WO2020122063A1 - Device for surgery, information processing device, system, information processing method, and program - Google Patents

Device for surgery, information processing device, system, information processing method, and program Download PDF

Info

Publication number
WO2020122063A1
WO2020122063A1 PCT/JP2019/048273 JP2019048273W WO2020122063A1 WO 2020122063 A1 WO2020122063 A1 WO 2020122063A1 JP 2019048273 W JP2019048273 W JP 2019048273W WO 2020122063 A1 WO2020122063 A1 WO 2020122063A1
Authority
WO
WIPO (PCT)
Prior art keywords
bone
model data
drill
shape
information processing
Prior art date
Application number
PCT/JP2019/048273
Other languages
French (fr)
Japanese (ja)
Inventor
健吾 原藤
武雄 名倉
聡 木山
大造 林田
Original Assignee
学校法人慶應義塾
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人慶應義塾, Jsr株式会社 filed Critical 学校法人慶應義塾
Publication of WO2020122063A1 publication Critical patent/WO2020122063A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations

Definitions

  • Embodiments of the present invention relate to a surgical device, an information processing apparatus, a system, an information processing method, and a program.
  • the ligament In sports, etc., if a large external force acts on the ligament, it may be damaged.
  • the anterior cruciate ligament has a poor blood flow and is difficult to spontaneously heal. Therefore, if it is damaged, a ligament reconstruction operation is performed.
  • the ligament reconstruction operation the collected tendon is used, but since it is difficult to fix it to the intra-articular ligament attachment part, a bone hole is formed and the reconstructed ligament is guided and fixed to the bone hole.
  • the reconstructed ligament is preferably placed anatomically at the same position as the ligament before rupture with respect to the bone, but it depends on the bone hole preparation position.
  • a drill is used to create a bone hole, but an arthroscopic surgical device that guides the drill to the bone is used to accurately form the bone hole as described above.
  • the device for arthroscopic surgery includes a fixing part that comes into contact with bone and a drill guide part that guides the drill movably in the cutting direction. The doctor cuts the bone with a drill guided by the drill guide to form a bone hole in a state where the fixed portion of the arthroscopic surgery device is in contact with the bone.
  • the arthroscopic surgical device may move with the fixing portion as a base point, that is, the drill guided by the drill guide may move with respect to the bone.
  • the ligament reconstruction operation is an operation with a narrow visual field using an arthroscope because the area where the skin and the muscle are incised is narrow. Therefore, it was technically difficult to make a bone hole at the same anatomical position as the ligament before injury.
  • An object of the present invention is to provide a surgical device, an information processing apparatus, a system, an information processing method, and a program capable of accurately positioning a drill with respect to a bone in ligament reconstruction surgery.
  • the present invention is a surgical device for positioning a drill that forms a bone hole that penetrates a bone of a subject in a ligament reconstruction surgery.
  • a drill guide part connected to one end of the main body part and movably guiding the drill in the cutting direction of the bone by the drill, and connected to the other end part of the main body part, the bone
  • a fixing portion having a portion corresponding to the bone, the fixing portion being attachable to and detachable from the main body portion.
  • the present invention is an information processing apparatus for generating at least model data of a fixed part of a surgical device for positioning a drill for forming a bone hole penetrating a bone of a subject in ligament reconstruction surgery, wherein: Based on image data obtained by imaging a region including the bone of the subject, an acquisition unit that acquires bone shape information including the contour data of the bone, and a portion that is in contact with the bone and corresponds to the bone A generation unit that generates the model data based on the bone shape information.
  • the present invention includes at least an information processing device and a modeling device, and at least models a fixing portion of a surgical device that positions a drill that forms a bone hole that penetrates a bone of a subject in ligament reconstruction surgery.
  • the present invention also provides an information processing method for generating at least model data of a fixed part of a surgical device for positioning a drill that forms a bone hole that penetrates a bone of a subject in ligament reconstruction surgery.
  • a generation step of generating the model data having the above based on the bone shape information is generating the model data having the above based on the bone shape information.
  • the present invention is a program for generating model data of at least a fixed part of a surgical operation device for positioning a drill for forming a bone hole penetrating a bone of a subject in a ligament reconstruction operation, which comprises a computer On the basis of image data obtained by imaging a region including the bone of the subject, an obtaining step of obtaining bone shape information including the outline data of the bone, and contacting the bone, and depending on the bone A generation step of generating the model data having a part based on the bone shape information.
  • a surgical device an information processing apparatus, a system, an information processing method, and a program capable of accurately positioning a drill with respect to a bone in ligament reconstruction surgery.
  • FIG. 1 is a diagram showing an example of a schematic configuration of a system according to an embodiment.
  • FIG. 2 is a diagram illustrating an example of a hardware configuration of the information processing device according to the embodiment.
  • FIG. 3 is a diagram illustrating an example of functions of the information processing apparatus according to the embodiment.
  • FIG. 4 is a diagram showing an example of a screen on which image data of the knee is displayed.
  • FIG. 5 is a diagram for explaining the processing of the acquisition unit.
  • FIG. 6 is a perspective view showing a surgical device.
  • FIG. 7 is a plan view showing the fixing portion of the surgical operation device.
  • FIG. 8 is a side view showing the fixing portion of the surgical operation device.
  • FIG. 9 is a flowchart showing an operation example of the information processing apparatus of this embodiment.
  • FIG. 10 is a diagram for explaining a ligament reconstruction operation according to the embodiment.
  • FIG. 11 is a diagram for explaining a ligament construction operation according to the embodiment.
  • FIG. 12 is a diagram for explaining the ligament construction surgery according to the embodiment.
  • FIG. 13 is a figure which shows the modification of the fixing part of a surgical device.
  • FIG. 14 is a figure which shows the modification of the fixing
  • FIG. 15 is a figure which shows the modification of the fixing
  • This embodiment is for inserting a reconstructed ligament in a ligament reconstruction operation for replacing the damaged anterior cruciate ligament with a reconstructed ligament when the anterior cruciate ligament between the femur and the tibia as the bone of the subject is damaged.
  • the present invention provides a surgical device for positioning a drill with respect to a femur when forming a bone hole.
  • FIG. 1 is a diagram showing an example of a schematic configuration of a system according to an embodiment.
  • the system 1 according to the embodiment includes a medical image diagnostic apparatus 10, an information processing apparatus 20, and a modeling apparatus 30.
  • Each device illustrated in FIG. 1 is in a state of being able to communicate with each other directly or indirectly through a network such as a LAN (Local Area Network) or a WAN (Wide Area Network).
  • a network such as a LAN (Local Area Network) or a WAN (Wide Area Network).
  • the medical image diagnostic device 10 is a device that does not damage the human body and generates image data that is an image of a portion that is not normally visible.
  • the medical image diagnostic apparatus 10 shown in FIG. 1 can generate three-dimensional image data (volume data) in which at least the contour of the body surface of the imaging region of the subject and the bone present in the imaging region are depicted. It is a device.
  • the medical image diagnostic apparatus 10 is an X-ray CT (Computed Tomography) apparatus, an MRI (Magnetic Resonance Imaging) apparatus, or the like. Note that any known medical image diagnostic apparatus may be applied as the medical image diagnostic apparatus 10. Imaging (imaging) performed by the X-ray CT apparatus, which is an example of the medical image diagnostic apparatus 10, will be briefly described below.
  • the X-ray CT apparatus uses a gantry device having a rotatable frame that supports an X-ray tube that irradiates X-rays and an X-ray detector that detects X-rays that have passed through a subject at opposing positions. Take a picture.
  • the X-ray CT apparatus collects projection data by rotating the rotating frame while irradiating X-rays from the X-ray tube, and reconstructs X-ray CT image data from the projection data.
  • the X-ray CT image data is, for example, a tomographic image (two-dimensional X-ray CT image data) on the rotation surface (axial surface) of the X-ray tube and the X-ray detector.
  • the X-ray detector has a plurality of detection element rows, which are X-ray detection elements arranged in the channel direction, arranged along the rotation axis direction of the rotating frame.
  • an X-ray CT apparatus having an X-ray detector in which 16 detection element rows are arranged has a plurality of pieces (in a body axis direction of a subject, based on projection data collected by one rotation of a rotating frame). For example, 16 tomographic images are reconstructed.
  • the X-ray CT apparatus reconstructs, for example, 500 tomographic images covering the entire heart as three-dimensional X-ray CT image data by rotating the rotating frame and performing a helical scan to move the subject or the gantry device. Can be configured.
  • the X-ray CT apparatus as the medical image diagnostic apparatus 10 shown in FIG. 1 is an apparatus capable of imaging a subject in a standing, sitting or lying position.
  • Such an X-ray CT apparatus for example, images a subject sitting on a chair made of a material having high X-ray transparency and generates three-dimensional X-ray CT image data.
  • the MRI apparatus uses an MR (Magnetic Resonance) signal acquired by changing the gradient magnetic field for phase encoding, the gradient magnetic field for slice selection, and the gradient magnetic field for frequency encoding to acquire MR image data of any one cross section or any MR image data.
  • MR image data (volume data) of a plurality of cross sections can be reconstructed.
  • the medical image diagnostic apparatus 10 generates, as image data, three-dimensional X-ray CT image data (or MR image data) obtained by imaging a region including the knee of the subject. Then, the medical image diagnostic apparatus 10 transmits the generated image data to the information processing apparatus 20.
  • the medical image diagnostic apparatus 10 converts the image data into DICOM data in a format conforming to the DICOM (Digital Imaging and Communications in Medicine) standard and transmits it to the information processing apparatus 20.
  • the medical image diagnostic apparatus 10 creates DICOM data in which incidental information is added to the image data.
  • the incidental information includes a patient ID that can be uniquely identified, patient information (name, sex, age, etc.), type of examination in which an image was taken, examination site (imaging site), This includes information such as the patient's posture at the time of shooting and image size.
  • the information about the image size is used as information for converting the length in the image space into the length in the real space.
  • the medical image diagnostic apparatus 10 images three-dimensional X-ray CT image data (or MR image data) captured including the knee portion of the subject in the standing, sitting or lying position. It is applicable even when it is transmitted to the information processing device 20 as data.
  • the information processing apparatus 20 acquires the image data of the subject from the medical image diagnostic apparatus 10. For example, the operator (doctor or the like) of the information processing device 20 performs a search using the patient ID of the subject. As a result, the information processing apparatus 20 acquires from the medical image diagnostic apparatus 10 three-dimensional X-ray CT image data (or MR image data) captured including the knee of the subject.
  • the information processing apparatus 20 uses various information acquired from the image data of the subject to generate model data that is a basis for modeling the surgical device with the modeling apparatus 30.
  • the processing content for generating model data will be described later.
  • the information processing device 20 sends the generated model data to the modeling device 30.
  • the modeling apparatus 30 is an apparatus that models at least the fixed portion of the surgical operation device based on the model data received from the information processing apparatus 20.
  • the modeling apparatus 30 includes a modeling unit 31 for modeling the fixed unit.
  • the configuration of the modeling unit 31 for providing the function of the three-dimensional printer can be realized by various known configurations.
  • the modeling unit 31 has a nozzle for discharging a material heated and melted to a desired temperature and pressure, a moving mechanism for moving the nozzle in a three-dimensional direction, and a material having a desired shape depending on the material discharged from the nozzle. It includes a modeling stage on which a pattern layer is formed, a control unit that controls each unit, and the like.
  • the modeling unit 31 uses a powder sintering method, and a laser for sintering the material, a moving mechanism for moving the laser in the plane direction, and a pattern layer having a desired shape are formed by the stacked materials.
  • the molding stage a moving mechanism for moving the molding stage in a direction orthogonal to the plane direction, a control unit for controlling each unit, and the like may be included.
  • the modeling unit 31 models the three-dimensional structure corresponding to the model data by repeatedly stacking the pattern layers based on the model data.
  • one pattern layer is formed based on one tomographic image corresponding to the same position as the one pattern layer among a plurality of tomographic images forming the model data.
  • FIG. 2 is a diagram illustrating an example of a hardware configuration of the information processing device 20 according to the embodiment.
  • the information processing device 20 includes a CPU (Central Processing Unit) 21, a ROM (Read Only Memory) 22, a RAM (Random Access Memory) 23, an auxiliary storage device 24, and an input device 25.
  • a display device 26 and an external I/F (Interface) 27 are provided.
  • the CPU 21 is a processor (processing circuit) that centrally controls the operation of the information processing device 20 by executing a program and realizes various functions of the information processing device 20. Various functions of the information processing device 20 will be described later.
  • the ROM 22 is a non-volatile memory, and stores various data (information written at the manufacturing stage of the information processing device 20) including a program for starting the information processing device 20.
  • the RAM 23 is a volatile memory having a work area for the CPU 21.
  • the auxiliary storage device 24 stores various data such as programs executed by the CPU 21.
  • the auxiliary storage device 24 is composed of, for example, an HDD (Hard Disc Drive), an SSD (Solid State Drive), and the like.
  • the input device 25 is a device for an operator who uses the information processing device 20 to perform various operations.
  • the input device 25 is composed of, for example, a mouse, a keyboard, a touch panel, or a hardware key.
  • the operator corresponds to a medical person such as a doctor or a physical therapist, for example.
  • the display device 26 displays various information.
  • the display device 26 displays image data, model data, a GUI (Graphical User Interface) for receiving various operations from an operator, medical images, and the like.
  • the display device 26 is composed of, for example, a liquid crystal display, an organic EL (Electro Luminescence) display, or a CRT display.
  • the input device 25 and the display device 26 may be integrally configured in the form of a touch panel, for example.
  • the external I/F 27 is an interface for connecting (communicating) with an external device such as the medical image diagnostic device 10 and the modeling device 30.
  • FIG. 3 is a diagram illustrating an example of functions of the information processing device 20 according to the embodiment. Note that the example of FIG. 3 illustrates only the functions related to the present embodiment, but the functions of the information processing device 20 are not limited to these.
  • the information processing device 20 includes a storage unit 201, a user interface unit 202, an acquisition unit 203, a generation unit 204, and an output unit 205.
  • the function of the storage unit 201 is realized, for example, by the auxiliary storage device 24 (for example, HDD) shown in FIG.
  • the function of the user interface unit 202 is realized by, for example, the input device 25 and the display device 26.
  • Each function of the acquisition unit 203, the generation unit 204, and the output unit 205 is realized by, for example, the CPU 21 that reads out a program for causing a computer to execute the processes of the acquisition unit 203, the generation unit 204, and the output unit 205. ..
  • the storage unit 201 stores various information used for generating model data, programs, and the like.
  • the storage unit 201 can also store image data (DICOM data) captured by the medical image diagnostic apparatus 10.
  • DICOM data image data
  • the user interface unit 202 is a display unit and a reception unit, and has a function of receiving an operator's input and a function of outputting various information.
  • the user interface unit 202 receives an input operation performed by the operator via the input device 25, converts the received input operation into an electric signal, and sends the electric signal to each unit in the information processing apparatus 20.
  • the user interface unit 202 receives various kinds of information from each unit in the information processing device 20, stores the received information in the storage unit 201, or causes the display device 26 to display the received information. Further, the user interface unit 202 sends the information designated by the operator to the external device via the external I/F 27.
  • the user interface unit 202 when the user interface unit 202 receives an operation for calling the image data of the subject for which the surgical operation device is to be created, the user interface unit 202 reads out the image data designated by the operation from the storage unit 201. The control for displaying on the display device 26 is performed.
  • FIG. 4 is a diagram showing an example of a screen on which image data of the knee is displayed.
  • FIG. 4 shows the three-dimensional X-ray CT image data displayed on the screen of the display device 26.
  • the three-dimensional X-ray CT image data shown in FIG. 4 is the body surface of the knee of the subject and the outlines of various bones forming the knee, which are rendered by surface rendering processing.
  • the user interface unit 202 When displaying the three-dimensional image data on the two-dimensional screen (for example, the display device 26), the user interface unit 202 performs various rendering processes on the three-dimensional image data.
  • rendering processing include volume rendering processing, surface rendering processing, and cross-section reconstruction method (MPR: Multi Planar Reconstruction).
  • volume rendering process a two-dimensional image that reflects the three-dimensional information of volume data can be generated.
  • surface rendering process surface information of an arbitrary part (body surface, bone, etc.) can be extracted from the volume data to generate a two-dimensional image.
  • MPR an MPR image of an arbitrary cross section can be reconstructed from volume data.
  • the acquisition unit 203 acquires various data required for designing a surgical device. For example, when the user interface unit 202 receives an acquisition request for image data including a patient ID, the acquisition unit 203 transmits a transmission request for image data corresponding to the patient ID to the medical image diagnostic apparatus 10 via the external I/F 27. To do.
  • the external I/F 27 stores the image data received from the medical image diagnostic apparatus 10 in the storage unit 201. Then, the acquisition unit 203 acquires the image data from the storage unit 201.
  • the acquisition unit 203 acquires the bone shape information including the outline data of the bone of the subject based on the image data.
  • the acquisition unit 203 performs known image processing such as edge detection processing on the three-dimensional X-ray CT image data to extract the contour (bone surface) of the mandible.
  • the acquisition unit 203 acquires, from the image data, the outer shape data that three-dimensionally represents the surface shape of the bone of the subject.
  • FIG. 5 is a diagram for explaining the processing of the acquisition unit 203.
  • FIG. 5 illustrates a case where the image 40 of the femur TB is displayed on the display device 26.
  • the generation request is sent to the acquisition unit 203.
  • the model data generation request includes, for example, identification information (patient ID or the like) for identifying a patient (subject) having an anterior cruciate ligament injury.
  • the acquisition unit 203 receives image data of the subject identified by the patient ID (three-dimensional X-ray CT image data or MR) from among various information stored in the storage unit 201. Image data). Then, the read image data is subjected to various rendering processes (surface rendering process in the example of FIG. 4) by the user interface unit 202 and displayed on the display device 26.
  • the acquisition unit 203 refers to the database in which the bone type, the bone shape, and the bone position information are stored in association with each other, and the bone type and the bone shape from the three-dimensional X-ray CT image data. Acquiring knee bone data including information regarding bone position and location.
  • the acquisition unit 203 performs known segmentation processing on the three-dimensional X-ray CT image data to extract a three-dimensional region (three-dimensional bone region) corresponding to bone.
  • the acquisition unit 203 extracts the three-dimensional bone region by binarizing and extracting the voxels corresponding to the CT value of the bone with a predetermined threshold value.
  • the acquisition unit 203 refers to the database and specifies the shape, type, and position of each of the plurality of bones included in the extracted three-dimensional bone region.
  • the above database is stored in the storage unit 201.
  • the template is a template for detecting various bones forming the knee by pattern matching.
  • the template represents the shape of various bones that make up the knee.
  • an anatomical name indicating the type of bone is associated with each bone of the template.
  • the database stores that, when the knee is viewed from the front, the femur and the tibia are sequentially arranged from the top to the bottom.
  • the database is that, when the femur is viewed from the front, the lower end of the femur is the lateral femoral condyle and the femoral medial condyle that are separated in the width direction, the lateral femoral condyle and the femoral medial condyle. I remember that the space between and was the femoral intercondylar fossa.
  • the database also stores Resident's ridges on the surface of the lateral femoral condyle on the medial femoral condyle side when the lateral femoral condyle is viewed from the front.
  • the Resident's ridge is a projection on the surface of the medial condyle of the femur and projects into the intercondylar space of the femur.
  • the shape of Resident's ridge differs depending on the subject and the position of the lateral femoral condyle on the surface of the medial femoral condyle side.
  • the acquisition unit 203 performs pattern matching between the template and the three-dimensional bone region extracted from the three-dimensional X-ray CT image data by the segmentation process to obtain information on the bone type, the bone shape, and the bone position, and the thigh.
  • Acquire knee bone data including Resident's ridge position information, which is information about the position of the Resident's ridge on the surface of the lateral condyle of the femur on the medial side of the femur.
  • Examples of the pattern matching method include template matching that determines whether or not they match with predetermined template data, and multivariate analysis that determines based on a feature amount related to bone type, bone shape, and bone position. ..
  • the database stores templates representing standard knees for each gender and age, such as the template for “male, 8 to 10 years old” and the template for “female, 20 to 30 years old”. You can do it.
  • the acquisition unit 203 acquires the sex and age of the subject from the supplementary information of the DICOM data, reads the template corresponding to the acquired sex and age from the database, and acquires the bone data of the knee.
  • the operator has found the anterior cruciate ligament ruptured site as a lesion site from the image displayed on the display device 26, and the ruptured anterior cruciate ligament was in contact with the ruptured anterior cruciate ligament via the input device 25.
  • Select a bone for example, femur TB.
  • the femur TB is selected, only the femur TB is displayed on the display device 26, as shown in FIG.
  • a lateral femoral condyle TBO, a medial femoral condyle TBI, a Resident's ridge TBT, etc. are displayed.
  • the operator further sets the bone hole TBH from the image of the femur TB displayed on the display device 26.
  • the bone hole TBH is a hole that penetrates from the side of the femoral medial condyle TBI of the lateral femoral condyle TBO, that is, from the body surface side surface TBS1 to the femoral medial condyle side surface TBS2, and the reconstruction ligament described later is used. It is inserted.
  • the acquisition unit 203 extracts bone shape information including Resident's ridge position information and bone hole information corresponding to the set bone hole TBH. Then, the acquisition unit 203 sends the acquired bone shape information to the generation unit 204.
  • the generation unit 204 generates model data of the fixed portion of the surgical device having at least outer shape data corresponding to the bone based on the bone shape information. For example, the generation unit 204 is based on the bone shape information acquired by the acquisition unit 203, when forming a bone hole TBH penetrating the femur TB, a surgical device that positions a drill with respect to the femur TB. Generate model data for the fixed part.
  • FIG. 6 is a diagram for explaining the processing of the generation unit 204.
  • FIG. 6 shows an example of a surgical device including a fixing portion shaped based on model data generated based on bone shape information.
  • FIG. 7 and FIG. 8 show an example of a fixed portion formed based on model data generated based on shape information.
  • the generation unit 204 generates model data for shaping the fixed portion of the surgical operation device according to the bone based on the outer shape data corresponding to the bone, the bone hole data, and the Resident's ridge position data included in the bone shape information. To do.
  • This model data is information that defines at least the shape of the fixed portion of the surgical device that is modeled based on the model data.
  • the surgical device 100 includes a main body 110, a drill guide 120, a fixing portion 130, and a screw 140.
  • the surgical operation device 100 is a material that does not affect the biological tissue even if it temporarily comes into contact with the biological tissue, a material that can be sterilized, and a strength that does not deform during surgery by the surgical operation device 100 by a doctor. Is composed of a material having
  • the main body section 110 is connected to the drill guide section 120 and the fixed section 130.
  • the main body 110 has a drill guide 120 connected to one end 111 and a fixed part 130 connected to the other end 112.
  • the main body 110 in the present embodiment is made of metal or synthetic resin, is formed in a substantially U shape, and has a rectangular cross-sectional shape orthogonal to the longitudinal direction.
  • the drill guide section 120 guides the drill 200 movably in the bone cutting direction A by the drill 200.
  • the drill guide part 120 is made of synthetic resin or metal, and has a grip part 121, a drill guide hole 122, and a slide hole 123.
  • the grasping portion 121 is a portion that a doctor grasps by hand during a ligament reconstruction operation, and is formed in a curved shape in consideration of ease of grasping.
  • the drill guide hole 122 guides the inserted drill 200 movably in the cutting direction A.
  • the drill 200 in the present embodiment forms a bone hole TBH penetrating the femur TB, and as long as it can cut the femur TB, the shape, configuration, and cutting method of the drill It is not particularly limited.
  • the one end portion 111 of the main body 110 is inserted into the slide hole 123.
  • the slide hole 123 is formed such that one end 111 is movable in the insertion direction and the opposite direction. That is, the drill guide portion 120 is connected to the one end portion 111 by the slide hole 123, and is connected to the main body portion 110 so as to be movable relative to the main body portion 110. Therefore, in the surgical device 100, the distance between the fixed part 130 and the drill guide part 120 can be changed.
  • the surgical device 100 has a holding portion that holds the relative position of the drill guide 120 with respect to the main body 110.
  • the holding portion is, for example, a screw that is screwed into a screw hole that communicates with the slide hole 123.
  • the drill guide part 120 has graduations formed at regular intervals on the outer surface facing the slide hole 123. The doctor can easily recognize the relative position of the drill guide part 120 with respect to the main body part 110, that is, the distance between the fixing part 130 and the drill guide part 120 by visually observing the scale.
  • the fixing portion 130 contacts the bone.
  • the fixing portion 130 in the present embodiment is in contact with the femoral lateral condyle TBO of the femur TB, particularly, at least the Resident's ridge TBR.
  • the fixed part 130 faces the drill guide part 200 in the cutting direction A in a state of being connected to the main body part 110.
  • the fixing portion 130 is made of synthetic resin or metal and has a contact surface 131, an insertion hole 132, a screw hole 133, and a notch 134.
  • the fixing portion 130 in this embodiment has an elliptical shape when viewed from the cutting direction A. That is, when viewed from the cutting direction A, the fixed portion 130 has an elliptical outer periphery.
  • the contact surface 131 is a part corresponding to the bone.
  • the contact surface 131 is formed corresponding to, ie, following, the shape of the surface TBS (including TBS1 and TBS2) of the femoral lateral condyle TBO of the femur TB.
  • the contact surface 131 in this embodiment is formed corresponding to, ie, following, the shape of the surface including at least a region corresponding to the Resident's ridge TBT in the medial femoral condyle surface TBS2 that is the surface TBS of the lateral femoral condyle TBO. ing.
  • the other end 112 of the main body 110 is inserted into the insertion hole 132.
  • the insertion hole 132 has a rectangular space shape in a plane orthogonal to the insertion direction.
  • the other end 112 of the main body 110 and the insertion hole 132 of the fixed portion 130 form a rotation restriction structure RRS.
  • the insertion hole 132 is formed in a rectangular space shape, and the other end 112 is formed in a rectangular cross-sectional shape, so that the fixed portion is fixed to the main body 110. 130 is restricted from rotating around the extending direction of the main body 110.
  • the screw hole 133 communicates with the insertion hole 132, and the screw 140 is screwed into the screw hole 133.
  • the screw holes 133 in the present embodiment are formed at a plurality of positions in the fixing portion 130 in the extending direction of the insertion hole 132, and are formed so as to penetrate to the outer surface and the inner surface forming the insertion hole 132.
  • the notch 134 is for inserting the drill 200. After the drill 200 guided by the drill guide portion 120 moves in the cutting direction A to form the bone hole TBH in the state where the fixed portion 130 is connected to the other end portion 112 of the main body portion 110, the notch 134 is formed. A drill 200 protruding in the cutting direction A is inserted from the bone hole TBH.
  • the notch 134 is open on the outer surface of the fixed portion 134 in a direction orthogonal to the cutting direction. That is, the fixing part 130 is in contact with the femur TB by the doctor operating the surgical device 100 with the drill 200 guided by the drill guide part 120 and inserted into the bone hole TBH. In some cases, it can be separated from the femur TB.
  • the screw 140 fixes the fixing unit 130 to the main body 110.
  • the screw 140 corresponds to each screw hole 133, and is formed in such a length that the tip portion thereof protrudes into the insertion hole 132 in a state of being screwed into the screw hole 133.
  • the screw 140 is screwed into the screw hole 133, and the tip portion thereof comes into contact with the other end portion 112 of the main body 110 inserted into the insertion hole 132. That is, the fixing portion 130 is connected to the other end portion 112 by fixing the other end portion 112 to the fixing portion 130 in the insertion hole 132 with the screw 140. Further, the fixing portion 130 is disconnected from the other end 112 by loosening the screw 140. Therefore, the fixed portion 130 is attachable to and detachable from the main body 110 (detachable).
  • the generation unit 204 determines model data based on the outline data according to the bone.
  • the generation unit 204 in this embodiment determines model data based on the outer shape data, bone hole data, and Resident's ridge position data corresponding to the bone.
  • the generation unit 204 uses the contact surface data corresponding to the contact surface 131 in the model data, based on the outer shape data and the Resident's ridge position data corresponding to the bone, to determine that the contact surface 131 is at least the resident's medial condyle surface TBS2.
  • the data is determined to have a shape in which the surface including the area corresponding to the ridge TBT is transferred.
  • the generation unit 204 connects the model data to the other end 112 of the main body 110, the drill guide 120 to one end 111 of the main body 110, and the fixed unit 130. It is determined so as to face the drill guide 120 in the cutting direction A.
  • the generation unit 204 determines the cutout data based on the bone hole data.
  • the generation unit 204 determines that the drill 200 protruding from the bone hole TBH can be inserted into the fixing unit 130 without contact.
  • the generation unit 204 generates information including the outer shape data of the fixed unit 130 of the surgical device 100 as model data.
  • the generation unit 204 sends the generated model data to the output unit 205.
  • the generation unit 204 also accepts an operation for modifying the model data on the screen on which the model data and the image data are displayed at the same time, and modifies the model data according to the accepted operation.
  • the output unit 205 displays the model data and the image data at the same time.
  • the output unit 205 displays the model data corresponding to the fixed unit 130 of the surgical device 100 shown in FIG. 6 on the image 40 shown in FIG.
  • the operator refers to the model data and the image data displayed on the display device 26 and performs an operation of correcting the model data using the input device 25.
  • the user interface unit 202 receives an operation of correcting model data from the operator, the user interface unit 202 notifies the generation unit 204 of the received operation.
  • the generation unit 204 corrects the model data according to the operation received by the user interface unit 202. Thereby, the operator can correct the model data while confirming the shape of the surface TBS of the lateral femoral condyle TBO on the screen.
  • the output unit 205 outputs the model data generated by the generation unit 204.
  • the output unit 205 stores the model data generated by the generation unit 204 in the storage unit 201.
  • the output unit 205 also outputs the model data to the modeling apparatus 30.
  • the output unit 205 outputs the model data generated by the generation unit 204 to the modeling apparatus 30.
  • the output unit 205 outputs the model data corrected by the generation unit 204 according to the instruction operation of the operator to the modeling apparatus 30.
  • the output unit 205 performs output processing to the modeling apparatus 30 after receiving an output request for the model data generated by the generation unit 204 and the model data corrected by the generation unit 204 from the operator.
  • the modeling unit 31 of the modeling apparatus 30 models the surgical operation device 100 using the model data received from the information processing apparatus 20.
  • the shape of the surgical device 100 shaped by the modeling apparatus 30 is corrected by the operator as necessary.
  • FIG. 9 is a flowchart showing an operation example of the information processing apparatus 20 of this embodiment. Since the specific contents of each step are as described above, detailed description will be appropriately omitted.
  • the user interface unit 202 receives an image data acquisition request (step S101).
  • the acquisition unit 203 acquires image data (step S102).
  • the acquisition unit 203 refers to the database and acquires the bone outline information from the image data (step S103).
  • the generation unit 204 executes model data generation processing based on the bone outer shape information acquired by the acquisition unit 203 (step S104).
  • step S105 the display device 26 displays the model data under the control of the user interface unit 202 (step S105).
  • step S105 the display device 26 displays the image data (including the bone outline information) together with the model data.
  • the user interface unit 202 determines whether or not a model data output request has been received (step S106).
  • the output unit 205 receives the request to output the model data (Yes in step S106)
  • the output unit 205 outputs the model data to the modeling apparatus 30 (step S107) and ends the process.
  • step S106 When the model data output request is not accepted (step S106, No), the user interface unit 202 determines whether or not the model data correction request is accepted (step S108). Next, when the generation unit 204 receives the model data correction request (Yes in step S108), the generation unit 204 corrects the model data according to the model data correction request (step S109).
  • step S108 If the model data correction request is not accepted (No in step S108) or after step S109, the process returns to step S106 to determine whether or not the model data output request is accepted. .. Next, when the output unit 205 receives the model data output request in step S106 after step S109 (Yes in step S106), the output unit 205 outputs the corrected model data to the modeling apparatus 30 (step S107), and the processing is performed. To finish.
  • processing procedure shown in FIG. 9 is merely an example, and can be executed by appropriately changing the order as long as the processing content does not conflict. Further, each processing procedure does not necessarily have to be executed.
  • the information processing apparatus 20 acquires the bone shape information including the bone outer shape data from the image data in which the region including the bone of the subject is imaged. Further, the information processing apparatus 20 generates model data of the fixing unit 130 of the surgical device 100 having at least outer shape data corresponding to the bone based on the bone shape information. In the ligament reconstruction operation, the information processing apparatus 20 according to the embodiment can accurately position the drill with respect to the bone by using the surgical device 100 including the fixing unit 130 corresponding to the generated model data. ..
  • the modeling apparatus 30 models the fixing unit 130 of the surgical device 100 based on the model data generated by the generating unit 204.
  • the fixing portion 130 of the surgical device 100 has a shape corresponding to the bone of the subject.
  • the shape of the fixed part 130 of the surgical operation device 100 is determined based on at least the shape of the bone of the subject.
  • FIG. 10 to 12 are views for explaining a ligament reconstruction operation according to the embodiment.
  • FIG. 10 illustrates the case of fixing the surgical device to the femur.
  • FIG. 11 illustrates a case of cutting a bone hole.
  • FIG. 12 illustrates the case of inserting the reconstructed ligament into the bone hole.
  • the fixing portion 130 having a shape corresponding to the bone of the subject is connected to the other end 112 of the main body 110, and the drill guide 120 is connected to the one end 111 of the main body 110. Connect to. Further, in the present embodiment, the drill 200 is inserted into the drill guide hole 122 of the drill guide part 200 in advance.
  • the doctor incises the epidermis and muscles of the knee of the subject to expose at least a part of the femoral lateral condyle TBO of the femur TB.
  • the doctor presses the fixing portion 130 against the femoral lateral condyle TBO to bring it into contact.
  • the contact surface 131 of the fixing portion 130 contacts the surface of the medial femoral condyle surface TBS2 including at least a region corresponding to the Resident's ridge TBT.
  • the contact surface 131 follows the shape of the surface including at least the region corresponding to the Resident's ridge TBT, it surely contacts the surface including at least the region corresponding to the Resident's ridge TBT.
  • the doctor moves the drill 200 in the cutting direction A while maintaining the contact state where the fixing portion 130 is in contact with the femoral lateral condyle TBO.
  • the drill 200 reaches the body surface side surface TBS1 of the femoral lateral condyle TBO, cutting of the femur TB is started.
  • the drill 200 moves in the cutting direction A and the drill 200 reaches the femoral medial condyle surface TBS2 of the femoral lateral condyle TBO, as shown in FIG. 11, a bone hole TBH is formed in the femur TB. ..
  • the doctor takes out the fixing portion 130 from the incision site to the outside with the drill 200 inserted in the bone hole TBH.
  • the doctor fixes the reconstructed ligament 300 to the tip of the drill 200, moves the drill 200 in the direction opposite to the cutting direction with respect to the drill guide section 120, and moves the drill 200 to the bone hole TBH. From the body surface side to the surface TBS1 side.
  • the reconstructed ligament 300 is fixed to the tip of the drill 200, the reconstructed ligament 300 is inserted into the bone hole TBH from the medial condyle surface TBS2 side of the femur.
  • One end of the reconstructed ligament 300 projects from the body surface side surface TBS1.
  • the doctor fixes the reconstructed ligament 300 protruding from the bone hole TBH on the body surface side surface TBS1 of the lateral femoral condyle TBO.
  • the doctor similarly forms a bone hole in the tibia with the drill 200, fixes the other end of the reconstructed ligament 300 to the tip of the drill 200, extracts the drill 200 from the bone hole, and The ends are projected from the body surface side surface of the tibia.
  • the doctor fixes the reconstructed ligament 300 protruding from the bone hole of the tibia on the body surface side surface of the tibia.
  • the doctor repairs the epidermis and muscles of the subject's knee with the reconstructed ligament 300 fixed to the femur TB and tibia, and completes the ligament reconstruction operation.
  • the fixing portion 130 of the surgical device 100 has an elliptical shape when viewed from the cutting direction A, but is not limited to this. At least the end of the fixing portion 130, which is opposite to the end to which the other end 112 of the main body 110 is connected, is formed of a curved surface. 13 to 15 are views showing modified examples of the fixing portion of the surgical operation device.
  • the fixing portion 130 may have a rugby ball shape when viewed from the cutting direction as shown in FIG. 13, or may have an egg shape when viewed from the cutting direction as shown in FIG. Of course, as shown in FIG. 15, it may have a shell shape when viewed from the cutting direction.
  • the program executed by the information processing apparatus 20 of the above-described embodiment is a file in an installable format or an executable format, which is a CD-ROM, a flexible disk (FD), a CD-R, a DVD, a USB (Universal Serial). It may be configured to be provided by being recorded in a computer-readable recording medium such as Bus), or may be provided or distributed via a network such as the Internet. Further, various programs may be configured to be provided by being incorporated in advance in a non-volatile storage medium such as a ROM.
  • the surgical device 100 has been described with respect to the case where one bone hole TBH penetrating the femur TB is formed, a plurality of bone holes TBH penetrating the femur TB may be formed.
  • the fixing portion 130 of the surgical device 100 is in contact with the femur TB, but may be in contact with the tibia, the humerus, or the ulna.
  • the contact surface 131 of the fixing portion 130 is formed corresponding to, ie, following the shape of the surface of the tibia, humerus or ulna.
  • the rotation restricting structure RRS of the surgical device 100 is realized based on the shapes of the other end 112 and the insertion hole 132, but is not limited to this. For example, when the tip of the screw 140 is a flat surface and the screw 140 is screwed into the screw hole 133 and comes into contact with the flat surface of the other end 112 when it comes into contact with the other end 112, the rotation restriction structure RRS is realized. You may. Further, when the screw 140 is screwed into the screw hole 133 and comes into contact with the other end 112, the screw 140 comes into contact with the other end 112 while being inserted into the screw insertion hole formed at the other end. Thus, the rotation restriction structure RRS may be realized.
  • model data in the present embodiment corresponds to only the fixed part 130, but is not limited to this, and may correspond to the main body part 110, the drill guide part 120 and the fixed part 130.

Abstract

This device 100 for surgery according to the present invention is provided with a fixing part 130 that positions a drill 200 for forming a bone hole that penetrates a bone of a patient during ligament reconstruction surgery. The fixing part 130 is connected to another end part 112 of a body part 110. The fixing part 130 comes into contact with the thigh bone TB and has a contact surface 131 that is a portion that corresponds to the thigh bone TB, the fixing part 130 being attachable/detachable to/from the body part 110.

Description

外科手術用デバイス、情報処理装置、システム、情報処理方法、およびプログラムSurgical device, information processing apparatus, system, information processing method, and program
 本発明の実施形態は、外科手術用デバイス、情報処理装置、システム、情報処理方法、およびプログラムに関する。 Embodiments of the present invention relate to a surgical device, an information processing apparatus, a system, an information processing method, and a program.
 スポーツなどで、靱帯に大きな外力が作用すると、靱帯が損傷することがある。靱帯のうち、特に、膝前十字靱帯は、血流が乏しく、自然治癒が困難であるため、損傷すると靱帯再建手術が行われている。靱帯再建手術においては、採取した移植腱を用いるが、関節内靭帯付着部への固着は困難であるため、骨孔を形成し、再建靱帯を骨孔に誘導して固定することとなる。ここで、再建靱帯は、骨に対して断裂前の靱帯と解剖学的に同じ位置に配置されることが好ましいが、骨孔作製位置に依存する。  In sports, etc., if a large external force acts on the ligament, it may be damaged. Among the ligaments, in particular, the anterior cruciate ligament has a poor blood flow and is difficult to spontaneously heal. Therefore, if it is damaged, a ligament reconstruction operation is performed. In the ligament reconstruction operation, the collected tendon is used, but since it is difficult to fix it to the intra-articular ligament attachment part, a bone hole is formed and the reconstructed ligament is guided and fixed to the bone hole. Here, the reconstructed ligament is preferably placed anatomically at the same position as the ligament before rupture with respect to the bone, but it depends on the bone hole preparation position.
 骨孔を作製するためにドリルを用いるが、上述のように骨孔を精度良く形成するため、ドリルを骨に対してガイドする関節鏡手術用デバイスが用いられる。関節鏡手術用デバイスは、骨と接触する固定部と、ドリルを切削方向に移動自在に案内するドリルガイド部とを備える。医師は、関節鏡手術用デバイスの固定部を骨に接触させた状態で、ドリルガイド部に案内されたドリルにより骨に切削し、骨孔を形成する。 A drill is used to create a bone hole, but an arthroscopic surgical device that guides the drill to the bone is used to accurately form the bone hole as described above. The device for arthroscopic surgery includes a fixing part that comes into contact with bone and a drill guide part that guides the drill movably in the cutting direction. The doctor cuts the bone with a drill guided by the drill guide to form a bone hole in a state where the fixed portion of the arthroscopic surgery device is in contact with the bone.
特許第4727682号公報Japanese Patent No. 4727682
 しかしながら、従来の関節鏡手術用デバイスは、固定部を骨に接触しても、骨に対する固定部の接触が確実ではなく、固定部が骨に対してずれる場合がある。また、骨に対する固定部の接触が確実でないと、関節鏡手術用デバイスが固定部を基点に動く、すなわち骨に対してドリルガイドに誘導されたドリルが移動する場合がある。また、靱帯再建手術は、皮膚および筋肉を切開する領域が狭いため、関節鏡による狭い視野での手術となる。従って、損傷前の靱帯と解剖学的に同じ位置に骨孔を作製することは技術的に困難であった。 However, in the conventional device for arthroscopic surgery, even if the fixing portion comes into contact with the bone, the contact of the fixing portion with the bone is not reliable, and the fixing portion may be displaced with respect to the bone. Further, if the contact of the fixing portion with the bone is not reliable, the arthroscopic surgical device may move with the fixing portion as a base point, that is, the drill guided by the drill guide may move with respect to the bone. Further, the ligament reconstruction operation is an operation with a narrow visual field using an arthroscope because the area where the skin and the muscle are incised is narrow. Therefore, it was technically difficult to make a bone hole at the same anatomical position as the ligament before injury.
 本発明は、靱帯再建手術において、骨に対するドリルの位置決めを精度良く行うことができる外科手術用デバイス、情報処理装置、システム、情報処理方法、およびプログラムを提供することを目的とする。 An object of the present invention is to provide a surgical device, an information processing apparatus, a system, an information processing method, and a program capable of accurately positioning a drill with respect to a bone in ligament reconstruction surgery.
 上述した課題を解決し、目的を達成するために、本発明は、靱帯再建手術において、被検体の骨を貫通する骨孔を形成するドリルの位置決めを行う外科手術用デバイスであって、本体部と、前記本体部の一方の端部に接続され、前記ドリルを前記ドリルによる前記骨の切削方向に移動自在に案内するドリルガイド部と、前記本体部の他方の端部に接続され、前記骨に接触し、かつ前記骨に応じた部位を有する固定部と、を備え、前記固定部は、前記本体部に対して着脱可能である。 In order to solve the above-mentioned problems and to achieve the object, the present invention is a surgical device for positioning a drill that forms a bone hole that penetrates a bone of a subject in a ligament reconstruction surgery. A drill guide part connected to one end of the main body part and movably guiding the drill in the cutting direction of the bone by the drill, and connected to the other end part of the main body part, the bone And a fixing portion having a portion corresponding to the bone, the fixing portion being attachable to and detachable from the main body portion.
 また、本発明は、靱帯再建手術において、被検体の骨を貫通する骨孔を形成するドリルの位置決めを行う外科手術用デバイスの固定部のモデルデータを少なくとも生成する情報処理装置であって、前記被検体の前記骨を含む領域が撮像された画像データに基づいて、前記骨の外形データを含む骨形状情報を取得する取得部と、前記骨に接触し、かつ前記骨に応じた部位を有する前記モデルデータを、前記骨形状情報に基づいて生成する生成部と、を備える。 Further, the present invention is an information processing apparatus for generating at least model data of a fixed part of a surgical device for positioning a drill for forming a bone hole penetrating a bone of a subject in ligament reconstruction surgery, wherein: Based on image data obtained by imaging a region including the bone of the subject, an acquisition unit that acquires bone shape information including the contour data of the bone, and a portion that is in contact with the bone and corresponds to the bone A generation unit that generates the model data based on the bone shape information.
 また、本発明は、情報処理装置と造形装置とを少なくとも備え、靱帯再建手術において、被検体の骨を貫通する骨孔を形成するドリルの位置決めを行う外科手術用デバイスの固定部を少なくとも造形するためのシステムであって、前記被検体の前記骨を含む領域が撮像された画像データに基づいて、前記骨の外形データを含む骨形状情報を取得する取得部と、前記骨に接触し、かつ前記骨に応じた部位を有する前記モデルデータを、前記骨形状情報に基づいて生成する生成部と、前記モデルデータに基づいて、少なくとも前記固定部を造形する造形装置と、を備える。 Further, the present invention includes at least an information processing device and a modeling device, and at least models a fixing portion of a surgical device that positions a drill that forms a bone hole that penetrates a bone of a subject in ligament reconstruction surgery. A system for, based on image data obtained by imaging a region including the bone of the subject, an acquisition unit for acquiring bone shape information including outer shape data of the bone, and contacting the bone, and A generation unit that generates the model data having a portion corresponding to the bone based on the bone shape information, and a modeling device that models at least the fixing unit based on the model data.
 また、本発明は、靱帯再建手術において、被検体の骨を貫通する骨孔を形成するドリルの位置決めを行う外科手術用デバイスの固定部のモデルデータを少なくとも生成するための情報処理方法であって、前記被検体の前記骨を含む領域が撮像された画像データに基づいて、前記骨の外形データを含む骨形状情報を取得する取得ステップと、前記骨に接触し、かつ前記骨に応じた部位を有する前記モデルデータを、前記骨形状情報に基づいて生成する生成ステップと、を含む。 The present invention also provides an information processing method for generating at least model data of a fixed part of a surgical device for positioning a drill that forms a bone hole that penetrates a bone of a subject in ligament reconstruction surgery. An acquiring step of acquiring bone shape information including outer shape data of the bone based on image data obtained by imaging a region including the bone of the subject, and a portion in contact with the bone and corresponding to the bone And a generation step of generating the model data having the above based on the bone shape information.
 また、本発明は、靱帯再建手術において、被検体の骨を貫通する骨孔を形成するドリルの位置決めを行う外科手術用デバイスの少なくとも固定部のモデルデータを生成するためのプログラムであって、コンピュータに、前記被検体の前記骨を含む領域が撮像された画像データに基づいて、前記骨の外形データを含む骨形状情報を取得する取得ステップと、前記骨に接触し、かつ前記骨に応じた部位を有する前記モデルデータを、前記骨形状情報に基づいて生成する生成ステップと、を実行させる。 Further, the present invention is a program for generating model data of at least a fixed part of a surgical operation device for positioning a drill for forming a bone hole penetrating a bone of a subject in a ligament reconstruction operation, which comprises a computer On the basis of image data obtained by imaging a region including the bone of the subject, an obtaining step of obtaining bone shape information including the outline data of the bone, and contacting the bone, and depending on the bone A generation step of generating the model data having a part based on the bone shape information.
 本発明によれば、靱帯再建手術において、骨に対するドリルの位置決めを精度良く行うことができる外科手術用デバイス、情報処理装置、システム、情報処理方法、およびプログラムを提供することができる。 According to the present invention, it is possible to provide a surgical device, an information processing apparatus, a system, an information processing method, and a program capable of accurately positioning a drill with respect to a bone in ligament reconstruction surgery.
図1は、実施形態にかかるシステムの概略構成の一例を示す図である。FIG. 1 is a diagram showing an example of a schematic configuration of a system according to an embodiment. 図2は、実施形態にかかる情報処理装置のハードウェア構成の一例を示す図である。FIG. 2 is a diagram illustrating an example of a hardware configuration of the information processing device according to the embodiment. 図3は、実施形態にかかる情報処理装置が有する機能の一例を示す図である。FIG. 3 is a diagram illustrating an example of functions of the information processing apparatus according to the embodiment. 図4は、膝部の画像データが表示された画面の一例を示す図である。FIG. 4 is a diagram showing an example of a screen on which image data of the knee is displayed. 図5は、取得部の処理を説明するための図である。FIG. 5 is a diagram for explaining the processing of the acquisition unit. 図6は、外科手術用デバイスを示す斜視図である。FIG. 6 is a perspective view showing a surgical device. 図7は、外科手術用デバイスの固定部を示す平面図である。FIG. 7 is a plan view showing the fixing portion of the surgical operation device. 図8は、外科手術用デバイスの固定部を示す側面図である。FIG. 8 is a side view showing the fixing portion of the surgical operation device. 図9は、本実施形態の情報処理装置の動作例を示すフローチャートである。FIG. 9 is a flowchart showing an operation example of the information processing apparatus of this embodiment. 図10は、実施形態にかかる靱帯再建手術について説明するための図である。FIG. 10 is a diagram for explaining a ligament reconstruction operation according to the embodiment. 図11は、実施形態にかかる靱帯建手術について説明するための図である。FIG. 11 is a diagram for explaining a ligament construction operation according to the embodiment. 図12は、実施形態にかかる靱帯建手術について説明するための図である。FIG. 12 is a diagram for explaining the ligament construction surgery according to the embodiment. 図13は、外科手術用デバイスの固定部の変形例を示す図である。FIG. 13: is a figure which shows the modification of the fixing part of a surgical device. 図14は、外科手術用デバイスの固定部の変形例を示す図である。FIG. 14: is a figure which shows the modification of the fixing|fixed part of the device for surgical operation. 図15は、外科手術用デバイスの固定部の変形例を示す図である。FIG. 15: is a figure which shows the modification of the fixing|fixed part of a surgical device.
 以下、添付図面を参照しながら、本発明にかかる外科手術用デバイス、情報処理装置、システム、情報処理方法、およびプログラムを説明する。なお、以下の実施形態は、以下の説明に限定されるものではない。以下の実施形態は、処理内容に矛盾が生じない範囲で他の実施形態や従来技術との組み合わせが可能である。 Hereinafter, a surgical device, an information processing apparatus, a system, an information processing method, and a program according to the present invention will be described with reference to the accompanying drawings. The following embodiments are not limited to the following description. The following embodiments can be combined with other embodiments and conventional techniques as long as the processing content does not conflict.
 〔実施形態〕
 本実施形態は、被検体の骨としての大腿骨と脛骨との間にある前十字靱帯が損傷した場合に、損傷した前十字靱帯を再建靱帯に置き換える靱帯再建手術において、再建靱帯を挿入するための骨孔を形成する際に、大腿骨に対するドリルの位置決めを行う外科手術用デバイスを提供するものである。
[Embodiment]
This embodiment is for inserting a reconstructed ligament in a ligament reconstruction operation for replacing the damaged anterior cruciate ligament with a reconstructed ligament when the anterior cruciate ligament between the femur and the tibia as the bone of the subject is damaged. The present invention provides a surgical device for positioning a drill with respect to a femur when forming a bone hole.
 図1は、実施形態にかかるシステムの概略構成の一例を示す図である。図1に示すように、実施形態にかかるシステム1は、医用画像診断装置10と、情報処理装置20と、造形装置30とを含む。図1に例示する各装置は、LAN(Local Area Network)やWAN(Wide Area Network)等のネットワークにより、直接的、又は間接的に相互に通信可能な状態となっている。 1 is a diagram showing an example of a schematic configuration of a system according to an embodiment. As shown in FIG. 1, the system 1 according to the embodiment includes a medical image diagnostic apparatus 10, an information processing apparatus 20, and a modeling apparatus 30. Each device illustrated in FIG. 1 is in a state of being able to communicate with each other directly or indirectly through a network such as a LAN (Local Area Network) or a WAN (Wide Area Network).
 医用画像診断装置10は、人体を傷つけることなく、通常は目視できない部分を画像化した画像データを生成する装置である。例えば、図1に示す医用画像診断装置10は、被検体の撮影部位における体表の輪郭と、撮影部位内に存在する骨とが少なくとも描出された3次元の画像データ(ボリュームデータ)を生成可能な装置である。例えば、医用画像診断装置10は、X線CT(Computed Tomography)装置、MRI(Magnetic Resonance Imaging)装置等である。なお、医用画像診断装置10としては、公知の如何なる医用画像診断装置が適用されても良い。以下、医用画像診断装置10の一例であるX線CT装置が行う撮影(撮像)について、簡単に説明する。 The medical image diagnostic device 10 is a device that does not damage the human body and generates image data that is an image of a portion that is not normally visible. For example, the medical image diagnostic apparatus 10 shown in FIG. 1 can generate three-dimensional image data (volume data) in which at least the contour of the body surface of the imaging region of the subject and the bone present in the imaging region are depicted. It is a device. For example, the medical image diagnostic apparatus 10 is an X-ray CT (Computed Tomography) apparatus, an MRI (Magnetic Resonance Imaging) apparatus, or the like. Note that any known medical image diagnostic apparatus may be applied as the medical image diagnostic apparatus 10. Imaging (imaging) performed by the X-ray CT apparatus, which is an example of the medical image diagnostic apparatus 10, will be briefly described below.
 X線CT装置は、X線を照射するX線管球と、被検体を透過したX線を検出するX線検出器とを対向する位置に支持して回転可能な回転フレームを有する架台装置により撮影を行う。X線CT装置は、X線管球からX線を照射させながら回転フレームを回転させることで、投影データを収集し、投影データからX線CT画像データを再構成する。X線CT画像データは、例えば、X線管球とX線検出器との回転面(アキシャル面)における断層像(2次元のX線CT画像データ)となる。 The X-ray CT apparatus uses a gantry device having a rotatable frame that supports an X-ray tube that irradiates X-rays and an X-ray detector that detects X-rays that have passed through a subject at opposing positions. Take a picture. The X-ray CT apparatus collects projection data by rotating the rotating frame while irradiating X-rays from the X-ray tube, and reconstructs X-ray CT image data from the projection data. The X-ray CT image data is, for example, a tomographic image (two-dimensional X-ray CT image data) on the rotation surface (axial surface) of the X-ray tube and the X-ray detector.
 X線検出器は、チャンネル方向に配列されたX線検出素子である検出素子列が、回転フレームの回転軸方向に沿って複数列配列されている。例えば、検出素子列が16列配列されたX線検出器を有するX線CT装置は、回転フレームが1回転することで収集された投影データから、被検体の体軸方向に沿った複数枚(例えば16枚)の断層像を再構成する。また、X線CT装置は、回転フレームを回転させるとともに、被検体又は架台装置を移動させるヘリカルスキャンにより、例えば、心臓全体を網羅した500枚の断層像を3次元のX線CT画像データとして再構成することができる。 The X-ray detector has a plurality of detection element rows, which are X-ray detection elements arranged in the channel direction, arranged along the rotation axis direction of the rotating frame. For example, an X-ray CT apparatus having an X-ray detector in which 16 detection element rows are arranged has a plurality of pieces (in a body axis direction of a subject, based on projection data collected by one rotation of a rotating frame). For example, 16 tomographic images are reconstructed. In addition, the X-ray CT apparatus reconstructs, for example, 500 tomographic images covering the entire heart as three-dimensional X-ray CT image data by rotating the rotating frame and performing a helical scan to move the subject or the gantry device. Can be configured.
 ここで、図1に示す医用画像診断装置10としてのX線CT装置は、立位、座位又は臥位の状態の被検体を撮影可能な装置である。かかるX線CT装置は、例えば、X線透過性の高い材質で作成された椅子に座った状態の被検体を撮影して、3次元のX線CT画像データを生成する。 Here, the X-ray CT apparatus as the medical image diagnostic apparatus 10 shown in FIG. 1 is an apparatus capable of imaging a subject in a standing, sitting or lying position. Such an X-ray CT apparatus, for example, images a subject sitting on a chair made of a material having high X-ray transparency and generates three-dimensional X-ray CT image data.
 なお、MRI装置は、位相エンコード用傾斜磁場、スライス選択用傾斜磁場および周波数エンコード用傾斜磁場を変化させることで収集したMR(Magnetic Resonance)信号から、任意の1断面のMR画像データや、任意の複数断面のMR画像データ(ボリュームデータ)を再構成することができる。 In addition, the MRI apparatus uses an MR (Magnetic Resonance) signal acquired by changing the gradient magnetic field for phase encoding, the gradient magnetic field for slice selection, and the gradient magnetic field for frequency encoding to acquire MR image data of any one cross section or any MR image data. MR image data (volume data) of a plurality of cross sections can be reconstructed.
 本実施形態では、医用画像診断装置10は、被検体の膝部を含む領域を撮影された3次元のX線CT画像データ(又はMR画像データ)を画像データとして生成する。そして、医用画像診断装置10は、生成した画像データを、情報処理装置20に送信する。 In the present embodiment, the medical image diagnostic apparatus 10 generates, as image data, three-dimensional X-ray CT image data (or MR image data) obtained by imaging a region including the knee of the subject. Then, the medical image diagnostic apparatus 10 transmits the generated image data to the information processing apparatus 20.
 具体的には、医用画像診断装置10は、画像データを、DICOM(Digital Imaging and Communications in Medicine)規格に則った形式のDICOMデータにして、情報処理装置20へ送信する。なお、医用画像診断装置10は、画像データに付帯情報を付与したDICOMデータを作成する。付帯情報には、被検体が人体の場合、一意に識別可能な患者IDや、患者情報(氏名、性別、年齢等)、画像の撮影が行われた検査の種類、検査部位(撮影部位)、撮影時の患者の体位、画像サイズに関する情報等が含まれる。画像サイズに関する情報は、画像空間における長さを実空間における長さに変換する情報として用いられる。なお、実施形態は、医用画像診断装置10が、立位、座位又は臥位の状態の被検体の膝部を含んで撮影された3次元のX線CT画像データ(又はMR画像データ)を画像データとして情報処理装置20へ送信する場合であっても適用可能である。 Specifically, the medical image diagnostic apparatus 10 converts the image data into DICOM data in a format conforming to the DICOM (Digital Imaging and Communications in Medicine) standard and transmits it to the information processing apparatus 20. In addition, the medical image diagnostic apparatus 10 creates DICOM data in which incidental information is added to the image data. When the subject is a human body, the incidental information includes a patient ID that can be uniquely identified, patient information (name, sex, age, etc.), type of examination in which an image was taken, examination site (imaging site), This includes information such as the patient's posture at the time of shooting and image size. The information about the image size is used as information for converting the length in the image space into the length in the real space. In addition, in the embodiment, the medical image diagnostic apparatus 10 images three-dimensional X-ray CT image data (or MR image data) captured including the knee portion of the subject in the standing, sitting or lying position. It is applicable even when it is transmitted to the information processing device 20 as data.
 情報処理装置20は、被検体の画像データを医用画像診断装置10から取得する。例えば、情報処理装置20の操作者(医師等)は、被検体の患者IDを用いた検索を行う。これにより、情報処理装置20は、医用画像診断装置10から被検体の膝部を含んで撮影された3次元のX線CT画像データ(又はMR画像データ)を取得する。 The information processing apparatus 20 acquires the image data of the subject from the medical image diagnostic apparatus 10. For example, the operator (doctor or the like) of the information processing device 20 performs a search using the patient ID of the subject. As a result, the information processing apparatus 20 acquires from the medical image diagnostic apparatus 10 three-dimensional X-ray CT image data (or MR image data) captured including the knee of the subject.
 そして、情報処理装置20は、被検体の画像データから取得される各種情報を用いて、外科手術用デバイスを造形装置30で造形する際の元となるモデルデータを生成する。モデルデータを生成する処理内容については後述する。そして、情報処理装置20は、生成したモデルデータを造形装置30へ送る。 Then, the information processing apparatus 20 uses various information acquired from the image data of the subject to generate model data that is a basis for modeling the surgical device with the modeling apparatus 30. The processing content for generating model data will be described later. Then, the information processing device 20 sends the generated model data to the modeling device 30.
 造形装置30は、情報処理装置20から受け取ったモデルデータに基づいて、外科手術用デバイスの固定部を少なくとも造形する装置である。造形装置30は、固定部を造形するために、造形部31を備える。 The modeling apparatus 30 is an apparatus that models at least the fixed portion of the surgical operation device based on the model data received from the information processing apparatus 20. The modeling apparatus 30 includes a modeling unit 31 for modeling the fixed unit.
 3次元プリンタの機能を提供するための造形部31の構成は、公知の様々な構成で実現可能である。例えば、造形部31は、加熱溶融されて所望の温度・圧力となった材料を吐き出すためのノズル、ノズルを3次元方向に移動するための移動機構、ノズルから吐き出された材料により所望の形状のパターン層が形成される造形ステージ、各部を制御する制御部等を含んで構成される。また、造形部31は、粉末焼結方式を用いるものであり、材料の焼結を行うレーザ、レーザを平面方向に移動するための移動機構、積層された材料により所望の形状のパターン層が形成される造形ステージ、造形ステージを平面方向と直交する方向に移動するための移動機構、各部を制御する制御部等を含んで構成されていてもよい。造形部31は、モデルデータに基づいてパターン層を繰り返し積層することにより、モデルデータに対応する3次元構造体を造形する。なお、1つのパターン層は、モデルデータを構成する複数の断層画像のうち、該1つのパターン層と同じ位置に対応する1つの断層画像に基づいて形成される。 The configuration of the modeling unit 31 for providing the function of the three-dimensional printer can be realized by various known configurations. For example, the modeling unit 31 has a nozzle for discharging a material heated and melted to a desired temperature and pressure, a moving mechanism for moving the nozzle in a three-dimensional direction, and a material having a desired shape depending on the material discharged from the nozzle. It includes a modeling stage on which a pattern layer is formed, a control unit that controls each unit, and the like. Further, the modeling unit 31 uses a powder sintering method, and a laser for sintering the material, a moving mechanism for moving the laser in the plane direction, and a pattern layer having a desired shape are formed by the stacked materials. The molding stage, a moving mechanism for moving the molding stage in a direction orthogonal to the plane direction, a control unit for controlling each unit, and the like may be included. The modeling unit 31 models the three-dimensional structure corresponding to the model data by repeatedly stacking the pattern layers based on the model data. In addition, one pattern layer is formed based on one tomographic image corresponding to the same position as the one pattern layer among a plurality of tomographic images forming the model data.
 次に、実施形態にかかる情報処理装置20について説明する。図2は、実施形態にかかる情報処理装置20のハードウェア構成の一例を示す図である。図2に示すように、情報処理装置20は、CPU(Central Processing Unit)21と、ROM(Read Only Memory)22と、RAM(Random Access Memory)23と、補助記憶装置24と、入力装置25と、表示装置26と、外部I/F(Interface)27と、を備える。 Next, the information processing device 20 according to the embodiment will be described. FIG. 2 is a diagram illustrating an example of a hardware configuration of the information processing device 20 according to the embodiment. As shown in FIG. 2, the information processing device 20 includes a CPU (Central Processing Unit) 21, a ROM (Read Only Memory) 22, a RAM (Random Access Memory) 23, an auxiliary storage device 24, and an input device 25. A display device 26 and an external I/F (Interface) 27 are provided.
 CPU21は、プログラムを実行することにより、情報処理装置20の動作を統括的に制御し、情報処理装置20が有する各種の機能を実現するプロセッサ(処理回路)である。情報処理装置20が有する各種の機能については後述する。 The CPU 21 is a processor (processing circuit) that centrally controls the operation of the information processing device 20 by executing a program and realizes various functions of the information processing device 20. Various functions of the information processing device 20 will be described later.
 ROM22は、不揮発性のメモリであり、情報処理装置20を起動させるためのプログラムを含む各種データ(情報処理装置20の製造段階で書き込まれる情報)を記憶する。RAM23は、CPU21の作業領域を有する揮発性のメモリである。補助記憶装置24は、CPU21が実行するプログラム等の各種データを記憶する。補助記憶装置24は、例えばHDD(Hard Disc Drive)、SSD(Solid State Drive)等で構成される。 The ROM 22 is a non-volatile memory, and stores various data (information written at the manufacturing stage of the information processing device 20) including a program for starting the information processing device 20. The RAM 23 is a volatile memory having a work area for the CPU 21. The auxiliary storage device 24 stores various data such as programs executed by the CPU 21. The auxiliary storage device 24 is composed of, for example, an HDD (Hard Disc Drive), an SSD (Solid State Drive), and the like.
 入力装置25は、情報処理装置20を使用する操作者が各種の操作を行うためのデバイスである。入力装置25は、例えばマウス、キーボード、タッチパネル又はハードウェアキーで構成される。なお、操作者は、例えば、医師や理学療法士等の医療関係者等に対応する。 The input device 25 is a device for an operator who uses the information processing device 20 to perform various operations. The input device 25 is composed of, for example, a mouse, a keyboard, a touch panel, or a hardware key. The operator corresponds to a medical person such as a doctor or a physical therapist, for example.
 表示装置26は、各種情報を表示する。例えば、表示装置26は、画像データやモデルデータ、操作者から各種操作を受け付けるためのGUI(Graphical User Interface)や、医用画像等を表示する。表示装置26は、例えば液晶ディスプレイ、有機EL(Electro Luminescence)ディスプレイ又はブラウン管ディスプレイで構成される。なお、例えばタッチパネルのような形態で、入力装置25と表示装置26とが一体に構成されても良い。 The display device 26 displays various information. For example, the display device 26 displays image data, model data, a GUI (Graphical User Interface) for receiving various operations from an operator, medical images, and the like. The display device 26 is composed of, for example, a liquid crystal display, an organic EL (Electro Luminescence) display, or a CRT display. Note that the input device 25 and the display device 26 may be integrally configured in the form of a touch panel, for example.
 外部I/F27は、医用画像診断装置10や造形装置30等の外部装置と接続(通信)するためのインタフェースである。 The external I/F 27 is an interface for connecting (communicating) with an external device such as the medical image diagnostic device 10 and the modeling device 30.
 図3は、実施形態にかかる情報処理装置20が有する機能の一例を示す図である。なお、図3の例では、本実施形態に関する機能のみを例示しているが、情報処理装置20が有する機能はこれらに限られるものではない。 FIG. 3 is a diagram illustrating an example of functions of the information processing device 20 according to the embodiment. Note that the example of FIG. 3 illustrates only the functions related to the present embodiment, but the functions of the information processing device 20 are not limited to these.
 図3に示すように、情報処理装置20は、記憶部201、ユーザインタフェース部202、取得部203、生成部204、および出力部205を有する。記憶部201の機能は、例えば、図2に示す補助記憶装置24(例えばHDD)により実現される。ユーザインタフェース部202の機能は、例えば、入力装置25および表示装置26により実現される。取得部203、生成部204、および出力部205の各機能は、例えば、取得部203、生成部204、および出力部205の各処理をコンピュータに実行させるためのプログラムを読み出したCPU21により実現される。 As shown in FIG. 3, the information processing device 20 includes a storage unit 201, a user interface unit 202, an acquisition unit 203, a generation unit 204, and an output unit 205. The function of the storage unit 201 is realized, for example, by the auxiliary storage device 24 (for example, HDD) shown in FIG. The function of the user interface unit 202 is realized by, for example, the input device 25 and the display device 26. Each function of the acquisition unit 203, the generation unit 204, and the output unit 205 is realized by, for example, the CPU 21 that reads out a program for causing a computer to execute the processes of the acquisition unit 203, the generation unit 204, and the output unit 205. ..
 記憶部201は、モデルデータの生成に用いられる各種情報や、プログラム等を記憶する。また、記憶部201は、医用画像診断装置10により撮影された画像データ(DICOMデータ)を記憶することも可能である。 The storage unit 201 stores various information used for generating model data, programs, and the like. The storage unit 201 can also store image data (DICOM data) captured by the medical image diagnostic apparatus 10.
 ユーザインタフェース部202は、表示部および受付部であり、操作者の入力を受け付ける機能、および、各種情報を出力する機能を有する。例えば、ユーザインタフェース部202は、操作者が入力装置25を介して行った入力操作を受け付けて、受け付けた入力操作を電気信号へ変換して情報処理装置20内の各部へ送る。また、ユーザインタフェース部202は、情報処理装置20内の各部から各種情報を受け取り、受け取った情報を記憶部201に格納したり、表示装置26に表示させたりする。また、ユーザインタフェース部202は、操作者により指定された情報を外部I/F27を経由して外部装置に送る。 The user interface unit 202 is a display unit and a reception unit, and has a function of receiving an operator's input and a function of outputting various information. For example, the user interface unit 202 receives an input operation performed by the operator via the input device 25, converts the received input operation into an electric signal, and sends the electric signal to each unit in the information processing apparatus 20. In addition, the user interface unit 202 receives various kinds of information from each unit in the information processing device 20, stores the received information in the storage unit 201, or causes the display device 26 to display the received information. Further, the user interface unit 202 sends the information designated by the operator to the external device via the external I/F 27.
 ここで、例えば、ユーザインタフェース部202は、操作者から外科手術用デバイスを作成する被検体の画像データを呼び出すための操作を受け付けると、該操作により指定された画像データを記憶部201から読み出して表示装置26に表示する制御を行う。 Here, for example, when the user interface unit 202 receives an operation for calling the image data of the subject for which the surgical operation device is to be created, the user interface unit 202 reads out the image data designated by the operation from the storage unit 201. The control for displaying on the display device 26 is performed.
 図4は、膝部の画像データが表示された画面の一例を示す図である。図4は、表示装置26の画面に表示された3次元のX線CT画像データを示している。図4に示す3次元のX線CT画像データは、被検体の膝部の体表面および膝部を構成する各種の骨の外形をサーフェスレンダリング処理により描出したものである。 FIG. 4 is a diagram showing an example of a screen on which image data of the knee is displayed. FIG. 4 shows the three-dimensional X-ray CT image data displayed on the screen of the display device 26. The three-dimensional X-ray CT image data shown in FIG. 4 is the body surface of the knee of the subject and the outlines of various bones forming the knee, which are rendered by surface rendering processing.
 なお、3次元の画像データを2次元の画面(例えば表示装置26)にて表示する際、ユーザインタフェース部202は、3次元の画像データに対して各種レンダリング処理を施す。レンダリング処理としては、ボリュームレンダリング処理やサーフェスレンダリング処理、断面再構成法(MPR:Multi Planar Reconstruction)等が挙げられる。ボリュームレンダリング処理では、ボリュームデータの3次元情報を反映した2次元画像を生成することができる。また、サーフェスレンダリング処理では、ボリュームデータから任意の部位(体表面、骨など)の表面情報を抽出して、2次元画像を生成することができる。また、MPRでは、ボリュームデータから任意の断面のMPR画像を再構成することができる。 When displaying the three-dimensional image data on the two-dimensional screen (for example, the display device 26), the user interface unit 202 performs various rendering processes on the three-dimensional image data. Examples of rendering processing include volume rendering processing, surface rendering processing, and cross-section reconstruction method (MPR: Multi Planar Reconstruction). In the volume rendering process, a two-dimensional image that reflects the three-dimensional information of volume data can be generated. In the surface rendering process, surface information of an arbitrary part (body surface, bone, etc.) can be extracted from the volume data to generate a two-dimensional image. Further, in MPR, an MPR image of an arbitrary cross section can be reconstructed from volume data.
 図3に戻って、取得部203は、外科手術用デバイス設計に要する種々のデータを取得する。例えば、ユーザインタフェース部202が患者IDを含む画像データの取得要求を受け付けると、取得部203は、患者IDに対応する画像データの送信要求を外部I/F27を介して医用画像診断装置10に送信する。外部I/F27は、医用画像診断装置10から受信した画像データを記憶部201に格納する。そして、取得部203は、記憶部201から画像データを取得する。 Returning to FIG. 3, the acquisition unit 203 acquires various data required for designing a surgical device. For example, when the user interface unit 202 receives an acquisition request for image data including a patient ID, the acquisition unit 203 transmits a transmission request for image data corresponding to the patient ID to the medical image diagnostic apparatus 10 via the external I/F 27. To do. The external I/F 27 stores the image data received from the medical image diagnostic apparatus 10 in the storage unit 201. Then, the acquisition unit 203 acquires the image data from the storage unit 201.
 そして、取得部203は、画像データに基づく被検体の骨の外形データを含む骨形状情報を取得する。例えば、取得部203は、3次元のX線CT画像データに対して、エッジ検出処理等の公知の画像処理を行って、下顎骨の輪郭(骨表面)を抽出する。これにより、取得部203は、画像データから被検体の骨の表面形状を3次元で表す外形データを取得する。 Then, the acquisition unit 203 acquires the bone shape information including the outline data of the bone of the subject based on the image data. For example, the acquisition unit 203 performs known image processing such as edge detection processing on the three-dimensional X-ray CT image data to extract the contour (bone surface) of the mandible. As a result, the acquisition unit 203 acquires, from the image data, the outer shape data that three-dimensionally represents the surface shape of the bone of the subject.
 図5は、取得部203の処理を説明するための図である。図5には、大腿骨TBの画像40が表示装置26に表示された場合を例示する。 FIG. 5 is a diagram for explaining the processing of the acquisition unit 203. FIG. 5 illustrates a case where the image 40 of the femur TB is displayed on the display device 26.
 例えば、ユーザインタフェース部202がモデルデータの生成要求を受け付けると、その生成要求が取得部203に送られる。ここで、モデルデータの生成要求には、例えば、前十字靱帯損傷の患者(被検体)を識別するための識別情報(患者ID等)が含まれる。取得部203は、モデルデータの生成要求を受け付けると、記憶部201に記憶された様々な情報の中から、患者IDにより識別される被検体の画像データ(3次元のX線CT画像データ又はMR画像データ)を読み出す。そして、読み出しされた画像データは、ユーザインタフェース部202により各種レンダリング処理(図4の例ではサーフェスレンダリング処理)が施され、表示装置26に表示される。 For example, when the user interface unit 202 receives a model data generation request, the generation request is sent to the acquisition unit 203. Here, the model data generation request includes, for example, identification information (patient ID or the like) for identifying a patient (subject) having an anterior cruciate ligament injury. Upon receipt of the model data generation request, the acquisition unit 203 receives image data of the subject identified by the patient ID (three-dimensional X-ray CT image data or MR) from among various information stored in the storage unit 201. Image data). Then, the read image data is subjected to various rendering processes (surface rendering process in the example of FIG. 4) by the user interface unit 202 and displayed on the display device 26.
 更に、取得部203は、骨の種類と骨の形状と骨の位置情報とが関連付けて記憶されたデータベースを参照して、3次元のX線CT画像データから、骨の種類と骨の形状と骨の位置とに関する情報を含む膝部の骨データを取得する。まず、取得部203は、3次元のX線CT画像データに対して公知のセグメンテーション処理を行って、骨に対応する3次元領域(3次元骨領域)を抽出する。例えば、取得部203は、骨のCT値に対応するボクセルを所定の閾値で2値化して抽出することで、3次元骨領域を抽出する。そして、取得部203は、データベースを参照して、抽出した3次元骨領域に含まれる複数の骨それぞれの形状、種類、位置を特定する。 Further, the acquisition unit 203 refers to the database in which the bone type, the bone shape, and the bone position information are stored in association with each other, and the bone type and the bone shape from the three-dimensional X-ray CT image data. Acquiring knee bone data including information regarding bone position and location. First, the acquisition unit 203 performs known segmentation processing on the three-dimensional X-ray CT image data to extract a three-dimensional region (three-dimensional bone region) corresponding to bone. For example, the acquisition unit 203 extracts the three-dimensional bone region by binarizing and extracting the voxels corresponding to the CT value of the bone with a predetermined threshold value. Then, the acquisition unit 203 refers to the database and specifies the shape, type, and position of each of the plurality of bones included in the extracted three-dimensional bone region.
 本実施形態では、上記のデータベースは、記憶部201に格納されている。テンプレートは、膝部を構成する各種の骨をパターンマッチングにより検出するためのテンプレートである。テンプレートは、膝部を構成する各種の骨の形状を表している。また、テンプレートの各骨には、骨の種類を表す解剖学的名称が対応付けられている。例えば、データベースは、図4を参照にすると、膝部を正面から見た場合に、上から下へ順に、大腿骨、脛骨であることを記憶している。また、データベースは、大腿骨を正面から見た場合に、大腿骨の下側端部が幅方向に離間した大腿骨外側顆、大腿骨内側顆であること、大腿骨外側顆と大腿骨内側顆との間が大腿骨顆間窩であることを記憶している。また、データベースは、大腿骨外側顆を正面から見た場合に、大腿骨外側顆の大腿骨内側顆側の表面におけるResident’s ridgeを記憶している。ここで、Resident’s ridgeは、大腿骨内側顆側の表面における突起であり、大腿骨顆間窩に突出する。Resident’s ridgeは、被検体に応じて形状および大腿骨外側顆の大腿骨内側顆側の表面における位置が異なる。 In the present embodiment, the above database is stored in the storage unit 201. The template is a template for detecting various bones forming the knee by pattern matching. The template represents the shape of various bones that make up the knee. In addition, an anatomical name indicating the type of bone is associated with each bone of the template. For example, referring to FIG. 4, the database stores that, when the knee is viewed from the front, the femur and the tibia are sequentially arranged from the top to the bottom. In addition, the database is that, when the femur is viewed from the front, the lower end of the femur is the lateral femoral condyle and the femoral medial condyle that are separated in the width direction, the lateral femoral condyle and the femoral medial condyle. I remember that the space between and was the femoral intercondylar fossa. The database also stores Resident's ridges on the surface of the lateral femoral condyle on the medial femoral condyle side when the lateral femoral condyle is viewed from the front. Here, the Resident's ridge is a projection on the surface of the medial condyle of the femur and projects into the intercondylar space of the femur. The shape of Resident's ridge differs depending on the subject and the position of the lateral femoral condyle on the surface of the medial femoral condyle side.
 取得部203は、テンプレートと、3次元のX線CT画像データからセグメンテーション処理により抽出した3次元骨領域とのパターンマッチングを行って、骨の種類と骨の形状と骨の位置とに関する情報および大腿骨外側顆の大腿骨内側顆側の表面におけるResident’s ridgeの位置に関する情報であるResident’s ridge位置情報を含む膝部の骨データを取得する。パターンマッチングの手法としては、所定のテンプレートデータと一致しているか否かを判定するテンプレートマッチングや、骨の種類と骨の形状と骨の位置に関する特徴量に基づき判定する多変量解析等が挙げられる。 The acquisition unit 203 performs pattern matching between the template and the three-dimensional bone region extracted from the three-dimensional X-ray CT image data by the segmentation process to obtain information on the bone type, the bone shape, and the bone position, and the thigh. Acquire knee bone data including Resident's ridge position information, which is information about the position of the Resident's ridge on the surface of the lateral condyle of the femur on the medial side of the femur. Examples of the pattern matching method include template matching that determines whether or not they match with predetermined template data, and multivariate analysis that determines based on a feature amount related to bone type, bone shape, and bone position. ..
 なお、データベースは、「男性、8才~10才」のテンプレートや、「女性、20才~30才」のテンプレートのように、標準的な形状な膝部を表すテンプレートを性別および年齢ごとに記憶していても良い。この場合、取得部203は、DICOMデータの付帯情報から被検体の性別および年齢を取得し、取得した性別および年齢に該当するテンプレートをデータベースから読み出し、膝部の骨データを取得する。 The database stores templates representing standard knees for each gender and age, such as the template for “male, 8 to 10 years old” and the template for “female, 20 to 30 years old”. You can do it. In this case, the acquisition unit 203 acquires the sex and age of the subject from the supplementary information of the DICOM data, reads the template corresponding to the acquired sex and age from the database, and acquires the bone data of the knee.
 ここで、例えば、操作者は、表示装置26に表示された画像から病変箇所として前十字靱帯断裂箇所を発見し、入力装置25を介してその断裂した前十字靱帯が断裂前に接触していた骨を選択、例えば大腿骨TBを選択する。大腿骨TBが選択されると、図5に示すように、大腿骨TBのみが表示装置26に表示される。表示される大腿骨TBには、大腿骨外側顆TBO、大腿骨内側顆TBI、Resident’s ridgeTBTなどが表示される。操作者は、さらに、表示装置26に表示された大腿骨TBの画像から骨孔TBHを設定する。ここで、骨孔TBHは、大腿骨外側顆TBOの大腿骨内側顆TBI側と反対側、すなわち体表面側表面TBS1から大腿骨内側顆側表面TBS2まで貫通する穴であり、後述する再建靱帯が挿入されるものである。取得部203は、Resident’s ridge位置情報および設定された骨孔TBHに対応する骨孔情報を含む骨形状情報を抽出する。そして、取得部203は、取得した骨形状情報を生成部204へ送る。 Here, for example, the operator has found the anterior cruciate ligament ruptured site as a lesion site from the image displayed on the display device 26, and the ruptured anterior cruciate ligament was in contact with the ruptured anterior cruciate ligament via the input device 25. Select a bone, for example, femur TB. When the femur TB is selected, only the femur TB is displayed on the display device 26, as shown in FIG. On the displayed femur TB, a lateral femoral condyle TBO, a medial femoral condyle TBI, a Resident's ridge TBT, etc. are displayed. The operator further sets the bone hole TBH from the image of the femur TB displayed on the display device 26. Here, the bone hole TBH is a hole that penetrates from the side of the femoral medial condyle TBI of the lateral femoral condyle TBO, that is, from the body surface side surface TBS1 to the femoral medial condyle side surface TBS2, and the reconstruction ligament described later is used. It is inserted. The acquisition unit 203 extracts bone shape information including Resident's ridge position information and bone hole information corresponding to the set bone hole TBH. Then, the acquisition unit 203 sends the acquired bone shape information to the generation unit 204.
 生成部204は、骨に応じた外形データを少なくとも有する外科手術用デバイスの固定部のモデルデータを、骨形状情報に基づいて生成する。例えば、生成部204は、取得部203によって取得された骨形状情報に基づいて、大腿骨TBを貫通する骨孔TBHを形成する際に、大腿骨TBに対するドリルの位置決めを行う外科手術用デバイスの固定部のモデルデータを生成する。 The generation unit 204 generates model data of the fixed portion of the surgical device having at least outer shape data corresponding to the bone based on the bone shape information. For example, the generation unit 204 is based on the bone shape information acquired by the acquisition unit 203, when forming a bone hole TBH penetrating the femur TB, a surgical device that positions a drill with respect to the femur TB. Generate model data for the fixed part.
 図6は、生成部204の処理を説明するための図である。図6は、骨形状情報に基づいて生成されるモデルデータに基づいて造形された固定部を備える外科手術用デバイスの一例を示す。図7、図8は、形状情報に基づいて生成されるモデルデータに基づいて造形された固定部の一例を示す。 FIG. 6 is a diagram for explaining the processing of the generation unit 204. FIG. 6 shows an example of a surgical device including a fixing portion shaped based on model data generated based on bone shape information. FIG. 7 and FIG. 8 show an example of a fixed portion formed based on model data generated based on shape information.
 生成部204は、骨形状情報に含まれる骨に応じた外形データ、骨孔データおよびResident’s ridge位置データに基づいて、骨に応じた外科手術用デバイスの固定部を造形するためのモデルデータを生成する。このモデルデータは、モデルデータに基づいて造形される外科手術用デバイスの固定部の少なくとも形状を規定する情報である。 The generation unit 204 generates model data for shaping the fixed portion of the surgical operation device according to the bone based on the outer shape data corresponding to the bone, the bone hole data, and the Resident's ridge position data included in the bone shape information. To do. This model data is information that defines at least the shape of the fixed portion of the surgical device that is modeled based on the model data.
 ここで、本実施形態における外科手術用デバイス100は、図6に示すように、本体部110と、ドリルガイド部120と、固定部130と、ネジ140とを備える。ここで、外科手術用デバイス100は、一時的に生体組織に接触しても、生体組織に影響がない材料、滅菌処理が可能である材料、医師による外科手術用デバイス100による手術において変形しない強度を有する材料により構成される。 Here, as shown in FIG. 6, the surgical device 100 according to the present embodiment includes a main body 110, a drill guide 120, a fixing portion 130, and a screw 140. Here, the surgical operation device 100 is a material that does not affect the biological tissue even if it temporarily comes into contact with the biological tissue, a material that can be sterilized, and a strength that does not deform during surgery by the surgical operation device 100 by a doctor. Is composed of a material having
 本体部110は、ドリルガイド部120と固定部130とに接続されるものである。本体部110は、一方の端部111にドリルガイド部120が接続され、他方の端部112に固定部130が接続されている。本実施形態における本体部110は、金属製、または合成樹脂製であり、略U字形状に形成されており、長手方向と直交する断面形状が矩形状に形成されている。 The main body section 110 is connected to the drill guide section 120 and the fixed section 130. The main body 110 has a drill guide 120 connected to one end 111 and a fixed part 130 connected to the other end 112. The main body 110 in the present embodiment is made of metal or synthetic resin, is formed in a substantially U shape, and has a rectangular cross-sectional shape orthogonal to the longitudinal direction.
 ドリルガイド部120は、ドリル200をドリル200による骨の切削方向Aに移動自在に案内するものである。ドリルガイド部120は、合成樹脂製、または金属製であり、把持部121と、ドリル案内穴122と、スライド穴123とを有する。把持部121は、靱帯再建手術の際に、医師が手で把持する部分であり、把持のしやすさを考慮して湾曲して形成されている。ドリル案内穴122は、挿入されたドリル200を切削方向Aに移動自在に案内するものである。ここで、本実施形態におけるドリル200は、大腿骨TBを貫通する骨孔TBHを形成するものであり、大腿骨TBを切削することができるものであれば、ドリルの形状、構成、切削方法について特に限定されるものではない。スライド穴123は、本体部110の一方の端部111が挿入されるものである。スライド穴123は、一方の端部111が挿入方向および反対方向に移動自在となるように形成されている。つまり、ドリルガイド部120は、スライド穴123により一方の端部111と接続されており、本体部110に対して相対移動自在に、本体部110に接続されている。従って、外科手術用デバイス100は、固定部130とドリルガイド部120との間隔が変更可能である。なお、図示は省略するが、外科手術用デバイス100は、本体部110に対するドリルガイド部120の相対位置を保持する保持部を有している。保持部としては、例えば、スライド穴123まで連通するネジ穴に螺合するネジである。また、ドリルガイド部120は、スライド穴123と対向する外面に一定間隔で形成された目盛りを有することが好ましい。医者は、目盛りを視認することで、本体部110に対するドリルガイド部120の相対位置、すなわち固定部130とドリルガイド部120との間隔がどの程度であるかを容易に認識することができる。 The drill guide section 120 guides the drill 200 movably in the bone cutting direction A by the drill 200. The drill guide part 120 is made of synthetic resin or metal, and has a grip part 121, a drill guide hole 122, and a slide hole 123. The grasping portion 121 is a portion that a doctor grasps by hand during a ligament reconstruction operation, and is formed in a curved shape in consideration of ease of grasping. The drill guide hole 122 guides the inserted drill 200 movably in the cutting direction A. Here, the drill 200 in the present embodiment forms a bone hole TBH penetrating the femur TB, and as long as it can cut the femur TB, the shape, configuration, and cutting method of the drill It is not particularly limited. The one end portion 111 of the main body 110 is inserted into the slide hole 123. The slide hole 123 is formed such that one end 111 is movable in the insertion direction and the opposite direction. That is, the drill guide portion 120 is connected to the one end portion 111 by the slide hole 123, and is connected to the main body portion 110 so as to be movable relative to the main body portion 110. Therefore, in the surgical device 100, the distance between the fixed part 130 and the drill guide part 120 can be changed. Although not shown, the surgical device 100 has a holding portion that holds the relative position of the drill guide 120 with respect to the main body 110. The holding portion is, for example, a screw that is screwed into a screw hole that communicates with the slide hole 123. Further, it is preferable that the drill guide part 120 has graduations formed at regular intervals on the outer surface facing the slide hole 123. The doctor can easily recognize the relative position of the drill guide part 120 with respect to the main body part 110, that is, the distance between the fixing part 130 and the drill guide part 120 by visually observing the scale.
 固定部130は、骨に接触するものである。本実施形態における固定部130は、大腿骨TBの大腿骨外側顆TBO、特に、少なくともResident’s ridgeTBRに接触するものである。固定部130は、本体部110と接続された状態において、切削方向Aにおいてドリルガイド部200と対向する。固定部130は、合成樹脂製、または金属製であり、接触面131と、挿入穴132と、ネジ穴133と、切欠134を有する。本実施形態における固定部130は、図7に示すように、切削方向Aから見た場合に、楕円形状である。つまり、固定部130は、切削方向Aから見た場合に、外周が楕円に形成されている。従って、本体部110の他方の端部112が接続されている端部および反対側の端部が曲面で構成されており、靱帯再建手術の際に、固定部を切開箇所から体内に挿入する場合、および固定部を体内から抜去する場合において、エッジ部位がないので、体内の組織を損傷することを抑制することができる。 The fixing portion 130 contacts the bone. The fixing portion 130 in the present embodiment is in contact with the femoral lateral condyle TBO of the femur TB, particularly, at least the Resident's ridge TBR. The fixed part 130 faces the drill guide part 200 in the cutting direction A in a state of being connected to the main body part 110. The fixing portion 130 is made of synthetic resin or metal and has a contact surface 131, an insertion hole 132, a screw hole 133, and a notch 134. As shown in FIG. 7, the fixing portion 130 in this embodiment has an elliptical shape when viewed from the cutting direction A. That is, when viewed from the cutting direction A, the fixed portion 130 has an elliptical outer periphery. Therefore, when the other end 112 of the main body 110 is connected to the other end and the opposite end is formed into a curved surface, and the fixed part is inserted into the body from the incision site during ligament reconstruction surgery. When removing the fixed part and the fixing part from the body, since there is no edge part, it is possible to suppress damage to the tissue in the body.
 接触面131は、骨に応じた部位である。接触面131は、大腿骨TBの大腿骨外側顆TBOの表面TBS(TBS1およびTBS2を含む)の形状に対応、すなわち追従して形成されている。本実施形態における接触面131は、大腿骨外側顆TBOの表面TBSである大腿骨内側顆側表面TBS2のうち、少なくともResident’s ridgeTBTに対応する領域を含む表面の形状に対応、すなわち追従して形成されている。 The contact surface 131 is a part corresponding to the bone. The contact surface 131 is formed corresponding to, ie, following, the shape of the surface TBS (including TBS1 and TBS2) of the femoral lateral condyle TBO of the femur TB. The contact surface 131 in this embodiment is formed corresponding to, ie, following, the shape of the surface including at least a region corresponding to the Resident's ridge TBT in the medial femoral condyle surface TBS2 that is the surface TBS of the lateral femoral condyle TBO. ing.
 挿入穴132は、本体部110の他方の端部112が挿入されるものである。挿入穴132は、挿入方向と直交する平面における空間形状が矩形状に形成されている。ここで、本体部110の他方の端部112および固定部130の挿入穴132は、回転規制構造RRSを構成する。本実施形態における回転規制構造RRSは、挿入穴132の空間形状が矩形状に形成され、他方の端部112の断面形状が矩形状に形成されていることで、本体部110に対して固定部130が本体部110の延在方向周りに回転することを規制する。 The other end 112 of the main body 110 is inserted into the insertion hole 132. The insertion hole 132 has a rectangular space shape in a plane orthogonal to the insertion direction. Here, the other end 112 of the main body 110 and the insertion hole 132 of the fixed portion 130 form a rotation restriction structure RRS. In the rotation restricting structure RRS according to the present embodiment, the insertion hole 132 is formed in a rectangular space shape, and the other end 112 is formed in a rectangular cross-sectional shape, so that the fixed portion is fixed to the main body 110. 130 is restricted from rotating around the extending direction of the main body 110.
 ネジ穴133は、挿入穴132まで連通するものであり、ネジ140が螺合するものである。本実施形態におけるネジ穴133は、固定部130において挿入穴132の延在方向に複数箇所形成されており、外面と挿入穴132を構成する内面まで貫通して形成されている。 The screw hole 133 communicates with the insertion hole 132, and the screw 140 is screwed into the screw hole 133. The screw holes 133 in the present embodiment are formed at a plurality of positions in the fixing portion 130 in the extending direction of the insertion hole 132, and are formed so as to penetrate to the outer surface and the inner surface forming the insertion hole 132.
 切欠134は、ドリル200が挿入されるものである。切欠134は、固定部130が本体部110の他方の端部112と接続された状態において、ドリルガイド部120に案内されたドリル200が切削方向Aに移動し、骨孔TBHを形成したのち、骨孔TBHから切削方向Aに突出したドリル200が挿入するように形成されている。切欠134は、固定部134の外面のうち、切削方向と直交する方向に開口している。つまり、固定部130は、ドリル200がドリルガイド部120に案内され、かつ骨孔TBHに挿入された状態で、外科手術用デバイス100を医師が操作することで、大腿骨TBと接触している場合に、大腿骨TBから離すことができる。 The notch 134 is for inserting the drill 200. After the drill 200 guided by the drill guide portion 120 moves in the cutting direction A to form the bone hole TBH in the state where the fixed portion 130 is connected to the other end portion 112 of the main body portion 110, the notch 134 is formed. A drill 200 protruding in the cutting direction A is inserted from the bone hole TBH. The notch 134 is open on the outer surface of the fixed portion 134 in a direction orthogonal to the cutting direction. That is, the fixing part 130 is in contact with the femur TB by the doctor operating the surgical device 100 with the drill 200 guided by the drill guide part 120 and inserted into the bone hole TBH. In some cases, it can be separated from the femur TB.
 ネジ140は、固定部130を本体部110に対して固定するものである。ネジ140は、各ネジ穴133にそれぞれ対応するものであり、ネジ穴133に螺合した状態で、先端部が挿入穴132に突出する長さに形成されている。ネジ140は、ネジ穴133に螺合し、先端部が挿入穴132に挿入された本体部110の他方の端部112と接触する。つまり、固定部130は、ネジ140により他方の端部112が挿入穴132内で固定部130に固定されることで、他方の端部112に接続されている。また、固定部130は、ネジ140の螺合を緩めることで、他方の端部112に対する接続が解除される。従って、固定部130は、本体部110に対して着脱可能(着脱自在)である。 The screw 140 fixes the fixing unit 130 to the main body 110. The screw 140 corresponds to each screw hole 133, and is formed in such a length that the tip portion thereof protrudes into the insertion hole 132 in a state of being screwed into the screw hole 133. The screw 140 is screwed into the screw hole 133, and the tip portion thereof comes into contact with the other end portion 112 of the main body 110 inserted into the insertion hole 132. That is, the fixing portion 130 is connected to the other end portion 112 by fixing the other end portion 112 to the fixing portion 130 in the insertion hole 132 with the screw 140. Further, the fixing portion 130 is disconnected from the other end 112 by loosening the screw 140. Therefore, the fixed portion 130 is attachable to and detachable from the main body 110 (detachable).
 生成部204は、骨に応じた外形データに基づいてモデルデータを決定する。本実施形態における生成部204は、骨に応じた外形データ、骨孔データおよびResident’s ridge位置データに基づいて、モデルデータを決定する。生成部204は、モデルデータにおいて接触面131に対応する接触面データを、骨に応じた外形データおよびResident’s ridge位置データに基づいて、接触面131が大腿骨内側顆側表面TBS2のうち、少なくともResident’s ridgeTBTに対応する領域を含む表面を転写する形状となるデータに決定する。 The generation unit 204 determines model data based on the outline data according to the bone. The generation unit 204 in this embodiment determines model data based on the outer shape data, bone hole data, and Resident's ridge position data corresponding to the bone. The generation unit 204 uses the contact surface data corresponding to the contact surface 131 in the model data, based on the outer shape data and the Resident's ridge position data corresponding to the bone, to determine that the contact surface 131 is at least the resident's medial condyle surface TBS2. The data is determined to have a shape in which the surface including the area corresponding to the ridge TBT is transferred.
 次に、生成部204は、モデルデータを、本体部110の他方の端部112に接続され、ドリルガイド部120が本体部110の一方の端部111と接続された状態で、固定部130が切削方向Aにおいてドリルガイド部120と対向するように決定する。 Next, the generation unit 204 connects the model data to the other end 112 of the main body 110, the drill guide 120 to one end 111 of the main body 110, and the fixed unit 130. It is determined so as to face the drill guide 120 in the cutting direction A.
 次に、生成部204は、骨孔データに基づいて、切欠データを決定する。生成部204は、骨孔TBHから突出したドリル200が固定部130に非接触で挿入できるように決定する。 Next, the generation unit 204 determines the cutout data based on the bone hole data. The generation unit 204 determines that the drill 200 protruding from the bone hole TBH can be inserted into the fixing unit 130 without contact.
 このように、生成部204は、外科手術用デバイス100の固定部130の外形データを含む情報をモデルデータとして生成する。生成部204は、生成したモデルデータを出力部205へ送る。 In this way, the generation unit 204 generates information including the outer shape data of the fixed unit 130 of the surgical device 100 as model data. The generation unit 204 sends the generated model data to the output unit 205.
 また、生成部204は、モデルデータおよび画像データが同時に表示された画面上でモデルデータを修正する操作を受け付け、受け付けた操作に応じてモデルデータを修正する。この場合、出力部205は、モデルデータおよび画像データを同時に表示させる。例えば、出力部205は、図5に示した画像40上に、図6に示す外科手術用デバイス100の固定部130に対応するモデルデータを表示させる。 The generation unit 204 also accepts an operation for modifying the model data on the screen on which the model data and the image data are displayed at the same time, and modifies the model data according to the accepted operation. In this case, the output unit 205 displays the model data and the image data at the same time. For example, the output unit 205 displays the model data corresponding to the fixed unit 130 of the surgical device 100 shown in FIG. 6 on the image 40 shown in FIG.
 そして、操作者は、表示装置26に表示されたモデルデータおよび画像データを参照して、モデルデータを修正する操作を、入力装置25を用いて行う。ユーザインタフェース部202は、操作者からモデルデータを修正する操作を受け付けると、受け付けた操作を生成部204に通知する。生成部204は、ユーザインタフェース部202が受け付けた操作に応じた修正をモデルデータに行う。これにより、操作者は、大腿骨外側顆TBOの表面TBSの形状を画面上で確認しながら、モデルデータを修正することができる。 Then, the operator refers to the model data and the image data displayed on the display device 26 and performs an operation of correcting the model data using the input device 25. When the user interface unit 202 receives an operation of correcting model data from the operator, the user interface unit 202 notifies the generation unit 204 of the received operation. The generation unit 204 corrects the model data according to the operation received by the user interface unit 202. Thereby, the operator can correct the model data while confirming the shape of the surface TBS of the lateral femoral condyle TBO on the screen.
 出力部205は、生成部204により生成されたモデルデータを出力する。例えば、出力部205は、生成部204により生成されたモデルデータを記憶部201に格納する。また、出力部205は、モデルデータを造形装置30へ出力する。 The output unit 205 outputs the model data generated by the generation unit 204. For example, the output unit 205 stores the model data generated by the generation unit 204 in the storage unit 201. The output unit 205 also outputs the model data to the modeling apparatus 30.
 図3の説明に戻る。出力部205は、生成部204により生成されたモデルデータを造形装置30へ出力する。あるいは、出力部205は、生成部204が操作者の指示操作に応じて修正したモデルデータを造形装置30へ出力する。なお、出力部205は、生成部204が生成したモデルデータや生成部204が修正したモデルデータの出力要求を操作者から受け付けた後に、造形装置30への出力処理を行う。造形装置30の造形部31は、情報処理装置20から受け取ったモデルデータを用いて、外科手術用デバイス100を造形する。なお、造形装置30が造形した外科手術用デバイス100は、必要に応じて、操作者により形状が修正される。 Return to the explanation of FIG. The output unit 205 outputs the model data generated by the generation unit 204 to the modeling apparatus 30. Alternatively, the output unit 205 outputs the model data corrected by the generation unit 204 according to the instruction operation of the operator to the modeling apparatus 30. The output unit 205 performs output processing to the modeling apparatus 30 after receiving an output request for the model data generated by the generation unit 204 and the model data corrected by the generation unit 204 from the operator. The modeling unit 31 of the modeling apparatus 30 models the surgical operation device 100 using the model data received from the information processing apparatus 20. The shape of the surgical device 100 shaped by the modeling apparatus 30 is corrected by the operator as necessary.
 図9は、本実施形態の情報処理装置20の動作例を示すフローチャートである。なお、各ステップの具体的な内容は上述した通りであるので、詳細な説明は適宜に省略する。 FIG. 9 is a flowchart showing an operation example of the information processing apparatus 20 of this embodiment. Since the specific contents of each step are as described above, detailed description will be appropriately omitted.
 図9に示すように、ユーザインタフェース部202は、画像データの取得要求を受け付ける(ステップS101)。次に、ユーザインタフェース部202が画像データの取得要求を受け付けると、取得部203は、画像データを取得する(ステップS102)。 As shown in FIG. 9, the user interface unit 202 receives an image data acquisition request (step S101). Next, when the user interface unit 202 receives an image data acquisition request, the acquisition unit 203 acquires image data (step S102).
 次に、取得部203は、データベースを参照して、画像データから骨外形情報を取得する(ステップS103)。次に、生成部204は、取得部203により取得された骨外形情報に基づいて、モデルデータ生成処理を実行する(ステップS104)。 Next, the acquisition unit 203 refers to the database and acquires the bone outline information from the image data (step S103). Next, the generation unit 204 executes model data generation processing based on the bone outer shape information acquired by the acquisition unit 203 (step S104).
 次に、表示装置26は、ユーザインタフェース部202の制御により、モデルデータを表示する(ステップS105)。ステップS105において、表示装置26は、モデルデータとともに、画像データ(骨外形情報を含む)を表示する。 Next, the display device 26 displays the model data under the control of the user interface unit 202 (step S105). In step S105, the display device 26 displays the image data (including the bone outline information) together with the model data.
 次に、ユーザインタフェース部202は、モデルデータの出力要求を受け付けたか否かを判定する(ステップS106)。次に、出力部205は、モデルデータの出力要求を受け付けた場合(ステップS106、Yes)、造形装置30にモデルデータを出力し(ステップS107)、処理を終了する。 Next, the user interface unit 202 determines whether or not a model data output request has been received (step S106). Next, when the output unit 205 receives the request to output the model data (Yes in step S106), the output unit 205 outputs the model data to the modeling apparatus 30 (step S107) and ends the process.
 また、ユーザインタフェース部202は、モデルデータの出力要求を受け付けない場合(ステップS106、No)、モデルデータの修正要求を受け付けたか否かを判定する(ステップS108)。次に、生成部204は、モデルデータの修正要求を受け付けた場合(ステップS108、Yes)、モデルデータの修正要求に応じてモデルデータを修正する(ステップS109)。 When the model data output request is not accepted (step S106, No), the user interface unit 202 determines whether or not the model data correction request is accepted (step S108). Next, when the generation unit 204 receives the model data correction request (Yes in step S108), the generation unit 204 corrects the model data according to the model data correction request (step S109).
 また、ユーザインタフェース部202は、モデルデータの修正要求を受け付けない場合(ステップS108、No)、あるいは、ステップS109の後、ステップS106に戻って、モデルデータの出力要求を受け付けたか否かを判定する。次に、出力部205は、ステップS109の後に、ステップS106においてモデルデータの出力要求を受け付けた場合(ステップS106、Yes)、造形装置30に修正後のモデルデータを出力し(ステップS107)、処理を終了する。 If the model data correction request is not accepted (No in step S108) or after step S109, the process returns to step S106 to determine whether or not the model data output request is accepted. .. Next, when the output unit 205 receives the model data output request in step S106 after step S109 (Yes in step S106), the output unit 205 outputs the corrected model data to the modeling apparatus 30 (step S107), and the processing is performed. To finish.
 なお、図9に示した処理手順はあくまで一例であり、処理内容に矛盾が生じない範囲で適宜順番を入れ替えて実行可能である。また、各処理手順は、必ずしも実行されなくても良い。 Note that the processing procedure shown in FIG. 9 is merely an example, and can be executed by appropriately changing the order as long as the processing content does not conflict. Further, each processing procedure does not necessarily have to be executed.
 このように、実施形態にかかる情報処理装置20は、被検体の骨を含む領域が撮像された画像データから、骨の外形データを含む骨形状情報を取得する。また、情報処理装置20は、骨に応じた外形データを少なくとも有する外科手術用デバイス100の固定部130のモデルデータを、骨形状情報に基づいて生成する。実施形態にかかる情報処理装置20は、靱帯再建手術において、生成されるモデルデータに対応する固定部130を備える外科手術用デバイス100を用いることで、骨に対するドリルの位置決めを精度良く行うことができる。 As described above, the information processing apparatus 20 according to the embodiment acquires the bone shape information including the bone outer shape data from the image data in which the region including the bone of the subject is imaged. Further, the information processing apparatus 20 generates model data of the fixing unit 130 of the surgical device 100 having at least outer shape data corresponding to the bone based on the bone shape information. In the ligament reconstruction operation, the information processing apparatus 20 according to the embodiment can accurately position the drill with respect to the bone by using the surgical device 100 including the fixing unit 130 corresponding to the generated model data. ..
 このように、造形装置30は、生成部204により生成されたモデルデータに基づいて、外科手術用デバイス100の固定部130を造形する。この結果、外科手術用デバイス100の固定部130は、被検体の骨に応じた形状を有する。ここで、外科手術用デバイス100の固定部130形状は、少なくとも被検体の骨の形状に基づいて決定されたものである。 In this way, the modeling apparatus 30 models the fixing unit 130 of the surgical device 100 based on the model data generated by the generating unit 204. As a result, the fixing portion 130 of the surgical device 100 has a shape corresponding to the bone of the subject. Here, the shape of the fixed part 130 of the surgical operation device 100 is determined based on at least the shape of the bone of the subject.
 次に、造形された固定部130を備える外科手術用デバイス100を用いた靱帯再建手術について説明する。以下、外科手術用デバイス100が、再建靱帯を挿入する骨孔TBHを形成する靱帯再建手術について説明する。 Next, a ligament reconstruction operation using the surgical device 100 including the shaped fixing portion 130 will be described. Hereinafter, the ligament reconstruction operation in which the surgical device 100 forms the bone hole TBH into which the reconstruction ligament is inserted will be described.
 図10~図12は、実施形態にかかる靱帯再建手術について説明するための図である。図10には、大腿骨に対して外科手術用デバイスを固定する場合を例示する。図11には、骨孔を切削する場合を例示する。図12には、骨孔に再建靱帯を挿入する場合を例示する。 10 to 12 are views for explaining a ligament reconstruction operation according to the embodiment. FIG. 10 illustrates the case of fixing the surgical device to the femur. FIG. 11 illustrates a case of cutting a bone hole. FIG. 12 illustrates the case of inserting the reconstructed ligament into the bone hole.
 まず、外科手術用デバイス100を用意する。ここでは、図10に示すように、被検体の骨に応じた形状の固定部130を本体部110の他方の端部112に接続し、ドリルガイド部120を本体部110の一方の端部111に接続する。また、本実施形態では、ドリル200をドリルガイド部200のドリル案内穴122に予め挿入する。 First, prepare the surgical device 100. Here, as shown in FIG. 10, the fixing portion 130 having a shape corresponding to the bone of the subject is connected to the other end 112 of the main body 110, and the drill guide 120 is connected to the one end 111 of the main body 110. Connect to. Further, in the present embodiment, the drill 200 is inserted into the drill guide hole 122 of the drill guide part 200 in advance.
 次に、医師は、被検体の膝部の表皮および筋肉を切開し、少なくとも大腿骨TBの大腿骨外側顆TBOの一部を露出させる。次に、医師は、大腿骨外側顆TBOに固定部130を押し当てて接触させる。ここでは、固定部130の接触面131は、大腿骨内側顆側表面TBS2のうち少なくともResident’s ridgeTBTに対応する領域を含む表面と接触する。このとき、接触面131が少なくともResident’s ridgeTBTに対応する領域を含む表面の形状に追従しているので、少なくともResident’s ridgeTBTに対応する領域を含む表面と確実に接触する。 Next, the doctor incises the epidermis and muscles of the knee of the subject to expose at least a part of the femoral lateral condyle TBO of the femur TB. Next, the doctor presses the fixing portion 130 against the femoral lateral condyle TBO to bring it into contact. Here, the contact surface 131 of the fixing portion 130 contacts the surface of the medial femoral condyle surface TBS2 including at least a region corresponding to the Resident's ridge TBT. At this time, since the contact surface 131 follows the shape of the surface including at least the region corresponding to the Resident's ridge TBT, it surely contacts the surface including at least the region corresponding to the Resident's ridge TBT.
 次に、医師は、固定部130が大腿骨外側顆TBOに接触した接触状態を維持しつつ、ドリル200を切削方向Aに向かって移動させる。ここで、ドリル200が大腿骨外側顆TBOの体表面側表面TBS1に到達すると、大腿骨TBの切削が開始される。さらに、ドリル200が切削方向Aに移動し、ドリル200が大腿骨外側顆TBOの大腿骨内側顆側表面TBS2に到達すると、図11に示すように、骨孔TBHが大腿骨TBに形成される。なお、ドリル200が切削方向Aに移動し、骨孔TBHから切削方向Aに突出しても、ドリル200は切欠134に進入することとなる。従って、固定部130は、骨孔TBHから切削方向Aに突出したドリル200により切削されることがない。これにより、靱帯再建手術において、固定部130の切削粉などが発生することが抑制される。 Next, the doctor moves the drill 200 in the cutting direction A while maintaining the contact state where the fixing portion 130 is in contact with the femoral lateral condyle TBO. Here, when the drill 200 reaches the body surface side surface TBS1 of the femoral lateral condyle TBO, cutting of the femur TB is started. Further, when the drill 200 moves in the cutting direction A and the drill 200 reaches the femoral medial condyle surface TBS2 of the femoral lateral condyle TBO, as shown in FIG. 11, a bone hole TBH is formed in the femur TB. .. Even if the drill 200 moves in the cutting direction A and projects from the bone hole TBH in the cutting direction A, the drill 200 enters the notch 134. Therefore, the fixed part 130 is not cut by the drill 200 protruding in the cutting direction A from the bone hole TBH. As a result, it is possible to suppress the generation of cutting powder or the like in the fixed portion 130 during the ligament reconstruction operation.
 次に、医師は、ドリル200が骨孔TBHに挿入された状態で、固定部130を切開箇所から外部に取り出す。次に、医師は、図12に示すように、ドリル200の先端に再建靱帯300を固定し、ドリルガイド部120に対してドリル200を切削方向と反対方向に移動させ、ドリル200を骨孔TBHから体表面側表面TBS1側に引き抜く。このとき、ドリル200の先端に再建靱帯300が固定されているので、骨孔TBHに対して再建靱帯300が大腿骨内側顆側表面TBS2側から挿入される。再建靱帯300は、一方の端部が体表面側表面TBS1から突出する。次に、医師は、骨孔TBHから突出した再建靱帯300を大腿骨外側顆TBOの体表面側表面TBS1において固定する。 Next, the doctor takes out the fixing portion 130 from the incision site to the outside with the drill 200 inserted in the bone hole TBH. Next, as shown in FIG. 12, the doctor fixes the reconstructed ligament 300 to the tip of the drill 200, moves the drill 200 in the direction opposite to the cutting direction with respect to the drill guide section 120, and moves the drill 200 to the bone hole TBH. From the body surface side to the surface TBS1 side. At this time, since the reconstructed ligament 300 is fixed to the tip of the drill 200, the reconstructed ligament 300 is inserted into the bone hole TBH from the medial condyle surface TBS2 side of the femur. One end of the reconstructed ligament 300 projects from the body surface side surface TBS1. Next, the doctor fixes the reconstructed ligament 300 protruding from the bone hole TBH on the body surface side surface TBS1 of the lateral femoral condyle TBO.
 次に、医師は、脛骨に対しても同様に、ドリル200により骨孔を形成し、ドリル200の先端に再建靱帯300の他方の端部を固定し、ドリル200を骨孔から引き抜き、他方の端部を脛骨の体表面側表面から突出させる。次に、医師は、脛骨の骨孔から突出した再建靱帯300を脛骨の体表面側表面において固定する。 Next, the doctor similarly forms a bone hole in the tibia with the drill 200, fixes the other end of the reconstructed ligament 300 to the tip of the drill 200, extracts the drill 200 from the bone hole, and The ends are projected from the body surface side surface of the tibia. Next, the doctor fixes the reconstructed ligament 300 protruding from the bone hole of the tibia on the body surface side surface of the tibia.
 次に、医師は、再建靱帯300が大腿骨TBおよび脛骨に固定された状態で、被検体の膝部の表皮および筋肉を修復し、靱帯再建手術を完了する。 Next, the doctor repairs the epidermis and muscles of the subject's knee with the reconstructed ligament 300 fixed to the femur TB and tibia, and completes the ligament reconstruction operation.
 以上説明した実施形態によれば、靱帯再建手術において、骨に対するドリルの位置決めを精度良く行うことができる外科手術用デバイス、情報処理装置、システム、情報処理方法、およびプログラムを提供することができる。 According to the embodiments described above, it is possible to provide a surgical device, an information processing apparatus, a system, an information processing method, and a program capable of accurately positioning a drill with respect to a bone in a ligament reconstruction operation.
 本発明に係る実施形態について説明したが、本発明は、上述の実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上述の実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除しても良い。 Although the embodiments according to the present invention have been described, the present invention is not limited to the above-described embodiments as they are, and constituent elements can be modified and embodied at the stage of implementation without departing from the scope of the invention. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments. For example, some components may be deleted from all the components shown in the embodiment.
 〔変形例〕
 本実施形態における外科手術用デバイス100の固定部130は、切削方向Aから見た場合に、楕円形状であるがこれに限定されるものではない。固定部130は、少なくとも本体部110の他方の端部112が接続されている端部と反対側の端部が曲面で構成されていればよい。図13~図15は、外科手術用デバイスの固定部の変形例を示す図である。固定部130は、図13に示すように、切削方向から見た場合に、ラグビーボール形状であってもよく、図14に示すように、切削方向から見た場合に、タマゴ形状であってもよく、図15に示すように、切削方向から見た場合に、砲弾形状であってもよい。
[Modification]
The fixing portion 130 of the surgical device 100 according to the present embodiment has an elliptical shape when viewed from the cutting direction A, but is not limited to this. At least the end of the fixing portion 130, which is opposite to the end to which the other end 112 of the main body 110 is connected, is formed of a curved surface. 13 to 15 are views showing modified examples of the fixing portion of the surgical operation device. The fixing portion 130 may have a rugby ball shape when viewed from the cutting direction as shown in FIG. 13, or may have an egg shape when viewed from the cutting direction as shown in FIG. Of course, as shown in FIG. 15, it may have a shell shape when viewed from the cutting direction.
 上述の実施形態は、以上の変形例と任意に組み合わせることができるし、以上の変形例同士を任意に組み合わせても良い。 The above-described embodiment can be arbitrarily combined with the above modified examples, and the above modified examples may be arbitrarily combined with each other.
 また、上述した実施形態の情報処理装置20で実行されるプログラムは、インストール可能な形式または実行可能な形式のファイルでCD-ROM、フレキシブルディスク(FD)、CD-R、DVD、USB(Universal Serial Bus)等のコンピュータで読み取り可能な記録媒体に記録して提供するように構成しても良いし、インターネット等のネットワーク経由で提供または配布するように構成しても良い。また、各種プログラムを、例えばROM等の不揮発性の記憶媒体に予め組み込んで提供するように構成しても良い。 Further, the program executed by the information processing apparatus 20 of the above-described embodiment is a file in an installable format or an executable format, which is a CD-ROM, a flexible disk (FD), a CD-R, a DVD, a USB (Universal Serial). It may be configured to be provided by being recorded in a computer-readable recording medium such as Bus), or may be provided or distributed via a network such as the Internet. Further, various programs may be configured to be provided by being incorporated in advance in a non-volatile storage medium such as a ROM.
 また、本実施形態における外科手術用デバイス100は、大腿骨TBを貫通する骨孔TBHを1つ形成する場合について説明したが、大腿骨TBを貫通する骨孔TBHを複数形成してもよい。 Further, although the surgical device 100 according to the present embodiment has been described with respect to the case where one bone hole TBH penetrating the femur TB is formed, a plurality of bone holes TBH penetrating the femur TB may be formed.
 また、本実施形態における外科手術用デバイス100の固定部130は、大腿骨TBに接触するものであるが、脛骨、上腕骨又は尺骨に接触するものであってもよい。この場合、固定部130の接触面131は、脛骨、上腕骨又は尺骨の表面の形状に対応、すなわち追従して形成される。 The fixing portion 130 of the surgical device 100 according to the present embodiment is in contact with the femur TB, but may be in contact with the tibia, the humerus, or the ulna. In this case, the contact surface 131 of the fixing portion 130 is formed corresponding to, ie, following the shape of the surface of the tibia, humerus or ulna.
 また、本実施形態における外科手術用デバイス100の回転規制構造RRSは、他方の端部112および挿入穴132の形状に基づいて実現されるが、これに限定されるものではない。例えば、ネジ140の先端が平面であり、ネジ140がネジ穴133に螺合し、他方の端部112に接触する際に他方の端部の平面と接触することで、回転規制構造RRSを実現してもよい。また、ネジ140がネジ穴133に螺合し、他方の端部112に接触する際に、他方の端部に形成されたネジ挿入穴に挿入された状態で、他方の端部112と接触することで、回転規制構造RRSを実現してもよい。 The rotation restricting structure RRS of the surgical device 100 according to this embodiment is realized based on the shapes of the other end 112 and the insertion hole 132, but is not limited to this. For example, when the tip of the screw 140 is a flat surface and the screw 140 is screwed into the screw hole 133 and comes into contact with the flat surface of the other end 112 when it comes into contact with the other end 112, the rotation restriction structure RRS is realized. You may. Further, when the screw 140 is screwed into the screw hole 133 and comes into contact with the other end 112, the screw 140 comes into contact with the other end 112 while being inserted into the screw insertion hole formed at the other end. Thus, the rotation restriction structure RRS may be realized.
 また、本実施形態におけるモデルデータは、固定部130のみに対応するものであるが、これに限定されるものではなく、本体部110、ドリルガイド部120および固定部130対応するものでもよい。 Further, the model data in the present embodiment corresponds to only the fixed part 130, but is not limited to this, and may correspond to the main body part 110, the drill guide part 120 and the fixed part 130.

Claims (17)

  1.  靱帯再建手術において、被検体の骨を貫通する骨孔を形成するドリルの位置決めを行う外科手術用デバイスであって、
     本体部と、
     前記本体部の一方の端部に接続され、前記ドリルを前記ドリルによる前記骨の切削方向に移動自在に案内するドリルガイド部と、
     前記本体部の他方の端部に接続され、前記骨に接触し、かつ前記骨に応じた部位を有する固定部と、
     を備え、
     前記固定部は、前記本体部に対して着脱可能である、
     外科手術用デバイス。
    A surgical device for positioning a drill that forms a bone hole that penetrates a bone of a subject in ligament reconstruction surgery,
    Body part,
    A drill guide portion connected to one end of the main body portion and movably guiding the drill in a cutting direction of the bone by the drill,
    A fixing portion connected to the other end of the main body portion, contacting the bone, and having a portion corresponding to the bone,
    Equipped with
    The fixed portion is attachable to and detachable from the main body portion,
    Surgical device.
  2.  前記固定部は、
     切削方向において前記ドリルガイド部と対向するものであり、
     前記骨孔から切削方向に突出した前記ドリルが挿入される切欠が形成される、
     請求項1に記載の外科手術用デバイス。
    The fixed portion is
    Which is opposed to the drill guide portion in the cutting direction,
    A notch is formed into which the drill protruding from the bone hole in the cutting direction is inserted.
    The surgical device according to claim 1.
  3.  前記本体部に対して前記固定部の回転を規制する回転規制構造を有する、
     請求項1または2に記載の外科手術用デバイス。
    A rotation restricting structure for restricting rotation of the fixed part with respect to the main body part,
    The surgical device according to claim 1 or 2.
  4.  前記固定部を前記本体部に対して固定するネジを有し、
     前記固定部は、
     前記本体部の他方の端部が挿入される挿入穴および前記挿入穴まで連通するネジ穴が形成されており、
     前記ネジは、前記ネジ穴に螺合し、先端部が前記挿入穴に挿入された本体部の他方の端部と接触する
     請求項1~3のいずれか1項に記載の外科手術用デバイス。
    A screw for fixing the fixing portion to the main body portion,
    The fixed portion is
    An insertion hole into which the other end of the main body portion is inserted and a screw hole communicating with the insertion hole are formed,
    The surgical device according to any one of claims 1 to 3, wherein the screw is screwed into the screw hole, and a tip portion of the screw is in contact with the other end portion of the body portion inserted into the insertion hole.
  5.  前記固定部は、切削方向から見た場合に、楕円形状、ラグビーボール形状、タマゴ形状、砲弾形状のいずれかである、
     請求項1~4のいずれか1項に記載の外科手術用デバイス。
    The fixing portion is any of an elliptical shape, a rugby ball shape, an egg shape, and a shell shape when viewed from the cutting direction,
    The surgical device according to any one of claims 1 to 4.
  6.  前記骨は、大腿骨または脛骨である
     請求項1~5のいずれか1項に記載の外科手術用デバイス。
    The surgical device according to any one of claims 1 to 5, wherein the bone is a femur or a tibia.
  7.  前記骨は、大腿骨であり、
     前記固定部は、大腿骨外側顆に接触するものであり、
     前記骨に応じた部位は、前記大腿骨外側顆の表面の形状に対応するものである、
     請求項6に記載の外科手術用デバイス。
    The bone is a femur,
    The fixing portion is to contact the lateral condyle of the femur,
    The region corresponding to the bone corresponds to the shape of the surface of the lateral condyle of the femur.
    The surgical device according to claim 6.
  8.  前記固定部は、前記大腿骨外側顆のResident’s ridgeに少なくとも接触するものであり、
     前記骨に応じた部位は、前記大腿骨外側顆の表面のうち、少なくとも前記Resident’s ridgeに対応する領域を含む表面の形状に対応するものである、
     請求項7に記載の外科手術用デバイス。
    The fixing portion is at least in contact with the Resident's ridge of the femoral lateral condyle,
    The region corresponding to the bone corresponds to the shape of the surface of the lateral condyle of the femur including at least a region corresponding to the Resident's ridge,
    The surgical device according to claim 7.
  9.  前記ドリルガイド部は、前記本体部に対して相対移動自在に、前記本体部に接続されており、
     前記固定部と前記ドリルガイド部との間隔が変更可能である
     請求項1~8のいずれか1項に記載の外科手術用デバイス。
    The drill guide part is connected to the body part so as to be movable relative to the body part.
    The surgical device according to any one of claims 1 to 8, wherein a distance between the fixed portion and the drill guide portion can be changed.
  10.  靱帯再建手術において、被検体の骨を貫通する骨孔を形成するドリルの位置決めを行う外科手術用デバイスの固定部のモデルデータを少なくとも生成する情報処理装置であって、
     前記被検体の前記骨を含む領域が撮像された画像データに基づいて、前記骨の外形データを含む骨形状情報を取得する取得部と、
     前記骨に接触し、かつ前記骨に応じた部位を有する前記モデルデータを、前記骨形状情報に基づいて生成する生成部と、
     を備える、情報処理装置。
    In ligament reconstruction surgery, an information processing apparatus for generating at least model data of a fixed part of a surgical device for positioning a drill that forms a bone hole penetrating a bone of a subject,
    An acquisition unit for acquiring bone shape information including outer shape data of the bone, based on image data obtained by imaging a region including the bone of the subject.
    A generation unit that generates the model data that has contact with the bone and that has a portion corresponding to the bone, based on the bone shape information,
    An information processing device comprising:
  11.  前記骨形状情報は、大腿骨または脛骨の外形データを含むものであり、
     前記モデルデータは、前記大腿骨または脛骨に接触し、かつ前記大腿骨または脛骨に応じた部位を有する前記固定部に対応するものである、
     請求項10に記載の情報処理装置。
    The bone shape information includes outline data of the femur or tibia,
    The model data corresponds to the fixing portion that is in contact with the femur or the tibia and has a portion corresponding to the femur or the tibia.
    The information processing device according to claim 10.
  12.  前記取得部は、前記大腿骨における大腿骨外側顆のResident’s ridgeに対応するResident’s ridge位置情報を含む前記骨形状情報を取得するものであり、
     前記生成部は、前記大腿骨外側顆の表面のうち、少なくとも前記Resident’s ridgeに対応する領域を含む表面の形状に対応する前記固定部の前記モデルデータを前記骨形状情報に基づいて生成する
     請求項11に記載の情報処理装置。
    The acquisition unit is for acquiring the bone shape information including Resident's ridge position information corresponding to Resident's ridge of the femoral lateral condyle in the femur,
    The generation unit generates, based on the bone shape information, the model data of the fixing unit that corresponds to the shape of the surface of the lateral condyle of the femur including at least a region corresponding to the Resident's ridge. 11. The information processing device according to item 11.
  13.  前記生成部により生成され前記モデルデータを造形装置へ出力する出力部
     をさらに備える、
     請求項10~12のいずれか1項に記載の情報処理装置。
    An output unit configured to output the model data generated by the generation unit to a modeling apparatus;
    The information processing device according to any one of claims 10 to 12.
  14.  前記生成部により生成された前記モデルデータおよび前記骨形状情報を同時に表示する表示部と、
     前記表示部に表示された前記モデルデータおよび前記骨形状情報を参照するユーザーから、前記モデルデータを修正する操作を受け付ける受付部と、
     をさらに備え、
     前記生成部は、前記受付部が受け付けた前記操作に応じて修正を前記モデルデータに行う、
     請求項10~13のいずれか1項に記載の情報処理装置。
    A display unit that simultaneously displays the model data and the bone shape information generated by the generation unit,
    From a user who refers to the model data and the bone shape information displayed on the display unit, a receiving unit that receives an operation of correcting the model data,
    Further equipped with,
    The generation unit corrects the model data according to the operation received by the reception unit,
    The information processing apparatus according to any one of claims 10 to 13.
  15.  情報処理装置と造形装置とを少なくとも備え、靱帯再建手術において、被検体の骨を貫通する骨孔を形成するドリルの位置決めを行う外科手術用デバイスの少なくとも固定部を造形するためのシステムであって、
     前記被検体の前記骨を含む領域が撮像された画像データに基づいて、前記骨の外形データを含む骨形状情報を取得する取得部と、
     前記骨に接触し、かつ前記骨に応じた部位を有するモデルデータを、前記骨形状情報に基づいて生成する生成部と、
     前記モデルデータに基づいて、少なくとも前記固定部を造形する造形装置と、
     を備える、システム。
    A system for forming at least a fixed part of a surgical device for positioning a drill that forms a bone hole penetrating a bone of a subject in a ligament reconstruction operation, the system including at least an information processing device and a modeling device. ,
    An acquisition unit that acquires bone shape information including the outer shape data of the bone, based on image data obtained by capturing a region including the bone of the subject.
    A generation unit that generates model data that is in contact with the bone and has a portion corresponding to the bone, based on the bone shape information,
    A modeling device that models at least the fixed portion based on the model data,
    A system comprising.
  16.  靱帯再建手術において、被検体の骨に対して貫通した骨孔を形成するドリルの位置決めを行う外科手術用デバイスの少なくとも固定部のモデルデータを生成するための情報処理方法であって、
     前記被検体の前記骨を含む領域が撮像された画像データに基づいて、前記骨の外形データを含む骨形状情報を取得する取得ステップと、
     前記骨に接触し、かつ前記骨に応じた部位を有する前記モデルデータを、前記骨形状情報に基づいて生成する生成ステップと、
     を含む、情報処理方法。
    In ligament reconstruction surgery, an information processing method for generating model data of at least a fixed portion of a surgical device for positioning a drill that forms a bone hole penetrating a bone of a subject,
    An acquisition step of acquiring bone shape information including outer shape data of the bone, based on image data obtained by capturing an image of the region including the bone of the subject;
    A generation step of generating the model data in contact with the bone and having a site corresponding to the bone based on the bone shape information;
    An information processing method including:
  17.  靱帯再建手術において、被検体の骨を貫通する骨孔を形成するドリルの位置決めを行う外科手術用デバイスの少なくとも固定部のモデルデータを生成するためのプログラムであって、
     コンピュータに、
     前記被検体の前記骨を含む領域が撮像された画像データに基づいて、前記骨の外形データを含む骨形状情報を取得する取得ステップと、
     前記骨に接触し、かつ前記骨に応じた部位を有する前記モデルデータを、前記骨形状情報に基づいて生成する生成ステップと、
     を実行させるためのプログラム。
    In ligament reconstruction surgery, a program for generating model data of at least a fixed portion of a surgical device that positions a drill that forms a bone hole that penetrates a bone of a subject,
    On the computer,
    An acquisition step of acquiring bone shape information including outer shape data of the bone, based on image data obtained by capturing an image of the region including the bone of the subject;
    A generation step of generating the model data in contact with the bone and having a site corresponding to the bone based on the bone shape information;
    A program to execute.
PCT/JP2019/048273 2018-12-14 2019-12-10 Device for surgery, information processing device, system, information processing method, and program WO2020122063A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-234857 2018-12-14
JP2018234857A JP2022031995A (en) 2018-12-14 2018-12-14 Surgical device, information processing device, system, information processing method, and program

Publications (1)

Publication Number Publication Date
WO2020122063A1 true WO2020122063A1 (en) 2020-06-18

Family

ID=71077322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048273 WO2020122063A1 (en) 2018-12-14 2019-12-10 Device for surgery, information processing device, system, information processing method, and program

Country Status (2)

Country Link
JP (1) JP2022031995A (en)
WO (1) WO2020122063A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012523897A (en) * 2009-04-16 2012-10-11 コンフォーミス・インコーポレイテッド Patient-specific joint replacement device for ligament repair
US20130030442A1 (en) * 2011-07-26 2013-01-31 Howmedica Osteonics Corp. Pcl guides for drilling tibial and femoral tunnels
JP2014525770A (en) * 2011-06-27 2014-10-02 スミス アンド ネフュー インコーポレーテッド Anatomical femoral drill guide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012523897A (en) * 2009-04-16 2012-10-11 コンフォーミス・インコーポレイテッド Patient-specific joint replacement device for ligament repair
JP2014525770A (en) * 2011-06-27 2014-10-02 スミス アンド ネフュー インコーポレーテッド Anatomical femoral drill guide
US20130030442A1 (en) * 2011-07-26 2013-01-31 Howmedica Osteonics Corp. Pcl guides for drilling tibial and femoral tunnels

Also Published As

Publication number Publication date
JP2022031995A (en) 2022-02-24

Similar Documents

Publication Publication Date Title
KR101681039B1 (en) Customised surgical apparatus
White et al. Accuracy of MRI vs CT imaging with particular reference to patient specific templates for total knee replacement surgery
JP7051307B2 (en) Medical image diagnostic equipment
US9554868B2 (en) Method and apparatus for reducing malalignment of fractured bone fragments
EP2685914B1 (en) Patient-specific instruments for total ankle arthroplasty
WO2019088232A1 (en) Information processing device, information processing system, insole production system, insole production method, information processing method, and program
US10869725B2 (en) Simulated method and system for navigating surgical instrument based on tomography
US20220211387A1 (en) Patient-specific surgical methods and instrumentation
Hak et al. Preoperative planning in orthopedic trauma: benefits and contemporary uses
KR101705199B1 (en) System and method for simulation of repair operation of anterior cruciate ligament using medical images
CN106137373A (en) Combination type spinal column puts nail guide plate and preparation method thereof
US20220183760A1 (en) Systems and methods for generating a three-dimensional model of a joint from two-dimensional images
US20220338934A1 (en) Patient-specific osteotomy instrumentation
US10499961B2 (en) Entry portal navigation
JP2005287813A (en) Optimal shape search system for artificial medical material
JP7201166B2 (en) Surgical device, information processing apparatus, system, information processing method, and program
US11478207B2 (en) Method for visualizing a bone
CN106725850A (en) A kind of medical aid and preparation method thereof
Anas et al. Registration of a statistical model to intraoperative ultrasound for scaphoid screw fixation
WO2020122063A1 (en) Device for surgery, information processing device, system, information processing method, and program
US11642137B2 (en) Adjustable femoral neck osteotomy guide
Choi et al. 3D preoperative surgical planning software for anterior cruciate ligament reconstruction
US20230310013A1 (en) Apparatus, system, and method for patient-specific instrumentation
Ramirez et al. Improving positioning of 3D-printed surgical guides using image-processing techniques
US20230363773A1 (en) Apparatus, system, and method for patient-specific methods and instrumentation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19894983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19894983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP