한정되어서는 안 된다는 것을 이해할 것이다.Although the terms first, second, etc. can be used to describe various elements, components, regions, layers and/or regions, these elements, components, regions, layers and/or regions It will be understood that it should not be limited by these terms.
이하 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시 예를 보다 상세하게 설명하고자 한다. 이하 도면상의 동일한 구성 요소에 대하여는 동일한 참조 부호를 사용하고, 동일한 구성 요소에 대해서 중복된 설명은 생략한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Hereinafter, the same reference numerals are used for the same components in the drawings, and duplicate descriptions for the same components are omitted.
도 3은 본 발명의 일 실시예에 따른 세라믹 중공사 모듈의 전체적인 구조를 나타내는 사시도이다.3 is a perspective view showing the overall structure of a ceramic hollow fiber module according to an embodiment of the present invention.
도 4는 본 발명의 다른 실시예에 따른 세라믹 중공사 모듈의 전체적인 구조를 나타내는 사시도이고, 도 5는 본 발명의 다른 실시예에 따른 세라믹 중공사 모듈의 구성을 개략적으로 나타내는 분해사시도이다.Figure 4 is a perspective view showing the overall structure of a ceramic hollow fiber module according to another embodiment of the present invention, Figure 5 is an exploded perspective view schematically showing the configuration of a ceramic hollow fiber module according to another embodiment of the present invention.
도 3, 도 4 및 도 5를 참조하면, 본 발명의 일 실시예에 따른 세라믹 중공사 모듈은 상기 중공사막 다발이 수용되는 하우징(100), 쉘 사이드 분산 주입 유닛(102) 및 루멘 사이드 분산 주입 유닛(200)을 포함한다.3, 4 and 5, the ceramic hollow fiber module according to an embodiment of the present invention includes a housing 100 in which the hollow fiber membrane bundle is accommodated, a shell side dispersion injection unit 102 and a lumen side dispersion injection It includes a unit 200.
상기 하우징(100)은 원통형의 큰 관 형상으로, 내부에 중공 형상인 하우징공간부가 형성되어, 복수의 중공사막(10)이 하우징 공간부에 수용된다.The housing 100 has a cylindrical large tube shape, and a hollow housing space portion is formed therein, so that a plurality of hollow fiber membranes 10 are accommodated in the housing space portion.
여기서 중공사막(10)은 미세한 기공이 형성되는 표면과 중공을 갖는 관 형상으로 형성되는 분리막이며, 이때, 상기 중공사막(10)은 세라믹 중공사막이다.Here, the hollow fiber membrane 10 is a separation membrane formed in a tubular shape having a surface and a hollow on which fine pores are formed, wherein the hollow fiber membrane 10 is a ceramic hollow fiber membrane.
도 6 및 도 7은 본 발명의 일 실시예에 따른 세라믹 중공사 모듈에 있어서, 친수성 금속 메쉬를 이용하여 형성된 세라믹 중공사막 다발을 나타낸다.6 and 7 show a ceramic hollow fiber membrane bundle formed using a hydrophilic metal mesh in the ceramic hollow fiber module according to an embodiment of the present invention.
상기 중공사막(10) 다발의 양단부는 합성수지가 경화되어 형성되는 포팅부(400)에 의하여 고정된다. 액상의 합성수지는 중공사막들 사이의 공극을 메우게 된다. 이때, 일반적으로 중공사막(10) 다발을 형성하는 과정에서 도 6에 나타낸 바와 같이, 세라믹 중공사막(10)이 꼬여 들어간 경우에는 포팅부(400) 형성시 세라믹 중공사막이 깨지는 현상이 발생하며, 분리막 사이 간격이 불균일한 분포를 갖게 됨으로써, 모듈의 쉘 사이드(shell side)에 심한 유체 편류 및 바이패스 현상이 발생하여 물질전달 특성 감소를 야기할 수 있다.Both ends of the bundle of the hollow fiber membrane 10 are fixed by a potting part 400 formed by curing the synthetic resin. The liquid synthetic resin fills the voids between the hollow fiber membranes. At this time, in general, as shown in FIG. 6 in the process of forming a bundle of hollow fiber membranes 10, when the ceramic hollow fiber membranes 10 are twisted, a phenomenon in which the ceramic hollow fiber membranes break when forming the potting part 400 occurs, By having a non-uniform distribution between the separation membranes, severe fluid drift and bypass may occur on the shell side of the module, which may lead to a decrease in mass transfer characteristics.
이러한 문제를 해결하기 위하여, 본 발명은 도 6 및 도 7에 나타낸 바와 같이, 상기 세라믹 중공사막(10)을 친수성 금속 메쉬(mesh)(500)에 일렬로 정렬한 후 말아서 중공사막(10) 다발을 형성하는 것을 특징으로 한다. 상기 친수성 금속 메쉬(500)는 중공사막(10)을 감싼 형태로 형성되어 포팅부(400) 형성시 중공사막이 깨지는 것을 방지하고, 중공사막 간에 적절한 간격을 유지함으로서, 기/액 물질전달을 할 수 있는 공간을 확보하며, 모듈 포팅시 접착제가 중공사막 사이로 들어가 씰링될 수 있는 공간을 확보하며, 쉘 사이드의 편류 현상을 방지할 수 있다.In order to solve this problem, the present invention, as shown in Figures 6 and 7, the ceramic hollow fiber membrane 10 is arranged in a row in a hydrophilic metal mesh (mesh) 500, rolled and rolled hollow fiber membrane 10 It is characterized by forming. The hydrophilic metal mesh 500 is formed in a form surrounding the hollow fiber membrane 10 to prevent the hollow fiber membrane from breaking when the potting part 400 is formed, and to maintain proper spacing between the hollow fiber membranes, thereby performing gas/liquid mass transfer. It is possible to secure a space where the adhesive can enter and seal between the hollow fiber membranes when porting the module, and to prevent drift of the shell side.
이때, 상기 친수성 금속 메쉬(500)는 당업계에서 일반적으로 사용되는 것을 사용할 수 있다. 본 발명의 일 실시예에서는 친수성 스테인레스 메쉬를 사용하였다.At this time, the hydrophilic metal mesh 500 may be used generally used in the art. In one embodiment of the present invention, a hydrophilic stainless mesh was used.
상기 중공사막(10) 다발은 하우징 내 세라믹 중공사막 충진률이 10~60%가 되도록 형성하는 것이 바람직하다. 만일 충진률이 60%를 초과하면, 모듈 제작시 씰링제가 중공사막 간의 사이로 주입이 잘 되지 않기 때문에 씰링이 제대로 되지 않고 새는 문제가 있다.The bundle of the hollow fiber membrane 10 is preferably formed so that the filling ratio of the ceramic hollow fiber membrane in the housing is 10 to 60%. If the filling rate exceeds 60%, there is a problem in that the sealing agent is not properly sealed because the sealing agent is not well injected between the hollow fiber membranes during module production.
상기 하우징(100)의 양단부에는 유체가 이동가능한 복수 개의 관통홀(101)이 형성되어 있다. 상기 관통홀(101)이 형성된 영역에는 쉘 사이드 분산 주입 유닛(102)이 설치된다.A plurality of through-holes 101 through which fluid can move is formed at both ends of the housing 100. A shell side dispersion injection unit 102 is installed in the region where the through hole 101 is formed.
상기 쉘 사이드 분산 주입 유닛(102)은 상기 하우징의 관통홀(101)이 형성된 영역을 포함하여 원통형 하우징의 일단부에 외주면의 주위를 둘러싸며, 상기 하우징의 관통홀과 연통되도록 연통공간이 형성되고, 일측에는 유체가 출입되는 출입구(110a, 110b)가 형성된다.The shell side dispersion injection unit 102 includes an area in which the through hole 101 of the housing is formed, surrounds an outer circumferential surface at one end of the cylindrical housing, and a communication space is formed to communicate with the through hole of the housing. , On one side, the outlets 110a and 110b through which the fluid enters and exits are formed.
상기 하우징(100)의 상부 및 하부의 쉘 사이드 분산 주입 유닛(102)에 형성된 유체 출입구(110a, 110b)에 있어서, 제1 출입구(110a)로 주입된 유체는 제2 출입구(110b)로 배출되고, 반대로 제2 출입구(110b)로 주입된 유체는 제1 출입구(110a)로 배출되게 된다. 상기 유체는 흡착 대상을 포함하는 기체이거나, 흡수제를 포함하는 액체일 수 있으며, 이에 제한되는 것은 아니다.In the fluid inlets 110a and 110b formed in the upper and lower shell side dispersion injecting units 102 of the housing 100, the fluid injected into the first inlet 110a is discharged to the second inlet 110b. On the contrary, the fluid injected into the second entrance 110b is discharged to the first entrance 110a. The fluid may be a gas containing an object to be adsorbed or a liquid containing an absorbent, but is not limited thereto.
본 발명에 따른 세라믹 중공사 모듈은 액상 흡수제와 기체가 효율적으로 만나 물질전달 특성을 향상시키기 위한 목적으로, 교차 흐름(Cross-flow) 방식을 적용한 것에 특징이 있다. 기존의 접촉막 모듈은 분리막을 사이에 두고 기상과 액상이 향류 또는 병류로 평행하게 만나는 평행 흐름(Longitudinal-flow) 방식을 사용하였으나, 본 발명에 따른 세라믹 중공사 모듈에 사용되는 교차 흐름 방식은 기상과 액상이 수평이 아닌 수직 또는 특정한 각도를 갖고 접촉할 수 있도록 유도되는 방식이다. 이러한 교차 흐름 방식은 모듈의 쉘 사이드(shell side)의 바이패스(bypass)를 최소화하고, 분리막 표면을 때리는 방향으로 유체의 흐름이 형성될 수 있기 때문에 물질전달 특성을 향상시킬 수 있다.The ceramic hollow fiber module according to the present invention is characterized by applying a cross-flow method for the purpose of efficiently meeting the liquid absorbent and the gas to improve the material transfer characteristics. Conventional contact membrane modules used a parallel-flow method in which the gas phase and liquid phase meet in parallel in countercurrent or co-current flow through the separation membrane, but the cross-flow method used in the ceramic hollow fiber module according to the present invention is a gas phase It is a method that is induced so that the liquid phase and the liquid phase can be contacted at a specific angle or vertically rather than horizontally. This cross-flow method minimizes bypass of the shell side of the module and improves mass transfer characteristics because fluid flow can be formed in a direction hitting the surface of the separator.
도 8 및 도 9는 본 발명의 일 실시예에 따른 세라믹 중공사 모듈에 있어서, 쉘 사이드 분산 주입 유닛에서 유체의 흐름을 나타낸다.8 and 9 in the ceramic hollow fiber module according to an embodiment of the present invention, shows the flow of fluid in the shell side dispersion injection unit.
도 8 및 도 9에 나타낸 바와 같이, 본 발명에 따른 세라믹 중공사 모듈에 있어서, 상기 쉘 사이드 분산 주입 유닛(102)의 출입구(110a, 110b)로 주입된 유체는 직접적으로 중공사 접촉막에 접하는 것이 아니라 하우징을 둘러싸는 연통 공간을 통해 하우징의 둘레를 둘러싸면서 퍼져나가면서 하우징에 형성된 복수개의 관통홀(101, 101a)을 통해 하우징 내부의 중공사 접촉막으로 주입된다. 따라서, 유체 주입시 압력이 골고루 분산되어 주입되며, 교차 흐름 방식으로 주입되어 분리막 젖음 현상 없이 높은 물질전달 효율을 유지하면서 안정적인 운전이 가능하다.8 and 9, in the ceramic hollow fiber module according to the present invention, the fluid injected into the outlets 110a and 110b of the shell side dispersion injection unit 102 directly contacts the hollow fiber contact membrane. Rather, it spreads around the periphery of the housing through a communication space surrounding the housing and is injected into the hollow fiber contact membrane inside the housing through a plurality of through holes 101 and 101a formed in the housing. Therefore, when the fluid is injected, the pressure is evenly distributed and injected, and it is injected in a cross-flow manner, so that stable operation is possible while maintaining high mass transfer efficiency without wetting the separator.
또한, 도 9에 나타낸 바와 같이, 상기 중공사 접촉막과 접촉한 유체는 중공사 접촉막의 길이방향대로 이동하여 하우징의 말단에 형성된 복수개의 관통홀(101b)을 통해 하우징 외부로 빠져나온다. 본 발명에 따른 세라믹 중공사 모듈은 1단으로 사용할 수 있고, 2단으로 연결도 가능하다. 만일 상기 세라믹 중공사 모듈이 2단으로 연결된 경우에도, 동일한 원리로 하우징의 외부로 빠져나온 유체는 연결부를 통해 이동하여 다음 모듈의 하우징 일단에 형성된 관통홀(101c)을 통해 하우징 내부의 중공사 접촉막으로 주입되고, 중공사 접촉막의 길이방향대로 이동하여 하우징 말단에 형성된 복수개의 관통홀(101d)을 통해 하우징 외부로 빠져나온다.In addition, as shown in FIG. 9, the fluid in contact with the hollow fiber contact membrane moves in the longitudinal direction of the hollow fiber contact membrane and exits out of the housing through a plurality of through holes 101b formed at the ends of the housing. The ceramic hollow fiber module according to the present invention can be used in one stage, and can also be connected in two stages. If the ceramic hollow fiber module is connected in two stages, the fluid that has flowed out of the housing on the same principle moves through the connection part and then contacts the hollow fiber inside the housing through the through hole 101c formed at one end of the housing of the next module. It is injected into the membrane and moves in the longitudinal direction of the hollow fiber contact membrane and exits through the housing through a plurality of through holes 101d formed at the ends of the housing.
상기 루멘 사이드 분산 주입 유닛(200)은 상기 하우징(100)의 상부 및 하부에 결합될 수 있으며, 일측에는 유체가 중공사막의 루멘 사이드(Lumen side)로 출입되는 출입구(120a, 120b)가 형성되고, 상기 루멘사이드 출입구(120a, 120b)와 중공사막 간에 연통공간이 형성되어 있다.The lumen side dispersion injection unit 200 may be coupled to the upper and lower portions of the housing 100, and on one side, entrances 120a and 120b through which fluid enters and exits the lumen side of the hollow fiber membrane are formed. , A communication space is formed between the lumen side entrances 120a and 120b and the hollow fiber membrane.
도 10은 본 발명의 다른 실시예에 따른 세라믹 중공사막 모듈에 있어서, 루멘 사이드 분산 주입 유닛의 구성을 나타낸다.10 is a ceramic hollow fiber membrane module according to another embodiment of the present invention, showing the configuration of the lumen side dispersion injection unit.
도 10에 나타낸 바와 같이, 상기 루멘 사이드 분산 주입 유닛(200)은 루멘 사이드 분산 주입 유닛 본체에 루멘 사이드 유체 출입구(120a, 120b)에 장착되어 관통홀이 형성되어 있어 유체의 주입을 분산시키는 제1 분산 유닛(201) 및 주입된 유체가 하우징 내의 중공사막 다발에 골고루 분산 주입되기 위해 샤워기 헤드 형태로 복수 개의 관통홀을 갖는 제2 분산 유닛(202)을 더 포함할 수 있다.As shown in FIG. 10, the lumen side dispersion injection unit 200 is mounted on the lumen side dispersion injection unit main body at the lumen side fluid inlets 120a and 120b to form a through hole to disperse the fluid injection. The dispersing unit 201 and the injected fluid may further include a second dispersing unit 202 having a plurality of through-holes in the form of a shower head in order to be dispersively injected into the hollow fiber membrane bundle in the housing.
상기 루멘 사이드 분산 주입 유닛(200)에 형성된 유체 출입구(120a, 120b)에 있어서, 제1 출입구(120a)로 주입된 유체는 제2 출입구(120b)로 배출되고, 반대로 제2 출입구(120b)로 주입된 유체는 제1 출입구(120a)로 배출되게 된다. 상기 유체는 흡착 대상을 포함하는 기체이거나, 흡수제를 포함하는 액체일 수 있으며, 이에 제한되는 것은 아니다.In the fluid entrances 120a and 120b formed in the lumen side dispersion injection unit 200, the fluid injected into the first entrance 120a is discharged to the second entrance 120b, and conversely to the second entrance 120b The injected fluid is discharged to the first entrance (120a). The fluid may be a gas containing an object to be adsorbed or a liquid containing an absorbent, but is not limited thereto.
본 발명에 따른 세라믹 중공사 모듈에 있어서, 만일, 쉘 사이드 분산 주입 유닛(102)에 형성된 유체 출입구(110a, 110b)에 흡수제를 포함하는 액체가 주입되는 경우, 루멘 사이드 분산 주입 유닛(200)에 형성된 유체 출입구(120a, 120b)에는 흡착 대상을 포함하는 기체가 주입되고, 만일, 쉘 사이드 분산 주입 유닛(102)에 형성된 유체 출입구(110a, 110b)에 흡착 대상을 포함하는 기체가 주입되는 경우에는 루멘 사이드 분산 주입 유닛(200)에 형성된 유체 출입구(120a, 120b)에는 흡수제를 포함하는 액체가 주입될 수 있다.In the ceramic hollow fiber module according to the present invention, if the liquid containing the absorbent is injected into the fluid inlets 110a and 110b formed in the shell side dispersion injection unit 102, the lumen side dispersion injection unit 200 A gas containing an adsorption object is injected into the formed fluid inlets 120a and 120b, and if a gas containing an adsorption object is injected into the fluid inlets 110a and 110b formed in the shell side dispersion injection unit 102, A liquid containing an absorbent may be injected into the fluid inlets 120a and 120b formed in the lumen side dispersion injection unit 200.
바람직하게는, 쉘 사이드 분산 주입 유닛(102)에 형성된 유체 출입구(110a, 110b)에 흡수제를 포함하는 액체가 주입되고, 루멘 사이드 분산 주입 유닛(200)에 형성된 유체 출입구(120a, 120b)에는 흡착 대상을 포함하는 기체가 주입될 수 있다. 이때, 상기 흡착 대상을 포함하는 기체로는 CO2 및 N2를 포함하는 기체일 수 있으며, 상기 흡수제를 포함하는 액체는 CO2를 흡수할 수 있는 아민계 용액을 사용할 수 있다.Preferably, a liquid containing an absorbent is injected into the fluid inlets 110a and 110b formed in the shell side dispersion injecting unit 102, and adsorbed to the fluid inlets 120a and 120b formed in the lumen side dispersion injecting unit 200. The gas containing the object may be injected. At this time, the gas containing the object to be adsorbed may be a gas containing CO 2 and N 2 , and the liquid containing the absorbent may use an amine-based solution capable of absorbing CO 2 .
도 11 및 도 12는 본 발명의 일 실시예에 따른 세라믹 중공사 모듈에 있어서, 루멘 사이드 분산 주입 유닛에서 유체의 흐름을 나타낸다.11 and 12 in the ceramic hollow fiber module according to an embodiment of the present invention, shows the flow of the fluid in the lumen side dispersion injection unit.
도 11에 나타낸 바와 같이, 루멘 사이드 분산 주입 유닛(200) 또한 연통 공간을 형성하고 있으므로, 상기 루멘 사이드 분산 주입 유닛(200)의 출입구(210a, 210b)로 주입된 유체는 직접적으로 중공사막에 접하는 것이 아니라 연통 공간을 채우면서 이동하므로 압력이 골고루 분산되어 주입될 수 있다.As shown in FIG. 11, since the lumen side dispersion injection unit 200 also forms a communication space, the fluid injected into the outlets 210a and 210b of the lumen side dispersion injection unit 200 directly contacts the hollow fiber membrane. Rather, it moves while filling the communication space, so pressure can be evenly distributed and injected.
또한, 도 12에 나타낸 바와 같이, 루멘 사이드 분산 주입 유닛(200) 본체에 유체의 주입을 분산시키는 제1 분산 유닛(201) 및 제2 분산 유닛(202)을 포함하지 않는 경우(a)에는 유체가 편향되어 주입됨으로써 접촉막 모듈의 루멘 사이드(Lumen side)에서 편류 현상이 발생되어 전체 분리막 면적을 사용하지 못하고 사각 지역(dead zone)이 발생할 수 있으나, 본 발명에 따라 루멘 사이드 분산 주입 유닛(200) 본체에 제1 분산 유닛(201) 및 제2 분산 유닛(202)을 장착하는 경우(b)에는, 주입되는 유체를 고르게 분배할 수 있도록 하여 사각 지역(dead zone) 없이 모듈의 모든 중공사막에 유체를 접촉시켜 접촉면적을 극대화시킬 수 있다.In addition, as shown in FIG. 12, when the first dispersing unit 201 and the second dispersing unit 202 dispersing the injection of fluid into the body of the lumen side dispersing injection unit 200 are not included (a) By being biased and injected, a drift phenomenon may occur on the lumen side of the contact membrane module and the entire separation area may not be used and a dead zone may occur, but according to the present invention, the lumen side dispersion injection unit 200 ) When the first dispersing unit 201 and the second dispersing unit 202 are mounted on the body (b), it is possible to distribute the injected fluid evenly to all hollow fiber membranes of the module without dead zones. The contact area can be maximized by contacting the fluid.
도 13은 친수성 금속 메쉬를 이용하여 형성된 세라믹 중공사막 다발에 배플 유닛을 장착한 모습이다.13 is a state in which a baffle unit is mounted on a bundle of ceramic hollow fiber membranes formed using a hydrophilic metal mesh.
도 13에 나타낸 바와 같이, 상기 배플 유닛(300)은 원통형의 형태로 하우징(100) 내부에서 세라믹 중공사막(10) 다발을 둘러싸고, 표면에는 전체적으로 다수의 관통홀(301)이 형성되어 있다. 이에, 하우징의 관통홀(101)을 통해 압력이 일부 분배되어 유입된 유체가 상기 배플 유닛으로 인해 하우징 벽면과 부딪쳐서 퍼지고, 상기 관통홀(301)을 통해 상기 중공사막으로 전달된다. 따라서 중공사막 전체에 유체가 고르게 주입될 수 있다.As shown in FIG. 13, the baffle unit 300 surrounds the bundle of the ceramic hollow fiber membrane 10 inside the housing 100 in a cylindrical shape, and a plurality of through holes 301 are formed on the surface as a whole. Accordingly, the pressure is partially distributed through the through-hole 101 of the housing, and the introduced fluid hits the housing wall due to the baffle unit and spreads, and is transmitted to the hollow fiber membrane through the through-hole 301. Therefore, the fluid can be uniformly injected into the entire hollow fiber membrane.
또한 상기 배플 유닛(300)의 상단, 하단 및 중간에는 링 형태의 돌출부(302)가 구비된다. 상기 돌출부(302)는 배플 유닛(300)에 탈착이 가능하고, 하우징(100) 내벽에 씰링되어 주입된 유체가 외부로 새어나가지 않도록 막아주는 역할을 한다. 특히 중간의 돌출부(302)는 상기 배플의 외부로 흐르는 유체의 흐름을 막아 상기 유체가 배플의 관통홀(301)을 통해 배플 내부의 중공사막과 접촉하는 시간을 충분히 갖도록 하여 물질전달 효율을 향상시킨다.In addition, a ring-shaped protrusion 302 is provided at the top, bottom, and middle of the baffle unit 300. The protrusion 302 is detachable to the baffle unit 300 and sealed to the inner wall of the housing 100 to prevent the injected fluid from leaking out. In particular, the middle protrusion 302 prevents the flow of fluid flowing out of the baffle so that the fluid has sufficient time to contact the hollow fiber membrane inside the baffle through the through-hole 301 of the baffle to improve the material transfer efficiency. .
이때, 상기 돌출부를 씰링하는 방법으로는 접착제를 사용하는 방법이 있으나, 상기 접착제가 장기적으로 CO2 흡수제인 아민 용액에 녹아들기 때문에, 도 14에 나타낸 바와 같이, 실리콘 오링(401)을 이용하여 씰링할 수 있다. 상기 실리콘 오링(401)을 사용할 경우에는, 외부 하우징(100)을 계속 재활용할 수 있기 때문에 경제적으로도 우수하다.At this time, as a method of sealing the protrusion, there is a method using an adhesive, but since the adhesive is dissolved in an amine solution that is a CO 2 absorber in the long term, as shown in FIG. 14, sealing is performed using a silicone O-ring 401. can do. When the silicone O-ring 401 is used, it is also economical because the outer housing 100 can be continuously recycled.
한편, 본 발명에 따른 세라믹 중공사 모듈에 있어서, 상기 세라믹 중공사막은 고분자 중공사막과 달리 길이를 늘리면 깨지기 쉬우므로, 대면적화를 위해서는 단위 모듈의 효율적인 연결이 중요하다. 이에 본 발명에 따른 세라믹 중공사 모듈은 단위 모듈을 연결하기 위한 연결부(600, 601)를 더 포함할 수 있다. On the other hand, in the ceramic hollow fiber module according to the present invention, since the ceramic hollow fiber membrane is fragile when the length is increased, unlike the polymer hollow fiber membrane, efficient connection of the unit modules is important for large area. Accordingly, the ceramic hollow fiber module according to the present invention may further include connecting parts 600 and 601 for connecting the unit modules.
도 15는 본 발명의 일 실시예에 따른 세라믹 중공사 모듈의 연결부를 나타내는 사진이다.15 is a photograph showing a connection portion of a ceramic hollow fiber module according to an embodiment of the present invention.
도 15에 나타낸 바와 같이, 본 발명에 따른 세라믹 중공사 모듈은 루멘 사이드 연결부(601) 및 쉘 사이드 연결부(600)를 통하여 연결할 수 있으며, 상기 루멘 사이드 연결부(601) 및 쉘 사이드 연결부(600) 또한 연통 공간을 형성하고 있으므로, 이동하는 유체는 연통 공간을 채우면서 이동하므로 모듈 내의 압력이 골고루 분산되게 된다.15, the ceramic hollow fiber module according to the present invention can be connected through a lumen side connection portion 601 and a shell side connection portion 600, and the lumen side connection portion 601 and the shell side connection portion 600 are also Since the communication space is formed, the moving fluid moves while filling the communication space, so that the pressure in the module is evenly distributed.
도 16은 본 발명의 일 실시예에 따른 세라믹 중공사 모듈의 단위 모듈이 여러 개 연결된 모습을 나타내는 도면이다.16 is a view showing a state in which a plurality of unit modules of a ceramic hollow fiber module according to an embodiment of the present invention are connected.
도 16에 나타낸 바와 같이, 본 발명에 따른 세라믹 중공사 모듈은 연결부(600, 601)를 이용하여 여러 단으로 연결하여 길이를 조절할 수 있다.As shown in FIG. 16, the ceramic hollow fiber module according to the present invention can be adjusted in length by connecting in multiple stages using the connecting parts 600 and 601.
또한, 상기 중공사 모듈이 연결되어 길이가 증가하게 되면, 후단의 모듈에서는 농도 분극 현상에 의하여 성능이 감소할 수 있다. 이에, 상기 쉘 사이드 연결부(600)의 일측에는 유체 출입구(602)가 형성될 수 있다. 상기 연결부의 유체 출입구(602)에서 새로운 유체를 분산하여 공급해주면 이러한 농도 분극 현상을 최소화할 수 있다.In addition, when the hollow fiber module is connected to increase the length, the performance may decrease due to concentration polarization in the module at the rear stage. Accordingly, a fluid entrance 602 may be formed at one side of the shell side connection part 600. This concentration polarization can be minimized by dispersing and supplying new fluid at the fluid inlet 602 of the connection part.
도 17은 본 발명의 일 실시예에 따른 세라믹 중공사 모듈의 운전방법을 나타내는 도면이다.17 is a view showing a method of operating a ceramic hollow fiber module according to an embodiment of the present invention.
본 발명에 따른 세라믹 중공사 모듈은 도 17에 나타낸 바와 같이, 기/액 흐름에 따른 8가지 운전 방법이 모두 가능하며, 목적에 맞는 운전 조건을 선택하여 운전을 수행할 수 있다.As shown in FIG. 17, the ceramic hollow fiber module according to the present invention can perform all 8 operation methods according to gas/liquid flow, and can select an operation condition suitable for a purpose to perform operation.
이때, 액상과 기상의 압력 균형을 맞추는 것이 중요한데, 만일 액상의 압력이 최소침투압력 이상이 되면 도 2에 나타낸 바와 같이 분리막 기공이 액상으로 젖는 현상이 발생하여 접촉막 성능이 현저하게 감소하게 된다. 또한, 기상의 압력이 높게 되면 기상이 액상으로 넘어가 액상에 기포가 생성될 수 있다.At this time, it is important to balance the pressure of the liquid phase and the gas phase. If the pressure of the liquid phase exceeds the minimum permeation pressure, as shown in FIG. 2, a phenomenon in which the pores of the separator wets into the liquid phase occurs, resulting in a significant decrease in the contact membrane performance. In addition, when the pressure of the gas phase is high, the gas phase may pass to the liquid phase and bubbles may be generated in the liquid phase.
따라서, 접촉막 공정에서 액상과 기상의 압력 차(ΔP)를 조절하는 것이 매우 중요하다. 일반적으로는 액상의 압력을 기상보다 약간 높게 유지하며, 상기 액상과 기상의 압력 차(ΔP)를 일정하게 조절하기 위하여, 본 발명에 따른 세라믹 중공사 모듈에 추가로 보조 펌프를 구비할 수 있다.Therefore, it is very important to control the pressure difference (ΔP) between the liquid phase and the gas phase in the contact membrane process. In general, to maintain the pressure of the liquid phase slightly higher than the gas phase, and to control the pressure difference (ΔP) between the liquid phase and the gas phase, a ceramic hollow fiber module according to the present invention may be additionally provided with an auxiliary pump.
도 18은 본 발명의 일 실시예에 따른 세라믹 중공사 모듈에 보조 펌프가 구비된 도면이다.18 is a view provided with an auxiliary pump in the ceramic hollow fiber module according to an embodiment of the present invention.
도 18에 나타낸 바와 같이, 보조 펌프(700) 높이에 따라 액상의 높이 조절이 가능하며, 이를 통해 액상과 기상의 압력 차(ΔP)의 조절이 가능하다.As shown in FIG. 18, the height of the liquid phase can be adjusted according to the height of the auxiliary pump 700, and thus the pressure difference (ΔP) between the liquid phase and the gas phase can be adjusted.
본 발명에 따르면, 세라믹 중공사 모듈에 있어서, 세라믹 중공사막들을 친수성 금속 메쉬에 배열시킨 후 말아서 포팅함으로써 세라믹 중공사막의 파손을 방지할 수 있고, 하우징 내부 공간에 균등하게 배치할 수 있으며, 쉘 사이드 분산 주입 유닛 및 루멘 사이드 분산 주입 유닛에 연통 공간을 형성시키거나, 추가적으로 분산 유닛 및 배플 유닛을 도입함으로써, 세라믹 중공사 모듈의 기/액의 유로를 개선해서 물질전달을 극대화 시키고, 압력을 분배하여, 분리막 젖음 현상 없이 물질전달 효율을 유지하면서 안정적인 운전이 가능한 효과가 있다.According to the present invention, in the ceramic hollow fiber module, the ceramic hollow fiber membranes can be arranged on a hydrophilic metal mesh and rolled to prevent damage to the ceramic hollow fiber membranes, and can be evenly disposed in the space inside the housing, and the shell side. By forming a communication space in the dispersion injection unit and the lumen side dispersion injection unit, or by introducing a dispersion unit and a baffle unit, the gas/liquid flow path of the ceramic hollow fiber module is improved to maximize mass transfer and distribute pressure. , It has the effect that stable operation is possible while maintaining the efficiency of mass transfer without wetting the separator.
본 발명은 도면에 도시된 실시예를 참고로 하여 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술이 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 기술적 보호범위는 아래의 청구범위에 의해서 정하여져야 할 것이다.The present invention has been described with reference to the embodiment shown in the drawings, but this is only exemplary, and those skilled in the art to which the art belongs can various modifications and equivalent other embodiments from this. Will understand. Therefore, the technical protection scope of the present invention should be defined by the following claims.
[부호의 설명][Description of codes]
1: 중공사막 모듈1: Hollow fiber membrane module
10: 중공사막10: hollow fiber membrane
100: 하우징100: housing
101, 101a, 101b, 101c, 101d: 하우징의 관통홀101, 101a, 101b, 101c, 101d: through hole in the housing
102: 쉘 사이드 분산 주입 유닛102: shell side dispersion injection unit
110a, 110b: 쉘 사이드 분산 유닛의 유체 출입구110a, 110b: fluid entrance of the shell side dispersion unit
200: 루멘 사이드 분산 주입 유닛200: lumen side dispersion injection unit
120a, 120b: 루멘 사이드 분산 주입 유닛의 유체 출입구120a, 120b: fluid entrance of the lumen side dispersion injection unit
201: 제1 분산 유닛201: first dispersion unit
202: 제2 분산 유닛202: second dispersion unit
300: 배플(baffle) 유닛300: baffle unit
301: 배플 유닛의 관통홀301: through hole of the baffle unit
302: 배플 유닛의 돌출부302: protrusion of the baffle unit
400: 포팅부400: potting part
401: 실리콘 오링401: silicone O-ring
500: 친수성 금속 메쉬500: hydrophilic metal mesh
600: 쉘 사이드 연결부600: shell side connection
601: 루멘 사이드 연결부601: lumen side connection
602: 연결부의 유체 출입구602: fluid outlet of the connection
700: 보조 펌프700: auxiliary pump

Claims (15)

  1. 복수 개의 세라믹 중공사막으로 이루어진 중공사막 다발; A hollow fiber membrane bundle made of a plurality of ceramic hollow fiber membranes;
    상기 중공사막 다발 내의 각각의 중공사막을 둘러싸는 친수성 금속 메쉬(mesh);A hydrophilic metal mesh surrounding each hollow fiber membrane in the hollow fiber membrane bundle;
    상기 친수성 금속 메쉬로 둘러싸인 세라믹 중공사막 다발이 수용되고, 양단부에 제1 유체가 이동가능한 복수 개의 관통홀이 각각 형성되는 원통형의 하우징;A cylindrical housing in which a bundle of ceramic hollow fiber membranes enclosed by the hydrophilic metal mesh is accommodated, and a plurality of through holes in which a first fluid is movable at both ends are respectively formed;
    상기 하우징의 일단부에 결합되며 제2 유체가 중공사막의 루멘 사이드(Lumen side)로 출입되는 출입구가 형성되고, 상기 루멘사이드 출입구와 중공사막 간에 연통공간이 형성되는 루멘 사이드 분산 주입 유닛; 및 A lumen side dispersion injection unit coupled to one end of the housing and an entrance through which a second fluid enters and exits the lumen side of the hollow fiber membrane, and a communication space between the lumen side entrance and the hollow fiber membrane; And
    상기 원통형 하우징의 일단부에 외주면의 주위를 둘러싸며, 상기 하우징의 관통홀과 연통되도록 연통공간이 형성되고, 일측에는 제1 유체가 쉘 사이드(shell side)로 출입되는 출입구가 형성된 쉘 사이드 분산 주입 유닛을 포함하는 세라믹 중공사 모듈.A shell side dispersion injection is formed at one end of the cylindrical housing to surround the outer circumferential surface, a communication space is formed to communicate with the through-hole of the housing, and an entrance through which the first fluid enters and exits the shell side on one side. Ceramic hollow fiber module including a unit.
  2. 복수 개의 세라믹 중공사막으로 이루어진 중공사막 다발;A hollow fiber membrane bundle made of a plurality of ceramic hollow fiber membranes;
    상기 중공사막 다발 내의 각각의 중공사막을 둘러싸는 친수성 금속 메쉬(mesh);A hydrophilic metal mesh surrounding each hollow fiber membrane in the hollow fiber membrane bundle;
    상기 친수성 금속 메쉬로 둘러싸인 세라믹 중공사막 다발이 수용되는, 원통형이고 표면에는 다수의 관통홀이 형성된 배플(baffle) 유닛;A baffle unit in which a bundle of ceramic hollow fiber membranes surrounded by the hydrophilic metal mesh is accommodated, and a plurality of through holes are formed on the surface;
    상기 친수성 금속 메쉬로 둘러싸인 세라믹 중공사막 다발 및 배플 유닛이 수용되고, 양단부에 제1 유체가 이동가능한 복수 개의 관통홀이 각각 형성되는 원통형의 하우징;A cylindrical housing in which a bundle of ceramic hollow fiber membranes surrounded by the hydrophilic metal mesh and a baffle unit are accommodated, and a plurality of through holes in which a first fluid is movable at both ends are formed;
    상기 원통형 하우징의 일단부에 외주면의 주위를 둘러싸며, 상기 하우징의 관통홀과 연통되어 제1 유체의 통로를 제공하고 일측에는 제1 유체가 출입되는 출입구가 형성된 쉘 사이드 분산 주입 유닛; 및 A shell side dispersion injection unit that surrounds an outer circumferential surface of one end of the cylindrical housing, communicates with a through hole of the housing, and provides a passage for a first fluid, and has an entrance through which a first fluid enters and exits; And
    상기 하우징의 상부 및 하부에 결합되며 제2 유체가 루멘 사이드(Lumen side)로 출입되는 출입구가 형성된 깔대기 형태의 루멘 사이드 분산 주입 유닛을 포함하는 세라믹 중공사 모듈.Ceramic hollow fiber module coupled to the upper and lower parts of the housing and including a funnel-shaped lumen side dispersion injection unit having an entrance through which a second fluid enters and exits a lumen side.
  3. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 친수성 금속 메쉬로 둘러싸인 세라믹 중공사막 다발은 상기 세라믹 중공사막을 친수성 금속 메쉬에 일렬로 정렬한 후 말아서 형성하는 것을 특징으로 하는 세라믹 중공사 모듈.The ceramic hollow fiber membrane bundle surrounded by the hydrophilic metal mesh is a ceramic hollow fiber module, characterized in that the ceramic hollow fiber membranes are formed in a row after being aligned with a hydrophilic metal mesh.
  4. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 중공사막 다발은 하우징 내 세라믹 중공사막 충진률이 10~60%가 되도록 형성하는 것을 특징으로 하는 세라믹 중공사 모듈.The hollow fiber membrane bundle is a ceramic hollow fiber module, characterized in that the filling rate of the ceramic hollow fiber membrane in the housing is 10 to 60%.
  5. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 친수성 금속 메쉬는 친수성 스테인레스 메쉬인 것을 특징으로 하는 세라믹 중공사 모듈.The hydrophilic metal mesh is a ceramic hollow fiber module, characterized in that the hydrophilic stainless mesh.
  6. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 세라믹 중공사 모듈은 제1 유체와 제2 유체가 교차 흐름(cross-flow) 방식으로 접촉하는 것을 특징으로 하는 세라믹 중공사 모듈.The ceramic hollow fiber module is a ceramic hollow fiber module, characterized in that the first fluid and the second fluid are in a cross-flow (cross-flow) contact.
  7. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 제1 유체는 흡수제를 포함하는 액체이고, 상기 제2 유체는 흡착대상을 포함하는 기체인 것을 특징으로 하는 세라믹 중공사 모듈.The first fluid is a liquid containing an absorbent, the second fluid is a ceramic hollow fiber module, characterized in that the gas containing the object to be adsorbed.
  8. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 제1 유체는 CO2를 흡수하는 아민계 용액이고, 상기 제2 유체는 CO2와 N2를 포함하는 기체인 것을 특징으로 하는 세라믹 중공사 모듈.The first fluid is an amine-based solution that absorbs CO 2 , and the second fluid is a ceramic hollow fiber module, characterized in that it is a gas containing CO 2 and N 2 .
  9. 제1항에 있어서,According to claim 1,
    상기 세라믹 중공사 모듈은 유체 주입시 유체가 쉘 사이드 분산 주입 유닛 내의 연통 공간을 통해 하우징의 둘레를 둘러싸면서 퍼져 나가 압력이 골고루 분산된 상태로 관통홀을 통해 주입되어 중공사막과 접촉하는 것을 특징으로 하는 세라믹 중공사 모듈.The ceramic hollow fiber module is characterized in that when the fluid is injected, the fluid spreads around the periphery of the housing through the communication space in the shell side dispersion injection unit and is injected through the through hole in a state in which pressure is evenly distributed to contact the hollow fiber membrane. Ceramic hollow fiber module.
  10. 제2항에 있어서,According to claim 2,
    상기 세라믹 중공사 모듈은 유체 주입시 쉘 사이드 분산 주입 유닛 및 배플 유닛을 통해 유체가 하우징의 둘레 및 배플 둘레를 둘러싸면서 퍼져 나가 압력이 골고루 분산된 상태로 관통홀을 통해 주입되어 중공사막과 접촉하는 것을 특징으로 하는 세라믹 중공사 모듈.When the fluid is injected, the ceramic hollow fiber module spreads through the shell side dispersion injection unit and the baffle unit while surrounding the housing and the baffle, so that the pressure is evenly distributed and injected through the through hole in contact with the hollow fiber membrane. Ceramic hollow fiber module, characterized in that.
  11. 제2항에 있어서,According to claim 2,
    상기 배플 유닛의 상단, 하단과 중간부의 일 지점에는 링 형태의 돌출부가 형성되어 하우징 내부와 씰링되는 것을 특징으로 하는 세라믹 중공사 모듈.A ceramic hollow fiber module characterized in that a ring-shaped protrusion is formed at one point of the upper, lower, and middle portions of the baffle unit and sealed inside the housing.
  12. 제11항에 있어서,The method of claim 11,
    상기 씰링은 실리콘 오링을 이용하여 수행하는 것을 특징으로 하는 세라믹 중공사 모듈.The sealing is a ceramic hollow fiber module, characterized in that performed using a silicon O-ring.
  13. 제2항에 있어서,According to claim 2,
    상기 루멘 사이드 분산 주입 유닛은 루멘 사이드 유체 출입구에서 유체의 주입을 분산시키는 제1 분산 유닛 및 주입된 유체가 하우징 내의 중공사막 다발에 골고루 분산 주입되기 위해 샤워기 헤드 형태로 복수 개의 관통홀을 갖는 제2 분산 유닛을 포함하는 것을 특징으로 하는 세라믹 중공사 모듈.The lumen side dispersion injection unit is a first dispersion unit for dispersing the injection of fluid at the lumen side fluid entrance and a second having a plurality of through-holes in the form of a shower head for the injected fluid to be evenly distributed in the hollow fiber membrane bundle in the housing Ceramic hollow fiber module comprising a dispersion unit.
  14. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 세라믹 중공사 모듈은 단위 모듈의 연결을 위해 연결부를 더 포함하는 것을 특징으로 하는 세라믹 중공사 모듈.The ceramic hollow fiber module is a ceramic hollow fiber module, characterized in that it further comprises a connecting portion for the connection of the unit module.
  15. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 세라믹 중공사 모듈은 액상과 기상의 압력 차이를 조절하기 위하여 보조 펌프를 더 포함하는 것을 특징으로 하는 세라믹 중공사 모듈.The ceramic hollow fiber module further comprises an auxiliary pump to control the pressure difference between the liquid phase and the gas phase.
PCT/KR2018/016283 2018-12-14 2018-12-20 Ceramic hollow fiber membrane module for contact film process WO2020122303A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020180162293A KR102203813B1 (en) 2018-12-14 2018-12-14 Ceramic hollow fiber membrane contactor module with high performance
KR1020180162272A KR102203817B1 (en) 2018-12-14 2018-12-14 Ceramic hollow fiber membrane module for membrane contactor process
KR10-2018-0162272 2018-12-14
KR10-2018-0162293 2018-12-14

Publications (1)

Publication Number Publication Date
WO2020122303A1 true WO2020122303A1 (en) 2020-06-18

Family

ID=71075659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016283 WO2020122303A1 (en) 2018-12-14 2018-12-20 Ceramic hollow fiber membrane module for contact film process

Country Status (1)

Country Link
WO (1) WO2020122303A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2725311B2 (en) * 1988-10-13 1998-03-11 大日本インキ化学工業株式会社 Hollow fiber membrane type gas-liquid contactor
JP2006247540A (en) * 2005-03-11 2006-09-21 Toray Ind Inc Hollow fiber membrane module and its operation method
KR20100135296A (en) * 2008-04-18 2010-12-24 니기소 가부시키가이샤 Adsorbent for the removal of blood cells
KR20140094223A (en) * 2013-01-21 2014-07-30 엘지전자 주식회사 Hollow Fiber Membrane Module Using Positive Pressure
KR20150036156A (en) * 2012-07-05 2015-04-07 도레이 카부시키가이샤 Hollow fiber membrane module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2725311B2 (en) * 1988-10-13 1998-03-11 大日本インキ化学工業株式会社 Hollow fiber membrane type gas-liquid contactor
JP2006247540A (en) * 2005-03-11 2006-09-21 Toray Ind Inc Hollow fiber membrane module and its operation method
KR20100135296A (en) * 2008-04-18 2010-12-24 니기소 가부시키가이샤 Adsorbent for the removal of blood cells
KR20150036156A (en) * 2012-07-05 2015-04-07 도레이 카부시키가이샤 Hollow fiber membrane module
KR20140094223A (en) * 2013-01-21 2014-07-30 엘지전자 주식회사 Hollow Fiber Membrane Module Using Positive Pressure

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
LEE, HONG JOO ET AL.: "Development of Ceramic Membrane Contactor Modules for Carbon Dioxide Separation", ABSTRACTS OF 2018 OF THE KOREAN SOCIETY OF CLEAN TECHNOLOGY CONFERENCE, 28 March 2018 (2018-03-28), pages 190 *
LEE, HONG JOO ET AL.: "Non-official translation: Development of Ceramic Hollow Fiber Contact Membrane Process for Dioxide Capture", ABSTRACTS OF 2018 THE KOREAN SOCIETY OF CLIMATE CHANGE RESEARCH CONFERENCE, 18 June 2018 (2018-06-18), pages P-089 *
LEE, HONG JOO ET AL.: "Non-official translation: Development of Ceramic Membrane Contactor Module System for Dioxide Capture", ABSTRACTS OF 58TH KSIEC MEETING, 31 October 2018 (2018-10-31), pages 407 *
LEE, HONG JOO ET AL.: "Non-official translation: Development of Hydrophobic Inorganic Membrane Contactor System for Dioxide Capture", ABSTRACTS OF 2018 KICHE FALL MEETING AND INTERNATIONAL SYMPOSIUM, 24 October 2018 (2018-10-24), pages P-42(176) *
PARK, JEONGHUN: "Development of Ceramic Membrane Contactor Modules for Carbon Dioxide Separation", ABSTRACTS OF 57TH KSIEC MEETING, 2 May 2018 (2018-05-02), pages 118 *

Similar Documents

Publication Publication Date Title
WO2011136572A2 (en) Forward osmotic desalination device using membrane distillation method
WO2020262912A1 (en) Humidifier for fuel cell and method for manufacturing same
WO2011068383A2 (en) Humidifier for fuel cell
US9339768B2 (en) Multi-cartridge membrane contactors, modules, systems, and related methods
WO2010140857A2 (en) Module case and hollow fiber membrane module using the same
WO2010123238A2 (en) Method for cleaning filtering membrane
WO2014104779A1 (en) Filtering apparatus
WO2015023039A1 (en) Adsorptive permeable hollow fiber membrane, manufacturing method therefor and gas adsorbing and desorbing separation system using same
WO2015147536A1 (en) Filtering apparatus
WO2011093652A2 (en) Hollow-fibre membrane module
WO2020122303A1 (en) Ceramic hollow fiber membrane module for contact film process
WO2013125832A1 (en) Capacitive deionization device
WO2013100272A1 (en) Water purifying apparatus having a pressurized membrane module
WO2012125003A2 (en) Filtration device and hollow-fiber membrane module
KR100650379B1 (en) Isolation of SF6 from insulating gases in gas insulated lines
WO2020036274A1 (en) Method for purifying hydrogen peroxide
WO2017052021A1 (en) Apparatus for collecting useful metal ions from aqueous solution and method for collecting useful metal ions using same
KR102203813B1 (en) Ceramic hollow fiber membrane contactor module with high performance
KR102203817B1 (en) Ceramic hollow fiber membrane module for membrane contactor process
WO2013025012A1 (en) Forward osmotic desalination device using membrane distillation method in which part of draw solution is fed directly into forward osmostic type separator
WO2013048005A1 (en) Aeration unit and filtering apparatus comprising the same
WO2016159590A1 (en) Apparatus for removing and recovering high concentration of nitrogen and phosphorus by using ammonia stripping
CN102361682B (en) Filtering apparatus
WO2022163987A1 (en) Water electrolysis apparatus
WO2015102374A1 (en) Fluid exchange membrane module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01/10/2021).

122 Ep: pct application non-entry in european phase

Ref document number: 18943063

Country of ref document: EP

Kind code of ref document: A1