WO2020122291A1 - Apparatus and method for automating artificial intelligence-based apartment house management work instructions - Google Patents

Apparatus and method for automating artificial intelligence-based apartment house management work instructions Download PDF

Info

Publication number
WO2020122291A1
WO2020122291A1 PCT/KR2018/015910 KR2018015910W WO2020122291A1 WO 2020122291 A1 WO2020122291 A1 WO 2020122291A1 KR 2018015910 W KR2018015910 W KR 2018015910W WO 2020122291 A1 WO2020122291 A1 WO 2020122291A1
Authority
WO
WIPO (PCT)
Prior art keywords
business
apartment
work
job
unit
Prior art date
Application number
PCT/KR2018/015910
Other languages
French (fr)
Korean (ko)
Inventor
장하니
Original Assignee
(주)하니소프트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)하니소프트 filed Critical (주)하니소프트
Priority to PCT/KR2018/015910 priority Critical patent/WO2020122291A1/en
Priority to KR1020217022188A priority patent/KR20210107042A/en
Publication of WO2020122291A1 publication Critical patent/WO2020122291A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • G06Q10/103Workflow collaboration or project management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services

Definitions

  • the present invention relates to an artificial intelligence-based apartment housing management work order automation technology, and more particularly, to an artificial intelligence-based apartment housing management work order automation device and method capable of providing an automated business guide for apartment housing management. It is about.
  • apartment houses such as apartments, villas, tenements, and officetels are inhabited by a large number of people.
  • a complaint related to an apartment house may include complaints related to various inquiries or inconveniences related to living, requests for facility inspection or repair, and various reports and reservations. It is very important to have a system that can effectively handle complaints in multi-unit apartment houses where various complaints occur.
  • Korean Patent Publication No. 10-2000-0036965 (2000.07.05) relates to a method and a recording medium for managing an apartment complex in a computer network system, internal and external tasks and activities of residents of the apartment complex This can be done smoothly, reducing the costs levied on the residents of the apartment complex by performing the joint management step, and improving the quality of community life of the residents of the apartment complex.
  • Korean Patent Publication No. 10-2000-0009022 (2000.02.15) relates to a computer comprehensive information system in public housing, to establish a common computer communication network in a public housing complex as hubs and routers and manage it in connection with a server computer
  • the computers of the connected homes, malls, and management offices have disclosed a technique of providing a program having a function of providing various computer communication functions that are useful for living in public housing as well as Internet access.
  • Patent Document 1 Korean Patent Publication No. 10-2000-0036965 (2000.07.05)
  • Patent Document 1 Korean Patent Publication No. 10-2000-0009022 (2000.02.15)
  • One embodiment of the present invention is to provide an artificial intelligence-based apartment housing management automation device and method capable of providing an automated business guide for apartment housing management.
  • One embodiment of the present invention is an artificial intelligence-based apartment housing management instruction that guides the performance of a machine by learning the contents of a journal written by business practitioners who manage the apartment house and using the business checklist generated therefrom. It is intended to provide an automated device and method.
  • an artificial intelligence-based apartment house management business instruction that can generate a business checklist using a business related keyword extracted from the contents of a journal and a business related apartment house situation according to the current apartment house situation It is intended to provide an automated device and method.
  • the artificial intelligence-based apartment house management work order automation device is provided by a job identification unit for identifying a job performer's job duties when the access request through the apartment house performance terminal is approved, by the apartment house business execution terminal.
  • a journal repository that stores electronically created and verified journals for each job by electronic payment method through the MDU business management terminal, machine learning the contents of the journals for each job in charge, and the job in question for each apartment
  • a work journal machine learning unit that generates a plurality of work modules by classifying them into work contents, a multi-unit situation determination unit for determining the current multi-unit housing status, and at least one of the plurality of business modules according to the current multi-unit housing status.
  • a business guide unit for determining the apartment housing situation business module and guiding it to the apartment housing performance terminal as a business checklist.
  • the journal repository section may store the corresponding apartment housing situation together during the storage of the journal for each job in charge.
  • the journal machine learning unit may estimate a job-related keyword associated with the corresponding job in the content of the job log for each job, and determine a job-related apartment house condition associated with the job in charge in the apartment housing situation.
  • the journal machine learning unit may determine N business-related keywords (N is a natural number) that are frequently generated above a specific criterion in the business-related apartment housing situation.
  • the machine learning unit of the journal may generate a non-normal work module by separately learning the non-normal event and the content of the non-standard work of the multi-unit apartment in the multi-unit situation related to the work.
  • the machine learning unit of the journal may machine-learn the N business related keywords according to the normality event excluding the non-normality event in the business-related apartment house situation to determine the job content for each apartment house situation.
  • the journal machine learning unit may generate the plurality of job modules by determining a job content associated with each of the N job-related keywords.
  • the responsible job identification unit identifies an access request receiving module for receiving a connection request from the MDU business execution terminal, and identifies device information of the MDU business execution terminal, and then accesses the MDU according to whether the MDU business execution terminal is a registered terminal. It may include a connection request approval module for determining whether to approve the request, and if the connection request is approved, a task determination module for determining the responsibility of the task performer based on the registration information of the terminal for performing business of the MDU. .
  • the multi-unit situation determination unit determines a current time point consisting of a date and time, a time point determination module that determines the weather at the current time point, and an event that detects an event within a specific time period based on the current time point And a detection module and a multi-unit status determination module that determines the date and time, weather, and event as the current multi-unit status.
  • the business guide unit receives the current multi-unit housing status module from the multi-unit status determination unit, and the multi-unit situation determining the at least one multi-unit status business module based on the current multi-unit status. Based on the business decision module, the at least one apartment housing situation business module, the apartment work situation business analysis module for extracting work content, work place, estimated time and work check contents, and performing work based on the business place and the estimated time And a checklist generation module for generating the order and task execution path to generate the task checklist.
  • the method for automating the artificial intelligence-based MDU management order is a step of identifying a job performer's responsibility when an access request through the MDU execution terminal is approved, and electronically created by the MDU operation terminal. And the step of storing the journals for each job in charge confirmed by the electronic payment method through the MDU business management terminal, and machine learning the contents of the job log for each job in charge to classify the job in charge as the job contents for each apartment housing situation.
  • Generating business modules, determining a current MDU status, and determining at least one MDU business module according to the current MDU status among the plurality of MDUs to perform the MDU business terminal Includes steps to guide you to the task checklist.
  • the step of identifying the responsible job includes receiving a connection request from the MDU execution terminal, identifying device information of the MDU execution terminal, and then accessing the terminal according to whether the MDU execution terminal is a registered terminal.
  • the method may include determining whether to approve the request and, if the access request is approved, determining the job duties of the work performer based on the registration information of the multi-family housing performance terminal.
  • Determining the status of the multi-family house includes: determining a current time point consisting of a date and time, determining weather at the current time point, detecting an event existing within a specific time period based on the current time point, and And determining the date and time, weather, and event as the current apartment housing situation.
  • the step of guiding to the business checklist includes receiving the current apartment housing status from the apartment housing determination unit, and determining the at least one apartment housing business module based on the current apartment housing status, Extracting work content, work place, expected time and work check content based on the at least one apartment housing situation work module and generating a work execution sequence and work execution path based on the work place and the estimated time to And generating a task checklist.
  • the disclosed technology can have the following effects. However, since the specific embodiment does not mean that all of the following effects should be included or only the following effects are included, the scope of rights of the disclosed technology should not be understood as being limited thereby.
  • the artificial intelligence-based apartment house management work order automation device and method according to an embodiment of the present invention are machine-learned the contents of the journal written by business operators who manage the apartment house and use the business checklist generated based on this You can guide your work.
  • the apparatus and method for automating the artificial intelligence-based apartment housing management work checks the work using the business-related keyword extracted from the contents of the journal and the business-related apartment housing situation according to the current apartment housing situation. You can create a list.
  • FIG. 1 is a view for explaining an artificial intelligence-based apartment house management work order automation system according to an embodiment of the present invention.
  • FIG. 2 is a view for explaining the physical configuration of an automated device for managing an apartment house management order in FIG. 1.
  • FIG. 3 is a block diagram illustrating a functional configuration of an automated device for managing an apartment house management business in FIG. 1.
  • FIG. 4 is a block diagram illustrating detailed modules for each configuration of an automatic device for managing an apartment house management business according to an embodiment of the present invention.
  • FIG. 5 is a flow chart illustrating the process of automating the MDU management work instruction performed in the MDU management automation apparatus in FIG. 1.
  • FIG. 6 is a flowchart illustrating an embodiment of a process of identifying a responsible job performed by the responsible job identification unit in FIG. 4.
  • FIG. 7 is a flowchart illustrating an embodiment of a process for determining a condition of a multi-family house performed by the condition determining unit of a multi-family house in FIG. 4.
  • FIG. 8 is a flowchart illustrating an embodiment of a business guide process performed in the business guide unit in FIG. 4.
  • first and second are for distinguishing one component from other components, and the scope of rights should not be limited by these terms.
  • first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • the identification code (for example, a, b, c, etc.) is used for convenience of explanation.
  • the identification code does not describe the order of each step, and each step clearly identifies a specific order in context. Unless stated, it may occur in a different order than specified. That is, each step may occur in the same order as specified, may be performed substantially simultaneously, or may be performed in the reverse order.
  • the present invention can be embodied as computer readable code on a computer readable recording medium, and the computer readable recording medium includes all kinds of recording devices in which data readable by a computer system is stored.
  • Examples of computer-readable recording media include ROM, RAM, CD-ROM, magnetic tape, floppy disks, and optical data storage devices.
  • the computer-readable recording medium can be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
  • FIG. 1 is a view for explaining an artificial intelligence-based apartment house management work order automation system according to an embodiment of the present invention.
  • artificial intelligence-based apartment housing management work order automation system 100 includes a multi-unit business execution terminal 110, a multi-unit management work order automation device 130, a database 150, and multi-unit business management It may include a terminal 170.
  • the MDU terminal 110 is a computing device that is used by the MDU's work entrepreneurs and is capable of creating and verifying work journals for managing the MDU, and using a smart phone, laptop, or computer. It may be implemented, and is not necessarily limited thereto, and may be implemented with various devices such as a tablet PC.
  • the MDU terminal 110 may be connected to the MDU management instruction automation device 130 through a network, and the plurality of MDU execution terminals 110 and the MDU management instruction automation device 130 may be simultaneously Can be connected.
  • the apartment unit management work order automation device 130 corresponds to a computer or program that can generate and provide a work checklist that includes information about the work to be performed to each business operator regarding various tasks required for the management of the apartment house It can be implemented as a server.
  • the apartment house management work order automation device 130 may be connected to the apartment house execution terminal 110 and the apartment house management terminal 170 through a wired network or a wireless network such as Bluetooth, WiFi, etc., through a wired or wireless network. Communication with the MDU terminal 110 and the MDU management terminal 170 may be performed.
  • the multi-unit management task order automation device 130 may store information necessary to manage various tasks related to the multi-unit housing in conjunction with the database 150.
  • the apartment house management business order automation device 130 unlike Figure 1, may be implemented by including a database 150 therein.
  • the multi-unit management task order automation device 130 may be implemented including a processor, a memory, a user input/output unit, and a network input/output unit, which will be described in more detail in FIG. 2.
  • the database 150 performs the various tasks necessary for the management of the MDU through communication with the MDU management terminal 110 and the MDU management terminal 170 by the automation device 130 of the MDU management instruction. In the process of applying, various information needed can be stored.
  • the database 150 may store various journals received from the MDU task terminal 110 and the MDU task management terminal 170, and store information on the status of the MDU and the status of the work process. It may be, and is not necessarily limited to, it is possible to store information collected or processed in various forms in the process of supporting and managing the performance of business.
  • the apartment house management terminal 170 corresponds to a computing device capable of confirming an apartment house related journal and providing approval regarding it, and may be implemented as a smartphone, a laptop, or a computer, and is not necessarily limited thereto, and a tablet PC It can also be implemented with various devices.
  • the apartment house management terminal 170 may be connected to the apartment house management business instruction automation device 130 through a network, and the plurality of apartment house management terminal 170 may be concurrent with the apartment house management business instruction automation device 130 Can be connected.
  • the MDU management terminal 170 may be implemented with the same device as the MDU execution terminal 110, and may perform a role of each other in accordance with the user of each terminal.
  • FIG. 2 is a view for explaining the physical configuration of an automated device for managing an apartment house management order in FIG. 1.
  • the apparatus 130 for automating an apartment house management work order may include a processor 210, a memory 230, a user input/output unit 250, and a network input/output unit 270.
  • the processor 210 may execute each procedure defined to perform automation of various tasks related to the apartment house in the apartment house management business instruction automation device 130, and the memory 230 read or written throughout the process And a synchronization time between volatile and nonvolatile memory in the memory 230.
  • the processor 210 can control the overall operation of the apartment management management instruction automation device 130, and is electrically connected to the memory 230, the user input/output unit 250, and the network input/output unit 270, and data therebetween. You can control the flow.
  • the processor 210 may be embodied as a central processing unit (CPU) of the multi-unit management instruction automation device 130.
  • the memory 230 is implemented as a non-volatile memory, such as a solid state disk (SSD) or a hard disk drive (HDD), and includes an auxiliary storage device used to store overall data required for the automation device 130 for managing the apartment complex. And a main memory device implemented with volatile memory such as random access memory (RAM).
  • SSD solid state disk
  • HDD hard disk drive
  • RAM random access memory
  • the user input/output unit 250 may include an environment for receiving user input and an environment for outputting specific information to the user.
  • the user input/output unit 250 may include an input device including an adapter such as a touch pad, a touch screen, an image keyboard, or a pointing device, and an output device including an adapter such as a monitor or touch screen.
  • the user input/output unit 250 may correspond to a computing device connected through a remote connection, and in such a case, the apartment unit management business order automation device 130 may be performed as a server.
  • the network input/output unit 270 includes an environment for connecting to an external device or system through a network, for example, a local area network (LAN), a metropolitan area network (MAN), a wide area network (WAN), and a VAN ( Value Added Network).
  • LAN local area network
  • MAN metropolitan area network
  • WAN wide area network
  • VAN Value Added Network
  • FIG. 3 is a block diagram illustrating a functional configuration of an automated device for managing an apartment house management business in FIG. 1.
  • the apartment house management work order automation device 130 includes a responsible job identification unit 310, a journal repository unit 320, a journal machine learning unit 330, and an apartment house situation determination unit 340. , May include a business guide unit 350 and a control unit 360.
  • the charge job identification unit 310 may identify the charge job of the business performer when the access request through the MDU terminal 110 is approved.
  • the management tasks for apartment houses can be very diverse, can be classified according to the type of each task, and in the case of a task performer who directly performs management tasks, the job duties can be determined according to the type of task in charge.
  • the job duties of a business performer may include facilities, security, environmental beautification, general administration, landscaping, and the like, but is not limited thereto, the size of an organization for the management of apartment houses, the type and scale of apartment houses, etc. Accordingly, it can be defined in various forms.
  • the responsible job identification unit 310 identifies the device information of the access request receiving module, the apartment housing business execution terminal 110 to receive the connection request from the apartment housing business execution terminal 110, and then the corresponding apartment
  • the access request approval module for determining whether to approve the access request according to whether the work execution terminal 110 is a registered terminal and, if the access request is approved, the work performer based on the registration information of the multi-family work execution terminal 110 It may include a job determination module for determining the job description. This will be described in more detail in FIGS. 4 and 6.
  • the journal repository unit 320 may store a journal for each job in charge, which is electronically created by the MDU task execution terminal 110 and confirmed by an electronic payment method through the MDU management terminal 170.
  • the journal repository 320 can interwork with the database 150 to store the journal, confirm the completion of the journal entry from the MDU terminal 110, and confirm the corresponding job from the MDU management terminal 170. By checking the electronic payment processing for the journal, the journal for which the final processing has been completed can be stored and stored in an independently implemented storage area for each job in charge.
  • journal repository section 320 may be implemented as a device independent of the MDU management automation instruction 130 and may be operated as an external database 150, in this case the MDU management task Communication with the instruction automation device 130 may be performed through a network.
  • the journal repository section 320 may also store the corresponding apartment housing situation in the process of storing the journal for each job in charge.
  • Apartment housing situation may include the date, time, weather, event, etc. at that time, and the event is a specific event that may occur in relation to the apartment complex, such as moving in or out of residents, internal construction of certain households, or congratulations can do.
  • the event may be classified into a regularity event that occurs with a certain regularity and an irregularity event that occurs irregularly in the process of residence in a multi-family house or a management process related to a multi-family house.
  • the machine learning unit 330 may generate a plurality of job modules by classifying the job in charge of each apartment housing situation by machine learning the contents of the job log for each job.
  • the work module may correspond to a work unit that contains content related to work required for managing a multi-family house, and may include information such as work content, work place, and estimated time.
  • the journal machine learning unit 330 learns the contents of the journals categorized by job duties, and classifies them into work contents according to the apartment housing condition by reflecting the apartment house status for each job in charge based on the learning contents. It is possible to create a work module for the work content for each housing situation.
  • the journal machine learning unit 330 estimates a job-related keyword associated with the corresponding job in the content of the journal for each job, and determines a job-related apartment house associated with the job in the apartment house situation. Can be.
  • the job-related keyword may correspond to a keyword frequently used for a specific job, and may be generated and utilized in advance as a result of learning about the journal for each job.
  • the journal machine learning unit 330 may extract a job-related keyword from the journal by applying an analysis model as a learning result to the journal for each job.
  • the work journal machine learning unit 330 may determine a work-related multi-housing situation associated with a job in charge from the multi-housing situation information.
  • the work-related apartment housing situation may correspond to the apartment housing situation composed of context variables related to a specific task among various context variables constituting the apartment housing situation. For example, if the apartment housing information consists of the current date, time, weather, event, etc., in the case of the'outdoor cleaning' job, because the weather is an important situation, the business-related apartment housing situation may consist of date, time, and weather. In the case of'Gas Inspection', households moving in cannot be inspected, so the status of apartments related to work may consist of dates, times, and events.
  • the journal machine learning unit 330 may determine N business-related keywords (N is a natural number) that are frequently generated above a specific criterion in a business-related apartment house situation.
  • the journal machine learning unit 330 can learn the job-related keywords and job-related apartment housing conditions extracted from the journal for each job position, and determine the business-related keyword for each job-related apartment house situation as a result of the learning.
  • the business-related keyword for each business-related apartment house situation may be limited to N presets.
  • a specific criterion is the frequency of occurrence of business-related keywords, and may correspond to the number of criteria for selecting business-related keywords that are highly likely to be closely related to the business-related apartment housing situation.
  • the journal machine learning unit 330 may generate a non-normal work module by separately learning the non-normal event and the content of the non-standard work of the multi-unit apartment in the context of a business-related apartment.
  • the non-normality event is an event opposite to the normality event, and may correspond to an event in which a certain regularity does not exist among events that may occur in the apartment house, and may include, for example, a fire of a specific generation, a fire event, or the like.
  • the irregular business module may correspond to a business unit containing irregular business content related to an apartment house, and may include information such as business content, work place, and estimated time.
  • the journal machine learning unit 330 learns the irregularity events that actually occurred in the context of a business-related apartment complex and the non-standard business content of the apartment complexes performed in connection with the event as separate learning from the business journal for each job in charge. It can be done.
  • the journal machine learning unit 330 may determine N job related keywords according to the normal housing event by excluding the non-normal event in the business related apartment housing situation to determine the job content for each apartment housing situation.
  • the journal machine learning unit 330 can determine normality events excluding non-normality events based on the contents of the journal, and learning data including N business-related keywords that are highly correlated with normality events occurring in a business-related apartment housing situation. By creating and learning machine, it is possible to determine the work content for each apartment house situation as a learning result.
  • the journal machine learning unit 330 may generate a plurality of job modules by determining the job contents associated with each of the N job-related keywords.
  • the journal machine learning unit 330 may determine related job contents for each job-related keyword, and may generate a plurality of job modules based on the job contents. Accordingly, each task module may include information related to task contents together with associated task related keywords.
  • the apartment housing situation determination unit 340 may determine the current apartment housing situation.
  • the apartment housing situation is information about the apartment complex at the present time and can be composed of various situation variables.
  • the situation variable is an item related to the situation and may correspond to a date, time, weather, event, etc. necessary for the management of the apartment complex.
  • the apartment housing situation may be expressed as a vector such as (date, time, weather, location, event), and each situation variable constituting the apartment housing situation may be numerically expressed or expressed as a grade or level. .
  • the apartment housing situation determination unit 340 is a time determination module for determining a current time point consisting of a date and time, a weather determination module for determining weather at the current time point, and is present within a specific time interval based on the current time point It may include an event detection module for detecting the event and the date and time, weather and events to determine the current state of the multi-family housing apartment module. This will be described in more detail in FIGS. 4 and 7.
  • the business guide unit 350 may determine at least one multi-family housing business module according to the current multi-family housing situation among a plurality of business modules and guide the multi-family business execution terminal 110 as a business checklist.
  • the apartment housing situation task module is a task module that includes tasks related to tasks for managing an apartment complex, and may correspond to a task module determined to be suitable for the current situation of the apartment complex.
  • the work guide unit 350 may provide a work checklist to the MDU terminal 110 based on the MDU situation work module. Therefore, the MDU task performer may perform the work according to the work checklist through the MDU execution terminal 110.
  • the business guide unit 350 determines at least one MDU situation module based on the MDU condition receiving module that receives the current MDU situation condition from the MDU decision unit, and the current MDU situation.
  • An apartment house situation task analysis module for extracting work contents, a work place, estimated time, and work check contents based on at least one apartment house task decision module;
  • a checklist generation module that generates a work checklist by generating a work execution sequence and a work execution path based on the work place and the estimated time. This will be described in more detail in FIGS. 4 and 8.
  • the control unit 360 controls the overall operation of the apartment unit management work order automation device 130, and the responsible job identification unit 310, the journal repository unit 320, the journal machine learning unit 330, the apartment house situation A control flow or a data flow between the determination unit 340 and the business guide unit 350 may be managed.
  • FIG. 4 is a block diagram illustrating detailed modules for each configuration of an automatic device for managing an apartment house management business according to an embodiment of the present invention.
  • the apparatus 130 for automating an apartment house management business includes a responsible job identification unit 410, an apartment house status determination unit 430, and a business guide unit 450. Can be implemented.
  • the charge job identification unit 410 may include a connection request receiving module 411, a connection request approval module 413, and a charge job determination module 415.
  • the access request receiving module 411 may receive a connection request from the apartment housing performance terminal 110. In this case, the access request receiving module 411 may receive identification information of the corresponding terminal together with the access request from the apartment housing execution terminal 110 and provide it to the access request approval module 413.
  • the access request approval module 413 may identify device information of the MDU terminal 110 and determine whether to approve the connection request according to whether the MDU terminal 110 is a registered terminal.
  • the access request approval module 413 may receive identification information corresponding to device information of the corresponding terminal from the access request receiving module 411, and based on this, determine whether the corresponding terminal is registered or not, thereby determining final approval, When the approval is completed, the approval result may be provided to the responsible job determination module 415.
  • Responsible job determination module 415 receives the approval result from the access request approval module 413 and determines that the access request is approved, then determines the job performance of the work performer based on the registration information of the MDU terminal 110 Can be.
  • the registration information of the apartment housing business execution terminal 110 and information about the job duties of the business performer can be stored and managed in the database 150, and the job determination module 415 is registered with the database 150 Confirmation and decision-making tasks can be performed.
  • the apartment housing situation determination unit 430 may be implemented by including a viewpoint determination module 431, a weather determination module 433, an event detection module 435, and an apartment housing situation determination module 437.
  • the viewpoint determination module 431 may determine a current viewpoint composed of the current date and time based on the time when the access request of the MDU terminal 110 is received.
  • the viewpoint determination module 431 can receive information about the current date and time through the system clock of the apartment management management instruction automation device 130, the weather determination module 433, the event detection module 435, and the joint
  • the current situation information may be provided to the housing situation determination module 437.
  • the weather determination module 433 may determine weather based on the current time point received from the time point determination module 431.
  • the weather determination module 433 may be connected to an external system to receive weather information, determine the final weather based on location information of the MDU terminal 110, and determine the MDU status Current weather can be provided to the module 437.
  • the event detection module 435 may detect an event existing within a specific time period based on the current time point.
  • the event detection module 435 may detect an event existing in a predetermined time period based on a current time point received from the time point determination module 431, for example, about one hour or so.
  • the event detection module 435 may be connected to the database 150, and may detect an event stored in a specific time period based on the event information stored in the database 150, and events to the apartment housing situation determination module 437 Information can be provided.
  • the multi-unit situation determination module 437 determines the multi-unit situation based on the current date, time, weather, and events provided from the viewpoint determination module 431, the weather determination module 433, and the event detection module 435, respectively. Can be. In one embodiment, the multi-unit situation determination module 437 may determine the multi-unit situation as a vector generated by using dates, times, weather, and events as components.
  • the business guide unit 450 may be implemented by including a multi-family situation reception module 451, a multi-family situation business determination module 453, a multi-family situation business analysis module 455, and a checklist generation module 457. .
  • the apartment housing reception module 451 may receive the current apartment housing status from the apartment housing determination unit 430.
  • the apartment housing reception module 451 may check the formal error regarding the apartment housing situation and provide it to the apartment housing business decision module 453.
  • the apartment housing situation task determination module 453 may determine at least one apartment housing situation task module based on the current apartment housing situation.
  • the apartment housing situation task determination module 453 may use the learning result to determine the apartment housing situation task module suitable for the current apartment housing situation. More specifically, the apartment housing situation business determination module 453 may determine a business related keyword required in the current apartment housing situation, and may determine a apartment housing situation business module matching the business related keyword.
  • the apartment housing situation business analysis module 455 may extract a work content, a work place, an estimated time, and a business check content based on at least one apartment housing business module.
  • the apartment housing situation business analysis module 455 may extract specific items constituting the business content from the apartment housing situation business module and provide it to the checklist generation module 457.
  • the checklist generation module 457 may generate a work checklist by generating a work execution sequence and a work execution path based on a work place and an estimated time. More specifically, the checklist generation module 457 may determine a task execution order to optimize the task execution path based on the work place and the expected time.
  • the checklist creation module 457 can sort the work contents according to the work execution order, and can generate a work checklist by adding a check item for each work content, and the generated work checklist is a terminal for conducting an apartment house work ( 110).
  • FIG. 5 is a flow chart illustrating the process of automating the MDU management work instruction performed in the MDU management automation apparatus in FIG. 1.
  • the MDU management automation instruction 130 may identify the MDU's responsibility. There is (step S510).
  • the apartment house management work order automation device 130 is electronically created by the apartment house performance terminal 110 through the journal repository section 320 and confirmed by an electronic payment method through the apartment house management terminal 170. It is possible to store a journal for each job in charge (step S530).
  • the multi-unit management work order automation device 130 generates a plurality of work modules by classifying the work in charge of each apartment housing situation by machine learning the contents of the work log by each job through the machine learning unit 330 It can be made (step S550).
  • the multi-unit management instruction automation device 130 may determine the current multi-unit status through the multi-unit status determination unit 340 (step S570).
  • the multi-unit management order automation device 130 determines the at least one multi-unit status module according to the current multi-unit status among the plurality of business modules through the business guide unit 350 to perform the multi-unit business execution terminal 110 ) To a work checklist (step S590).
  • FIG. 6 is a flowchart illustrating an embodiment of a process of identifying a responsible job performed by the responsible job identification unit in FIG. 4.
  • the responsible job identification unit 410 may receive an access request from the MDU performing terminal 110 through the access request receiving module 411 (step S610).
  • the responsible job identification unit 410 identifies device information of the MDU terminal 110 through the access request approval module 413 and then requests a connection according to whether the MDU terminal 110 is a registered terminal. Whether to approve can be determined (step S630).
  • the responsible job identification unit 410 may determine the responsible job performer based on the registration information of the MDU terminal 110 when the connection request is approved through the responsible job determination module 415 (step S650). .
  • FIG. 7 is a flowchart illustrating an embodiment of a process for determining a condition of a multi-family house performed by the condition determining unit of a multi-family house in FIG. 4.
  • the apartment housing situation determination unit 430 may determine a current time point composed of a date and time through the time point determination module 431 (step S710).
  • the apartment housing situation determination unit 430 may determine the weather at the current time point through the weather determination module 433 (step S730).
  • the apartment housing situation determination unit 430 may detect an event existing within a specific time period based on the current time point through the event detection module 435 (step S750).
  • the apartment housing situation determination unit 430 may determine the date and time, weather, and event as the current apartment housing situation through the apartment housing determination module 437 (step S770).
  • FIG. 8 is a flowchart illustrating an embodiment of a business guide process performed in the business guide unit in FIG. 4.
  • the business guide unit 450 may receive the current apartment housing status from the apartment housing status determination unit 430 through the apartment housing status receiving module 451 (step S810).
  • the business guide unit 450 may determine at least one MDU situation business module based on the current MDU status through the MDU situation determination module 453 (step S830).
  • the work guide unit 450 may extract work content, work place, estimated time, and work check content based on at least one multi-family situation work module through the multi-family situation work analysis module 455 (step S850). .
  • the work guide unit 450 may generate a work check list by generating a work execution sequence and a work execution path based on the work place and the estimated time through the check list generation module 457 (step S870 ).
  • processor 230 memory
  • Event detection module 437 Apartment housing situation determination module

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • General Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Business, Economics & Management (AREA)
  • Data Mining & Analysis (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Biomedical Technology (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Biophysics (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Computational Linguistics (AREA)
  • Molecular Biology (AREA)
  • Primary Health Care (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The present invention relates to an apparatus and a method for automating artificial intelligence-based apartment house management work instructions, the apparatus comprising: an assigned duty identification unit for identifying an assigned duty of a worker when an access request is approved through an apartment house work-performing terminal; a work log repository unit for storing a work log for each assigned duty, having been electronically created by the apartment house work-performing terminal and confirmed by an electronic approval scheme through an apartment house work-managing terminal; a work log machine learning unit for classifying the assigned duty into apartment house situation-based work details through the machine learning of contents of the work log for each assigned duty, thereby generating a plurality of work modules; an apartment house situation-determining unit for determining the current apartment house situation; and a work guide unit for determining at least one apartment house situation work module according to the current apartment house situation from among the plurality of work modules, so as to guide the apartment house work-performing terminal by means of a work checklist.

Description

인공지능 기반의 공동주택 관리업무지시 자동화 장치 및 방법Artificial Intelligence-based Apartment Housing Management Order Automation Device and Method
본 발명은 인공지능 기반의 공동주택 관리업무지시 자동화 기술에 관한 것으로, 보다 상세하게는 공동주택 관리를 위한 자동화된 업무 가이드를 제공할 수 있는 인공지능 기반의 공동주택 관리업무지시 자동화 장치 및 방법에 관한 것이다.The present invention relates to an artificial intelligence-based apartment housing management work order automation technology, and more particularly, to an artificial intelligence-based apartment housing management work order automation device and method capable of providing an automated business guide for apartment housing management. It is about.
아파트나 빌라, 연립, 오피스텔 등의 공동 주택은 다수의 사람들이 거주하기 때문에 다양한 민원이 발생될 수 있다. 예를 들어, 공동주택과 관련된 민원은 생활 관련 다양한 문의나 불편사항 등의 민원, 시설 점검 또는 수리 요청, 각종 신고 및 예약 등을 포함할 수 있다. 이러한 다양한 민원이 발생하는 공동주택에 있어서 민원을 효과적으로 처리할 수 있는 시스템을 갖추는 것은 매우 중요한 문제에 해당할 수 있다. Apartment houses such as apartments, villas, tenements, and officetels are inhabited by a large number of people. For example, a complaint related to an apartment house may include complaints related to various inquiries or inconveniences related to living, requests for facility inspection or repair, and various reports and reservations. It is very important to have a system that can effectively handle complaints in multi-unit apartment houses where various complaints occur.
또한, 공동주택의 관리에 있어서 업무 수행자들이 업무를 효과적으로 수행할 수 있도록 지원하는 시스템은 현재까지 충분하지 않은 실정이다. 공동주택을 효과적으로 관리할 수 있는 다양한 시스템이 개발되고 있으나 건물안전관리를 포함하여 공동주택 시설 및 설비, 조경, 환경미화, 보안 등의 다양한 관리업무를 효과적으로 지원할 수 있는 시스템에 대한 관심은 점점 증가하고 있는 추세이다.In addition, in the management of multi-family houses, a system that supports business practitioners to perform business effectively is not sufficient to date. Various systems are being developed that can effectively manage MDUs, but interest in systems that can effectively support various management tasks such as building housing management and facilities, landscaping, environmental beautification, and security is increasing. Trend.
한국공개특허 제10-2000-0036965(2000.07.05)호는 컴퓨터 네트워크 시스템에서 공동 주택 단지를 관리하는 방법 및 그 기록 매체에 관한 것으로, 내부 회원들 즉, 공동 주택 단지의 거주자들의 대내외적 업무 및 활동이 원활하게 이루어질 수 있고, 공동 관리 단계의 수행에 의하여 공동 주택 단지의 거주자들에게 부과되는 비용을 줄일 수 있으며, 공동 주택 단지의 거주자들의 공동체적 삶의 질을 높일 수 있다.Korean Patent Publication No. 10-2000-0036965 (2000.07.05) relates to a method and a recording medium for managing an apartment complex in a computer network system, internal and external tasks and activities of residents of the apartment complex This can be done smoothly, reducing the costs levied on the residents of the apartment complex by performing the joint management step, and improving the quality of community life of the residents of the apartment complex.
한국공개특허 제10-2000-0009022(2000.02.15)호는 공공주택의 컴퓨터 종합정보시스템에 관한 것으로, 공공주택단지내의 컴퓨터 공동 통신망을 허브 및 라우터들로 구축하고 이를 서버컴퓨터와 연계하여 관리하도록 하여, 접속된 가정 및 상가와 관리 사무실의 컴퓨터들은 인터넷 접속은 물론 공공주택 생활에 도움이 되는 다양한 컴퓨터 통신 기능을 제공하는 기능을 가진 프로그램을 제공하는 기술을 개시하고 있다.Korean Patent Publication No. 10-2000-0009022 (2000.02.15) relates to a computer comprehensive information system in public housing, to establish a common computer communication network in a public housing complex as hubs and routers and manage it in connection with a server computer Thus, the computers of the connected homes, malls, and management offices have disclosed a technique of providing a program having a function of providing various computer communication functions that are useful for living in public housing as well as Internet access.
[선행기술문헌][Advanced technical literature]
[특허문헌][Patent Document]
(특허문헌 1) 한국공개특허 제10-2000-0036965(2000.07.05)호(Patent Document 1) Korean Patent Publication No. 10-2000-0036965 (2000.07.05)
(특허문헌 1) 한국공개특허 제10-2000-0009022(2000.02.15)호(Patent Document 1) Korean Patent Publication No. 10-2000-0009022 (2000.02.15)
본 발명의 일 실시예는 공동주택 관리를 위한 자동화된 업무 가이드를 제공할 수 있는 인공지능 기반의 공동주택 관리업무지시 자동화 장치 및 방법을 제공하고자 한다.One embodiment of the present invention is to provide an artificial intelligence-based apartment housing management automation device and method capable of providing an automated business guide for apartment housing management.
본 발명의 일 실시예는 공동주택을 관리하는 업무 수행자들이 작성하는 업무일지의 내용을 기계학습하고 이를 기초로 생성된 업무 체크리스트를 이용하여 업무 수행을 가이드하는 인공지능 기반의 공동주택 관리업무지시 자동화 장치 및 방법을 제공하고자 한다.One embodiment of the present invention is an artificial intelligence-based apartment housing management instruction that guides the performance of a machine by learning the contents of a journal written by business practitioners who manage the apartment house and using the business checklist generated therefrom. It is intended to provide an automated device and method.
본 발명의 일 실시예는 업무일지의 내용으로부터 추출된 업무 연관 키워드와 현재의 공동주택 상황에 따른 업무 연관 공동주택 상황을 이용하여 업무 체크리스트를 생성할 수 있는 인공지능 기반의 공동주택 관리업무지시 자동화 장치 및 방법을 제공하고자 한다.According to an embodiment of the present invention, an artificial intelligence-based apartment house management business instruction that can generate a business checklist using a business related keyword extracted from the contents of a journal and a business related apartment house situation according to the current apartment house situation It is intended to provide an automated device and method.
실시예들 중에서, 인공지능 기반의 공동주택 관리업무지시 자동화 장치는 공동주택 업무수행 단말을 통한 접속 요청이 승인되면 업무수행자의 담당직무를 식별하는 담당직무 식별부, 상기 공동주택 업무수행 단말에 의해 전자적으로 작성되고 공동주택 업무관리 단말을 통해 전자 결제 방식으로 확인된 담당직무별 업무일지를 저장하는 업무일지 레포지토리부, 상기 담당직무별 업무일지의 내용을 기계학습하여 상기 담당직무를 공동주택 상황별 업무내용으로 분류하여 복수의 업무 모듈들을 생성하는 업무일지 기계학습부, 현재의 공동주택 상황을 결정하는 공동주택 상황 결정부 및 상기 복수의 업무 모듈들 중 상기 현재의 공동주택 상황에 따른 적어도 하나의 공동주택 상황 업무 모듈을 결정하여 상기 공동주택 업무수행 단말에 업무 체크리스트로 가이드하는 업무 가이드부를 포함한다.Among embodiments, the artificial intelligence-based apartment house management work order automation device is provided by a job identification unit for identifying a job performer's job duties when the access request through the apartment house performance terminal is approved, by the apartment house business execution terminal. A journal repository that stores electronically created and verified journals for each job by electronic payment method through the MDU business management terminal, machine learning the contents of the journals for each job in charge, and the job in question for each apartment A work journal machine learning unit that generates a plurality of work modules by classifying them into work contents, a multi-unit situation determination unit for determining the current multi-unit housing status, and at least one of the plurality of business modules according to the current multi-unit housing status. And a business guide unit for determining the apartment housing situation business module and guiding it to the apartment housing performance terminal as a business checklist.
상기 업무일지 레포지토리부는 상기 담당직무별 업무일지의 저장 과정에서 해당 공동주택 상황을 함께 저장할 수 있다.The journal repository section may store the corresponding apartment housing situation together during the storage of the journal for each job in charge.
상기 업무일지 기계학습부는 상기 담당직무별 업무일지의 내용에서 해당 담당직무와 연관된 업무 연관 키워드를 추정하고 해당 공동주택 상황에서 상기 해당 담당직무와 연관된 업무 연관 공동주택 상황을 결정할 수 있다.The journal machine learning unit may estimate a job-related keyword associated with the corresponding job in the content of the job log for each job, and determine a job-related apartment house condition associated with the job in charge in the apartment housing situation.
상기 업무일지 기계학습부는 상기 업무 연관 공동주택 상황에서 특정 기준 이상으로 빈번하게 발생되는 N 개(상기 N은 자연수)의 업무 연관 키워드를 결정할 수 있다.The journal machine learning unit may determine N business-related keywords (N is a natural number) that are frequently generated above a specific criterion in the business-related apartment housing situation.
상기 업무일지 기계학습부는 상기 업무 연관 공동주택 상황에서 비정규성 이벤트와 해당 공동주택 비정규성 업무내용을 별도로 기계학습하여 비정규성 업무 모듈을 생성할 수 있다.The machine learning unit of the journal may generate a non-normal work module by separately learning the non-normal event and the content of the non-standard work of the multi-unit apartment in the multi-unit situation related to the work.
상기 업무일지 기계학습부는 상기 업무 연관 공동주택 상황에서 상기 비정규성 이벤트를 제외한 정규성 이벤트에 따른 상기 N 개의 업무 연관 키워드를 기계학습하여 상기 공동주택 상황별 업무내용을 결정할 수 있다.The machine learning unit of the journal may machine-learn the N business related keywords according to the normality event excluding the non-normality event in the business-related apartment house situation to determine the job content for each apartment house situation.
상기 업무일지 기계학습부는 상기 N 개의 업무 연관 키워드 각각과 연관된 업무내용을 결정하여 상기 복수의 업무 모듈들을 생성할 수 있다.The journal machine learning unit may generate the plurality of job modules by determining a job content associated with each of the N job-related keywords.
상기 담당직무 식별부는 상기 공동주택 업무수행 단말로부터 접속 요청을 수신하는 접속 요청 수신 모듈, 상기 공동주택 업무수행 단말의 기기 정보를 식별한 후 해당 공동주택 업무수행 단말이 등록된 단말인지에 따라 상기 접속 요청에 관한 승인 여부를 결정하는 접속 요청 승인 모듈 및 상기 접속 요청이 승인된 경우 상기 공동주택 업무수행 단말의 등록 정보를 기초로 상기 업무수행자의 담당직무를 결정하는 담당직무 결정 모듈을 포함할 수 있다.The responsible job identification unit identifies an access request receiving module for receiving a connection request from the MDU business execution terminal, and identifies device information of the MDU business execution terminal, and then accesses the MDU according to whether the MDU business execution terminal is a registered terminal. It may include a connection request approval module for determining whether to approve the request, and if the connection request is approved, a task determination module for determining the responsibility of the task performer based on the registration information of the terminal for performing business of the MDU. .
상기 공동주택 상황 결정부는 날짜와 시간으로 구성된 현재 시점을 결정하는 시점 결정 모듈, 상기 현재 시점에서의 날씨를 결정하는 날씨 결정 모듈, 상기 현재 시점을 기준으로 특정 시간 구간 내에 존재하는 이벤트를 검출하는 이벤트 검출 모듈 및 상기 날짜와 시간, 날씨 및 이벤트를 상기 현재의 공동주택 상황으로서 결정하는 공동주택 상황 결정 모듈을 포함할 수 있다.The multi-unit situation determination unit determines a current time point consisting of a date and time, a time point determination module that determines the weather at the current time point, and an event that detects an event within a specific time period based on the current time point And a detection module and a multi-unit status determination module that determines the date and time, weather, and event as the current multi-unit status.
상기 업무 가이드부는 상기 공동주택 상황 결정부로부터 상기 현재의 공동주택 상황을 수신하는 공동주택 상황 수신 모듈, 상기 현재의 공동주택 상황을 기초로 상기 적어도 하나의 공동주택 상황 업무 모듈을 결정하는 공동주택 상황 업무 결정 모듈, 상기 적어도 하나의 공동주택 상황 업무 모듈을 기초로 업무 내용, 업무 장소, 예상 시간 및 업무 체크 내용을 추출하는 공동주택 상황 업무 분석 모듈 및 상기 업무 장소 및 상기 예상 시간을 기초로 업무 수행 순서와 업무 수행 경로를 생성하여 상기 업무 체크리스트를 생성하는 체크리스트 생성 모듈을 포함할 수 있다.The business guide unit receives the current multi-unit housing status module from the multi-unit status determination unit, and the multi-unit situation determining the at least one multi-unit status business module based on the current multi-unit status. Based on the business decision module, the at least one apartment housing situation business module, the apartment work situation business analysis module for extracting work content, work place, estimated time and work check contents, and performing work based on the business place and the estimated time And a checklist generation module for generating the order and task execution path to generate the task checklist.
실시예들 중에서, 인공지능 기반의 공동주택 관리업무지시 자동화 방법은 공동주택 업무수행 단말을 통한 접속 요청이 승인되면 업무수행자의 담당직무를 식별하는 단계, 상기 공동주택 업무수행 단말에 의해 전자적으로 작성되고 공동주택 업무관리 단말을 통해 전자 결제 방식으로 확인된 담당직무별 업무일지를 저장하는 단계, 상기 담당직무별 업무일지의 내용을 기계학습하여 상기 담당직무를 공동주택 상황별 업무내용으로 분류하여 복수의 업무 모듈들을 생성하는 단계, 현재의 공동주택 상황을 결정하는 단계 및 상기 복수의 업무 모듈들 중 상기 현재의 공동주택 상황에 따른 적어도 하나의 공동주택 상황 업무 모듈을 결정하여 상기 공동주택 업무수행 단말에 업무 체크리스트로 가이드하는 단계를 포함한다.Among the embodiments, the method for automating the artificial intelligence-based MDU management order is a step of identifying a job performer's responsibility when an access request through the MDU execution terminal is approved, and electronically created by the MDU operation terminal. And the step of storing the journals for each job in charge confirmed by the electronic payment method through the MDU business management terminal, and machine learning the contents of the job log for each job in charge to classify the job in charge as the job contents for each apartment housing situation. Generating business modules, determining a current MDU status, and determining at least one MDU business module according to the current MDU status among the plurality of MDUs to perform the MDU business terminal Includes steps to guide you to the task checklist.
상기 담당직무를 식별하는 단계는 상기 공동주택 업무수행 단말로부터 접속 요청을 수신하는 단계, 상기 공동주택 업무수행 단말의 기기 정보를 식별한 후 해당 공동주택 업무수행 단말이 등록된 단말인지에 따라 상기 접속 요청에 관한 승인 여부를 결정하는 단계 및 상기 접속 요청이 승인된 경우 상기 공동주택 업무수행 단말의 등록 정보를 기초로 상기 업무수행자의 담당직무를 결정하는 단계를 포함할 수 있다.The step of identifying the responsible job includes receiving a connection request from the MDU execution terminal, identifying device information of the MDU execution terminal, and then accessing the terminal according to whether the MDU execution terminal is a registered terminal. The method may include determining whether to approve the request and, if the access request is approved, determining the job duties of the work performer based on the registration information of the multi-family housing performance terminal.
상기 공동주택 상황을 결정하는 단계는 날짜와 시간으로 구성된 현재 시점을 결정하는 단계, 상기 현재 시점에서의 날씨를 결정하는 단계, 상기 현재 시점을 기준으로 특정 시간 구간 내에 존재하는 이벤트를 검출하는 단계 및 상기 날짜와 시간, 날씨 및 이벤트를 상기 현재의 공동주택 상황으로서 결정하는 단계를 포함할 수 있다.Determining the status of the multi-family house includes: determining a current time point consisting of a date and time, determining weather at the current time point, detecting an event existing within a specific time period based on the current time point, and And determining the date and time, weather, and event as the current apartment housing situation.
상기 업무 체크리스트로 가이드하는 단계는 상기 공동주택 상황 결정부로부터 상기 현재의 공동주택 상황을 수신하는 단계, 상기 현재의 공동주택 상황을 기초로 상기 적어도 하나의 공동주택 상황 업무 모듈을 결정하는 단계, 상기 적어도 하나의 공동주택 상황 업무 모듈을 기초로 업무 내용, 업무 장소, 예상 시간 및 업무 체크 내용을 추출하는 단계 및 상기 업무 장소 및 상기 예상 시간을 기초로 업무 수행 순서와 업무 수행 경로를 생성하여 상기 업무 체크리스트를 생성하는 단계를 포함할 수 있다.The step of guiding to the business checklist includes receiving the current apartment housing status from the apartment housing determination unit, and determining the at least one apartment housing business module based on the current apartment housing status, Extracting work content, work place, expected time and work check content based on the at least one apartment housing situation work module and generating a work execution sequence and work execution path based on the work place and the estimated time to And generating a task checklist.
개시된 기술은 다음의 효과를 가질 수 있다. 다만, 특정 실시예가 다음의 효과를 전부 포함하여야 한다거나 다음의 효과만을 포함하여야 한다는 의미는 아니므로, 개시된 기술의 권리범위는 이에 의하여 제한되는 것으로 이해되어서는 아니 될 것이다.The disclosed technology can have the following effects. However, since the specific embodiment does not mean that all of the following effects should be included or only the following effects are included, the scope of rights of the disclosed technology should not be understood as being limited thereby.
본 발명의 일 실시예에 따른 인공지능 기반의 공동주택 관리업무지시 자동화 장치 및 방법은 공동주택을 관리하는 업무 수행자들이 작성하는 업무일지의 내용을 기계학습하고 이를 기초로 생성된 업무 체크리스트를 이용하여 업무 수행을 가이드할 수 있다.The artificial intelligence-based apartment house management work order automation device and method according to an embodiment of the present invention are machine-learned the contents of the journal written by business operators who manage the apartment house and use the business checklist generated based on this You can guide your work.
본 발명의 일 실시예에 따른 인공지능 기반의 공동주택 관리업무지시 자동화 장치 및 방법은 업무일지의 내용으로부터 추출된 업무 연관 키워드와 현재의 공동주택 상황에 따른 업무 연관 공동주택 상황을 이용하여 업무 체크리스트를 생성할 수 있다.The apparatus and method for automating the artificial intelligence-based apartment housing management work according to an embodiment of the present invention checks the work using the business-related keyword extracted from the contents of the journal and the business-related apartment housing situation according to the current apartment housing situation. You can create a list.
도 1은 본 발명의 일 실시예에 따른 인공지능 기반의 공동주택 관리업무지시 자동화 시스템을 설명하는 도면이다.1 is a view for explaining an artificial intelligence-based apartment house management work order automation system according to an embodiment of the present invention.
도 2는 도 1에 있는 공동주택 관리업무지시 자동화 장치의 물리적 구성을 설명하는 도면이다.FIG. 2 is a view for explaining the physical configuration of an automated device for managing an apartment house management order in FIG. 1.
도 3은 도 1에 있는 공동주택 관리업무지시 자동화 장치의 기능적 구성을 설명하는 블록도이다.FIG. 3 is a block diagram illustrating a functional configuration of an automated device for managing an apartment house management business in FIG. 1.
도 4는 본 발명의 일 실시예에 따른 공동주택 관리업무지시 자동화 장치의 구성별 세부 모듈을 설명하는 블록도이다.4 is a block diagram illustrating detailed modules for each configuration of an automatic device for managing an apartment house management business according to an embodiment of the present invention.
도 5는 도 1에 있는 공동주택 관리업무지시 자동화 장치에서 수행되는 공동주택 관리업무지시 자동화 과정을 설명하는 순서도이다.FIG. 5 is a flow chart illustrating the process of automating the MDU management work instruction performed in the MDU management automation apparatus in FIG. 1.
도 6은 도 4에 있는 담당직무 식별부에서 수행되는 담당직무 식별 과정의 일 실시예를 설명하는 순서도이다.FIG. 6 is a flowchart illustrating an embodiment of a process of identifying a responsible job performed by the responsible job identification unit in FIG. 4.
도 7은 도 4에 있는 공동주택 상황 결정부에서 수행되는 공동주택 상황 결정 과정의 일 실시예를 설명하는 순서도이다.FIG. 7 is a flowchart illustrating an embodiment of a process for determining a condition of a multi-family house performed by the condition determining unit of a multi-family house in FIG. 4.
도 8은 도 4에 있는 업무 가이드부에서 수행되는 업무 가이드 과정의 일 실시예를 설명하는 순서도이다.8 is a flowchart illustrating an embodiment of a business guide process performed in the business guide unit in FIG. 4.
본 발명에 관한 설명은 구조적 내지 기능적 설명을 위한 실시예에 불과하므로, 본 발명의 권리범위는 본문에 설명된 실시예에 의하여 제한되는 것으로 해석되어서는 아니 된다. 즉, 실시예는 다양한 변경이 가능하고 여러 가지 형태를 가질 수 있으므로 본 발명의 권리범위는 기술적 사상을 실현할 수 있는 균등물들을 포함하는 것으로 이해되어야 한다. 또한, 본 발명에서 제시된 목적 또는 효과는 특정 실시예가 이를 전부 포함하여야 한다거나 그러한 효과만을 포함하여야 한다는 의미는 아니므로, 본 발명의 권리범위는 이에 의하여 제한되는 것으로 이해되어서는 아니 될 것이다.Since the description of the present invention is merely an example for structural or functional description, the scope of the present invention should not be interpreted as being limited by the examples described in the text. That is, since the embodiments can be variously changed and have various forms, it should be understood that the scope of the present invention includes equivalents capable of realizing technical ideas. In addition, the purpose or effect presented in the present invention does not mean that a specific embodiment should include all of them or only such an effect, and the scope of the present invention should not be understood as being limited thereby.
한편, 본 출원에서 서술되는 용어의 의미는 다음과 같이 이해되어야 할 것이다.Meanwhile, the meaning of terms described in the present application should be understood as follows.
"제1", "제2" 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위한 것으로, 이들 용어들에 의해 권리범위가 한정되어서는 아니 된다. 예를 들어, 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.Terms such as "first" and "second" are for distinguishing one component from other components, and the scope of rights should not be limited by these terms. For example, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
어떤 구성요소가 다른 구성요소에 "연결되어"있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결될 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어"있다고 언급된 때에는 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. 한편, 구성요소들 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.When a component is said to be "connected" to another component, it may be understood that other components may exist in the middle, although they may be directly connected to the other component. On the other hand, when a component is said to be "directly connected" to another component, it should be understood that no other component exists in the middle. On the other hand, other expressions describing the relationship between the components, that is, "between" and "immediately between" or "neighboring to" and "directly neighboring to" should be interpreted similarly.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함하는 것으로 이해되어야 하고, "포함하다"또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이며, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Singular expressions are to be understood as including plural expressions unless the context clearly indicates otherwise, and terms such as “comprises” or “have” are used features, numbers, steps, actions, components, parts or the like. It is to be understood that a combination is intended to be present, and should not be understood as pre-excluding the existence or addition possibility of one or more other features or numbers, steps, actions, components, parts or combinations thereof.
각 단계들에 있어 식별부호(예를 들어, a, b, c 등)는 설명의 편의를 위하여 사용되는 것으로 식별부호는 각 단계들의 순서를 설명하는 것이 아니며, 각 단계들은 문맥상 명백하게 특정 순서를 기재하지 않는 이상 명기된 순서와 다르게 일어날 수 있다. 즉, 각 단계들은 명기된 순서와 동일하게 일어날 수도 있고 실질적으로 동시에 수행될 수도 있으며 반대의 순서대로 수행될 수도 있다.In each step, the identification code (for example, a, b, c, etc.) is used for convenience of explanation. The identification code does not describe the order of each step, and each step clearly identifies a specific order in context. Unless stated, it may occur in a different order than specified. That is, each step may occur in the same order as specified, may be performed substantially simultaneously, or may be performed in the reverse order.
본 발명은 컴퓨터가 읽을 수 있는 기록매체에 컴퓨터가 읽을 수 있는 코드로서 구현될 수 있고, 컴퓨터가 읽을 수 있는 기록 매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록 장치를 포함한다. 컴퓨터가 읽을 수 있는 기록 매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광 데이터 저장 장치 등이 있다. 또한, 컴퓨터가 읽을 수 있는 기록 매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산 방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다.The present invention can be embodied as computer readable code on a computer readable recording medium, and the computer readable recording medium includes all kinds of recording devices in which data readable by a computer system is stored. . Examples of computer-readable recording media include ROM, RAM, CD-ROM, magnetic tape, floppy disks, and optical data storage devices. In addition, the computer-readable recording medium can be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
여기서 사용되는 모든 용어들은 다르게 정의되지 않는 한, 본 발명이 속하는 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한 이상적이거나 과도하게 형식적인 의미를 지니는 것으로 해석될 수 없다.All terms used herein have the same meaning as generally understood by a person skilled in the art to which the present invention pertains, unless otherwise defined. The terms defined in the commonly used dictionary should be interpreted as being consistent with the meanings in the context of the related art, and cannot be interpreted as having ideal or excessively formal meanings unless explicitly defined in the present application.
도 1은 본 발명의 일 실시예에 따른 인공지능 기반의 공동주택 관리업무지시 자동화 시스템을 설명하는 도면이다.1 is a view for explaining an artificial intelligence-based apartment house management work order automation system according to an embodiment of the present invention.
도 1을 참조하면, 인공지능 기반의 공동주택 관리업무지시 자동화 시스템(100)은 공동주택 업무수행 단말(110), 공동주택 관리업무지시 자동화 장치(130), 데이터베이스(150) 및 공동주택 업무관리 단말(170)을 포함할 수 있다.Referring to Figure 1, artificial intelligence-based apartment housing management work order automation system 100 includes a multi-unit business execution terminal 110, a multi-unit management work order automation device 130, a database 150, and multi-unit business management It may include a terminal 170.
공동주택 업무수행 단말(110)은 공동주택의 업무수행자가 사용하고 공동주택의 관리를 위하여 업무수행에 관한 업무일지 작성 및 확인 등을 수행할 수 있는 컴퓨팅 장치에 해당하고 스마트폰, 노트북 또는 컴퓨터로 구현될 수 있으며, 반드시 이에 한정되지 않고, 태블릿 PC 등 다양한 디바이스로도 구현될 수 있다. 공동주택 업무수행 단말(110)은 공동주택 관리업무지시 자동화 장치(130)와 네트워크를 통해 연결될 수 있고, 복수의 공동주택 업무수행 단말(110)들은 공동주택 관리업무지시 자동화 장치(130)와 동시에 연결될 수 있다.The MDU terminal 110 is a computing device that is used by the MDU's work entrepreneurs and is capable of creating and verifying work journals for managing the MDU, and using a smart phone, laptop, or computer. It may be implemented, and is not necessarily limited thereto, and may be implemented with various devices such as a tablet PC. The MDU terminal 110 may be connected to the MDU management instruction automation device 130 through a network, and the plurality of MDU execution terminals 110 and the MDU management instruction automation device 130 may be simultaneously Can be connected.
공동주택 관리업무지시 자동화 장치(130)는 공동주택의 관리에 필요한 다양한 업무에 관하여 각 업무수행자에게 수행할 업무에 관한 정보를 포함하는 업무 체크리스트를 생성하여 제공할 수 있는 컴퓨터 또는 프로그램에 해당하는 서버로 구현될 수 있다. 공동주택 관리업무지시 자동화 장치(130)는 공동주택 업무수행 단말(110) 및 공동주택 업무관리 단말(170)과 유선 네트워크 또는 블루투스, WiFi 등과 같은 무선 네트워크로 연결될 수 있고, 유선 또는 무선 네트워크를 통해 공동주택 업무수행 단말(110) 및 공동주택 업무관리 단말(170)과 통신을 수행할 수 있다. The apartment unit management work order automation device 130 corresponds to a computer or program that can generate and provide a work checklist that includes information about the work to be performed to each business operator regarding various tasks required for the management of the apartment house It can be implemented as a server. The apartment house management work order automation device 130 may be connected to the apartment house execution terminal 110 and the apartment house management terminal 170 through a wired network or a wireless network such as Bluetooth, WiFi, etc., through a wired or wireless network. Communication with the MDU terminal 110 and the MDU management terminal 170 may be performed.
일 실시예에서, 공동주택 관리업무지시 자동화 장치(130)는 데이터베이스(150)와 연동하여 공동주택에 관한 각종 업무들을 관리하는데 필요한 정보를 저장할 수 있다. 한편, 공동주택 관리업무지시 자동화 장치(130)는 도 1과 달리, 데이터베이스(150)를 내부에 포함하여 구현될 수 있다. 또한, 공동주택 관리업무지시 자동화 장치(130)는 프로세서, 메모리, 사용자 입출력부 및 네트워크 입출력부를 포함하여 구현될 수 있으며, 이에 대해서는 도 2에서 보다 자세히 설명한다.In one embodiment, the multi-unit management task order automation device 130 may store information necessary to manage various tasks related to the multi-unit housing in conjunction with the database 150. On the other hand, the apartment house management business order automation device 130, unlike Figure 1, may be implemented by including a database 150 therein. In addition, the multi-unit management task order automation device 130 may be implemented including a processor, a memory, a user input/output unit, and a network input/output unit, which will be described in more detail in FIG. 2.
데이터베이스(150)는 공동주택 관리업무지시 자동화 장치(130)가 공동주택 업무수행 단말(110) 및 공동주택 업무관리 단말(170) 들과의 통신을 통해 공동주택의 관리에 필요한 다양한 업무의 수행을 지원하는 과정에서 필요한 다양한 정보들을 저장할 수 있다. 예를 들어, 데이터베이스(150)는 공동주택 업무수행 단말(110) 및 공동주택 업무관리 단말(170)로부터 수신한 각종 업무 일지들을 저장할 수 있고, 공동주택의 상황 및 업무처리 현황에 관한 정보를 저장할 수 있으며, 반드시 이에 한정되지 않고, 업무 수행의 지원 및 관리 과정에서 다양한 형태로 수집 또는 가공된 정보들을 저장할 수 있다.The database 150 performs the various tasks necessary for the management of the MDU through communication with the MDU management terminal 110 and the MDU management terminal 170 by the automation device 130 of the MDU management instruction. In the process of applying, various information needed can be stored. For example, the database 150 may store various journals received from the MDU task terminal 110 and the MDU task management terminal 170, and store information on the status of the MDU and the status of the work process. It may be, and is not necessarily limited to, it is possible to store information collected or processed in various forms in the process of supporting and managing the performance of business.
공동주택 업무관리 단말(170)은 공동주택 관련 업무일지를 확인하고 이에 관한 승인을 제공할 수 있는 컴퓨팅 장치에 해당하고 스마트폰, 노트북 또는 컴퓨터로 구현될 수 있으며, 반드시 이에 한정되지 않고, 태블릿 PC 등 다양한 디바이스로도 구현될 수 있다. 공동주택 업무관리 단말(170)은 공동주택 관리업무지시 자동화 장치(130)와 네트워크를 통해 연결될 수 있고, 복수의 공동주택 업무관리 단말(170)들은 공동주택 관리업무지시 자동화 장치(130)와 동시에 연결될 수 있다. 일 실시예에서, 공동주택 업무관리 단말(170)은 공동주택 업무수행 단말(110)과 동일한 디바이스로 구현될 수 있고 각 단말의 사용자에 따라 상호 간의 역할을 대신하여 수행할 수 있다.The apartment house management terminal 170 corresponds to a computing device capable of confirming an apartment house related journal and providing approval regarding it, and may be implemented as a smartphone, a laptop, or a computer, and is not necessarily limited thereto, and a tablet PC It can also be implemented with various devices. The apartment house management terminal 170 may be connected to the apartment house management business instruction automation device 130 through a network, and the plurality of apartment house management terminal 170 may be concurrent with the apartment house management business instruction automation device 130 Can be connected. In one embodiment, the MDU management terminal 170 may be implemented with the same device as the MDU execution terminal 110, and may perform a role of each other in accordance with the user of each terminal.
도 2는 도 1에 있는 공동주택 관리업무지시 자동화 장치의 물리적 구성을 설명하는 도면이다.FIG. 2 is a view for explaining the physical configuration of an automated device for managing an apartment house management order in FIG. 1.
도 2를 참조하면, 공동주택 관리업무지시 자동화 장치(130)는 프로세서(210), 메모리(230), 사용자 입출력부(250) 및 네트워크 입출력부(270)를 포함할 수 있다.Referring to FIG. 2, the apparatus 130 for automating an apartment house management work order may include a processor 210, a memory 230, a user input/output unit 250, and a network input/output unit 270.
프로세서(210)는 공동주택 관리업무지시 자동화 장치(130)에서 공동주택에 관한 다양한 업무들의 자동화를 수행하기 위하여 정의된 각 프로시저를 실행할 수 있고, 그 과정 전반에서 읽혀지거나 작성되는 메모리(230)를 관리할 수 있으며, 메모리(230)에 있는 휘발성 메모리와 비휘발성 메모리 간의 동기화 시간을 스케줄할 수 있다. 프로세서(210)는 공동주택 관리업무지시 자동화 장치(130)의 동작 전반을 제어할 수 있고, 메모리(230), 사용자 입출력부(250) 및 네트워크 입출력부(270)와 전기적으로 연결되어 이들 간의 데이터 흐름을 제어할 수 있다. 프로세서(210)는 공동주택 관리업무지시 자동화 장치(130)의 CPU(Central Processing Unit)로 구현될 수 있다.The processor 210 may execute each procedure defined to perform automation of various tasks related to the apartment house in the apartment house management business instruction automation device 130, and the memory 230 read or written throughout the process And a synchronization time between volatile and nonvolatile memory in the memory 230. The processor 210 can control the overall operation of the apartment management management instruction automation device 130, and is electrically connected to the memory 230, the user input/output unit 250, and the network input/output unit 270, and data therebetween. You can control the flow. The processor 210 may be embodied as a central processing unit (CPU) of the multi-unit management instruction automation device 130.
메모리(230)는 SSD(Solid State Disk) 또는 HDD(Hard Disk Drive)와 같은 비휘발성 메모리로 구현되어 공동주택 관리업무지시 자동화 장치(130)에 필요한 데이터 전반을 저장하는데 사용되는 보조기억장치를 포함할 수 있고, RAM(Random Access Memory)과 같은 휘발성 메모리로 구현된 주기억장치를 포함할 수 있다.The memory 230 is implemented as a non-volatile memory, such as a solid state disk (SSD) or a hard disk drive (HDD), and includes an auxiliary storage device used to store overall data required for the automation device 130 for managing the apartment complex. And a main memory device implemented with volatile memory such as random access memory (RAM).
사용자 입출력부(250)는 사용자 입력을 수신하기 위한 환경 및 사용자에게 특정 정보를 출력하기 위한 환경을 포함할 수 있다. 예를 들어, 사용자 입출력부(250)는 터치 패드, 터치 스크린, 화상 키보드 또는 포인팅 장치와 같은 어댑터를 포함하는 입력장치 및 모니터 또는 터치스크린과 같은 어댑터를 포함하는 출력장치를 포함할 수 있다. 일 실시예에서, 사용자 입출력부(250)는 원격 접속을 통해 접속되는 컴퓨팅 장치에 해당할 수 있고, 그러한 경우, 공동주택 관리업무지시 자동화 장치(130)는 서버로서 수행될 수 있다.The user input/output unit 250 may include an environment for receiving user input and an environment for outputting specific information to the user. For example, the user input/output unit 250 may include an input device including an adapter such as a touch pad, a touch screen, an image keyboard, or a pointing device, and an output device including an adapter such as a monitor or touch screen. In one embodiment, the user input/output unit 250 may correspond to a computing device connected through a remote connection, and in such a case, the apartment unit management business order automation device 130 may be performed as a server.
네트워크 입출력부(270)은 네트워크를 통해 외부 장치 또는 시스템과 연결하기 위한 환경을 포함하고, 예를 들어, LAN(Local Area Network), MAN(Metropolitan Area Network), WAN(Wide Area Network) 및 VAN(Value Added Network) 등의 통신을 위한 어댑터를 포함할 수 있다.The network input/output unit 270 includes an environment for connecting to an external device or system through a network, for example, a local area network (LAN), a metropolitan area network (MAN), a wide area network (WAN), and a VAN ( Value Added Network).
도 3은 도 1에 있는 공동주택 관리업무지시 자동화 장치의 기능적 구성을 설명하는 블록도이다.FIG. 3 is a block diagram illustrating a functional configuration of an automated device for managing an apartment house management business in FIG. 1.
도 3을 참조하면, 공동주택 관리업무지시 자동화 장치(130)는 담당직무 식별부(310), 업무일지 레포지토리부(320), 업무일지 기계학습부(330), 공동주택 상황 결정부(340), 업무 가이드부(350) 및 제어부(360)를 포함할 수 있다.Referring to FIG. 3, the apartment house management work order automation device 130 includes a responsible job identification unit 310, a journal repository unit 320, a journal machine learning unit 330, and an apartment house situation determination unit 340. , May include a business guide unit 350 and a control unit 360.
담당직무 식별부(310)는 공동주택 업무수행 단말(110)을 통한 접속 요청이 승인되면 업무수행자의 담당직무를 식별할 수 있다. 공동주택에 관한 관리 업무는 매우 다양할 수 있고, 각 업무의 유형에 따라 분류할 수 있으며, 관리 업무를 직접 수행하는 업무수행자의 경우 담당하는 업무의 유형에 따라 담당직무가 결정될 수 있다. 예를 들어, 업무수행자의 담당직무는 시설, 보안, 환경미화, 일반행정, 조경 등을 포함할 수 있고, 반드시 이에 한정되지 않고, 공동주택 관리를 위한 조직의 규모, 공동주택의 유형과 규모 등에 따라 다양한 형태로 정의될 수 있다.The charge job identification unit 310 may identify the charge job of the business performer when the access request through the MDU terminal 110 is approved. The management tasks for apartment houses can be very diverse, can be classified according to the type of each task, and in the case of a task performer who directly performs management tasks, the job duties can be determined according to the type of task in charge. For example, the job duties of a business performer may include facilities, security, environmental beautification, general administration, landscaping, and the like, but is not limited thereto, the size of an organization for the management of apartment houses, the type and scale of apartment houses, etc. Accordingly, it can be defined in various forms.
일 실시예에서, 담당직무 식별부(310)는 공동주택 업무수행 단말(110)로부터 접속 요청을 수신하는 접속 요청 수신 모듈, 공동주택 업무수행 단말(110)의 기기 정보를 식별한 후 해당 공동주택 업무수행 단말(110)이 등록된 단말인지에 따라 접속 요청에 관한 승인 여부를 결정하는 접속 요청 승인 모듈 및 접속 요청이 승인된 경우 공동주택 업무수행 단말(110)의 등록 정보를 기초로 업무수행자의 담당직무를 결정하는 담당직무 결정 모듈을 포함할 수 있다. 이에 대해서는 도 4 및 6에서 보다 자세히 설명한다.In one embodiment, the responsible job identification unit 310 identifies the device information of the access request receiving module, the apartment housing business execution terminal 110 to receive the connection request from the apartment housing business execution terminal 110, and then the corresponding apartment The access request approval module for determining whether to approve the access request according to whether the work execution terminal 110 is a registered terminal and, if the access request is approved, the work performer based on the registration information of the multi-family work execution terminal 110 It may include a job determination module for determining the job description. This will be described in more detail in FIGS. 4 and 6.
업무일지 레포지토리부(320)는 공동주택 업무수행 단말(110)에 의해 전자적으로 작성되고 공동주택 업무관리 단말(170)을 통해 전자 결제 방식으로 확인된 담당직무별 업무일지를 저장할 수 있다. 업무일지 레포지토리부(320)는 업무일지 저장을 위하여 데이터베이스(150)와 연동할 수 있고, 공동주택 업무수행 단말(110)로부터 업무일지 작성 완료를 확인하고 공동주택 업무관리 단말(170)로부터 해당 업무일지에 관한 전자 결제 처리를 확인함으로써 최종 처리가 완료된 업무일지에 대해 담당직무별로 독립적으로 구현된 저장 영역에 저장하여 보관할 수 있다.The journal repository unit 320 may store a journal for each job in charge, which is electronically created by the MDU task execution terminal 110 and confirmed by an electronic payment method through the MDU management terminal 170. The journal repository 320 can interwork with the database 150 to store the journal, confirm the completion of the journal entry from the MDU terminal 110, and confirm the corresponding job from the MDU management terminal 170. By checking the electronic payment processing for the journal, the journal for which the final processing has been completed can be stored and stored in an independently implemented storage area for each job in charge.
일 실시예에서, 업무일지 레포지토리부(320)는 공동주택 관리업무지시 자동화 장치(130)와 독립적인 장치로서 구현될 수 있고, 외부 데이터베이스(150)로서 동작될 수 있으며, 이 경우 공동주택 관리업무지시 자동화 장치(130)와 네트워크로 연결되어 통신을 수행할 수 있다.In one embodiment, the journal repository section 320 may be implemented as a device independent of the MDU management automation instruction 130 and may be operated as an external database 150, in this case the MDU management task Communication with the instruction automation device 130 may be performed through a network.
일 실시예에서, 업무일지 레포지토리부(320)는 담당직무별 업무일지의 저장 과정에서 해당 공동주택 상황을 함께 저장할 수 있다. 공동주택 상황은 해당 시점의 날짜, 시간, 날씨, 이벤트 등을 포함할 수 있고, 이벤트는 공동주택과 관련하여 발생할 수 있는 특정 사건으로서 입주민의 전입 또는 전출, 특정 세대의 내부 공사 또는 경조사 발생 등에 해당할 수 있다. 특히, 이벤트는 공동주택에서의 거주 과정 또는 공동주택에 관한 관리 과정에서 일정한 규칙성을 가지고 발생하는 정규성 이벤트와 불규칙적으로 발생하는 비정규성 이벤트로 분류될 수 있다.In one embodiment, the journal repository section 320 may also store the corresponding apartment housing situation in the process of storing the journal for each job in charge. Apartment housing situation may include the date, time, weather, event, etc. at that time, and the event is a specific event that may occur in relation to the apartment complex, such as moving in or out of residents, internal construction of certain households, or congratulations can do. In particular, the event may be classified into a regularity event that occurs with a certain regularity and an irregularity event that occurs irregularly in the process of residence in a multi-family house or a management process related to a multi-family house.
업무일지 기계학습부(330)는 담당직무별 업무일지의 내용을 기계학습하여 담당직무를 공동주택 상황별 업무내용으로 분류하여 복수의 업무 모듈들을 생성할 수 있다. 여기에서, 업무 모듈은 공동주택 관리를 위하여 필요한 업무에 관한 내용을 담고 있는 업무 단위에 해당할 수 있고, 업무 내용, 업무 장소, 예상 시간 등의 정보를 포함할 수 있다. 업무일지 기계학습부(330)는 담당직무별로 분류된 업무일지의 내용을 각각 학습하고 학습 내용을 기초로 각 담당직무에 대해 공동주택 상황을 반영하여 공동주택 상황에 따른 업무내용으로 분류하며 각 공동주택 상황별 업무내용에 관한 업무 모듈을 생성할 수 있다.The machine learning unit 330 may generate a plurality of job modules by classifying the job in charge of each apartment housing situation by machine learning the contents of the job log for each job. Here, the work module may correspond to a work unit that contains content related to work required for managing a multi-family house, and may include information such as work content, work place, and estimated time. The journal machine learning unit 330 learns the contents of the journals categorized by job duties, and classifies them into work contents according to the apartment housing condition by reflecting the apartment house status for each job in charge based on the learning contents. It is possible to create a work module for the work content for each housing situation.
일 실시예에서, 업무일지 기계학습부(330)는 담당직무별 업무일지의 내용에서 해당 담당직무와 연관된 업무 연관 키워드를 추정하고 해당 공동주택 상황에서 해당 담당직무와 연관된 업무 연관 공동주택 상황을 결정할 수 있다. 업무 연관 키워드는 특정 업무에 관해 자주 사용하는 키워드에 해당할 수 있고 담당직무별 업무일지에 관한 학습의 결과로서 사전에 생성되어 활용될 수 있다. 업무일지 기계학습부(330)는 담당직무별 업무일지에 학습 결과로서의 분석 모델을 적용하여 해당 업무일지로부터 업무 연관 키워드를 추출할 수 있다. In one embodiment, the journal machine learning unit 330 estimates a job-related keyword associated with the corresponding job in the content of the journal for each job, and determines a job-related apartment house associated with the job in the apartment house situation. Can be. The job-related keyword may correspond to a keyword frequently used for a specific job, and may be generated and utilized in advance as a result of learning about the journal for each job. The journal machine learning unit 330 may extract a job-related keyword from the journal by applying an analysis model as a learning result to the journal for each job.
또한, 업무일지 기계학습부(330)는 공동주택 상황 정보로부터 담당직무와 연관된 업무 연관 공동주택 상황을 결정할 수 있다. 업무 연관 공동주택 상황은 공동주택 상황을 구성하는 다양한 상황변수들 중에서 특정 업무와 연관된 상황변수들로 구성된 공동주택 상황에 해당할 수 있다. 예를 들어, 공동주택 상황 정보가 현재 날짜, 시각, 날씨, 이벤트 등으로 구성된 경우 '실외청소' 업무의 경우 날씨가 중요한 상황이기 때문에 업무 연관 공동주택 상황이 날짜, 시각, 날씨로 구성될 수 있고, '가스점검' 업무의 경우 이사를 진행하는 세대는 점검이 불가능하기 때문에 업무 연관 공동주택 상황이 날짜, 시각, 이벤트로 구성될 수 있다.In addition, the work journal machine learning unit 330 may determine a work-related multi-housing situation associated with a job in charge from the multi-housing situation information. The work-related apartment housing situation may correspond to the apartment housing situation composed of context variables related to a specific task among various context variables constituting the apartment housing situation. For example, if the apartment housing information consists of the current date, time, weather, event, etc., in the case of the'outdoor cleaning' job, because the weather is an important situation, the business-related apartment housing situation may consist of date, time, and weather. In the case of'Gas Inspection', households moving in cannot be inspected, so the status of apartments related to work may consist of dates, times, and events.
일 실시예에서, 업무일지 기계학습부(330)는 업무 연관 공동주택 상황에서 특정 기준 이상으로 빈번하게 발생되는 N 개(상기 N은 자연수)의 업무 연관 키워드를 결정할 수 있다. 업무일지 기계학습부(330)는 담당직무별 업무일지에서 추출한 업무 연관 키워드와 업무 연관 공동주택 상황을 학습할 수 있고, 학습의 결과로서 업무 연관 공동주택 상황별 업무 연관 키워드를 결정할 수 있다. 이 때, 각 업무 연관 공동주택 상황에 대한 업무 연관 키워드는 미리 설정된 N개로 제한될 수 있다. 특정 기준은 업무 연관 키워드의 출현 빈도로서 업무 연관 공동주택 상황과 밀접한 관련이 있을 확률이 높은 업무 연관 키워드를 선별하기 위한 기준 횟수에 해당할 수 있다.In one embodiment, the journal machine learning unit 330 may determine N business-related keywords (N is a natural number) that are frequently generated above a specific criterion in a business-related apartment house situation. The journal machine learning unit 330 can learn the job-related keywords and job-related apartment housing conditions extracted from the journal for each job position, and determine the business-related keyword for each job-related apartment house situation as a result of the learning. At this time, the business-related keyword for each business-related apartment house situation may be limited to N presets. A specific criterion is the frequency of occurrence of business-related keywords, and may correspond to the number of criteria for selecting business-related keywords that are highly likely to be closely related to the business-related apartment housing situation.
일 실시예에서, 업무일지 기계학습부(330)는 업무 연관 공동주택 상황에서 비정규성 이벤트와 해당 공동주택 비정규성 업무내용을 별도로 기계학습하여 비정규성 업무 모듈을 생성할 수 있다. 비정규성 이벤트는 정규성 이벤트에 반대되는 이벤트로서 공동주택에서 발생할 수 있는 이벤트들 중에서 일정한 규칙성이 존재하지 않는 이벤트에 해당할 수 있고, 예를 들어, 특정 세대의 화재 발생, 경조사 발생 등을 포함할 수 있다. 비정규성 업무 모듈은 공동주택에 관한 비정규성 업무내용을 담고 있는 업무 단위에 해당할 수 있고, 업무 내용, 업무 장소, 예상 시간 등의 정보를 포함할 수 있다. 업무일지 기계학습부(330)는 업무 연관 공동주택 상황에서 실제 발생했던 비정규성 이벤트와 해당 이벤트와 연관되어 수행한 공동주택 비정규성 업무내용을 담당직무별 업무일지에 관한 학습과는 별도의 학습으로 수행할 수 있다. In one embodiment, the journal machine learning unit 330 may generate a non-normal work module by separately learning the non-normal event and the content of the non-standard work of the multi-unit apartment in the context of a business-related apartment. The non-normality event is an event opposite to the normality event, and may correspond to an event in which a certain regularity does not exist among events that may occur in the apartment house, and may include, for example, a fire of a specific generation, a fire event, or the like. Can be. The irregular business module may correspond to a business unit containing irregular business content related to an apartment house, and may include information such as business content, work place, and estimated time. The journal machine learning unit 330 learns the irregularity events that actually occurred in the context of a business-related apartment complex and the non-standard business content of the apartment complexes performed in connection with the event as separate learning from the business journal for each job in charge. It can be done.
일 실시예에서, 업무일지 기계학습부(330)는 업무 연관 공동주택 상황에서 비정규성 이벤트를 제외한 정규성 이벤트에 따른 N 개의 업무 연관 키워드를 기계학습하여 공동주택 상황별 업무내용을 결정할 수 있다. 업무일지 기계학습부(330)는 업무일지의 내용을 기초로 비정규성 이벤트를 제외한 정규성 이벤트를 결정할 수 있고 업무 연관 공동주택 상황에서 발생되는 정규성 이벤트와 연관성 높은 N 개의 업무 연관 키워드를 포함하는 학습데이터를 생성하여 기계학습함으로써 공동주택 상황별 업무내용을 학습 결과로서 결정할 수 있다.In one embodiment, the journal machine learning unit 330 may determine N job related keywords according to the normal housing event by excluding the non-normal event in the business related apartment housing situation to determine the job content for each apartment housing situation. The journal machine learning unit 330 can determine normality events excluding non-normality events based on the contents of the journal, and learning data including N business-related keywords that are highly correlated with normality events occurring in a business-related apartment housing situation. By creating and learning machine, it is possible to determine the work content for each apartment house situation as a learning result.
일 실시예에서, 업무일지 기계학습부(330)는 N 개의 업무 연관 키워드 각각과 연관된 업무내용을 결정하여 복수의 업무 모듈들을 생성할 수 있다. 업무일지 기계학습부(330)는 업무 연관 키워드별로 연관 업무내용을 결정할 수 있고, 해당 업무내용을 기초로 복수의 업무 모듈들을 생성할 수 있다. 따라서, 각 업무 모듈은 연관된 업무 연관 키워드와 함께 업무내용에 관한 정보를 포함할 수 있다.In one embodiment, the journal machine learning unit 330 may generate a plurality of job modules by determining the job contents associated with each of the N job-related keywords. The journal machine learning unit 330 may determine related job contents for each job-related keyword, and may generate a plurality of job modules based on the job contents. Accordingly, each task module may include information related to task contents together with associated task related keywords.
공동주택 상황 결정부(340)는 현재의 공동주택 상황을 결정할 수 있다. 공동주택 상황은 현재 시점의 공동주택에 관한 정보로서 다양한 상황 변수들로 구성될 수 있다. 상황 변수는 상황에 관한 항목으로서 공동주택 관리를 위해 필요한 날짜, 시각, 날씨, 이벤트 등에 해당할 수 있다. 예를 들어, 공동주택 상황은 (날짜, 시각, 날씨, 위치, 이벤트)와 같이 벡터로 표현될 수 있고, 공동주택 상황을 구성하는 각 상황 변수들은 수치화되어 표현되거나 등급 또는 레벨로 표현될 수 있다.The apartment housing situation determination unit 340 may determine the current apartment housing situation. The apartment housing situation is information about the apartment complex at the present time and can be composed of various situation variables. The situation variable is an item related to the situation and may correspond to a date, time, weather, event, etc. necessary for the management of the apartment complex. For example, the apartment housing situation may be expressed as a vector such as (date, time, weather, location, event), and each situation variable constituting the apartment housing situation may be numerically expressed or expressed as a grade or level. .
일 실시예에서, 공동주택 상황 결정부(340)는 날짜와 시간으로 구성된 현재 시점을 결정하는 시점 결정 모듈, 현재 시점에서의 날씨를 결정하는 날씨 결정 모듈, 현재 시점을 기준으로 특정 시간 구간 내에 존재하는 이벤트를 검출하는 이벤트 검출 모듈 및 날짜와 시간, 날씨 및 이벤트를 현재의 공동주택 상황으로서 결정하는 공동주택 상황 결정 모듈을 포함할 수 있다. 이에 대해서는 도 4 및 도 7에서 보다 자세히 설명한다.In one embodiment, the apartment housing situation determination unit 340 is a time determination module for determining a current time point consisting of a date and time, a weather determination module for determining weather at the current time point, and is present within a specific time interval based on the current time point It may include an event detection module for detecting the event and the date and time, weather and events to determine the current state of the multi-family housing apartment module. This will be described in more detail in FIGS. 4 and 7.
업무 가이드부(350)는 복수의 업무 모듈들 중 현재의 공동주택 상황에 따른 적어도 하나의 공동주택 상황 업무 모듈을 결정하여 공동주택 업무수행 단말(110)에 업무 체크리스트로 가이드할 수 있다. 공동주택 상황 업무 모듈은 공동주택 관리를 위한 업무에 관한 업무 내용을 포함하는 업무 모듈로서 공동주택의 현재 상황에 적합한 것으로 판단되는 업무 모듈에 해당할 수 있다. 업무 가이드부(350)는 공동주택 상황 업무 모듈을 기초로 업무 체크리스트를 공동주택 업무수행 단말(110)에 제공할 수 있다. 따라서, 공동주택 업무 수행자는 공동주택 업무수행 단말(110)을 통해 업무 체크리스트에 따라 업무를 수행할 수 있다.The business guide unit 350 may determine at least one multi-family housing business module according to the current multi-family housing situation among a plurality of business modules and guide the multi-family business execution terminal 110 as a business checklist. The apartment housing situation task module is a task module that includes tasks related to tasks for managing an apartment complex, and may correspond to a task module determined to be suitable for the current situation of the apartment complex. The work guide unit 350 may provide a work checklist to the MDU terminal 110 based on the MDU situation work module. Therefore, the MDU task performer may perform the work according to the work checklist through the MDU execution terminal 110.
일 실시예에서, 업무 가이드부(350)는 공동주택 상황 결정부로부터 현재의 공동주택 상황을 수신하는 공동주택 상황 수신 모듈, 현재의 공동주택 상황을 기초로 적어도 하나의 공동주택 상황 업무 모듈을 결정하는 공동주택 상황 업무 결정 모듈, 적어도 하나의 공동주택 상황 업무 모듈을 기초로 업무 내용, 업무 장소, 예상 시간 및 업무 체크 내용을 추출하는 공동주택 상황 업무 분석 모듈; 및 업무 장소 및 예상 시간을 기초로 업무 수행 순서와 업무 수행 경로를 생성하여 업무 체크리스트를 생성하는 체크리스트 생성 모듈을 포함할 수 있다. 이에 대해서는 도 4 및 8에서 보다 자세히 설명한다.In one embodiment, the business guide unit 350 determines at least one MDU situation module based on the MDU condition receiving module that receives the current MDU situation condition from the MDU decision unit, and the current MDU situation. An apartment house situation task analysis module for extracting work contents, a work place, estimated time, and work check contents based on at least one apartment house task decision module; And a checklist generation module that generates a work checklist by generating a work execution sequence and a work execution path based on the work place and the estimated time. This will be described in more detail in FIGS. 4 and 8.
제어부(360)는 공동주택 관리업무지시 자동화 장치(130)의 전체적인 동작을 제어하고, 담당직무 식별부(310), 업무일지 레포지토리부(320), 업무일지 기계학습부(330), 공동주택 상황 결정부(340) 및 업무 가이드부(350) 간의 제어 흐름 또는 데이터 흐름을 관리할 수 있다.The control unit 360 controls the overall operation of the apartment unit management work order automation device 130, and the responsible job identification unit 310, the journal repository unit 320, the journal machine learning unit 330, the apartment house situation A control flow or a data flow between the determination unit 340 and the business guide unit 350 may be managed.
도 4는 본 발명의 일 실시예에 따른 공동주택 관리업무지시 자동화 장치의 구성별 세부 모듈을 설명하는 블록도이다.4 is a block diagram illustrating detailed modules for each configuration of an automatic device for managing an apartment house management business according to an embodiment of the present invention.
도 4를 참조하면, 본 발명의 일 실시예에 따른 공동주택 관리업무지시 자동화 장치(130)는 담당직무 식별부(410), 공동주택 상황 결정부(430) 및 업무 가이드부(450)를 포함하여 구현될 수 있다. Referring to FIG. 4, the apparatus 130 for automating an apartment house management business according to an embodiment of the present invention includes a responsible job identification unit 410, an apartment house status determination unit 430, and a business guide unit 450. Can be implemented.
담당직무 식별부(410)는 접속 요청 수신 모듈(411), 접속 요청 승인 모듈(413) 및 담당직무 결정 모듈(415)을 포함하여 구현될 수 있다. 접속 요청 수신 모듈(411)은 공동주택 업무수행 단말(110)로부터 접속 요청을 수신할 수 있다. 이 경우 접속 요청 수신 모듈(411)은 공동주택 업무수행 단말(110)로부터 접속 요청과 함께 해당 단말의 식별 정보를 수신하여 접속 요청 승인 모듈(413)에 제공할 수 있다.The charge job identification unit 410 may include a connection request receiving module 411, a connection request approval module 413, and a charge job determination module 415. The access request receiving module 411 may receive a connection request from the apartment housing performance terminal 110. In this case, the access request receiving module 411 may receive identification information of the corresponding terminal together with the access request from the apartment housing execution terminal 110 and provide it to the access request approval module 413.
접속 요청 승인 모듈(413)은 공동주택 업무수행 단말(110)의 기기 정보를 식별한 후 해당 공동주택 업무수행 단말(110)이 등록된 단말인지에 따라 접속 요청에 관한 승인 여부를 결정할 수 있다. 접속 요청 승인 모듈(413)은 접속 요청 수신 모듈(411)로부터 해당 단말의 기기 정보에 해당하는 식별 정보를 전달받을 수 있고, 이를 기초로 해당 단말의 등록 여부를 판단하여 최종 승인을 결정할 수 있으며, 승인이 완료되면 담당직무 결정 모듈(415)에 승인 결과를 제공할 수 있다.The access request approval module 413 may identify device information of the MDU terminal 110 and determine whether to approve the connection request according to whether the MDU terminal 110 is a registered terminal. The access request approval module 413 may receive identification information corresponding to device information of the corresponding terminal from the access request receiving module 411, and based on this, determine whether the corresponding terminal is registered or not, thereby determining final approval, When the approval is completed, the approval result may be provided to the responsible job determination module 415.
담당직무 결정 모듈(415)은 접속 요청 승인 모듈(413)로부터 승인 결과를 수신하여 접속 요청이 승인된 것으로 확인되면 공동주택 업무수행 단말(110)의 등록 정보를 기초로 업무수행자의 담당직무를 결정할 수 있다. 공동주택 업무수행 단말(110)의 등록 정보와 업무수행자의 담당직무에 관한 정보는 데이터베이스(150)에 저장되어 관리될 수 있고, 담당직무 결정 모듈(415)는 데이터베이스(150)와 연동하여 등록 정보 확인 및 담당직무 결정 동작을 수행할 수 있다.Responsible job determination module 415 receives the approval result from the access request approval module 413 and determines that the access request is approved, then determines the job performance of the work performer based on the registration information of the MDU terminal 110 Can be. The registration information of the apartment housing business execution terminal 110 and information about the job duties of the business performer can be stored and managed in the database 150, and the job determination module 415 is registered with the database 150 Confirmation and decision-making tasks can be performed.
공동주택 상황 결정부(430)는 시점 결정 모듈(431), 날씨 결정 모듈(433), 이벤트 검출 모듈(435) 및 공동주택 상황 결정 모듈(437)을 포함하여 구현될 수 있다. 시점 결정 모듈(431)은 공동주택 업무수행 단말(110)의 접속 요청 수신 시점을 기준으로 현재의 날짜와 시간으로 구성된 현재 시점을 결정할 수 있다. 시점 결정 모듈(431)은 공동주택 관리업무지시 자동화 장치(130)의 시스템 시계를 통해 현재의 날짜와 시간에 관한 정보를 제공받을 수 있고 날씨 결정 모듈(433), 이벤트 검출 모듈(435) 및 공동주택 상황 결정 모듈(437)에 현재 시점 정보를 제공할 수 있다.The apartment housing situation determination unit 430 may be implemented by including a viewpoint determination module 431, a weather determination module 433, an event detection module 435, and an apartment housing situation determination module 437. The viewpoint determination module 431 may determine a current viewpoint composed of the current date and time based on the time when the access request of the MDU terminal 110 is received. The viewpoint determination module 431 can receive information about the current date and time through the system clock of the apartment management management instruction automation device 130, the weather determination module 433, the event detection module 435, and the joint The current situation information may be provided to the housing situation determination module 437.
날씨 결정 모듈(433)은 시점 결정 모듈(431)로부터 수신한 현재 시점을 기초로 날씨를 결정할 수 있다. 일 실시예에서, 날씨 결정 모듈(433)은 외부 시스템과 연결되어 날씨 정보를 제공받을 수 있고, 공동주택 업무수행 단말(110)의 위치 정보를 기초로 최종 날씨를 결정할 수 있으며, 공동주택 상황 결정 모듈(437)에 현재 날씨를 제공할 수 있다.The weather determination module 433 may determine weather based on the current time point received from the time point determination module 431. In one embodiment, the weather determination module 433 may be connected to an external system to receive weather information, determine the final weather based on location information of the MDU terminal 110, and determine the MDU status Current weather can be provided to the module 437.
이벤트 검출 모듈(435)은 현재 시점을 기준으로 특정 시간 구간 내에 존재하는 이벤트를 검출할 수 있다. 이벤트 검출 모듈(435)은 시점 결정 모듈(431)로부터 수신한 현재 시점을 기준으로 미리 설정된 시간 구간, 예를 들어, 1시간 전후로 결정되는 특정 시간 구간 내에 존재하는 이벤트를 검출할 수 있다. 이벤트 검출 모듈(435)은 데이터베이스(150)와 연결될 수 있고, 데이터베이스(150)에 저장된 이벤트 정보를 기초로 해당 특정 시간 구간 내에 저장된 이벤트를 검출할 수 있으며, 공동주택 상황 결정 모듈(437)에 이벤트 정보를 제공할 수 있다.The event detection module 435 may detect an event existing within a specific time period based on the current time point. The event detection module 435 may detect an event existing in a predetermined time period based on a current time point received from the time point determination module 431, for example, about one hour or so. The event detection module 435 may be connected to the database 150, and may detect an event stored in a specific time period based on the event information stored in the database 150, and events to the apartment housing situation determination module 437 Information can be provided.
공동주택 상황 결정 모듈(437)은 시점 결정 모듈(431), 날씨 결정 모듈(433) 및 이벤트 검출 모듈(435)로부터 각각 제공받은 현재의 날짜, 시각, 날씨 및 이벤트를 기초로 공동주택 상황을 결정할 수 있다. 일 실시예에서, 공동주택 상황 결정 모듈(437)은 날짜, 시각, 날씨 및 이벤트를 성분으로 하여 생성되는 벡터로서 공동주택 상황을 결정할 수 있다.The multi-unit situation determination module 437 determines the multi-unit situation based on the current date, time, weather, and events provided from the viewpoint determination module 431, the weather determination module 433, and the event detection module 435, respectively. Can be. In one embodiment, the multi-unit situation determination module 437 may determine the multi-unit situation as a vector generated by using dates, times, weather, and events as components.
업무 가이드부(450)는 공동주택 상황 수신 모듈(451), 공동주택 상황 업무 결정 모듈(453), 공동주택 상황 업무 분석 모듈(455) 및 체크리스트 생성 모듈(457)을 포함하여 구현될 수 있다.The business guide unit 450 may be implemented by including a multi-family situation reception module 451, a multi-family situation business determination module 453, a multi-family situation business analysis module 455, and a checklist generation module 457. .
공동주택 상황 수신 모듈(451)은 공동주택 상황 결정부(430)로부터 현재의 공동주택 상황을 수신할 수 있다. 공동주택 상황 수신 모듈(451)은 공동주택 상황에 관한 형식적 오류를 확인한 후 공동주택 상황 업무 결정 모듈(453)에 제공할 수 있다.The apartment housing reception module 451 may receive the current apartment housing status from the apartment housing determination unit 430. The apartment housing reception module 451 may check the formal error regarding the apartment housing situation and provide it to the apartment housing business decision module 453.
공동주택 상황 업무 결정 모듈(453)은 현재의 공동주택 상황을 기초로 적어도 하나의 공동주택 상황 업무 모듈을 결정할 수 있다. 공동주택 상황 업무 결정 모듈(453)은 학습 결과를 활용하여 현재의 공동주택 상황에 적합한 공동주택 상황 업무 모듈을 결정할 수 있다. 보다 구체적으로, 공동주택 상황 업무 결정 모듈(453)은 현재의 공동주택 상황에서 필요한 업무 연관 키워드를 결정할 수 있고, 업무 연관 키워드에 매칭되는 공동주택 상황 업무 모듈을 결정할 수 있다.The apartment housing situation task determination module 453 may determine at least one apartment housing situation task module based on the current apartment housing situation. The apartment housing situation task determination module 453 may use the learning result to determine the apartment housing situation task module suitable for the current apartment housing situation. More specifically, the apartment housing situation business determination module 453 may determine a business related keyword required in the current apartment housing situation, and may determine a apartment housing situation business module matching the business related keyword.
공동주택 상황 업무 분석 모듈(455)은 적어도 하나의 공동주택 상황 업무 모듈을 기초로 업무 내용, 업무 장소, 예상 시간 및 업무 체크 내용을 추출할 수 있다. 공동주택 상황 업무 분석 모듈(455)은 공동주택 상황 업무 모듈로부터 업무내용을 구성하는 구체적 항목들을 추출하고 이를 체크리스트 생성 모듈(457)에 제공할 수 있다.The apartment housing situation business analysis module 455 may extract a work content, a work place, an estimated time, and a business check content based on at least one apartment housing business module. The apartment housing situation business analysis module 455 may extract specific items constituting the business content from the apartment housing situation business module and provide it to the checklist generation module 457.
체크리스트 생성 모듈(457)은 업무 장소 및 예상 시간을 기초로 업무 수행 순서와 업무 수행 경로를 생성하여 업무 체크리스트를 생성할 수 있다. 보다 구체적으로, 체크리스트 생성 모듈(457)은 업무 장소 및 예상 시간을 기초로 업무 수행 경로가 최적화되도록 업무 수행 순서를 결정할 수 있다. 체크리스트 생성 모듈(457)은 업무 수행 순서에 따라 업무내용을 정렬할 수 있고, 업무내용별 체크 항목을 추가하여 업무 체크리스트를 생성할 수 있으며, 생성된 업무 체크리스트를 공동주택 업무수행 단말(110)에 제공할 수 있다.The checklist generation module 457 may generate a work checklist by generating a work execution sequence and a work execution path based on a work place and an estimated time. More specifically, the checklist generation module 457 may determine a task execution order to optimize the task execution path based on the work place and the expected time. The checklist creation module 457 can sort the work contents according to the work execution order, and can generate a work checklist by adding a check item for each work content, and the generated work checklist is a terminal for conducting an apartment house work ( 110).
도 5는 도 1에 있는 공동주택 관리업무지시 자동화 장치에서 수행되는 공동주택 관리업무지시 자동화 과정을 설명하는 순서도이다.FIG. 5 is a flow chart illustrating the process of automating the MDU management work instruction performed in the MDU management automation apparatus in FIG. 1.
도 5를 참조하면, 공동주택 관리업무지시 자동화 장치(130)는 담당직무 식별부(310)를 통해 공동주택 업무수행 단말(110)을 통한 접속 요청이 승인되면 업무수행자의 담당직무를 식별할 수 있다(단계 S510). 공동주택 관리업무지시 자동화 장치(130)는 업무일지 레포지토리부(320)를 통해 공동주택 업무수행 단말(110)에 의해 전자적으로 작성되고 공동주택 업무관리 단말(170)을 통해 전자 결제 방식으로 확인된 담당직무별 업무일지를 저장할 수 있다(단계 S530).Referring to FIG. 5, when the request for access through the MDU execution terminal 110 is approved through the MDU 310, the MDU management automation instruction 130 may identify the MDU's responsibility. There is (step S510). The apartment house management work order automation device 130 is electronically created by the apartment house performance terminal 110 through the journal repository section 320 and confirmed by an electronic payment method through the apartment house management terminal 170. It is possible to store a journal for each job in charge (step S530).
공동주택 관리업무지시 자동화 장치(130)는 업무일지 기계학습부(330)를 통해 담당직무별 업무일지의 내용을 기계학습하여 담당직무를 공동주택 상황별 업무내용을 분류하여 복수의 업무 모듈들을 생성할 수 있다(단계 S550). 공동주택 관리업무지시 자동화 장치(130)는 공동주택 상황 결정부(340)를 통해 현재의 공동주택 상황을 결정할 수 있다(단계 S570). 공동주택 관리업무지시 자동화 장치(130)는 업무 가이드부(350)를 통해 복수의 업무 모듈들 중 현재의 공동주택 상황에 따른 적어도 하나의 공동주택 상황 업무 모듈을 결정하여 공동주택 업무수행 단말(110)에 업무 체크리스트로 가이드할 수 있다(단계 S590).The multi-unit management work order automation device 130 generates a plurality of work modules by classifying the work in charge of each apartment housing situation by machine learning the contents of the work log by each job through the machine learning unit 330 It can be made (step S550). The multi-unit management instruction automation device 130 may determine the current multi-unit status through the multi-unit status determination unit 340 (step S570). The multi-unit management order automation device 130 determines the at least one multi-unit status module according to the current multi-unit status among the plurality of business modules through the business guide unit 350 to perform the multi-unit business execution terminal 110 ) To a work checklist (step S590).
도 6은 도 4에 있는 담당직무 식별부에서 수행되는 담당직무 식별 과정의 일 실시예를 설명하는 순서도이다.FIG. 6 is a flowchart illustrating an embodiment of a process of identifying a responsible job performed by the responsible job identification unit in FIG. 4.
도 6을 참조하면, 담당직무 식별부(410)는 접속 요청 수신 모듈(411)을 통해 공동주택 업무수행 단말(110)로부터 접속 요청을 수신할 수 있다(단계 S610). 담당직무 식별부(410)는 접속 요청 승인 모듈(413)을 통해 공동주택 업무수행 단말(110)의 기기 정보를 식별한 후 해당 공동주택 업무수행 단말(110)이 등록된 단말인지에 따라 접속 요청에 관한 승인 여부를 결정할 수 있다(단계 S630). 담당직무 식별부(410)는 담당직무 결정 모듈(415)을 통해 접속 요청이 승인된 경우 공동주택 업무수행 단말(110)의 등록 정보를 기초로 업무수행자의 담당직무를 결정할 수 있다(단계 S650).Referring to FIG. 6, the responsible job identification unit 410 may receive an access request from the MDU performing terminal 110 through the access request receiving module 411 (step S610). The responsible job identification unit 410 identifies device information of the MDU terminal 110 through the access request approval module 413 and then requests a connection according to whether the MDU terminal 110 is a registered terminal. Whether to approve can be determined (step S630). The responsible job identification unit 410 may determine the responsible job performer based on the registration information of the MDU terminal 110 when the connection request is approved through the responsible job determination module 415 (step S650). .
도 7은 도 4에 있는 공동주택 상황 결정부에서 수행되는 공동주택 상황 결정 과정의 일 실시예를 설명하는 순서도이다.FIG. 7 is a flowchart illustrating an embodiment of a process for determining a condition of a multi-family house performed by the condition determining unit of a multi-family house in FIG. 4.
도 7을 참조하면, 공동주택 상황 결정부(430)는 시점 결정 모듈(431)을 통해 날짜와 시간으로 구성된 현재 시점을 결정할 수 있다(단계 S710). 공동주택 상황 결정부(430)는 날씨 결정 모듈(433)을 통해 현재 시점에서의 날씨를 결정할 수 있다(단계 S730). 공동주택 상황 결정부(430)는 이벤트 검출 모듈(435)을 통해 현재 시점을 기준으로 특정 시간 구간 내에 존재하는 이벤트를 검출할 수 있다(단계 S750). 공동주택 상황 결정부(430)는 공동주택 상황 결정 모듈(437)을 통해 날짜와 시간, 날씨 및 이벤트를 현재의 공동주택 상황으로서 결정할 수 있다(단계 S770).Referring to FIG. 7, the apartment housing situation determination unit 430 may determine a current time point composed of a date and time through the time point determination module 431 (step S710). The apartment housing situation determination unit 430 may determine the weather at the current time point through the weather determination module 433 (step S730). The apartment housing situation determination unit 430 may detect an event existing within a specific time period based on the current time point through the event detection module 435 (step S750). The apartment housing situation determination unit 430 may determine the date and time, weather, and event as the current apartment housing situation through the apartment housing determination module 437 (step S770).
도 8은 도 4에 있는 업무 가이드부에서 수행되는 업무 가이드 과정의 일 실시예를 설명하는 순서도이다.8 is a flowchart illustrating an embodiment of a business guide process performed in the business guide unit in FIG. 4.
도 8을 참조하면, 업무 가이드부(450)는 공동주택 상황 수신 모듈(451)을 통해 공동주택 상황 결정부(430)로부터 현재의 공동주택 상황을 수할 수 있다(단계 S810). 업무 가이드부(450)는 공동주택 상황 업무 결정 모듈(453)을 통해 현재의 공동주택 상황을 기초로 적어도 하나의 공동주택 상황 업무 모듈을 결정할 수 있다(단계 S830). 업무 가이드부(450)는 공동주택 상황 업무 분석 모듈(455)을 통해 적어도 하나의 공동주택 상황 업무 모듈을 기초로 업무 내용, 업무 장소, 예상 시간 및 업무 체크 내용을 추출할 수 있다(단계 S850). 업무 가이드부(450)는 체크리스트 생성 모듈(457)을 통해 업무 장소 및 예상 시간을 기초로 업무 수행 순서와 업무 수행 경로를 생성하여 업무 체크리스트를 생성할 수 있다(단계 S870).Referring to FIG. 8, the business guide unit 450 may receive the current apartment housing status from the apartment housing status determination unit 430 through the apartment housing status receiving module 451 (step S810). The business guide unit 450 may determine at least one MDU situation business module based on the current MDU status through the MDU situation determination module 453 (step S830). The work guide unit 450 may extract work content, work place, estimated time, and work check content based on at least one multi-family situation work module through the multi-family situation work analysis module 455 (step S850). . The work guide unit 450 may generate a work check list by generating a work execution sequence and a work execution path based on the work place and the estimated time through the check list generation module 457 (step S870 ).
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although described above with reference to preferred embodiments of the present invention, those skilled in the art variously modify and change the present invention without departing from the spirit and scope of the present invention as set forth in the claims below. You can understand that you can.
[부호의 설명][Description of codes]
100: 인공지능 기반의 공동주택 관리업무지시 자동화 시스템100: Artificial intelligence-based apartment housing management order automation system
110: 공동주택 업무수행 단말110: apartment housing performance terminal
130: 공동주택 관리업무지시 자동화 장치130: apartment house management work order automation device
150: 데이터베이스 170: 공동주택 업무관리 단말150: database 170: apartment housing management terminal
210: 프로세서 230: 메모리210: processor 230: memory
250: 사용자 입출력부 270: 네트워크 입출력부250: user input/output unit 270: network input/output unit
310: 담당직무 식별부 320: 업무일지 레포지토리부310: responsible job identification department 320: journal repository department
330: 업무일지 기계학습부 340: 공동주택 상황 결정부330: Workbook Machine Learning Department 340: Apartment Housing Determination Department
350: 업무 가이드부 360: 제어부350: business guide unit 360: control unit
410: 담당직무 식별부 430: 공동주택 상황 결정부410: responsible job identification unit 430: apartment housing situation determination unit
450: 업무 가이드부 411: 접속 요청 수신 모듈450: business guide unit 411: connection request receiving module
413: 접속 요청 승인 모듈 415: 담당직무 결정 모듈413: access request approval module 415: responsible job determination module
431: 시점 결정 모듈 433: 날씨 결정 모듈431: Time determination module 433: Weather determination module
435: 이벤트 검출 모듈 437: 공동주택 상황 결정 모듈435: Event detection module 437: Apartment housing situation determination module
451: 공동주택 상황 수신 모듈 453: 공동주택 상황 업무 결정 모듈451: Apartment housing reception module 453: Apartment housing business decision module
455: 공동주택 상황 업무 분석 모듈455: Apartment housing situation analysis module
457: 체크리스트 생성 모듈457: checklist generation module

Claims (14)

  1. 공동주택 업무수행 단말을 통한 접속 요청이 승인되면 업무수행자의 담당직무를 식별하는 담당직무 식별부;If the request for access through the apartment housing performance terminal is approved, the job identification unit that identifies the job performance of the business performer;
    상기 공동주택 업무수행 단말에 의해 전자적으로 작성되고 공동주택 업무관리 단말을 통해 전자 결제 방식으로 확인된 담당직무별 업무일지를 저장하는 업무일지 레포지토리부;A journal repository unit for electronically created by the MDU business execution terminal and storing the business diary for each responsible job identified by an electronic payment method through the MDU management terminal;
    상기 담당직무별 업무일지의 내용을 기계학습하여 상기 담당직무를 공동주택 상황별 업무내용으로 분류하여 복수의 업무 모듈들을 생성하는 업무일지 기계학습부;A machine learning unit that generates a plurality of job modules by classifying the job in each apartment house by learning the contents of the job log for each job;
    현재의 공동주택 상황을 결정하는 공동주택 상황 결정부; 및An apartment housing determination unit for determining the current apartment housing status; And
    상기 복수의 업무 모듈들 중 상기 현재의 공동주택 상황에 따른 적어도 하나의 공동주택 상황 업무 모듈을 결정하여 상기 공동주택 업무수행 단말에 업무 체크리스트로 가이드하는 업무 가이드부를 포함하는 인공지능 기반의 공동주택 관리업무지시 자동화 장치.An artificial intelligence-based multi-unit housing including a business guide unit for determining at least one multi-unit housing unit business module according to the current multi-unit housing module and guiding it to the multi-unit business execution terminal as a business checklist. Automation device for management work orders.
  2. 제1항에 있어서, 상기 업무일지 레포지토리부는The method of claim 1, wherein the journal repository section
    상기 담당직무별 업무일지의 저장 과정에서 해당 공동주택 상황을 함께 저장하는 것을 특징으로 하는 인공지능 기반의 공동주택 관리업무지시 자동화 장치.The artificial intelligence-based apartment house management business order automation device characterized by storing the relevant apartment house situation together during the storage of the journal for each job in charge.
  3. 제1항에 있어서, 상기 업무일지 기계학습부는According to claim 1, The journal machine learning department
    상기 담당직무별 업무일지의 내용에서 해당 담당직무와 연관된 업무 연관 키워드를 추정하고 해당 공동주택 상황에서 상기 해당 담당직무와 연관된 업무 연관 공동주택 상황을 결정하는 것을 특징으로 하는 인공지능 기반의 공동주택 관리업무지시 자동화 장치.Artificial intelligence-based apartment housing management, characterized by estimating a business-related keyword associated with the job in charge in the content of the journal for each job in charge and determining the job-related apartment house status associated with the job in charge in the apartment housing situation Work order automation device.
  4. 제3항에 있어서, 상기 업무일지 기계학습부는According to claim 3, The journal machine learning department
    상기 업무 연관 공동주택 상황에서 특정 기준 이상으로 빈번하게 발생되는 N 개(상기 N은 자연수)의 업무 연관 키워드를 결정하는 것을 특징으로 하는 인공지능 기반의 공동주택 관리업무지시 자동화 장치.An artificial intelligence based autonomous house management business order automation device characterized by determining N business-related keywords frequently generated above a specific criterion in the business-related apartment housing situation.
  5. 제4항에 있어서, 상기 업무일지 기계학습부는According to claim 4, The journal machine learning department
    상기 업무 연관 공동주택 상황에서 비정규성 이벤트와 해당 공동주택 비정규성 업무내용을 별도로 기계학습하여 비정규성 업무 모듈을 생성하는 것을 특징으로 하는 인공지능 기반의 공동주택 관리업무지시 자동화 장치.An artificial intelligence based autonomous house management work order automation device characterized by generating a non-regular work module by separately learning the non-regular event and the content of the non-regular work of the multi-unit apartment in the multi-unit housing situation related to the work.
  6. 제5항에 있어서, 상기 업무일지 기계학습부는According to claim 5, The journal machine learning department
    상기 업무 연관 공동주택 상황에서 상기 비정규성 이벤트를 제외한 정규성 이벤트에 따른 상기 N 개의 업무 연관 키워드를 기계학습하여 상기 공동주택 상황별 업무내용을 결정하는 것을 특징으로 하는 인공지능 기반의 공동주택 관리업무지시 자동화 장치.Artificial intelligence-based apartment housing management business order characterized by determining the business content for each apartment housing situation by machine learning the N business-related keywords according to the regularity event excluding the irregular events in the business-related apartment housing situation. Automation device.
  7. 제6항에 있어서, 상기 업무일지 기계학습부는According to claim 6, The journal machine learning department
    상기 N 개의 업무 연관 키워드 각각과 연관된 업무내용을 결정하여 상기 복수의 업무 모듈들을 생성하는 것을 특징으로 하는 인공지능 기반의 공동주택 관리업무지시 자동화 장치.An artificial intelligence-based apartment house management business order automation device, characterized in that the plurality of business modules are generated by determining the business contents associated with each of the N business-related keywords.
  8. 제1항에 있어서, 상기 담당직무 식별부는The method of claim 1, wherein the job identification department
    상기 공동주택 업무수행 단말로부터 접속 요청을 수신하는 접속 요청 수신 모듈;A connection request receiving module that receives a connection request from the apartment housing performance terminal;
    상기 공동주택 업무수행 단말의 기기 정보를 식별한 후 해당 공동주택 업무수행 단말이 등록된 단말인지에 따라 상기 접속 요청에 관한 승인 여부를 결정하는 접속 요청 승인 모듈; 및An access request approval module that identifies device information of the MDU service terminal and determines whether to approve the access request according to whether the MDU service terminal is a registered terminal; And
    상기 접속 요청이 승인된 경우 상기 공동주택 업무수행 단말의 등록 정보를 기초로 상기 업무수행자의 담당직무를 결정하는 담당직무 결정 모듈을 포함하는 것을 특징으로 하는 인공지능 기반의 공동주택 관리업무지시 자동화 장치.When the access request is approved, an artificial intelligence-based apartment house management business order automation device, characterized in that it comprises a responsible job determination module for determining a responsible job performer based on the registration information of the apartment housing execution terminal. .
  9. 제1항에 있어서, 상기 공동주택 상황 결정부는The method of claim 1, wherein the apartment housing determination unit
    날짜와 시간으로 구성된 현재 시점을 결정하는 시점 결정 모듈;A time point determination module for determining a current time point consisting of a date and time;
    상기 현재 시점에서의 날씨를 결정하는 날씨 결정 모듈;A weather determination module for determining weather at the current time point;
    상기 현재 시점을 기준으로 특정 시간 구간 내에 존재하는 이벤트를 검출하는 이벤트 검출 모듈; 및An event detection module detecting an event existing in a specific time period based on the current time point; And
    상기 날짜와 시간, 날씨 및 이벤트를 상기 현재의 공동주택 상황으로서 결정하는 공동주택 상황 결정 모듈을 포함하는 것을 특징으로 하는 인공지능 기반의 공동주택 관리업무지시 자동화 장치.An artificial intelligence-based apartment housing management order automation device comprising the apartment housing determination module that determines the date and time, weather and events as the current apartment housing status.
  10. 제1항에 있어서, 상기 업무 가이드부는According to claim 1, The business guide unit
    상기 공동주택 상황 결정부로부터 상기 현재의 공동주택 상황을 수신하는 공동주택 상황 수신 모듈;A multi-unit situation receiving module for receiving the current multi-unit situation from the multi-unit situation determining unit;
    상기 현재의 공동주택 상황을 기초로 상기 적어도 하나의 공동주택 상황 업무 모듈을 결정하는 공동주택 상황 업무 결정 모듈;An apartment house situation task determination module for determining the at least one apartment house task module based on the current apartment house situation;
    상기 적어도 하나의 공동주택 상황 업무 모듈을 기초로 업무 내용, 업무 장소, 예상 시간 및 업무 체크 내용을 추출하는 공동주택 상황 업무 분석 모듈; 및An apartment housing situation business analysis module for extracting work content, work place, estimated time, and business check content based on the at least one apartment housing business module; And
    상기 업무 장소 및 상기 예상 시간을 기초로 업무 수행 순서와 업무 수행 경로를 생성하여 상기 업무 체크리스트를 생성하는 체크리스트 생성 모듈을 포함하는 것을 특징으로 하는 인공지능 기반의 공동주택 관리업무지시 자동화 장치.And a checklist generation module for generating the work checklist by generating a work execution sequence and a work execution path based on the work place and the estimated time.
  11. 공동주택 관리업무지시 자동화 장치에서 수행되는 공동주택 관리업무지시 자동화 방법에 있어서, In the method for automating the apartment house management business instruction performed in the apartment house management business instruction automation device,
    공동주택 업무수행 단말을 통한 접속 요청이 승인되면 업무수행자의 담당직무를 식별하는 단계;When the request to access through the apartment housing performance terminal is approved, identifying the job duties of the business performer;
    상기 공동주택 업무수행 단말에 의해 전자적으로 작성되고 공동주택 업무관리 단말을 통해 전자 결제 방식으로 확인된 담당직무별 업무일지를 저장하는 단계;Storing a journal for each job in charge that is electronically created by the MDU terminal and confirmed by an electronic payment method through the MDU management terminal;
    상기 담당직무별 업무일지의 내용을 기계학습하여 상기 담당직무를 공동주택 상황별 업무내용을 분류하여 복수의 업무 모듈들을 생성하는 단계;Generating a plurality of job modules by classifying the job contents for each apartment housing situation by machine learning the contents of the job log for each job;
    현재의 공동주택 상황을 결정하는 단계; 및Determining the current status of the apartment complex; And
    상기 복수의 업무 모듈들 중 상기 현재의 공동주택 상황에 따른 적어도 하나의 공동주택 상황 업무 모듈을 결정하여 상기 공동주택 업무수행 단말에 업무 체크리스트로 가이드하는 단계를 포함하는 인공지능 기반의 공동주택 관리업무지시 자동화 방법.Artificial intelligence-based apartment housing management comprising the step of determining at least one apartment housing status business module according to the current apartment housing status from among the plurality of business modules and guiding it to a business checklist on the terminal for performing the apartment housing business. How to automate work orders.
  12. 제11항에 있어서, 상기 담당직무를 식별하는 단계는The method of claim 11, wherein the step of identifying the responsible job
    상기 공동주택 업무수행 단말로부터 접속 요청을 수신하는 단계;Receiving a connection request from the apartment housing performance terminal;
    상기 공동주택 업무수행 단말의 기기 정보를 식별한 후 해당 공동주택 업무수행 단말이 등록된 단말인지에 따라 상기 접속 요청에 관한 승인 여부를 결정하는 단계; 및Identifying device information of the MDU terminal, and determining whether to approve the access request according to whether the MDU terminal is a registered terminal; And
    상기 접속 요청이 승인된 경우 상기 공동주택 업무수행 단말의 등록 정보를 기초로 상기 업무수행자의 담당직무를 결정하는 단계를 포함하는 것을 특징으로 하는 인공지능 기반의 공동주택 관리업무지시 자동화 방법.If the access request is approved, comprising the step of determining the responsibility of the task performer on the basis of the registration information of the MDU terminal, the artificial intelligence-based MDU management automation method.
  13. 제11항에 있어서, 상기 공동주택 상황을 결정하는 단계는The method of claim 11, wherein the step of determining the situation of the apartment
    날짜와 시간으로 구성된 현재 시점을 결정하는 단계;Determining a current time point consisting of a date and time;
    상기 현재 시점에서의 날씨를 결정하는 단계;Determining weather at the current time point;
    상기 현재 시점을 기준으로 특정 시간 구간 내에 존재하는 이벤트를 검출하는 단계; 및Detecting an event existing in a specific time period based on the current time point; And
    상기 날짜와 시간, 날씨 및 이벤트를 상기 현재의 공동주택 상황으로서 결정하는 단계를 포함하는 것을 특징으로 하는 인공지능 기반의 공동주택 관리업무지시 자동화 방법.And determining the date and time, weather, and event as the current multi-family housing situation.
  14. 제11항에 있어서, 상기 업무 체크리스트로 가이드하는 단계는The method of claim 11, wherein the step of guiding to the task checklist is
    상기 공동주택 상황 결정부로부터 상기 현재의 공동주택 상황을 수신하는 단계;Receiving the current multi-unit status from the multi-unit status determination unit;
    상기 현재의 공동주택 상황을 기초로 상기 적어도 하나의 공동주택 상황 업무 모듈을 결정하는 단계;Determining the at least one apartment housing business module based on the current apartment housing situation;
    상기 적어도 하나의 공동주택 상황 업무 모듈을 기초로 업무 내용, 업무 장소, 예상 시간 및 업무 체크 내용을 추출하는 단계; 및Extracting work content, work place, estimated time and work check content based on the at least one apartment housing situation work module; And
    상기 업무 장소 및 상기 예상 시간을 기초로 업무 수행 순서와 업무 수행 경로를 생성하여 상기 업무 체크리스트를 생성하는 단계를 포함하는 것을 특징으로 하는 인공지능 기반의 공동주택 관리업무지시 자동화 방법.And generating the work checklist by generating a work execution sequence and a work execution path based on the work place and the estimated time.
PCT/KR2018/015910 2018-12-14 2018-12-14 Apparatus and method for automating artificial intelligence-based apartment house management work instructions WO2020122291A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2018/015910 WO2020122291A1 (en) 2018-12-14 2018-12-14 Apparatus and method for automating artificial intelligence-based apartment house management work instructions
KR1020217022188A KR20210107042A (en) 2018-12-14 2018-12-14 Artificial intelligence-based apartment house management task order automation device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2018/015910 WO2020122291A1 (en) 2018-12-14 2018-12-14 Apparatus and method for automating artificial intelligence-based apartment house management work instructions

Publications (1)

Publication Number Publication Date
WO2020122291A1 true WO2020122291A1 (en) 2020-06-18

Family

ID=71076525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015910 WO2020122291A1 (en) 2018-12-14 2018-12-14 Apparatus and method for automating artificial intelligence-based apartment house management work instructions

Country Status (2)

Country Link
KR (1) KR20210107042A (en)
WO (1) WO2020122291A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112381519A (en) * 2020-11-20 2021-02-19 北京云族佳科技有限公司 Method and device for processing work logs and readable storage medium

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102410928B1 (en) * 2021-11-22 2022-06-23 주식회사 싸리비 Method and system for managing small and medium-sized apartment
KR102512687B1 (en) * 2022-06-24 2023-03-22 주식회사 홈이너스 A system for managing apartment house inspections
KR102511561B1 (en) * 2022-12-22 2023-03-17 (주)삼오관리 Method, device and system for providing expert dispatch service based on artificial intelligence

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101166920B1 (en) * 2011-06-08 2012-08-07 구기남 Building management service providing method using smart device
KR20130124777A (en) * 2012-05-07 2013-11-15 (주) 신성비엠씨 Equipment management system using nfc tag
KR20150125787A (en) * 2014-04-30 2015-11-10 와이드브릿지 주식회사 Defects management method, defects management apparatus and defects management system for apartment
KR101780918B1 (en) * 2017-04-17 2017-09-21 주식회사 맥서브 Building management server
US20180129193A1 (en) * 2016-11-04 2018-05-10 Yokogawa Electric Corporation Patrol check system, patrol check device, patrol check method, and storage medium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000009022A (en) 1998-07-21 2000-02-15 조영선 Computer synthetic information system of public residence
KR20000036965A (en) 2000-04-03 2000-07-05 고진수 Method for managing condominium complex in computer network system and record medium thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101166920B1 (en) * 2011-06-08 2012-08-07 구기남 Building management service providing method using smart device
KR20130124777A (en) * 2012-05-07 2013-11-15 (주) 신성비엠씨 Equipment management system using nfc tag
KR20150125787A (en) * 2014-04-30 2015-11-10 와이드브릿지 주식회사 Defects management method, defects management apparatus and defects management system for apartment
US20180129193A1 (en) * 2016-11-04 2018-05-10 Yokogawa Electric Corporation Patrol check system, patrol check device, patrol check method, and storage medium
KR101780918B1 (en) * 2017-04-17 2017-09-21 주식회사 맥서브 Building management server

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112381519A (en) * 2020-11-20 2021-02-19 北京云族佳科技有限公司 Method and device for processing work logs and readable storage medium

Also Published As

Publication number Publication date
KR20210107042A (en) 2021-08-31

Similar Documents

Publication Publication Date Title
WO2020122291A1 (en) Apparatus and method for automating artificial intelligence-based apartment house management work instructions
WO2011105714A2 (en) Remote application development intermediation system for intermediating program's development contract and development using client's virtual development configuration and method for intermediating remote program development
WO2021230660A1 (en) Method and apparatus for automatically generating worker pool on basis of functional elements and difficulty levels of crowdsourcing-based projects
WO2014065444A1 (en) Collaboration system using open public network
WO2020015064A1 (en) System fault processing method, apparatus, device and storage medium
CN108874638B (en) Intelligent cloud management based on portrait information
WO2018052257A1 (en) Apparatus and method for managing notification
WO2021040265A1 (en) Method and device for measuring worker competence by using average return rate
JP2008117009A (en) Remote access controller
WO2018093010A1 (en) Technician mediation service system
WO2020233060A1 (en) Event notification method and apparatus, event notification server, and storage medium
WO2021137523A1 (en) Method for automatically updating unit cost of inspection by using comparison between inspection time and work time of crowdsourcing-based project for generating artificial intelligence training data
WO2024162573A1 (en) Method and device for providing performance evaluation management service synchronized in association with collaboration tool
WO2022050551A1 (en) Legal service provision system and method therefor
WO2021133076A1 (en) Method and device for managing work unit price of crowdsourcing-based project for artificial intelligence training data generation
WO2019093591A1 (en) Information management system for construction project information management automation, and construction project information management method using chat platform
JP4310648B2 (en) Equipment environment data analysis system and equipment environment data analysis method
WO2024090932A1 (en) Data loading profiling apparatus and method for automatically processing collected data
WO2021049763A1 (en) Crowdsourcing-based data collection method using bot discrimination test
WO2020032502A1 (en) Method for platform for energy analysis and solution suggestion on basis of collection of big data on energy
WO2016195220A1 (en) Sns platform-based work management system
WO2021066231A1 (en) Sql query recommendation method and system
WO2022145547A1 (en) System for collecting and analyzing power and operational data
WO2023080284A1 (en) Method for providing information related to rental item, and electronic device using same
WO2021091050A1 (en) Method for selecting inspector according to characteristics of crowd sourcing-based project

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217022188

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18943008

Country of ref document: EP

Kind code of ref document: A1