WO2020121929A1 - Sensor module comprising magnetic sensor and method for compensating for temperature in rotation angle detection using magnetic sensor - Google Patents

Sensor module comprising magnetic sensor and method for compensating for temperature in rotation angle detection using magnetic sensor Download PDF

Info

Publication number
WO2020121929A1
WO2020121929A1 PCT/JP2019/047547 JP2019047547W WO2020121929A1 WO 2020121929 A1 WO2020121929 A1 WO 2020121929A1 JP 2019047547 W JP2019047547 W JP 2019047547W WO 2020121929 A1 WO2020121929 A1 WO 2020121929A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor module
detection
magnetic sensor
temperature
correction
Prior art date
Application number
PCT/JP2019/047547
Other languages
French (fr)
Japanese (ja)
Inventor
卓祐 伊藤
河野 禎之
智之 滝口
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020121929A1 publication Critical patent/WO2020121929A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains

Definitions

  • the present disclosure relates to a sensor module including a magnetic sensor and a temperature compensation method for detecting a rotation angle using the magnetic sensor.
  • a rotation angle detection device that detects the rotation angle of an object to be detected, such as a valve, in a non-contact manner by using a Hall element or MR element that detects changes in the direction of the magnetic field has been used.
  • the output of such a detection device has temperature dependence. Therefore, various methods for compensating the temperature of the detection device have been conventionally proposed.
  • Japanese Patent Application Laid-Open No. 10-39611 discloses a circuit for temperature compensation
  • Japanese Patent Application Laid-Open No. 2000-2505 describes a configuration for compensating for non-linearity existing in an output after temperature compensation. Each is disclosed.
  • Such a detection device may be provided in the form of being molded during the manufacturing process and finally housed in a package, as described in Japanese Patent Publication No. 2010-506157.
  • a sensor module includes a magnetic sensor in which a plurality of detection elements whose characteristics change according to the direction of a magnetic field are arranged at different rotation angle positions with respect to an object rotating in the direction of the magnetic field, and an environmental temperature of the magnetic sensor. Corresponding to the temperature error that may occur in each of the plurality of detecting elements of the magnetic sensor fixed by the fixing member that fixes the magnetic sensor and the temperature specifying unit that specifies the magnetic sensor.
  • the correction information storage unit that stores the correction information prepared in advance, and the correction calculation that individually corrects the signal output from each detection element by referring to the correction information according to the specified environmental temperature. And an angle calculation unit that obtains and outputs a detection value corresponding to the rotation angle of the detected object using the corrected and calculated signal.
  • the temperature error of the plurality of detection elements is individually corrected and calculated, and the rotation angle of the detected object is obtained using the result, whereby the detection element is fixed by the fixing member. It is possible to suppress the angle error caused by the generated environmental temperature.
  • FIG. 1 is a schematic view schematically showing a cross section of the electronically controlled throttle according to the first embodiment
  • FIG. 2 is a perspective view of the sensor module according to the first embodiment
  • FIG. 3 is a block diagram showing the internal configuration of the sensor module
  • FIG. 4 is a schematic diagram showing the relationship between the detection element included in the magnetic sensor and the magnetic field
  • FIG. 5 is an explanatory view schematically showing the stress generated in the sensor module
  • FIG. 6 is an explanatory diagram for explaining a mode of an error due to the temperature of the detection element and a method of correcting the error of each mode in the first embodiment
  • FIG. 7 is an explanatory diagram for explaining an actual correction method in the first embodiment
  • FIG. 8 is a block diagram showing the internal configuration of the sensor module according to the second embodiment.
  • the sensor module 100 of the first embodiment has a function of detecting the angle of the detected object. As shown in FIG. 1, the sensor module 100 of this embodiment is used for an electronically controlled throttle 10 that controls the amount of intake air to the engine of a vehicle. Specifically, the sensor module 100 of the present embodiment outputs a signal according to the rotation angle of the throttle valve device 13.
  • the sensor module 100 is provided in another valve, for example, in the case of a vehicle, an EGR valve that controls the exhaust gas recirculation amount of the EGR device, various valves used in a supercharger, a valve that controls a water flow, or the like. It can also be used to detect the opening of a rotated valve.
  • the rotation angle range to be detected may be 360 degrees or less, or may be gear down to detect a rotation angle of 360 degrees or more.
  • the electronically controlled throttle 10 includes a throttle valve device 13, a housing 14 that houses the throttle valve device 13, a magnetic field forming unit 15, a housing cover 16, and a sensor module 100.
  • An intake passage 17 for introducing air into the engine is formed in the housing 14.
  • the throttle valve device 13 includes a substantially disc-shaped butterfly valve 12, a rotary shaft 18 that rotatably supports the butterfly valve 12, and a motor 19 that rotates the butterfly valve 12 via the rotary shaft 18. Although not shown, both ends of the rotary shaft 18 are rotatably supported by the housing 14.
  • the motor 19 of the throttle valve device 13 is controlled by an ECU 25 that controls the operation of the engine.
  • an accelerator pedal not shown
  • the butterfly valve 12 is rotated.
  • the flow path of the passage 17 is opened to increase the intake air amount.
  • the butterfly valve 12 is rotated in the fully closing direction to reduce the intake air amount.
  • the ECU 25 detects the opening of the butterfly valve 12 in order to control the opening of the butterfly valve 12 of the throttle valve device 13 to the target opening.
  • the sensor module 100 is a device that detects the rotation angle of the butterfly valve 12 of the throttle valve device 13. As will be described later, this sensor module 100 uses a Hall element to detect the rotation angle of the butterfly valve 12 in a non-contact manner. For this reason, a cylindrical holder 20 is provided at the end of the rotary shaft 18 opposite to the motor 19. On the inner wall of the holder 20, two magnets 21 and 22 forming the magnetic field forming unit 15 are provided. The magnetic field forming unit 15 forms a magnetic field in a direction orthogonal to the axial direction of the rotary shaft 18 of the throttle valve device 13.
  • the sensor module 100 is fixed to the housing cover 16.
  • the housing cover 16 is fixed to the housing 14 with screws 23.
  • the sensor module 100 is positioned coaxially with the holder 20 that is the magnetic field forming unit 15 in a non-contact manner.
  • the sensor module 100 is capable of exchanging electrical signals with the outside, here the ECU 25, through the wiring 24.
  • the sensor module 100 and the ECU 25 may be exchanged by an analog signal or a communication method of transmitting and receiving a digital signal by a predetermined protocol.
  • the sensor module 100 includes a detection element section 50 and terminals 30 to 33.
  • the detection element unit 50 is a component that outputs an electric signal according to the direction of the magnetic field formed by the magnetic field forming unit 15 (see FIG. 1).
  • the terminals 30 to 33 are members that electrically connect the detection element unit 50 and the wiring 24.
  • the detection element unit 50 and the terminals 30 to 33 are fixed by a fixing member 40 such as resin.
  • the detection element unit 50 and the terminals 30 to 33 are housed together with other circuit members described later and are integrally molded with the thermosetting resin. Since the shape is different from that of the lower part, the upper part is called the detection element fixing part 41 and the lower part is called the base part 43.
  • the detection element unit 50 constituting the sensor module 100 includes a magnetic sensor 60 and an analog-digital converter (hereinafter referred to as ADC) that converts two analog signals output from the magnetic sensor 60 into digital signals.
  • ADC analog-digital converter
  • 65, 66, first and second correction calculation units 71, 72 connected to the ADCs 65, 66, respectively, an angle calculation unit 80 connected to the first and second correction calculation units 71, 72, a first
  • the first and second correction information storage units 81 and 82 that output information for correction to the second correction calculation units 71 and 72, the environmental temperature sensor 85 that detects the environmental temperature of the detection element unit 50, and the like are incorporated. ..
  • the output of the angle calculator 80 is connected to the terminal 31.
  • the terminal 31 is used as a terminal for outputting the detected rotation angle signal angle ⁇ .
  • the terminal 32 is a terminal that supplies a power supply of the voltage Vcc to the terminal connected to the ground line GND.
  • the terminal 30 is a metal terminal that serves as a base for the entire sensor module 100.
  • the above-mentioned circuit constituent members and the terminals 30 to 33 are integrally molded with a thermosetting resin which is the fixing member 40.
  • first and second detection elements 61 and 62 that detect the direction of the magnetic field formed by the magnetic field forming unit 15 are provided inside the magnetic sensor 60.
  • the outputs of the first and second detection elements 61 and 62 are connected to the above-mentioned ADCs 65 and 66, respectively.
  • the first and second detection elements 61 and 62 of the magnetic sensor 60 have a relationship in which the detection angles of the magnetic field are deviated from each other by 90 degrees. This state is schematically shown in FIG.
  • the magnets 21 and 22 of the magnetic field forming unit 15 are provided inside the holder 20 at positions facing each other in the radial direction, and the magnetic sensor 60 is provided at the center position of the holder 20.
  • the magnetic field MF formed by the magnets 21 and 22 passes through the center of the magnetic sensor 60.
  • the holder 20 has an annular shape in FIG. 4, it may have an elliptical shape or the like.
  • the first and second detection elements 61 and 62 are provided on the surfaces of the rectangular parallelepiped which are opposed to each other and are orthogonal to each other, but the phase with respect to the center of the magnetic flux MF is different. As long as the positional relationship is shifted by 90 degrees, the arrangement may intersect with each other or the arrangement may be shifted vertically.
  • Each of the first and second detection elements 61 and 62 is a Hall element, and is actually an extremely small element, and they are arranged in a positional relationship orthogonal to each other.
  • the first and second detection elements 61 and 62 correspondingly output signals whose phases are shifted by 90 degrees.
  • the Hall element outputs a signal according to the strength of the magnetic field that penetrates the element from the front. Therefore, the output signal is strongest at the position where the element faces the magnetic field MF, weakest at the position where the magnetic field MF and the element are parallel to each other, and has positive and negative values depending on the direction of the magnetic field.
  • the output of the first detection element 61 and the output of the second detection element 62 have a relationship that one is a cos wave and the other is a sin wave with respect to the angle of the magnetic field MF, that is, the rotation angle ⁇ of the holder 20.
  • a signal detected by the first detection element 61 is treated as a cos wave
  • a signal detected by the second detection element 62 is treated as a sin wave.
  • Hall elements are used as the first and second detection elements 61 and 62, but an AMR (Anisotropic Magneto Resistive) element or a TMR (Tunnel Magneto Resistance) element may be used, and a GMR (Giant Magnetoto).
  • Resistive element may be used.
  • FIG. 4 shows only the first and second detection elements 61 and 62 arranged in a positional relationship orthogonal to each other, a magnetic flux in a direction further orthogonal to the magnetic field detection direction of both detection elements 61 and 62 is shown.
  • a chip including a third detection element for detecting is distributed as a 3D sensor. Such a 3D sensor may be used as the magnetic sensor 60, and two detection elements may be used in combination.
  • the detection element unit 50 detects the rotation angle ⁇ of the magnetic field forming unit 15 that rotates in accordance with the rotation angle of the butterfly valve 12 driven by the motor 19.
  • the error that can occur in the detection of the rotation angle by the sensor module 100 includes (A) An error due to center deviation of the rotary shaft 18, the magnetic field forming unit 15, and the detection element unit 50. (B) There is an error caused by the temperature of the detection element unit 50.
  • the former error is eliminated by accurately aligning the three positions so that the rotary shaft 18, the magnetic field forming unit 15, and the detection element unit 50 are coaxial. The latter error occurs due to the environmental temperature of the sensor module 100 changing even if the former error is eliminated.
  • the sensor module 100 has a shape in which the detection element fixing portion 41 is formed on the base portion 43. Both of them are integrally formed to form the fixing member 40, but have a trapezoidal shape in which the thickness and the width become smaller toward the upper part in order to facilitate the die cutting at the time of molding.
  • the detection element fixing portion 41 is provided with a magnetic sensor 60 inside, and is thin so that the magnitude of the magnetic flux component in the sensor normal direction of the magnetic flux penetrating the element, that is, the direction of the magnetic field can be accurately detected. Is made.
  • the arrangement of components inside the detection element fixing portion 41 is not particularly limited, but among the components shown in FIG. 3, the magnetic sensor 60 is arranged inside the detection element fixing portion 41 and the magnetic sensor 60 other than the magnetic sensor 60 is arranged.
  • the components may be arranged on the base portion 43, or other circuit components may be arranged on the detection element fixing portion 41 together with the magnetic sensor 60.
  • the arrangement of such components may be such that the magnetic flux MF is not disturbed and the detection accuracy of the magnetic sensor 60 can be secured.
  • the magnitude of expansion/contraction of the fixing member 40 of the sensor module 100 varies depending on the site due to changes in the environmental temperature.
  • the width of the upper side of the sensor module 100 is smaller than that of the base portion 43.
  • the stress SC applied to the upper side of the detection element fixing portion 41 in the width direction is in the width direction of the base portion 43. It is smaller than the generated stress SB.
  • the detection element fixing portion 41 is generally thin so as not to prevent the penetration of magnetic flux, whereas the base portion 43 accommodates a large number of components therein, and therefore the thickness is the same as the detection element fixing portion. Thicker than 41.
  • the total stress ST related to the detection element fixing portion 41 has at least a two-dimensional stress distribution with respect to the magnetic sensor 60, as shown in FIG. That is, the stress due to the temperature change applied to both the detection elements 61 and 62 incorporated in the magnetic sensor 60 is different.
  • the outputs from the first detection element 61 and the second detection element 62 become cos wave and sin wave with respect to the angle 0 to 360 degrees with respect to the magnetic field MF.
  • the outputs of the first detection element 61 and the second detection element 62 when they are perfectly aligned and have no temperature error are shown in FIG. 6 as ⁇ characteristics before fixation>.
  • Reference numeral M in FIG. 6 indicates the output before the first detection element 61 is fixed by the fixing member 40, that is, the output of the element alone, and reference numeral N indicates before the second detection element 62 is fixed by the fixing member 40. The output of each element is shown.
  • the first detection element 61 and 62 and other circuit components are fixed by the fixing material 40 and molded and sealed as the detection element fixing portion 41 and the base portion 43, the first detection element 61 and The output of the second detection element 62 receives stress due to the molding by the fixing material 40 and causes an error.
  • the error occurs as an amplitude error, an offset error, and a phase error even at a reference temperature (for example, 25° C. as a normal temperature) as shown in FIG. 6, but these errors depend on the temperature when the temperature further fluctuates. Fluctuates.
  • the error fluctuates depending on the temperature because the fixing material 40 used for the mold expands and contracts depending on the temperature.
  • the temperature errors of the first detection element 61 and the second detection element 62 show independent characteristics. As shown in FIG. 4, since the first detection element 61 and the second detection element 62 are arranged orthogonally to each other, the directions of stress applied to the respective elements by the thermal expansion/contraction of the detection element fixing portion 41 are different. Because. In the present embodiment, such characteristics are measured by the test sensor module in advance, and as the information for correcting the error amount generated in the first detection element 61 and the second detection element 62, the first correction information storage section 81 and the second correction information storage section are used. Each is stored in the correction information storage unit 82. Then, correction calculation is performed. The first correction calculation unit 71 and the second correction calculation unit 72 perform this correction calculation.
  • the first correction calculation unit 71 and the second correction calculation unit 72 are configured as a digital signal processor (DSP), and of the first and second detection elements 61 and 62 converted into digital signals via the ADCs 65 and 66.
  • the output is digitally calculated using the correction functions stored in the first and second correction information storage units 81 and 82 to suppress the amplitude error, offset error, and phase error.
  • the amplitude error is an error in which the amplitudes of the output signals from the first and second detection elements 61 and 62 vary with temperature.
  • the offset error is an error in which the zero point of the output signals from the first and second detection elements 61 and 62 varies depending on the temperature.
  • the phase error is an error in which the phases of the output signals from the first and second detection elements 61 and 62 vary with temperature. Therefore, information for correcting these errors also requires a correction function corresponding to the amplitude fluctuation, a correction function corresponding to the offset error, and a correction function corresponding to the phase fluctuation for each detection element.
  • these correction functions for the first detection element 61 are shown with the “first signal” added, such as “amplitude variation_first signal”.
  • the correction function for the second detection element 62 is shown with the "second signal”.
  • the first correction calculation unit 71 and the second correction calculation unit 72 read the environmental temperature X from the environmental temperature sensor 85 and respond to the temperature.
  • the correction first and second signals are read out and the correction signals are used to perform the correction calculation for correcting the outputs of the first detection element 61 and the second detection element 62. Since such correction calculation is performed, the outputs of the first correction calculation unit 71 and the second correction calculation unit 72 are as shown in FIG. 6 as ⁇ corrected temperature characteristics>, regardless of variations in the environmental temperature. The characteristics are close to the temperature characteristics>.
  • the signal wheel that has undergone the above-described correction calculation by the first correction calculation unit 71 and the second correction calculation unit 72 is input, and the angle calculation unit 80 outputs the rotation angle ⁇ of the butterfly valve 12.
  • the angle calculation unit 80 converts the value obtained from the first correction calculation unit 71 and the second correction calculation unit 72 that perform digital calculation into an analog signal, and combines the cos wave and the sin wave to calculate the rotation angle ⁇ . It is uniquely determined and output in the range of an angle of 0 to 360 degrees.
  • FIG. 7 shows the breakdown of the sensitivity error generated in the detection element unit 50 fixed by the fixing member 40, ⁇ first detection element amplitude error> ⁇ second output element amplitude error> ⁇ first detection element offset error>. It is shown as ⁇ second detection element offset error>.
  • the correction formulas for correction calculation stored in the first correction information storage unit 81 and the second correction information storage unit 82 are shown as ⁇ first detection element correction formula> ⁇ second detection element correction formula>.
  • the coefficients ⁇ 1, ⁇ 1, ⁇ 1 of the equations for the first detection element correction equation are The coefficients ⁇ 2, ⁇ 2, ⁇ 2 of the equation are stored in the first correction information storage unit 81 and the second correction information storage unit 82, respectively.
  • Each coefficient of the quadratic function is obtained from the error measured by the test sensor module by using a least square method or the like to obtain a quadratic function that minimizes the error.
  • a quadratic function is used as the function of the correction formula. Therefore, even if the resin having the glass transition point is used for the fixing material 40 and the property (coefficient of thermal expansion or the like) of the resin changes at the transition point, the corresponding correction can be performed. Further, a semiconductor used for the magnetic sensor 60 generally causes a leak current at a temperature equal to or higher than a predetermined temperature. However, even if the characteristics change depending on whether or not the leak current is generated, it is possible to perform a correction corresponding thereto. Note that the correction equation may be specified using a higher-order function instead of the quadratic function. Further, when a material having no transition point is used as the fixing material 40, or when the magnetic sensor 60 is used in a region where leak current does not occur, sufficient accuracy can be obtained even with a linear correction equation using a linear function. be able to.
  • the amplitude error and the offset error are collectively corrected by one correction formula as the sensitivity error, and the phase error is not included. This is because the phase error is subject to correction differently from the sensitivity error. If necessary, the phase error may be corrected by a correction formula in which the output signals from the first detection element 61 and the second detection element 62 move back and forth on the time axis. However, since the rotation speed of the butterfly valve 12 is not constant, it is desirable to identify and correct the phase error using the timing when the butterfly valve 12 is fully closed and fully opened. Of course, the phase error may be removed from the correction target.
  • the temperature error between the first detection element 61 and the second detection element 62 has different characteristics. Therefore, by preparing the correction formulas corresponding to the temperature error respectively, the first detection after the correction The sensitivity fluctuation of the element 61 and the sensitivity fluctuation of the second detection element 62 are respectively corrected, and the sensitivity fluctuation with respect to the temperature change is sufficiently suppressed.
  • the angle calculator 80 can calculate the rotation angle ⁇ of the butterfly valve 12 by using the cos wave and the sin wave in which the sensitivity variation is sufficiently suppressed. Therefore, the rotation angle ⁇ of the butterfly valve 12 driven by the motor 19 can be accurately detected, and the intake air amount to the engine by the throttle valve device 13 can be accurately controlled.
  • the first correction information storage unit 81 and the second correction information storage unit 82 of the sensor module 100 store only the coefficients ⁇ 1, ⁇ 1, ⁇ 1 and the coefficients ⁇ 2, ⁇ 2, ⁇ 2 of the correction formula, and the first correction calculation Since the unit 71 and the second correction calculation unit 72 perform the correction calculation according to the correction formula of the quadratic function using this coefficient, the information stored in order to perform the accurate correction calculation can have a small capacity.
  • the sensor module 200 of the second embodiment detects the rotation angle of the butterfly valve 12 of the throttle valve device 13 as in the first embodiment, and is used in place of the sensor module 100 shown in FIG. Similar to the first embodiment, the sensor module 200 is molded with the detection element section 150 and other circuit components by the fixing material 40 which is a thermosetting resin.
  • this sensor module 200 The internal structure of this sensor module 200 is shown in FIG. In FIG. 8, terminals and the like are omitted.
  • the second embodiment only one detection element 161 forming the magnetic sensor 160 is drawn, but two Hall elements are used as in the first embodiment. Needless to say, the second embodiment may have a configuration using a single detection element.
  • a temperature compensating circuit 163 is incorporated in the detecting element 161.
  • the temperature compensating circuit 163 is a circuit that compensates the temperature characteristic of the detection element 161 alone.
  • the temperature compensating circuit 163 receives the signal from the temperature sensor 164 and compensates the fluctuation of the signal of the detecting element 161 in a circuit manner.
  • the circuit shown in Patent Document 1 can be adopted.
  • the magnetic sensor 160 itself performs temperature compensation.
  • the temperature-compensated angle signal (cos wave or sin wave) is output to the angle calculator 180 via the ADC 165.
  • the angle calculation unit 180 includes a correction calculation unit 171 and a correction information storage unit 181. Similar to the first embodiment, the correction information storage unit 181 stores information for compensating an error generated in the magnetic sensor 160 due to a change in environmental temperature due to being molded by the fixing material 40, for example, a correction formula. ..
  • the angle calculation unit 180 can use the environmental temperature X detected by the environmental temperature sensor 185 provided inside the detection element unit 150 to obtain the correction amount Y from the correction formula and correct the output of the magnetic sensor 160.
  • the magnetic sensor 160 whose temperature is compensated by the detection element 161 alone is used, the temperature error caused by fixing with the fixing member 40 can be further suppressed, and the accuracy of the sensor module 200 can be improved. .. Needless to say, the same operational effects as those of the first embodiment can be obtained in that a quadratic function is used as the correction formula, only the coefficient is stored, and the like.
  • the environmental temperature sensor 185 is provided in addition to the temperature sensor 164, but both may be used together.
  • the quadratic function is used for the correction calculation in the above-described embodiment, other functions such as a cubic or higher function and a spline function may be used. Further, the calculation may be performed using linear interpolation or the like in which the section is finely divided. Alternatively, by measuring the relationship between the temperature and the sensitivity error in advance and storing this in the form of a lookup table in the first correction information storage unit 81 or the like, and referring to the lookup table according to the environmental temperature, the sensitivity error A correction amount may be obtained and correction calculation may be performed. The correction calculation may be multiplication or addition/subtraction.
  • the detection element as the magnetic sensor is molded by using the resin as the fixing material, but a material other than the resin, for example, silicon rubber may be used as the material.
  • the resin may be a thermosetting resin that cures when heated and does not return to its original state, or a photocurable resin that cures by light, or a resin of a type that has fluidity when filled and that cures afterwards, for example, a mixture of two liquids. It may be a resin of the type.
  • the fixing method is not limited to the mold, and other methods such as potting and hot melt molding may be used. It goes without saying that various types of resins and other materials (for example, silicone rubber) can be used for these methods.
  • the detection element may be adhered and fixed to the fixing substrate or the like with a material that also functions as an adhesive.
  • the adhesive may function not only as a fixing agent but also as a sealing agent.
  • the fixing material may be one that fixes the magnetic sensor and does not necessarily need to be sealed. Whichever method is used, the output of the magnetic sensor is affected by the change in temperature, so the method of the present disclosure is effective.
  • the environmental temperature of the magnetic sensor is specified by using the environmental temperature sensors 85, 185 and the like, but the temperature specifying unit does not need to be limited to the temperature sensor. Alternatively, the temperature may be detected from the above, and the temperature may be specified from this.
  • the temperature compensation circuit for the magnetic sensor 60 has been described as not particularly provided, but the magnetic sensor 60 may be provided with a circuit for performing temperature compensation by itself.
  • the temperature compensation processing as the magnetic sensor 60 may be incorporated in the correction calculation of the first correction calculation unit 71 and the second correction calculation unit 72. Even if the temperature compensation processing as the magnetic sensor 60 is incorporated in the correction calculation of the first correction calculation unit 71 and the second correction calculation unit 72, individual correction calculation is performed for each of the first detection element 61 and the second detection element 62. Therefore, it is possible to improve the detection accuracy of the rotation angle detected by the sensor modules 100 and 200 having different sensitivity errors for each detection element.
  • the two detection elements 61, 62 are arranged in a positional relationship orthogonal to each other.
  • the detection signals need not be limited to the orthogonal ones. If they are shifted by a predetermined angle smaller than 360 degrees, the output signals from the two detection elements are By using it, the rotation angle can be uniquely obtained in the range of 0 to 360 degrees.
  • two detection elements are used, but three or more detection elements may be used.
  • three detection elements For example, if a magnetic field in a predetermined direction is formed inside a hemisphere-shaped object to be detected and the strength of this magnetic field is detected by three Hall elements arranged at mutually orthogonal positions, rotation of the hemispherical object to be detected is detected. It can be detected three-dimensionally. Such detection can be applied to detect the movement of the joints of the robot.
  • a magnetic sensor in which a plurality of detection elements whose characteristics change according to the direction of a magnetic field are arranged at different rotation angle positions with respect to an object to be detected rotating in the direction of the magnetic field, Corresponding to a temperature error that may occur in each of the temperature specifying unit that specifies the environmental temperature of the magnetic sensor, the fixing member that fixes the magnetic sensor, and the plurality of detection elements of the magnetic sensor that are fixed by the fixing member.
  • the correction information storage unit that stores the correction information prepared in advance for each detection element and the correction information according to the specified environmental temperature, the signal output from each detection element It is possible to configure a sensor module that includes a correction calculation unit that individually corrects and an angle calculation unit that calculates and outputs a detection value corresponding to the rotation angle of the detected object by using the corrected calculation signal.
  • a sensor module that includes a correction calculation unit that individually corrects and an angle calculation unit that calculates and outputs a detection value corresponding to the rotation angle of the detected object by using the corrected calculation signal.
  • the magnetic sensor may be sealed with a resin as a fixing material or a potting agent. By doing so, the water resistance and durability of the magnetic sensor can be improved.
  • two detection elements of the plurality of detection elements are arranged so as to be displaced by a predetermined angle of less than 360 degrees with respect to the magnetic field that changes due to rotation of the object to be detected, and the correction calculation unit
  • the two output signals output by the two detection elements are regarded as having a phase difference corresponding to the predetermined angle, and correspond to the rotation angle.
  • the detected value may be uniquely obtained. In this way, the sensor module can uniquely determine the rotation angle, and is highly useful as a device for determining the rotation angle.
  • the two detection elements are arranged at positions orthogonal to each other and the phase difference is 90 degrees. If they are arranged so that the phase difference is 90 degrees, the signals output from the two detection elements have a relationship between the cos wave and the sin wave, and the rotation angle can be easily calculated.
  • the correction information stored in the correction information storage unit is fixed by the fixing material to correct an error generated in each of the detection elements according to a stress generated in the magnetic sensor due to the environmental temperature. It may be information. This makes it possible to correct an error based on the stress generated by the fixing by the fixing member and suppress the decrease in the detection accuracy of the rotation angle due to the ambient temperature.
  • the individual correction performed by the correction calculation unit with respect to the signal output from each of the detection elements may be a correction using a quadratic or higher-order function having the environmental temperature as a variable.
  • the accuracy of correction can be improved by using a higher-order function that is a quadratic function or higher.
  • the correction information storage unit stores the coefficient of the higher-order function for each detection element, and the correction calculation unit is stored in the correction information storage unit for each detection element.
  • the coefficient may be used to perform the correction by the higher-order function. In this case, it is sufficient to store the coefficient for the correction calculation, and the amount of information to be stored for the correction calculation can be reduced. As a result, the memory capacity and the like can be reduced.
  • the magnetic sensor is provided in non-contact with an object to be detected, which is rotationally driven by an actuator used for any one of an intake air amount control device, an exhaust gas recirculation device, and a supercharger. May be This makes it possible to accurately detect the rotation angles of various devices in a non-contact manner. As a result, the engine can be controlled more accurately.
  • the detection element may be a Hall element or an MR element.
  • the detection accuracy of the rotation angle can be increased by using an inexpensive commercially available sensor.
  • a detection element whose characteristics change depending on the direction of a magnetic field
  • the detection element with a temperature compensation circuit incorporating a circuit for compensating an error due to the temperature of the detection element by the detection element alone.
  • a magnetic sensor arranged with respect to an object rotating in the direction of the magnetic field, a fixing member for fixing the magnetic sensor, an environmental temperature sensor for specifying the environmental temperature of the magnetic sensor, and the fixing member for fixing
  • the correction information storage unit that stores the correction information prepared in advance and the correction information according to the specified environmental temperature.
  • a calculation unit that corrects a signal output from the detection element with the temperature compensation circuit and outputs a detection value corresponding to the rotation angle of the detected object.
  • a first aspect of a temperature compensation method for detecting a rotation angle using a magnetic sensor includes a plurality of detection elements that are built in a magnetic sensor and whose characteristics change depending on the direction of a magnetic field.
  • the magnetic sensors are respectively arranged at different rotation angle positions with respect to the object to be detected, the magnetic sensor is fixed by using a fixing material, the environmental temperature of the magnetic sensor is specified, and the plurality of the magnetic sensors fixed by the fixing material.
  • the correction information for each detection element is stored in advance, and the detection information is referred to by referring to the correction information according to the specified environmental temperature.
  • the detection value corresponding to the rotation angle of the detected object is obtained and output. According to the temperature compensation method for detecting the rotation angle using the magnetic sensor, it is possible to suppress the variation due to the environmental temperature and detect the rotation angle of the object to be detected with high accuracy.
  • the present disclosure is not limited to the above-described embodiments, and can be realized with various configurations without departing from the spirit thereof.
  • the present embodiment corresponding to the technical features in each mode described in the section of the summary of the invention, the technical features in the modification, or the above In order to achieve a part or all of the effect of (1), it is possible to appropriately replace or combine. If the technical features are not described as essential in this specification, they can be deleted as appropriate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

A fixing material 40 is used to fix a magnetic sensor 60 in which a plurality of detection elements 61, 62 having characteristics that vary according to a magnetic field direction are disposed at different rotation angle positions in relation to an object 15 for detection that is to have the magnetic field direction thereof rotated. For each of the plurality of detection elements of the magnetic sensor fixed using the fixing material, correction information is stored beforehand that corresponds to the temperature error that can occur in the detection element. A detection value corresponding to the rotation angle of the object for detection is determined after the signals output by the detection elements are individually corrected through referencing of the correction information according to the ambient temperature, and the determined detection value is output. This makes it possible to detect the rotation angle of the object for detection while suppressing accuracy reduction resulting from ambient temperature fluctuation.

Description

磁気センサを備えたセンサモジュールおよび磁気センサを用いた回転角度検出の温度補償方法SENSOR MODULE WITH MAGNETIC SENSOR AND TEMPERATURE COMPENSATION METHOD FOR Detecting Rotation Angle Using Magnetic Sensor 関連出願の相互参照Cross-reference of related applications
 本願は、2018年12月10日に日本国において出願された特許出願番号2018-230750号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により、本願明細書に組み入れられる。 This application is based on Patent Application No. 2018-230750 filed in Japan on Dec. 10, 2018 and claims the benefit of its priority, and the entire content of the patent application is , Incorporated herein by reference.
 本開示は磁気センサを内蔵するセンサモジュールおよび磁気センサを用いた回転角度検出の温度補償方法に関する。 The present disclosure relates to a sensor module including a magnetic sensor and a temperature compensation method for detecting a rotation angle using the magnetic sensor.
 従来、磁界の方向の変化を検出するホール素子やMR素子などを用い、被検出物、例えばバルブなどの回転角度を非接触で検出する回転角度検出装置が用いられている。こうした検出装置の出力には、温度依存性が存在する。そこで、従来から検出装置の温度補償を行なう手法が種々提案されている。例えば、特開平10-39611号公報には、回路的に温度補償を行なう構成が、また特開2000-2505号公報には、温度補償後の出力に存在する非直線性を補償する構成が、それぞれ開示されている。こうした検出装置は、特表2010-506157号公報に記載されているように、製造の過程でモールディングされ、最終的には、パーケージに収められた形態で提供されることがある。 Conventionally, a rotation angle detection device that detects the rotation angle of an object to be detected, such as a valve, in a non-contact manner by using a Hall element or MR element that detects changes in the direction of the magnetic field has been used. The output of such a detection device has temperature dependence. Therefore, various methods for compensating the temperature of the detection device have been conventionally proposed. For example, Japanese Patent Application Laid-Open No. 10-39611 discloses a circuit for temperature compensation, and Japanese Patent Application Laid-Open No. 2000-2505 describes a configuration for compensating for non-linearity existing in an output after temperature compensation. Each is disclosed. Such a detection device may be provided in the form of being molded during the manufacturing process and finally housed in a package, as described in Japanese Patent Publication No. 2010-506157.
 しかしながら、こうした回転角度検出装置を、自動車等の移動体や工場の設備などに実装すると、温度補償を行なっても、十分な精度が得られない場合があった。例えば、スロットルバルブの開度センサとして回転角度検出装置を用いると、角度の検出値が環境温度に依存した誤差を含んでしまい、角度の検出精度が不十分なものとなってしまうことがあった。 However, when such a rotation angle detection device was mounted on a moving body such as an automobile or equipment in a factory, there were cases where sufficient accuracy could not be obtained even if temperature compensation was performed. For example, if a rotation angle detecting device is used as the opening sensor of the throttle valve, the detected value of the angle may include an error depending on the environmental temperature, and the accuracy of detecting the angle may be insufficient. ..
 本開示は、以下の形態として実現することが可能である。 The present disclosure can be implemented as the following forms.
 本開示の一形態によれば、センサモジュールが提供される。このセンサモジュールは、磁界の方向により特性が変化する複数の検出素子を、前記磁界の方向を回転する被検出物に対して異なる回転角度位置にそれぞれ配置した磁気センサと、前記磁気センサの環境温度を特定する温度特定部と、前記磁気センサを固定する固定材と、前記固定材によって固定された前記磁気センサの前記複数の検出素子のそれぞれに生じ得る温度誤差に対応して、各検出素子毎に予め用意した補正用の情報を格納する補正情報格納部と、前記特定した前記環境温度に従って前記補正用の情報を参照することにより、前記各検出素子の出力する信号を個別に補正する補正演算部と、前記補正演算された信号を用いて、前記被検出物の回転角度に対応した検出値を求めて出力する角度演算部と、を備える。 According to one aspect of the present disclosure, a sensor module is provided. This sensor module includes a magnetic sensor in which a plurality of detection elements whose characteristics change according to the direction of a magnetic field are arranged at different rotation angle positions with respect to an object rotating in the direction of the magnetic field, and an environmental temperature of the magnetic sensor. Corresponding to the temperature error that may occur in each of the plurality of detecting elements of the magnetic sensor fixed by the fixing member that fixes the magnetic sensor and the temperature specifying unit that specifies the magnetic sensor. The correction information storage unit that stores the correction information prepared in advance, and the correction calculation that individually corrects the signal output from each detection element by referring to the correction information according to the specified environmental temperature. And an angle calculation unit that obtains and outputs a detection value corresponding to the rotation angle of the detected object using the corrected and calculated signal.
 この形態のセンサモジュールによれば、複数の検出素子の温度誤差を個別に補正演算し、その結果を用いて被検出物の回転角度を求めることによって、検出素子が固定材によって固定されることで生じる環境温度に起因する角度誤差を抑制できる。 According to the sensor module of this aspect, the temperature error of the plurality of detection elements is individually corrected and calculated, and the rotation angle of the detected object is obtained using the result, whereby the detection element is fixed by the fixing member. It is possible to suppress the angle error caused by the generated environmental temperature.
図1は、第1実施形態における電子制御スロットルの断面を模式的に示す模式図であり、FIG. 1 is a schematic view schematically showing a cross section of the electronically controlled throttle according to the first embodiment, 図2は、第1実施形態におけるセンサモジュールの斜視図であり、FIG. 2 is a perspective view of the sensor module according to the first embodiment, 図3は、センサモジュールの内部構成を示すブロック図であり、FIG. 3 is a block diagram showing the internal configuration of the sensor module, 図4は、磁気センサに含まれる検出素子と磁界との関係を示す模式図であり、FIG. 4 is a schematic diagram showing the relationship between the detection element included in the magnetic sensor and the magnetic field, 図5は、センサモジュールに生じる応力について模式的に示す説明図であり、FIG. 5 is an explanatory view schematically showing the stress generated in the sensor module, 図6は、第1実施形態における検出素子の温度による誤差の態様および各態様の誤差を補正する手法を説明するための説明図であり、FIG. 6 is an explanatory diagram for explaining a mode of an error due to the temperature of the detection element and a method of correcting the error of each mode in the first embodiment, 図7は、第1実施形態における実際の補正の手法を説明するための説明図であり、FIG. 7 is an explanatory diagram for explaining an actual correction method in the first embodiment, 図8は、第2実施形態におけるセンサモジュールの内部構成を示すブロック図である。FIG. 8 is a block diagram showing the internal configuration of the sensor module according to the second embodiment.
A.第1実施形態:
 第1実施形態のセンサモジュール100は、被検出物の角度を検出する機能を有する。図1に示すように、本実施形態のセンサモジュール100は、車両のエンジンへの吸気量を制御する電子制御スロットル10に用いられる。具体的には、本実施形態のセンサモジュール100は、スロットルバルブ装置13の回転角に応じた信号を出力するものである。もとより、センサモジュール100は、他のバルブ、例えば車両であれば、EGR装置の排気再循環量を制御するEGRバルブや、過給器に用いられる各種バルブ、あるいは水流を制御するバルブなどに設け、回転されるバルブの開度を検出するために用いることも可能である。車両以外の移動体や、工場等の施設の設備に用い、各種回転体の回転角度を検出するのに用いても良い。検出する回転角度範囲は、360度以下でも良いし、ギヤダウンして360度以上の回転角度を検出するものとしてもよい。
A. First embodiment:
The sensor module 100 of the first embodiment has a function of detecting the angle of the detected object. As shown in FIG. 1, the sensor module 100 of this embodiment is used for an electronically controlled throttle 10 that controls the amount of intake air to the engine of a vehicle. Specifically, the sensor module 100 of the present embodiment outputs a signal according to the rotation angle of the throttle valve device 13. Of course, the sensor module 100 is provided in another valve, for example, in the case of a vehicle, an EGR valve that controls the exhaust gas recirculation amount of the EGR device, various valves used in a supercharger, a valve that controls a water flow, or the like. It can also be used to detect the opening of a rotated valve. It may be used in a moving body other than a vehicle or in equipment of a facility such as a factory, and may be used to detect the rotation angles of various rotating bodies. The rotation angle range to be detected may be 360 degrees or less, or may be gear down to detect a rotation angle of 360 degrees or more.
 センサモジュール100の説明に先立って、電子制御スロットル10について説明する。電子制御スロットル10は、スロットルバルブ装置13と、スロットルバルブ装置13を収納するハウジング14と、磁界形成部15と、ハウジングカバー16と、センサモジュール100とを備える。ハウジング14には、エンジンに空気を導入する吸気通路17が形成されている。 Prior to the description of the sensor module 100, the electronically controlled throttle 10 will be described. The electronically controlled throttle 10 includes a throttle valve device 13, a housing 14 that houses the throttle valve device 13, a magnetic field forming unit 15, a housing cover 16, and a sensor module 100. An intake passage 17 for introducing air into the engine is formed in the housing 14.
 スロットルバルブ装置13は、略円盤状のバタフライバルブ12と、バタフライバルブ12を回転可能に軸支する回転軸18、回転軸18を介してバタフライバルブ12を回転するモータ19を備える。図示は省略したが、回転軸18の両端は、ハウジング14に回転可能に軸受けされている。 The throttle valve device 13 includes a substantially disc-shaped butterfly valve 12, a rotary shaft 18 that rotatably supports the butterfly valve 12, and a motor 19 that rotates the butterfly valve 12 via the rotary shaft 18. Although not shown, both ends of the rotary shaft 18 are rotatably supported by the housing 14.
 スロットルバルブ装置13のモータ19は、エンジンの運転を制御するECU25により制御されており、図示しないアクセルペダルが踏み込まれたことでエンジンの出力を増加する際には、バタフライバルブ12を回転して吸気通路17の流路を開き、吸入空気量を増加させる。他方、エンジンの出力を低下させる際には、バタフライバルブ12を全閉方向に回転して、吸入空気量を減少させる。 The motor 19 of the throttle valve device 13 is controlled by an ECU 25 that controls the operation of the engine. When the output of the engine is increased by depressing an accelerator pedal (not shown), the butterfly valve 12 is rotated. The flow path of the passage 17 is opened to increase the intake air amount. On the other hand, when reducing the output of the engine, the butterfly valve 12 is rotated in the fully closing direction to reduce the intake air amount.
 ECU25は、スロットルバルブ装置13のバタフライバルブ12の開度を目標開度に制御するため、バタフライバルブ12の開度を検出する。スロットルバルブ装置13のバタフライバルブ12の回転角度を検出する装置が、センサモジュール100である。このセンサモジュール100は、後述するように、ホール素子を用い、非接触でバタフライバルブ12の回転角度を検出する。このために、回転軸18のモータ19とは反対側の端部には、円筒形状のホルダ20が設けられている。ホルダ20の内壁には、磁界形成部15を構成する2個の磁石21,22が設けられている。磁界形成部15により、スロットルバルブ装置13の回転軸18の軸方向に直交する方向に磁界が形成される。 The ECU 25 detects the opening of the butterfly valve 12 in order to control the opening of the butterfly valve 12 of the throttle valve device 13 to the target opening. The sensor module 100 is a device that detects the rotation angle of the butterfly valve 12 of the throttle valve device 13. As will be described later, this sensor module 100 uses a Hall element to detect the rotation angle of the butterfly valve 12 in a non-contact manner. For this reason, a cylindrical holder 20 is provided at the end of the rotary shaft 18 opposite to the motor 19. On the inner wall of the holder 20, two magnets 21 and 22 forming the magnetic field forming unit 15 are provided. The magnetic field forming unit 15 forms a magnetic field in a direction orthogonal to the axial direction of the rotary shaft 18 of the throttle valve device 13.
 センサモジュール100は、ハウジングカバー16に固定されている。ハウジングカバー16は、ねじ23によってハウジング14に固定されている。ハウジングカバー16をネジ23により固定すると、センサモジュール100は、磁界形成部15であるホルダ20と非接触で、かつ同軸に位置決めされる。センサモジュール100は、配線24を通じて外部、ここではECU25と電気信号をやり取り可能となっている。センサモジュール100とECU25とのやり取りは、アナログ信号によってもよいし、デジタル信号を所定のプロトコルで送受信する通信の手法によってもよい。 The sensor module 100 is fixed to the housing cover 16. The housing cover 16 is fixed to the housing 14 with screws 23. When the housing cover 16 is fixed with the screws 23, the sensor module 100 is positioned coaxially with the holder 20 that is the magnetic field forming unit 15 in a non-contact manner. The sensor module 100 is capable of exchanging electrical signals with the outside, here the ECU 25, through the wiring 24. The sensor module 100 and the ECU 25 may be exchanged by an analog signal or a communication method of transmitting and receiving a digital signal by a predetermined protocol.
 次に、図2を用いてセンサモジュール100について説明する。センサモジュール100は、検出素子部50とターミナル30~33とを備える。検出素子部50は、磁界形成部15(図1参照)が形成する磁界の向きに応じた電気信号を出力する部品である。ターミナル30~33は、検出素子部50と配線24とを電気的に接続する部材である。検出素子部50とターミナル30~33とは、樹脂などの固定材40により固定されている。本実施形態では、検出素子部50とターミナル30~33とは、後述する他の回路部材と共に収納し、熱硬化性樹脂により一体モールドされているが、検出素子部50をモールドしている部位とその下の部位とは、形状が異なるので、上部を検出素子固定部41,下部をベース部43と呼ぶものとする。 Next, the sensor module 100 will be described with reference to FIG. The sensor module 100 includes a detection element section 50 and terminals 30 to 33. The detection element unit 50 is a component that outputs an electric signal according to the direction of the magnetic field formed by the magnetic field forming unit 15 (see FIG. 1). The terminals 30 to 33 are members that electrically connect the detection element unit 50 and the wiring 24. The detection element unit 50 and the terminals 30 to 33 are fixed by a fixing member 40 such as resin. In the present embodiment, the detection element unit 50 and the terminals 30 to 33 are housed together with other circuit members described later and are integrally molded with the thermosetting resin. Since the shape is different from that of the lower part, the upper part is called the detection element fixing part 41 and the lower part is called the base part 43.
 図3に示すように、センサモジュール100を構成する検出素子部50には、磁気センサ60、磁気センサ60から出力される2つのアナログ信号をデジタル信号に変換するアナログ・デジタル変換器(以下、ADCと記載する)65,66、ADC65,66にそれぞれ接続された第1,第2補正演算部71,72、第1,第2補正演算部71,72が接続された角度演算部80、第1,第2補正演算部71,72に補正用の情報を出力する第1,第2補正情報格納部81,82、検出素子部50の環境温度を検出する環境温度センサ85などが内蔵されている。角度演算部80の出力は、ターミナル31に接続されている。この結果、ターミナル31は検出した回転角度信号である角度θを出力する端子として用いられる。ターミナル32は、接地ラインGNDに接続される端子との間に電圧Vccの電源を供給する端子である。ターミナル30は、センサモジュール100全体のベースとなる金属端子である。上記の各回路構成部材と各ターミナル30~33とは、固定材40である熱硬化樹脂により一体にモールドされている。 As shown in FIG. 3, the detection element unit 50 constituting the sensor module 100 includes a magnetic sensor 60 and an analog-digital converter (hereinafter referred to as ADC) that converts two analog signals output from the magnetic sensor 60 into digital signals. 65, 66, first and second correction calculation units 71, 72 connected to the ADCs 65, 66, respectively, an angle calculation unit 80 connected to the first and second correction calculation units 71, 72, a first The first and second correction information storage units 81 and 82 that output information for correction to the second correction calculation units 71 and 72, the environmental temperature sensor 85 that detects the environmental temperature of the detection element unit 50, and the like are incorporated. .. The output of the angle calculator 80 is connected to the terminal 31. As a result, the terminal 31 is used as a terminal for outputting the detected rotation angle signal angle θ. The terminal 32 is a terminal that supplies a power supply of the voltage Vcc to the terminal connected to the ground line GND. The terminal 30 is a metal terminal that serves as a base for the entire sensor module 100. The above-mentioned circuit constituent members and the terminals 30 to 33 are integrally molded with a thermosetting resin which is the fixing member 40.
 磁気センサ60の内部には、磁界形成部15が形成する磁界の向きを検出する第1,第2検出素子61,62が設けられている。第1,第2検出素子61,62の出力は、上述したADC65,66にそれぞれ接続されている。この磁気センサ60の第1,第2検出素子61,62は、磁界の検出角度が互いに90度ずれた関係となっている。この様子を模式的に図4に示した。磁界形成部15の磁石21,22は、ホルダ20の内側の径方向に対向する位置に設けられており、磁気センサ60はホルダ20の中心の位置に設けられている。従って、磁石21,22により形成される磁界MFは、磁気センサ60の中心を通過する。なお、図4では、ホルダ20は円環形状としたが、楕円形状などであっても差し支えない。また、図4では、第1,第2検出素子61,62は、直方体の対向する面であって、互いに直交する面に設けられているものとしたが、磁束MFの中心に対して位相が90度ずれた位置関係になるのであれば、互いに交差する配置や、上下にずれた配置などであっても差し支えない。 Inside the magnetic sensor 60, first and second detection elements 61 and 62 that detect the direction of the magnetic field formed by the magnetic field forming unit 15 are provided. The outputs of the first and second detection elements 61 and 62 are connected to the above-mentioned ADCs 65 and 66, respectively. The first and second detection elements 61 and 62 of the magnetic sensor 60 have a relationship in which the detection angles of the magnetic field are deviated from each other by 90 degrees. This state is schematically shown in FIG. The magnets 21 and 22 of the magnetic field forming unit 15 are provided inside the holder 20 at positions facing each other in the radial direction, and the magnetic sensor 60 is provided at the center position of the holder 20. Therefore, the magnetic field MF formed by the magnets 21 and 22 passes through the center of the magnetic sensor 60. Although the holder 20 has an annular shape in FIG. 4, it may have an elliptical shape or the like. Further, in FIG. 4, the first and second detection elements 61 and 62 are provided on the surfaces of the rectangular parallelepiped which are opposed to each other and are orthogonal to each other, but the phase with respect to the center of the magnetic flux MF is different. As long as the positional relationship is shifted by 90 degrees, the arrangement may intersect with each other or the arrangement may be shifted vertically.
 第1,第2検出素子61,62は、いずれもホール素子であり、実際には極めて小さな素子であり、互いに直交する位置関係に配置されている。磁界MFが回転すると、これに合わせて第1,第2検出素子61,62からは、位相が90度ずれた信号が出力される。ホール素子は、素子を正面から貫く磁界の強さに応じた信号を出力する。従って、その出力信号は、磁界MFに対して素子が正対している位置で最も強く、磁界MFと素子とが平行になる位置で最も弱く、かつ磁界の向きに応じて正負の値をとる。従って、第1検出素子61の出力と第2検出素子62の出力は、磁界MFの角度、つまりホルダ20の回転角度θに対して、一方がcos波、他方がsin波、という関係になっている。以下、説明の都合上、第1検出素子61が検出する信号をcos波、第2検出素子62が検出する信号をsin波として、それぞれ扱う。本実施形態では、第1,第2検出素子61,62として、ホール素子を用いたが、AMR(Anisotropic Magneto Resistive)素子や、TMR(Tunnel Magneto Resistance)素子を用いてもよく、GMR(Giant Magneto Resistive)素子を用いてもよい。なお、図4では、互いに直交する位置関係に配置された第1,第2検出素子61,62のみを示したが、両検出素子61,62の磁界の検出方向と更に直交する方向の磁束を検出する第3検出素子を備えるチップが、3Dセンサとして流通している。磁気センサ60としては、こうした3Dセンサを用い、そのうちの2つの検出素子を組み合わせて用いてもよい。 Each of the first and second detection elements 61 and 62 is a Hall element, and is actually an extremely small element, and they are arranged in a positional relationship orthogonal to each other. When the magnetic field MF rotates, the first and second detection elements 61 and 62 correspondingly output signals whose phases are shifted by 90 degrees. The Hall element outputs a signal according to the strength of the magnetic field that penetrates the element from the front. Therefore, the output signal is strongest at the position where the element faces the magnetic field MF, weakest at the position where the magnetic field MF and the element are parallel to each other, and has positive and negative values depending on the direction of the magnetic field. Therefore, the output of the first detection element 61 and the output of the second detection element 62 have a relationship that one is a cos wave and the other is a sin wave with respect to the angle of the magnetic field MF, that is, the rotation angle θ of the holder 20. There is. Hereinafter, for convenience of explanation, a signal detected by the first detection element 61 is treated as a cos wave, and a signal detected by the second detection element 62 is treated as a sin wave. In the present embodiment, Hall elements are used as the first and second detection elements 61 and 62, but an AMR (Anisotropic Magneto Resistive) element or a TMR (Tunnel Magneto Resistance) element may be used, and a GMR (Giant Magnetoto). Resistive) element may be used. Although FIG. 4 shows only the first and second detection elements 61 and 62 arranged in a positional relationship orthogonal to each other, a magnetic flux in a direction further orthogonal to the magnetic field detection direction of both detection elements 61 and 62 is shown. A chip including a third detection element for detecting is distributed as a 3D sensor. Such a 3D sensor may be used as the magnetic sensor 60, and two detection elements may be used in combination.
 以上説明した第1実施形態のセンサモジュール100では、モータ19により駆動されるバタフライバルブ12の回転角度に合わせて回転する磁界形成部15の回転角度θを、検出素子部50により検出する。このセンサモジュール100による回転角度の検出において生じ得る誤差には、
 (A)回転軸18と磁界形成部15と検出素子部50との芯振れによる誤差
 (B)検出素子部50の温度による生じる誤差
がある。前者の誤差は、回転軸18と磁界形成部15と検出素子部50とが同軸となるよう、三者の配置のアライメントを正確に行なうことにより解消する。後者の誤差は、前者の誤差を解消してもなおセンサモジュール100の環境温度が変化することにより発生する。
In the sensor module 100 of the first embodiment described above, the detection element unit 50 detects the rotation angle θ of the magnetic field forming unit 15 that rotates in accordance with the rotation angle of the butterfly valve 12 driven by the motor 19. The error that can occur in the detection of the rotation angle by the sensor module 100 includes
(A) An error due to center deviation of the rotary shaft 18, the magnetic field forming unit 15, and the detection element unit 50. (B) There is an error caused by the temperature of the detection element unit 50. The former error is eliminated by accurately aligning the three positions so that the rotary shaft 18, the magnetic field forming unit 15, and the detection element unit 50 are coaxial. The latter error occurs due to the environmental temperature of the sensor module 100 changing even if the former error is eliminated.
 そこで、環境温度により発生する誤差のメカニズムと本実施形態によりこの誤差を抑制する手法について、図5、図6を用いて説明する。図5に示したように、センサモジュール100は、ベース部43の上に検出素子固定部41が形成された形状をしている。両者は一体に形成されて固定材40を構成するが、モールドの際の型抜きを容易にするために、上部ほど厚みや幅が小さくなる台形形状をしている。また、検出素子固定部41は、内部に磁気センサ60を備えており、素子を貫く磁束うち、センサ法線方向の磁束の成分の大きさ、つまり磁界の方向を精度良く検出できるように、薄く作られている。検出素子固定部41内部の部品の配置については、特に限定はないが、図3に示した構成部品の内、磁気センサ60を検出素子固定部41内に配置し、磁気センサ60を除く他の構成部品をベース部43に配置するものとしてもよいし、磁気センサ60と共に他の回路部品を検出素子固定部41に配置してもよい。こうした部品の配置は、磁束MFの乱れなどが生じることがなく、磁気センサ60の検出精度を確保できればよい。 Therefore, the mechanism of the error caused by the environmental temperature and the method of suppressing this error according to the present embodiment will be described with reference to FIGS. 5 and 6. As shown in FIG. 5, the sensor module 100 has a shape in which the detection element fixing portion 41 is formed on the base portion 43. Both of them are integrally formed to form the fixing member 40, but have a trapezoidal shape in which the thickness and the width become smaller toward the upper part in order to facilitate the die cutting at the time of molding. Further, the detection element fixing portion 41 is provided with a magnetic sensor 60 inside, and is thin so that the magnitude of the magnetic flux component in the sensor normal direction of the magnetic flux penetrating the element, that is, the direction of the magnetic field can be accurately detected. Is made. The arrangement of components inside the detection element fixing portion 41 is not particularly limited, but among the components shown in FIG. 3, the magnetic sensor 60 is arranged inside the detection element fixing portion 41 and the magnetic sensor 60 other than the magnetic sensor 60 is arranged. The components may be arranged on the base portion 43, or other circuit components may be arranged on the detection element fixing portion 41 together with the magnetic sensor 60. The arrangement of such components may be such that the magnetic flux MF is not disturbed and the detection accuracy of the magnetic sensor 60 can be secured.
 図5示したように、環境温度が変化することによりセンサモジュール100の固定材40の膨張・収縮の大きさは部位により異なる。センサモジュール100の上辺の幅はベース部43より小さいのが、所定の温度上昇に伴う熱膨張の結果、検出素子固定部41の上辺において幅方向にかかる応力SCは、ベース部43の幅方向に生じる応力SBより小さい。また、検出素子固定部41は、磁束の貫通を妨げないように一般に厚みは薄いのに対して、ベース部43は、内部に多数の部品を収納する関係で、その厚みは、検出素子固定部41より厚い。このため検出素子固定部41に係る総合的な応力STは、図5に示したように、磁気センサ60に対して、少なくとも2次元の応力分布を有する。つまり、磁気センサ60に内蔵された両検出素子61,62に加わる温度変化に起因する応力は異なるものとなる。 As shown in FIG. 5, the magnitude of expansion/contraction of the fixing member 40 of the sensor module 100 varies depending on the site due to changes in the environmental temperature. The width of the upper side of the sensor module 100 is smaller than that of the base portion 43. However, as a result of thermal expansion accompanying a predetermined temperature rise, the stress SC applied to the upper side of the detection element fixing portion 41 in the width direction is in the width direction of the base portion 43. It is smaller than the generated stress SB. Further, the detection element fixing portion 41 is generally thin so as not to prevent the penetration of magnetic flux, whereas the base portion 43 accommodates a large number of components therein, and therefore the thickness is the same as the detection element fixing portion. Thicker than 41. Therefore, the total stress ST related to the detection element fixing portion 41 has at least a two-dimensional stress distribution with respect to the magnetic sensor 60, as shown in FIG. That is, the stress due to the temperature change applied to both the detection elements 61 and 62 incorporated in the magnetic sensor 60 is different.
 図4を用いて説明した様に、第1検出素子61および第2検出素子62からの出力は、磁界MFに対する角度0~360度に対して、cos波およびsin波となる。完全にアライメントがとられ、温度誤差がない場合の第1検出素子61および第2検出素子62の出力を、図6に<固定前特性>として示した。図6の符号Mは、第1検出素子61を固定材40により固定する前の、つまり素子単体での出力を示し、符号Nは、第2検出素子62を固定材40より固定する前の、素子単体での出力を、それぞれ示す。 As described with reference to FIG. 4, the outputs from the first detection element 61 and the second detection element 62 become cos wave and sin wave with respect to the angle 0 to 360 degrees with respect to the magnetic field MF. The outputs of the first detection element 61 and the second detection element 62 when they are perfectly aligned and have no temperature error are shown in FIG. 6 as <characteristics before fixation>. Reference numeral M in FIG. 6 indicates the output before the first detection element 61 is fixed by the fixing member 40, that is, the output of the element alone, and reference numeral N indicates before the second detection element 62 is fixed by the fixing member 40. The output of each element is shown.
 第1,第2検出素子61,62および他の回路構成部材が、固定材40により固定されて、検出素子固定部41およびベース部43としてモールドされ封止されると、第1検出素子61および第2検出素子62の出力は、固定材40によるモールドに伴い、応力を受けて、誤差を生じる。誤差は、基準温度(例えば常温としての25℃)においても、図6に示したように、振幅誤差、オフセット誤差、位相誤差として生じるが、これらの誤差は、更に温度が変動すると温度に依存して変動する。温度に依存して誤差が変動するのは、モールドに用いた固定材40が温度により膨張・収縮を生じるからである。 When the first and second detection elements 61 and 62 and other circuit components are fixed by the fixing material 40 and molded and sealed as the detection element fixing portion 41 and the base portion 43, the first detection element 61 and The output of the second detection element 62 receives stress due to the molding by the fixing material 40 and causes an error. The error occurs as an amplitude error, an offset error, and a phase error even at a reference temperature (for example, 25° C. as a normal temperature) as shown in FIG. 6, but these errors depend on the temperature when the temperature further fluctuates. Fluctuates. The error fluctuates depending on the temperature because the fixing material 40 used for the mold expands and contracts depending on the temperature.
 こうした第1検出素子61および第2検出素子62の温度誤差は、それぞれ独立した特性を示す。図4に示したように、第1検出素子61および第2検出素子62は、直交して配置されているため、検出素子固定部41の熱膨張・収縮により各素子が受ける応力の方向が異なるからである。本実施形態では、こうした特性を予め試験用センサモジュールで測定し、第1検出素子61および第2検出素子62に生じる誤差分を補正するための情報として、第1補正情報格納部81および第2補正情報格納部82に、それぞれ記憶する。その上で、補正演算を行なう。この補正演算を行なうのが、第1補正演算部71および第2補正演算部72である。第1補正演算部71および第2補正演算部72は、デジタル信号プロセッサ(DSP)として構成されており、ADC65,66を介してデジタル信号に変換された第1,第2検出素子61,62の出力を、第1,第2補正情報格納部81,82に格納された補正用関数を用いて、デジタル演算し、振幅誤差、オフセット誤差、位相誤差を抑制する。 The temperature errors of the first detection element 61 and the second detection element 62 show independent characteristics. As shown in FIG. 4, since the first detection element 61 and the second detection element 62 are arranged orthogonally to each other, the directions of stress applied to the respective elements by the thermal expansion/contraction of the detection element fixing portion 41 are different. Because. In the present embodiment, such characteristics are measured by the test sensor module in advance, and as the information for correcting the error amount generated in the first detection element 61 and the second detection element 62, the first correction information storage section 81 and the second correction information storage section are used. Each is stored in the correction information storage unit 82. Then, correction calculation is performed. The first correction calculation unit 71 and the second correction calculation unit 72 perform this correction calculation. The first correction calculation unit 71 and the second correction calculation unit 72 are configured as a digital signal processor (DSP), and of the first and second detection elements 61 and 62 converted into digital signals via the ADCs 65 and 66. The output is digitally calculated using the correction functions stored in the first and second correction information storage units 81 and 82 to suppress the amplitude error, offset error, and phase error.
 振幅誤差は、第1,第2検出素子61,62からの出力信号の振幅が温度により変動する誤差である。オフセット誤差は、第1,第2検出素子61,62からの出力信号の0点が温度により変動する誤差である。位相誤差は、第1,第2検出素子61,62からの出力信号の位相が温度により変動する誤差である。このため、これらの誤差を補正するための情報も、振幅変動に対応した補正関数、オフセット誤差に対応した補正関数、位相変動に対応した補正関数が、検出素子毎に必要になる。図6では、第1検出素子61用のこれらの補正関数を、振幅変動_第1信号、のように「第1信号」を付けて示した。また第2検出素子62用の補正関数は、「第2信号」を付けて示した。 The amplitude error is an error in which the amplitudes of the output signals from the first and second detection elements 61 and 62 vary with temperature. The offset error is an error in which the zero point of the output signals from the first and second detection elements 61 and 62 varies depending on the temperature. The phase error is an error in which the phases of the output signals from the first and second detection elements 61 and 62 vary with temperature. Therefore, information for correcting these errors also requires a correction function corresponding to the amplitude fluctuation, a correction function corresponding to the offset error, and a correction function corresponding to the phase fluctuation for each detection element. In FIG. 6, these correction functions for the first detection element 61 are shown with the “first signal” added, such as “amplitude variation_first signal”. The correction function for the second detection element 62 is shown with the "second signal".
 振幅変動,オフセット変動、位相変動の各々は、温度に依存しているので、第1補正演算部71および第2補正演算部72は、環境温度センサ85から環境温度Xを読込み、温度に対応する補正用の第1,第2信号を読み出し、これを用いて、第1検出素子61,第2検出素子62の出力を補正する補正演算を行なう。こうした補正演算を行なうので、第1補正演算部71および第2補正演算部72の出力は、<補正後温度特性>として図6に示したように、環境温度の変動によらず、<固定前温度特性>に近い特性となる。 Since each of the amplitude fluctuation, the offset fluctuation, and the phase fluctuation depends on the temperature, the first correction calculation unit 71 and the second correction calculation unit 72 read the environmental temperature X from the environmental temperature sensor 85 and respond to the temperature. The correction first and second signals are read out and the correction signals are used to perform the correction calculation for correcting the outputs of the first detection element 61 and the second detection element 62. Since such correction calculation is performed, the outputs of the first correction calculation unit 71 and the second correction calculation unit 72 are as shown in FIG. 6 as <corrected temperature characteristics>, regardless of variations in the environmental temperature. The characteristics are close to the temperature characteristics>.
 第1補正演算部71,第2補正演算部72により上記の補正演算を終えた信号輪入力し、角度演算部80は、バタフライバルブ12の回転角度θを出力する。角度演算部80は、デジタル演算を行なう第1補正演算部71,第2補正演算部72から得られた値をアナログ信号に変換すると共に、cos波およびsin波を組み合わせることで、回転角度θを角度0~360度の範囲で一意に確定し、出力する。 The signal wheel that has undergone the above-described correction calculation by the first correction calculation unit 71 and the second correction calculation unit 72 is input, and the angle calculation unit 80 outputs the rotation angle θ of the butterfly valve 12. The angle calculation unit 80 converts the value obtained from the first correction calculation unit 71 and the second correction calculation unit 72 that perform digital calculation into an analog signal, and combines the cos wave and the sin wave to calculate the rotation angle θ. It is uniquely determined and output in the range of an angle of 0 to 360 degrees.
 具体的な演算の例を図7を用いて説明する。図7の最上段は、固定材40により固定された検出素子部50に生じる感度誤差の内訳を、<第1検出素子振幅誤差><第2出素子振幅誤差><第1検出素子オフセット誤差><第2検出素子オフセット誤差>として示す。他方、第1補正情報格納部81,第2補正情報格納部82に記憶された補正演算用の補正式を<第1検出素子補正式><第2検出素子補正式>として示す。これらの補正式は、環境温度Xの二次関数として求められており、実際には、第1検出素子補正式については、式の係数α1,β1,γ1が、第2検出素子補正式については、式の係数α2,β2,γ2が、それぞれ第1補正情報格納部81,第2補正情報格納部82に記憶されている。二次関数の各係数は、試験用センサモジュールで測定した誤差から、最小自乗法などを用いて、誤差が最小になる二次関数を求めたものである。 An example of a specific calculation will be explained using FIG. 7. The uppermost part of FIG. 7 shows the breakdown of the sensitivity error generated in the detection element unit 50 fixed by the fixing member 40, <first detection element amplitude error> <second output element amplitude error> <first detection element offset error>. It is shown as <second detection element offset error>. On the other hand, the correction formulas for correction calculation stored in the first correction information storage unit 81 and the second correction information storage unit 82 are shown as <first detection element correction formula><second detection element correction formula>. These correction equations are obtained as a quadratic function of the ambient temperature X. In practice, the coefficients α1, β1, γ1 of the equations for the first detection element correction equation are The coefficients α2, β2, γ2 of the equation are stored in the first correction information storage unit 81 and the second correction information storage unit 82, respectively. Each coefficient of the quadratic function is obtained from the error measured by the test sensor module by using a least square method or the like to obtain a quadratic function that minimizes the error.
 本実施形態では、補正式の関数として、二次関数を用いている。このため、固定材40にガラス転移点のある樹脂を用い、樹脂の性質(熱膨張係数等)が転移点を境に変わっても、これに対応した補正を行なうことができる。また、磁気センサ60に用いる半導体は、一般に、所定の温度以上でリーク電流が発生するが、リーク電流の発生の有無を境に特性が変わっても、これに対応した補正を行なうことができる。なお、二次関数に限らず、より高次の関数を用いて補正式を特定しても差し支えない。また、固定材40として、転移点のない材料を用いている場合や、リーク電流が発生しない領域で磁気センサ60を用いる場合には、一次関数を用いた線形の補正式でも十分な精度を得ることができる。 In this embodiment, a quadratic function is used as the function of the correction formula. Therefore, even if the resin having the glass transition point is used for the fixing material 40 and the property (coefficient of thermal expansion or the like) of the resin changes at the transition point, the corresponding correction can be performed. Further, a semiconductor used for the magnetic sensor 60 generally causes a leak current at a temperature equal to or higher than a predetermined temperature. However, even if the characteristics change depending on whether or not the leak current is generated, it is possible to perform a correction corresponding thereto. Note that the correction equation may be specified using a higher-order function instead of the quadratic function. Further, when a material having no transition point is used as the fixing material 40, or when the magnetic sensor 60 is used in a region where leak current does not occur, sufficient accuracy can be obtained even with a linear correction equation using a linear function. be able to.
 図7には、感度誤差として、振幅誤差とオフセット誤差とをまとめて1つの補正式により補正するものとし、位相誤差を含めていない。位相誤差は、感度誤差とは補正の対象が異なるからである。位相誤差は、必要があれば、第1検出素子61,第2検出素子62からの出力信号を時間軸上で前後する補正式により補正すれば良い。但し、バタフライバルブ12の回転速度は一定ではないので、バタフライバルブ12が全閉、全開になるタイミングを用いて位相誤差を特定し、これを補正することが望ましい。もとより、位相誤差は、補正の対象から除いても差し支えない。 In FIG. 7, the amplitude error and the offset error are collectively corrected by one correction formula as the sensitivity error, and the phase error is not included. This is because the phase error is subject to correction differently from the sensitivity error. If necessary, the phase error may be corrected by a correction formula in which the output signals from the first detection element 61 and the second detection element 62 move back and forth on the time axis. However, since the rotation speed of the butterfly valve 12 is not constant, it is desirable to identify and correct the phase error using the timing when the butterfly valve 12 is fully closed and fully opened. Of course, the phase error may be removed from the correction target.
 図7に示したように、第1検出素子61と第2検出素子62の温度誤差は異なる特性を有するので、この温度誤差に応じた補正式をそれぞれ用意することで、補正後の第1検出素子61の感度変動、第2検出素子62の感度変動は、それぞれ補正され、温度の変化に対する感度変動は十分に抑制される。角度演算部80は補正後の信号を入力することで、感度変動が十分に抑制されたcos波およびsin波を用いて、バタフライバルブ12の回転角度θを演算できる。従って、モータ19により駆動されるバタフライバルブ12の回転角度θを精度良く検出し、延いては、スロットルバルブ装置13によるエンジンへの吸入空気量を精度良く制御できる。 As shown in FIG. 7, the temperature error between the first detection element 61 and the second detection element 62 has different characteristics. Therefore, by preparing the correction formulas corresponding to the temperature error respectively, the first detection after the correction The sensitivity fluctuation of the element 61 and the sensitivity fluctuation of the second detection element 62 are respectively corrected, and the sensitivity fluctuation with respect to the temperature change is sufficiently suppressed. By inputting the corrected signal, the angle calculator 80 can calculate the rotation angle θ of the butterfly valve 12 by using the cos wave and the sin wave in which the sensitivity variation is sufficiently suppressed. Therefore, the rotation angle θ of the butterfly valve 12 driven by the motor 19 can be accurately detected, and the intake air amount to the engine by the throttle valve device 13 can be accurately controlled.
 更に、センサモジュール100の第1補正情報格納部81や第2補正情報格納部82は、補正式の係数α1,β1,γ1や係数α2,β2,γ2のみを記憶しており、第1補正演算部71や第2補正演算部72はこの係数を用いて二次関数の補正式に従って補正演算を行なうので、精度の良い補正演算を行なうために記憶しておく情報を容量の小さなものにできる。 Furthermore, the first correction information storage unit 81 and the second correction information storage unit 82 of the sensor module 100 store only the coefficients α1, β1, γ1 and the coefficients α2, β2, γ2 of the correction formula, and the first correction calculation Since the unit 71 and the second correction calculation unit 72 perform the correction calculation according to the correction formula of the quadratic function using this coefficient, the information stored in order to perform the accurate correction calculation can have a small capacity.
B.第2実施形態:
 次に第2実施形態について説明する。第2実施形態のセンサモジュール200は、第1実施形態と同様に、スロットルバルブ装置13のバタフライバルブ12の回転角度を検出するものであり、図1に示したセンサモジュール100に代えて用いられる。センサモジュール200は、第1実施形態と同様に、熱硬化性樹脂である固定材40により検出素子部150や他の回路構成部材をモールドされている。
B. Second embodiment:
Next, a second embodiment will be described. The sensor module 200 of the second embodiment detects the rotation angle of the butterfly valve 12 of the throttle valve device 13 as in the first embodiment, and is used in place of the sensor module 100 shown in FIG. Similar to the first embodiment, the sensor module 200 is molded with the detection element section 150 and other circuit components by the fixing material 40 which is a thermosetting resin.
 このセンサモジュール200の内部構成を図8に示した。図8では、端子などは図示を省略している。第2実施形態では、磁気センサ160を構成する検出素子161は、1つしか描いていないが、第1実施形態と同様に、2つのホール素子が用いられている。もとより、第2実施形態では、単一の検出素子を用いた構成としても差し支えない。この検出素子161には、温度補償回路163が組み込まれている。温度補償回路163は、検出素子161単体での温度特性を補償する回路である。温度補償回路163は、温度センサ164からの信号を受け取り、回路的に、検出素子161の信号の変動を補償する。こうした温度補償回路としては、例えば特許文献1として示した回路などが採用可能である。 The internal structure of this sensor module 200 is shown in FIG. In FIG. 8, terminals and the like are omitted. In the second embodiment, only one detection element 161 forming the magnetic sensor 160 is drawn, but two Hall elements are used as in the first embodiment. Needless to say, the second embodiment may have a configuration using a single detection element. A temperature compensating circuit 163 is incorporated in the detecting element 161. The temperature compensating circuit 163 is a circuit that compensates the temperature characteristic of the detection element 161 alone. The temperature compensating circuit 163 receives the signal from the temperature sensor 164 and compensates the fluctuation of the signal of the detecting element 161 in a circuit manner. As such a temperature compensation circuit, for example, the circuit shown in Patent Document 1 can be adopted.
 第2実施形態のセンサモジュール200では、磁気センサ160は、それ自体で温度補償を行なっている。温度補償された角度信号(cos波やsin波)は、ADC165を介して、角度演算部180に出力される。角度演算部180は、補正演算部171と補正情報格納部181とを備える。補正情報格納部181は、第1実施形態と同様に、固定材40によりモールドされたことで環境温度の変動により磁気センサ160に生じる誤差を補償するための情報、例えば補正式を記憶している。角度演算部180は、検出素子部150の内部に設けられた環境温度センサ185により検出された環境温度Xを用いて、補正式から補正量Yを求め、磁気センサ160の出力を補正できる。この結果、検出素子161単体で温度補償されている磁気センサ160を用いても、固定材40により固定することによって生じる温度誤差を更に抑制することができ、センサモジュール200の精度を高めることができる。補正式として二次関数を用いていることや、係数のみを記憶していることなど、その他、第1実施形態と同様の作用効果を奏するとは勿論である。なお、第2実施形態では、温度センサ164の他に環境温度センサ185を設けたが、両者を兼用するものとしてもよい。 In the sensor module 200 of the second embodiment, the magnetic sensor 160 itself performs temperature compensation. The temperature-compensated angle signal (cos wave or sin wave) is output to the angle calculator 180 via the ADC 165. The angle calculation unit 180 includes a correction calculation unit 171 and a correction information storage unit 181. Similar to the first embodiment, the correction information storage unit 181 stores information for compensating an error generated in the magnetic sensor 160 due to a change in environmental temperature due to being molded by the fixing material 40, for example, a correction formula. .. The angle calculation unit 180 can use the environmental temperature X detected by the environmental temperature sensor 185 provided inside the detection element unit 150 to obtain the correction amount Y from the correction formula and correct the output of the magnetic sensor 160. As a result, even if the magnetic sensor 160 whose temperature is compensated by the detection element 161 alone is used, the temperature error caused by fixing with the fixing member 40 can be further suppressed, and the accuracy of the sensor module 200 can be improved. .. Needless to say, the same operational effects as those of the first embodiment can be obtained in that a quadratic function is used as the correction formula, only the coefficient is stored, and the like. In addition, in the second embodiment, the environmental temperature sensor 185 is provided in addition to the temperature sensor 164, but both may be used together.
C.その他の実施形態:
 上記実施形態では、補正演算は、二次関数を用いたが、三次以上の関数や、スプライン関数など、他の関数を用いることも差し支えない。また、区間を細かくした線形補間などを用いて演算しても良い。あるいは、予め温度と感度誤差との関係を測定し、これをルックアップテーブルの形態で第1補正情報格納部81等に格納し、環境温度に従って、ルックアップテーブルを参照することにより、感度誤差の補正量を求めて、補正演算するものとしても良い。補正演算は、乗算によってもよいし、加減算によってもよい。
C. Other embodiments:
Although the quadratic function is used for the correction calculation in the above-described embodiment, other functions such as a cubic or higher function and a spline function may be used. Further, the calculation may be performed using linear interpolation or the like in which the section is finely divided. Alternatively, by measuring the relationship between the temperature and the sensitivity error in advance and storing this in the form of a lookup table in the first correction information storage unit 81 or the like, and referring to the lookup table according to the environmental temperature, the sensitivity error A correction amount may be obtained and correction calculation may be performed. The correction calculation may be multiplication or addition/subtraction.
 上記実施形態では、固定材としての樹脂を用いて磁気センサとしての検出素子をモールドしたが、材料としては、樹脂以外の材料、例えばシリコンゴムなどを用いてもよい。樹脂としては、加熱すると硬化して元に戻らない熱硬化性樹脂や光により硬化する光硬化性樹脂でもよいし、充填時には流動性があり、その後硬化するタイプの樹脂、例えば2液混合により硬化するタイプの樹脂でもよい。また固定の方法としては、モールドに限らず、ポッティングやホットメルトモールディングなど、他の手法によってもよい。これらの手法にも、様々なタイプの樹脂や、その他の材料(例えばシリコンゴムなど)が利用できることは勿論である。更に、単に接着剤としても機能する材料で、検出素子を固定用基板等に接着・固定してもよい。この場合、接着剤を、固定のみならず、封止剤として機能させてもよい。また、こうした複数の材料や手法を適宜組み合わせることも可能である。また、固定材は、磁気センサを固定するものであればよく、必ずしも封止する必要はない。いずれの手法で固定しても、温度の変化により、磁気センサの出力に影響が生じるから、本開示の手法は有効である。 In the above embodiment, the detection element as the magnetic sensor is molded by using the resin as the fixing material, but a material other than the resin, for example, silicon rubber may be used as the material. The resin may be a thermosetting resin that cures when heated and does not return to its original state, or a photocurable resin that cures by light, or a resin of a type that has fluidity when filled and that cures afterwards, for example, a mixture of two liquids. It may be a resin of the type. The fixing method is not limited to the mold, and other methods such as potting and hot melt molding may be used. It goes without saying that various types of resins and other materials (for example, silicone rubber) can be used for these methods. Further, the detection element may be adhered and fixed to the fixing substrate or the like with a material that also functions as an adhesive. In this case, the adhesive may function not only as a fixing agent but also as a sealing agent. Further, it is also possible to appropriately combine a plurality of such materials and methods. Further, the fixing material may be one that fixes the magnetic sensor and does not necessarily need to be sealed. Whichever method is used, the output of the magnetic sensor is affected by the change in temperature, so the method of the present disclosure is effective.
 上記実施形態では、環境温度センサ85,185等を用いて磁気センサの環境温度を特定したが、温度特定部は、温度センサに限る必要はなく、例えば温度による樹脂の膨張・収縮をストレインゲージなどにより検出し、これから温度を特定してもよい。 In the above-described embodiment, the environmental temperature of the magnetic sensor is specified by using the environmental temperature sensors 85, 185 and the like, but the temperature specifying unit does not need to be limited to the temperature sensor. Alternatively, the temperature may be detected from the above, and the temperature may be specified from this.
 第1実施形態では、磁気センサ60に対する温度補償回路は特に設けていないものとして説明したが、磁気センサ60単独での温度補償を行なう回路を備えるものとしてもよい。この場合、第1補正演算部71,第2補正演算部72の補正演算に磁気センサ60としての温度補償処理を取り込んでよい。第1補正演算部71,第2補正演算部72の補正演算に、磁気センサ60としての温度補償処理を取り込んでも、第1検出素子61,第2検出素子62毎に個別の補正演算を行なうことになり、検出素子毎に異なる感度誤差を有するセンサモジュール100,200が検出する回転角度の検出精度を高めることができる。 In the first embodiment, the temperature compensation circuit for the magnetic sensor 60 has been described as not particularly provided, but the magnetic sensor 60 may be provided with a circuit for performing temperature compensation by itself. In this case, the temperature compensation processing as the magnetic sensor 60 may be incorporated in the correction calculation of the first correction calculation unit 71 and the second correction calculation unit 72. Even if the temperature compensation processing as the magnetic sensor 60 is incorporated in the correction calculation of the first correction calculation unit 71 and the second correction calculation unit 72, individual correction calculation is performed for each of the first detection element 61 and the second detection element 62. Therefore, it is possible to improve the detection accuracy of the rotation angle detected by the sensor modules 100 and 200 having different sensitivity errors for each detection element.
 上記実施形態では、2つの検出素子61,62は直交する位置関係に配置したが、直交に限る必要はなく、360度より小さい所定角度だけずらしていれば、2つの検出素子からの出力信号を用いて、0~360度の範囲で、回転角度を一意に求めることができる。 In the above embodiment, the two detection elements 61, 62 are arranged in a positional relationship orthogonal to each other. However, the detection signals need not be limited to the orthogonal ones. If they are shifted by a predetermined angle smaller than 360 degrees, the output signals from the two detection elements are By using it, the rotation angle can be uniquely obtained in the range of 0 to 360 degrees.
 第1実施形態では、2つの検出素子を用いたが、3つ以上の検出素子を用いることも差し支えない。例えば半球形状の被検出物の内側に所定方向の磁界を形成し、この磁界の強さを互いに直交する位置に配置された3つのホール素子で検出すれば、半球形状の被検出物の回転を3次元的に検出できる。こうした検出は、ロボットの関節の動きなどを検出するのに応用できる。 In the first embodiment, two detection elements are used, but three or more detection elements may be used. For example, if a magnetic field in a predetermined direction is formed inside a hemisphere-shaped object to be detected and the strength of this magnetic field is detected by three Hall elements arranged at mutually orthogonal positions, rotation of the hemispherical object to be detected is detected. It can be detected three-dimensionally. Such detection can be applied to detect the movement of the joints of the robot.
D.他の態様:
 本開示に示すセンサモジュールか以下の態様によっても実施可能である。例えば、センサモジュールの第1の態様として、磁界の方向により特性が変化する複数の検出素子を、前記磁界の方向を回転する被検出物に対して異なる回転角度位置にそれぞれ配置した磁気センサと、前記磁気センサの環境温度を特定する温度特定部と、前記磁気センサを固定する固定材と、前記固定材によって固定された前記磁気センサの前記複数の検出素子のそれぞれに生じ得る温度誤差に対応して、各検出素子毎に予め用意した補正用の情報を格納する補正情報格納部と、前記特定した前記環境温度に従って前記補正用の情報を参照することにより、前記各検出素子の出力する信号を個別に補正する補正演算部と、前記補正演算された信号を用いて、前記被検出物の回転角度に対応した検出値を求めて出力する角度演算部と、を備えるセンサモジュールを構成できる。複数の検出素子に対して個別の補正を行なっていることは、センサモジュールの固定材による固定を解除し、例えば2つの検出素子を入替えて、回転角度の出力を観察すれば良い。複数の検出素子に対して個別の補正を行なっていれば、同じ検出素子を用いても、接続関係を変えれば、回転角度の出力は変化するので、個別の補正を行なっていることを知ることができる。
D. Other aspects:
It can be implemented by the sensor module shown in the present disclosure or the following aspects. For example, as a first aspect of the sensor module, a magnetic sensor in which a plurality of detection elements whose characteristics change according to the direction of a magnetic field are arranged at different rotation angle positions with respect to an object to be detected rotating in the direction of the magnetic field, Corresponding to a temperature error that may occur in each of the temperature specifying unit that specifies the environmental temperature of the magnetic sensor, the fixing member that fixes the magnetic sensor, and the plurality of detection elements of the magnetic sensor that are fixed by the fixing member. Then, by referring to the correction information storage unit that stores the correction information prepared in advance for each detection element and the correction information according to the specified environmental temperature, the signal output from each detection element It is possible to configure a sensor module that includes a correction calculation unit that individually corrects and an angle calculation unit that calculates and outputs a detection value corresponding to the rotation angle of the detected object by using the corrected calculation signal. In order to individually correct a plurality of detection elements, it is sufficient to release the fixation of the sensor module by the fixing material, replace two detection elements, and observe the output of the rotation angle. If individual corrections are made to multiple detection elements, even if the same detection element is used, the output of the rotation angle will change if the connection relationship is changed, so know that individual corrections are made. You can
 こうしたセンサモジュールにおいて、前記磁気センサは、固定材としての樹脂またはポッティング剤により封止された構成としてもよい。こうすれば、磁気センサの耐水性、耐久性を高めることができる。 In such a sensor module, the magnetic sensor may be sealed with a resin as a fixing material or a potting agent. By doing so, the water resistance and durability of the magnetic sensor can be improved.
 こうしたセンサモジュールにおいて、前記複数の検出素子のうちの2つの検出素子は、前記被検出物の回転により変化する前記磁界に対して、360度未満の所定角度ずらして配置し、前記補正演算部は、前記特定した前記環境温度に従って前記補正用の情報を参照することにより、前記2つ検出素子が出力する2つの出力信号を、前記所定角度に対応した位相差にあるとして、前記回転角度に対応した検出値を一意に求めるものとしてもよい。こうすれば、センサモジュールは、回転角度を一意に求めることができ、回転角度を求める装置として高い有用性を備える。 In such a sensor module, two detection elements of the plurality of detection elements are arranged so as to be displaced by a predetermined angle of less than 360 degrees with respect to the magnetic field that changes due to rotation of the object to be detected, and the correction calculation unit By referring to the correction information according to the specified environmental temperature, the two output signals output by the two detection elements are regarded as having a phase difference corresponding to the predetermined angle, and correspond to the rotation angle. The detected value may be uniquely obtained. In this way, the sensor module can uniquely determine the rotation angle, and is highly useful as a device for determining the rotation angle.
 こうしたセンサモジュールにおいて、前記2つの検出素子は、互いに直交する位置に配置され、前記位相差は、90度とすることも望ましい。位相差が90度となるように配置すれば、2つの検出素子から出力される信号は、cos波とsin波の関係となり、回転角度の演算を容易に行なうことができる。 In such a sensor module, it is also preferable that the two detection elements are arranged at positions orthogonal to each other and the phase difference is 90 degrees. If they are arranged so that the phase difference is 90 degrees, the signals output from the two detection elements have a relationship between the cos wave and the sin wave, and the rotation angle can be easily calculated.
 こうしたセンサモジュールにおいて、前記補正情報格納部が格納する前記補正用の情報は、前記固定材による固定によって、前記環境温度により前記磁気センサに生じる応力に応じて前記各検出素子に生じる誤差を補正する情報であるものとしてよい。こうすれば、固定材による固定によって生じる応力に基づく誤差を補正して回転角度の検出精度の環境温度による低下を抑制できる。 In such a sensor module, the correction information stored in the correction information storage unit is fixed by the fixing material to correct an error generated in each of the detection elements according to a stress generated in the magnetic sensor due to the environmental temperature. It may be information. This makes it possible to correct an error based on the stress generated by the fixing by the fixing member and suppress the decrease in the detection accuracy of the rotation angle due to the ambient temperature.
 こうしたセンサモジュールにおいて、前記各検出素子の出力する信号に対して前記補正演算部が行なう前記個別の補正は、前記環境温度を変数とする二次以上の高次関数を用いた補正としてもよい。二次関数以上の高次関数を用いることにより、補正の精度を高めることができる。 In such a sensor module, the individual correction performed by the correction calculation unit with respect to the signal output from each of the detection elements may be a correction using a quadratic or higher-order function having the environmental temperature as a variable. The accuracy of correction can be improved by using a higher-order function that is a quadratic function or higher.
 このセンサモジュールにおいて、前記補正情報格納部は、前記高次関数の係数を、前記検出素子毎に格納しており、前記補正演算部は、前記検出素子毎に、前記補正情報格納部に格納された係数を用いて、前記高次関数による前記補正を行なうものとしてよい。この場合、補正演算のために係数を記憶しておければ足り、補正演算のために格納すべき情報量を低減できる。この結果、メモリ容量などを低減できる。 In this sensor module, the correction information storage unit stores the coefficient of the higher-order function for each detection element, and the correction calculation unit is stored in the correction information storage unit for each detection element. The coefficient may be used to perform the correction by the higher-order function. In this case, it is sufficient to store the coefficient for the correction calculation, and the amount of information to be stored for the correction calculation can be reduced. As a result, the memory capacity and the like can be reduced.
 こうしたセンサモジュールにおいて、前記磁気センサは、吸気量制御装置、排ガス再循環装置、過給器のうちのいずれか1つに用いられるアクチュエータによって回転駆動される被検出物に非接触に設けられたものとしてもよい。こうすれば、各種の装置の回転角度を非接触に精度良く検出できる。この結果エンジンの制御を一層精度良く行なうことができる。 In such a sensor module, the magnetic sensor is provided in non-contact with an object to be detected, which is rotationally driven by an actuator used for any one of an intake air amount control device, an exhaust gas recirculation device, and a supercharger. May be This makes it possible to accurately detect the rotation angles of various devices in a non-contact manner. As a result, the engine can be controlled more accurately.
 こうしたセンサモジュールにおいて、前記検出素子は、ホール素子またはMR素子としてよい。安価な市販のセンサを用いて、回転角度の検出精度を高めることができる。 In such a sensor module, the detection element may be a Hall element or an MR element. The detection accuracy of the rotation angle can be increased by using an inexpensive commercially available sensor.
 本開示のセンサモジュールの第2の態様として、磁界の方向により特性が変化する検出素子であって、当該検出素子の温度による誤差を検出素子単体で補償する回路を組み込んだ温度補償回路付検出素子を、前記磁界の方向を回転する被検出物に対して配置した磁気センサと、前記磁気センサを固定する固定材と、前記磁気センサの環境温度を特定する環境温度センサと、前記固定材によって固定されたことで前記磁気センサに生じ得る温度誤差に対応して、予め用意した補正用の情報を格納する補正情報格納部と、前記特定した前記環境温度に従って前記補正用の情報を参照することにより、前記温度補償回路付検出素子の出力する信号を補正して、前記被検出物の回転角度に対応した検出値を出力する演算部と、を備えるセンサモジュールを構成できる。 As a second aspect of the sensor module of the present disclosure, a detection element whose characteristics change depending on the direction of a magnetic field, the detection element with a temperature compensation circuit incorporating a circuit for compensating an error due to the temperature of the detection element by the detection element alone. A magnetic sensor arranged with respect to an object rotating in the direction of the magnetic field, a fixing member for fixing the magnetic sensor, an environmental temperature sensor for specifying the environmental temperature of the magnetic sensor, and the fixing member for fixing By referring to the correction information according to the temperature error that may occur in the magnetic sensor, the correction information storage unit that stores the correction information prepared in advance and the correction information according to the specified environmental temperature. And a calculation unit that corrects a signal output from the detection element with the temperature compensation circuit and outputs a detection value corresponding to the rotation angle of the detected object.
 こうすれば、センサモジュールにおいて検出素子単体で温度補償を行なってもなお存在する温度誤差を低減できる。このように温度補償回路付検出素子の出力を更に環境温度で補正しているかは、固定材による固定を解除した状態で回転角度に対応した検出値の出力を観察すればよい。温度補償回路付検出素子の出力を更に環境温度で補正している場合は、環境温度が変化したとき、固定材による固定がある場合と比べて、固定材による固定がない場合の方が、回転角度の検出値の誤差は大きくなる。これに対して、温度補償回路付検出素子の出力を更に環境温度で補正するという対応を取っていない場合には、環境温度が変化したとき、固定材による固定がある場合と比べて、固定材による固定がない場合の方が、回転角度の検出値の誤差は小さくなる。従って、固定材による固定がある場合と、固定材による固定がない場合とを比較すれば、いずれの構成を採用しているかを容易に知ることができる。 By doing this, it is possible to reduce the temperature error that still exists even if temperature compensation is performed on the detection element alone in the sensor module. In this way, whether the output of the detection element with the temperature compensation circuit is further corrected by the ambient temperature can be determined by observing the output of the detected value corresponding to the rotation angle in the state where the fixing by the fixing material is released. When the output of the detection element with temperature compensation circuit is further corrected by the ambient temperature, when the ambient temperature changes, the rotation without fixing by the fixing material is better than that by fixing with the fixing material. The error of the detected value of the angle becomes large. On the other hand, if the output of the detection element with the temperature compensation circuit is not corrected by the ambient temperature, the fixing material will not be used when the ambient temperature changes, compared to when the fixing material is used. The error in the detected value of the rotation angle is smaller when there is no fixation due to. Therefore, by comparing the case where the fixing material is used and the case where the fixing material is not used, it is possible to easily know which configuration is used.
 本開示の磁気センサを用いた回転角度検出の温度補償方法の第1の態様は、磁気センサに内蔵され、磁界の方向により特性が変化する複数の検出素子を、前記磁界の方向を回転する被検出物に対して異なる回転角度位置にそれぞれ配置し、前記磁気センサを固定材を用いて固定し、前記磁気センサの環境温度を特定し、前記固定材によって固定された前記磁気センサの前記複数の検出素子のそれぞれに生じ得る温度誤差に対応して、各検出素子毎の補正用の情報を予め記憶し、前記特定した前記環境温度に従って前記補正用の情報を参照することにより、前記各検出素子の出力する信号を個別に補正した上で、前記被検出物の回転角度に対応した検出値を求めて出力する。この磁気センサを用いた回転角度検出の温度補償方法によれば、環境温度による変動を抑制して、被検出物の回転角度の検出を精度良く検出できる。 A first aspect of a temperature compensation method for detecting a rotation angle using a magnetic sensor according to the present disclosure includes a plurality of detection elements that are built in a magnetic sensor and whose characteristics change depending on the direction of a magnetic field. The magnetic sensors are respectively arranged at different rotation angle positions with respect to the object to be detected, the magnetic sensor is fixed by using a fixing material, the environmental temperature of the magnetic sensor is specified, and the plurality of the magnetic sensors fixed by the fixing material. Corresponding to a temperature error that may occur in each of the detection elements, the correction information for each detection element is stored in advance, and the detection information is referred to by referring to the correction information according to the specified environmental temperature. After individually correcting the signal output by the above, the detection value corresponding to the rotation angle of the detected object is obtained and output. According to the temperature compensation method for detecting the rotation angle using the magnetic sensor, it is possible to suppress the variation due to the environmental temperature and detect the rotation angle of the object to be detected with high accuracy.
 本開示は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現できる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する本実施形態、変形例中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。 The present disclosure is not limited to the above-described embodiments, and can be realized with various configurations without departing from the spirit thereof. For example, in order to solve some or all of the above-mentioned problems, the present embodiment corresponding to the technical features in each mode described in the section of the summary of the invention, the technical features in the modification, or the above In order to achieve a part or all of the effect of (1), it is possible to appropriately replace or combine. If the technical features are not described as essential in this specification, they can be deleted as appropriate.

Claims (11)

  1.  センサモジュール(100)であって、
     磁界の方向により特性が変化する複数の検出素子(61,62)を、前記磁界の方向を回転する被検出物(15)に対して異なる回転角度位置にそれぞれ配置した磁気センサ(60)と、
     前記磁気センサの環境温度を特定する温度特定部(85)と、
     前記磁気センサを固定する固定材(40)と、
     前記固定材によって固定された前記磁気センサの前記複数の検出素子のそれぞれに生じ得る温度誤差に対応して、各検出素子毎に予め用意した補正用の情報を格納する補正情報格納部(81,82)と、
     前記特定した前記環境温度に従って前記補正用の情報を参照することにより、前記各検出素子の出力する信号を個別に補正する補正演算部(71,72)と、
     前記補正された信号を用いて、前記被検出物の回転角度に対応した検出値を求めて出力する角度演算部(80)と、
     を備えるセンサモジュール。
    A sensor module (100),
    A magnetic sensor (60) in which a plurality of detection elements (61, 62) whose characteristics change according to the direction of the magnetic field are respectively arranged at different rotation angle positions with respect to the detected object (15) rotating in the direction of the magnetic field;
    A temperature specifying unit (85) for specifying the ambient temperature of the magnetic sensor,
    A fixing member (40) for fixing the magnetic sensor,
    A correction information storage section (81, for storing correction information prepared in advance for each detection element corresponding to a temperature error that may occur in each of the plurality of detection elements of the magnetic sensor fixed by the fixing member). 82),
    A correction calculation unit (71, 72) for individually correcting the signal output from each of the detection elements by referring to the correction information according to the specified environmental temperature;
    An angle calculation unit (80) that obtains and outputs a detection value corresponding to the rotation angle of the detected object using the corrected signal,
    A sensor module including.
  2.  請求項1に記載のセンサモジュールであって、
     前記磁気センサは、固定材としての樹脂またはポッティング剤により封止された
     センサモジュール。
    The sensor module according to claim 1, wherein
    A sensor module in which the magnetic sensor is sealed with a resin as a fixing material or a potting agent.
  3.  請求項1または請求項2記載のセンサモジュールであって、
     前記複数の検出素子のうちの2つの検出素子は、前記被検出物の回転により変化する前記磁界に対して、360度以内の所定角度ずらして配置され、
     前記補正演算部は、前記特定した前記環境温度に従って前記補正用の情報を参照することにより、前記2つの検出素子が出力する2つの出力信号を、前記所定角度に対応した位相差にあるとして、前記回転角度に対応した検出値を一意に求める
     センサモジュール。
    The sensor module according to claim 1 or 2, wherein
    Two detection elements of the plurality of detection elements are arranged so as to be displaced by a predetermined angle within 360 degrees with respect to the magnetic field that changes due to rotation of the detected object,
    The correction calculation unit refers to the correction information according to the specified environmental temperature, and determines that the two output signals output by the two detection elements have a phase difference corresponding to the predetermined angle. A sensor module that uniquely obtains a detection value corresponding to the rotation angle.
  4.  前記2つの検出素子は、互いに直交する位置に配置され、前記位相差は、90度である請求項3記載のセンサモジュール。 The sensor module according to claim 3, wherein the two detection elements are arranged at positions orthogonal to each other, and the phase difference is 90 degrees.
  5.  請求項1から請求項4までのいずれか一項に記載のセンサモジュールであって、
     前記補正情報格納部が格納する前記補正用の情報は、前記固定材による固定によって、前記環境温度により前記磁気センサに生じる応力に応じて前記各検出素子に生じる誤差を補正する情報である
     センサモジュール。
    The sensor module according to any one of claims 1 to 4, wherein:
    The correction information stored in the correction information storage unit is information for correcting an error generated in each of the detection elements according to a stress generated in the magnetic sensor due to the environmental temperature by fixing with the fixing material. ..
  6.  請求項1から請求項5までのいずれか一項に記載のセンサモジュールであって、
     前記各検出素子の出力する信号に対して前記補正演算部が行なう前記個別の補正は、前記環境温度を変数とする二次以上の高次関数を用いた補正である
     センサモジュール。
    The sensor module according to any one of claims 1 to 5, wherein:
    In the sensor module, the individual correction performed by the correction calculation unit on the signal output from each of the detection elements is a correction using a higher-order function of quadratic or higher with the environmental temperature as a variable.
  7.  請求項6記載のセンサモジュールであって、
     前記補正情報格納部は、前記高次関数の係数を、前記検出素子毎に格納しており、
     前記補正演算部は、前記検出素子毎に、前記補正情報格納部に格納された係数を用いて、前記高次関数による前記補正を行なう
     センサモジュール。
    The sensor module according to claim 6, wherein
    The correction information storage unit stores the coefficient of the higher-order function for each of the detection elements,
    A sensor module in which the correction calculation unit performs the correction by the higher-order function using the coefficient stored in the correction information storage unit for each of the detection elements.
  8.  請求項1から請求項7までのいずれか一項に記載のセンサモジュールであって、
     前記磁気センサは、吸気量制御装置、排ガス再循環装置、過給器のうちのいずれか1つに用いられるアクチュエータ(19)によって回転駆動される被検出物に非接触に設けられた
     センサモジュール。
    The sensor module according to any one of claims 1 to 7, wherein:
    A sensor module in which the magnetic sensor is provided in a non-contact manner with an object to be detected that is rotationally driven by an actuator (19) used in any one of an intake air amount control device, an exhaust gas recirculation device, and a supercharger.
  9.  請求項1から請求項8までのいずれか一項に記載のセンサモジュールであって、
     前記検出素子は、ホール素子またはMR素子である、センサモジュール。
    The sensor module according to any one of claims 1 to 8, wherein:
    The sensor module, wherein the detection element is a Hall element or an MR element.
  10.  センサモジュール(200)であって、
     磁界の方向により特性が変化する検出素子(161)であって、当該検出素子の温度による誤差を検出素子単体で補償する回路(163)を組み込んだ温度補償回路付検出素子を、前記磁界の方向を回転する被検出物に対して配置した磁気センサ(160)と、
     前記磁気センサを固定する固定材と、
     前記磁気センサの環境温度を特定する環境温度センサ(185)と、
     前記固定材によって固定されたことで前記磁気センサに生じ得る温度誤差に対応して、予め用意した補正用の情報を格納する補正情報格納部(181)と、
     前記特定した前記環境温度に従って前記補正用の情報を参照することにより、前記温度補償回路付検出素子の出力する信号を補正して、前記被検出物の回転角度に対応した検出値を出力する演算部(180)と、
     を備えるセンサモジュール。
    A sensor module (200),
    A detector element (161) whose characteristics change according to the direction of the magnetic field, wherein the detector element with a temperature compensation circuit, which incorporates a circuit (163) for compensating an error due to the temperature of the detector element by the detector element, is used. A magnetic sensor (160) arranged with respect to the object to be rotated,
    A fixing material for fixing the magnetic sensor,
    An environmental temperature sensor (185) for specifying the environmental temperature of the magnetic sensor;
    A correction information storage unit (181) for storing correction information prepared in advance corresponding to a temperature error that may occur in the magnetic sensor due to being fixed by the fixing member;
    A calculation for correcting the signal output from the detection element with the temperature compensation circuit by referring to the correction information according to the specified environmental temperature and outputting a detection value corresponding to the rotation angle of the detected object. Part (180)
    A sensor module including.
  11.  磁気センサを用いた回転角度検出の温度補償方法であって、
     磁気センサに内蔵され、磁界の方向により特性が変化する複数の検出素子を、前記磁界の方向を回転する被検出物に対して異なる回転角度位置にそれぞれ配置し、
     前記磁気センサを固定材を用いて固定し、
     前記磁気センサの環境温度を特定し、
     前記固定材によって固定された前記磁気センサの前記複数の検出素子のそれぞれに生じ得る温度誤差に対応して、各検出素子毎の補正用の情報を予め記憶し、
     前記特定した前記環境温度に従って前記補正用の情報を参照することにより、前記各検出素子の出力する信号を個別に補正した上で、前記被検出物の回転角度に対応した検出値を求めて出力する
     磁気センサを用いた回転角度検出の温度補償方法。
    A temperature compensation method for detecting a rotation angle using a magnetic sensor,
    A plurality of detection elements built in the magnetic sensor, the characteristics of which change depending on the direction of the magnetic field, are arranged at different rotation angle positions with respect to the detected object rotating in the direction of the magnetic field.
    Fixing the magnetic sensor using a fixing material,
    Specify the ambient temperature of the magnetic sensor,
    Corresponding to a temperature error that may occur in each of the plurality of detection elements of the magnetic sensor fixed by the fixing member, pre-store information for correction for each detection element,
    By referring to the correction information in accordance with the specified environmental temperature, the signals output from the detection elements are individually corrected, and then a detection value corresponding to the rotation angle of the detected object is obtained and output. A temperature compensation method for rotation angle detection using a magnetic sensor.
PCT/JP2019/047547 2018-12-10 2019-12-05 Sensor module comprising magnetic sensor and method for compensating for temperature in rotation angle detection using magnetic sensor WO2020121929A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-230750 2018-12-10
JP2018230750A JP7028150B2 (en) 2018-12-10 2018-12-10 Temperature compensation method for rotation angle detection using a sensor module equipped with a magnetic sensor and a magnetic sensor

Publications (1)

Publication Number Publication Date
WO2020121929A1 true WO2020121929A1 (en) 2020-06-18

Family

ID=71076843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047547 WO2020121929A1 (en) 2018-12-10 2019-12-05 Sensor module comprising magnetic sensor and method for compensating for temperature in rotation angle detection using magnetic sensor

Country Status (2)

Country Link
JP (1) JP7028150B2 (en)
WO (1) WO2020121929A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113219379A (en) * 2020-01-21 2021-08-06 英飞凌科技股份有限公司 Sensor, controller and method for determining a magnetic field direction

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004138406A (en) * 2002-10-15 2004-05-13 Denso Corp Noncontact rotation angle sensor
JP2007155516A (en) * 2005-12-06 2007-06-21 Denso Corp Temperature characteristic correcting method of rotation angle detector, and rotation angle detector
CN205403690U (en) * 2016-02-06 2016-07-27 泰科电子(上海)有限公司 Sensing system of moving object motion position
JP2017190975A (en) * 2016-04-12 2017-10-19 株式会社デンソー Location detection device
JP2018151180A (en) * 2017-03-10 2018-09-27 パナソニックIpマネジメント株式会社 Shift position detecting apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004138406A (en) * 2002-10-15 2004-05-13 Denso Corp Noncontact rotation angle sensor
JP2007155516A (en) * 2005-12-06 2007-06-21 Denso Corp Temperature characteristic correcting method of rotation angle detector, and rotation angle detector
CN205403690U (en) * 2016-02-06 2016-07-27 泰科电子(上海)有限公司 Sensing system of moving object motion position
JP2017190975A (en) * 2016-04-12 2017-10-19 株式会社デンソー Location detection device
JP2018151180A (en) * 2017-03-10 2018-09-27 パナソニックIpマネジメント株式会社 Shift position detecting apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113219379A (en) * 2020-01-21 2021-08-06 英飞凌科技股份有限公司 Sensor, controller and method for determining a magnetic field direction

Also Published As

Publication number Publication date
JP7028150B2 (en) 2022-03-02
JP2020094816A (en) 2020-06-18

Similar Documents

Publication Publication Date Title
US7036791B2 (en) Method for the contactless detection of the position of a butterfly valve shaft of a butterfly valve connecting piece and butterfly valve connecting piece
US6198275B1 (en) Electronic circuit for automatic DC offset compensation for a linear displacement sensor
JP3892038B2 (en) Smart linear angular position sensor
US9470554B2 (en) Position detector
JP4044880B2 (en) Non-contact angle measuring device
US9851221B2 (en) Hall sensor insensitive to external magnetic fields
US8525513B2 (en) Angular position measuring device
JP2009150795A (en) Noncontact type rotation angle detection sensor device and its output correction method
JP2010197318A (en) Magnetic field detector and measuring instrument
CN112344968A (en) Device and method for calibrating an angle sensor
US11320252B2 (en) Method of installing stroke sensor
US6703827B1 (en) Electronic circuit for automatic DC offset compensation for a linear displacement sensor
WO2020121929A1 (en) Sensor module comprising magnetic sensor and method for compensating for temperature in rotation angle detection using magnetic sensor
JP2016020926A (en) Sensor device configured to detect motion of element
CN102914255A (en) Position detector
US6265866B1 (en) Measuring device for determining the position of a control element with temperature related measurement errors correction
EP1783460A2 (en) Angle detector
JP2018040586A (en) Angle detection mechanism and angle detection system
US20140184208A1 (en) Position detector
US9816798B2 (en) Position detector having a gap width different from a magnet width
US11473935B1 (en) System and related techniques that provide an angle sensor for sensing an angle of rotation of a ferromagnetic screw
US20180245953A1 (en) Magnetic field detection device
WO2017038388A1 (en) Magnetic field detection device
JP2021071350A (en) Position detector
KR101616613B1 (en) Rotation angle detecting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19894865

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19894865

Country of ref document: EP

Kind code of ref document: A1