WO2017038388A1 - Magnetic field detection device - Google Patents

Magnetic field detection device Download PDF

Info

Publication number
WO2017038388A1
WO2017038388A1 PCT/JP2016/073241 JP2016073241W WO2017038388A1 WO 2017038388 A1 WO2017038388 A1 WO 2017038388A1 JP 2016073241 W JP2016073241 W JP 2016073241W WO 2017038388 A1 WO2017038388 A1 WO 2017038388A1
Authority
WO
WIPO (PCT)
Prior art keywords
package
magnetic field
magnetic
magnetic detection
resin mold
Prior art date
Application number
PCT/JP2016/073241
Other languages
French (fr)
Japanese (ja)
Inventor
聖司 西本
智之 滝口
河野 禎之
水谷 彰利
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016116888A external-priority patent/JP6485408B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112016003915.8T priority Critical patent/DE112016003915B4/en
Priority to US15/755,234 priority patent/US10830611B2/en
Priority to CN201680049100.0A priority patent/CN107923770B/en
Publication of WO2017038388A1 publication Critical patent/WO2017038388A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux

Definitions

  • the present disclosure relates to a magnetic field detection device.
  • the magnetic field detection device described in Patent Document 1 is used as a rotation angle sensor that detects the rotation angle of a throttle valve provided in an electronically controlled throttle that controls the intake air amount to the engine.
  • a housing cover of an electronically controlled throttle, two columns extending from the housing cover, and two IC packages inserted between the two columns are integrally molded with a resin body. It is constituted by.
  • Patent Document 1 discloses injecting an ultraviolet curable resin or heat-melted hot melt into a mold on which an IC package is fixed.
  • a stress may be generated in the magnetic detection element in the IC package when the temperature changes, and an error may occur in the output signal.
  • the detection accuracy of the rotation angle of the throttle valve by the magnetic field detection device may be reduced.
  • This indication is made in view of the above-mentioned point, and it aims at providing the magnetic field detection apparatus which can reduce the stress resulting from the linear expansion difference generated at the time of a temperature change, and can raise detection accuracy. To do.
  • the magnetic field detection device includes an IC package, a terminal, and a resin mold body.
  • the IC package includes a magnetic detection element that outputs a signal according to the direction of the magnetic field, a lead frame that is located on the first side of the magnetic detection element and is connected to the magnetic detection element, and the magnetic detection element and the lead frame. And a resin material to be coated.
  • the terminal is connected to a portion of the lead frame of the IC package that protrudes from the resin material.
  • the resin mold body has a base portion and a head portion, and covers the IC package and a part of the terminal. The base portion covers a portion including a connection portion between the lead frame and the terminal.
  • the head protrudes from the base portion toward the side opposite to the terminal, and covers a portion including the magnetic detection element of the IC package.
  • the head has a maximum thickness portion of the head where the thickness from the IC package surface is maximum.
  • the outer wall surface of the maximum thickness portion located on the second side of the magnetic detection element, which is opposite to the first side, is defined as the detection side reference surface.
  • the element corresponding surface, which is the outer wall surface of the IC package located on the second side, is exposed from the resin mold body, or is thinner than the thickness from the element corresponding surface to the detection side reference surface in the resin mold body. It is covered with the detection side thin part which has.
  • the resin mold body does not mold the element corresponding surface, that is, when the element corresponding surface is exposed from the resin mold body, the inner wall of the mold forming the resin mold body and the element corresponding surface are The resin mold body can be injection-molded in the contacted state. Thereby, the positioning accuracy of the IC package is improved, and the detection accuracy of the magnetic field detection device can be increased.
  • the resin mold body is not in contact with the inner wall of the mold forming the resin mold body and the element-corresponding surface. Injection molded. Thereby, it is possible to ease the required accuracy of the mold.
  • FIG. 5 is a sectional view taken along line VV in FIG. 3. It is a characteristic view of the signal output from the magnetic field detection apparatus of 1st Embodiment. It is a top view of the magnetic field detection apparatus by a 2nd embodiment of this indication.
  • FIG. 8 is a sectional view taken along line VIII-VIII in FIG.
  • FIG. 10 is a sectional view taken along line XX in FIG. 9. It is a top view of the magnetic field detection apparatus by a 4th embodiment of this indication.
  • FIG. 12 is a cross-sectional view taken along line XII-XII in FIG. 11.
  • the magnetic field detection device 1 of the first embodiment is used, for example, for an electronically controlled throttle 2 that controls the intake air amount to the engine of a vehicle.
  • the magnetic field detection device 1 outputs a signal corresponding to the rotation angle of a throttle valve 3 as a detection object provided in the electronic control throttle 2.
  • the electronic control throttle 2 includes a throttle valve 3, a housing 4, a magnetic field forming unit 5, a housing cover 6, a magnetic field detection device 1, and the like.
  • the housing 4 is formed with an intake passage 7 for introducing air into the engine.
  • a throttle valve 3 formed in a substantially disc shape is provided in the intake passage 7.
  • the throttle valve 3 is fixed to the valve shaft 8. Both ends of the valve shaft 8 are rotatably supported by the housing 4. As a result, the throttle valve 3 can rotate about the center of the valve shaft 8 as a rotation axis.
  • a motor 9 is attached to one end of the valve shaft 8.
  • the motor 9 is driven and controlled by a command from an engine electronic control unit (ECU) 15.
  • ECU engine electronic control unit
  • the opening degree of the throttle valve 3 is controlled by driving the motor 9, and the intake air amount supplied to the engine is adjusted.
  • a bottomed cylindrical holder 10 is provided at the other end of the valve shaft 8.
  • the two magnets 11 and 12 are provided so as to face the rotation axis of the throttle valve 3 in the radial direction, and provide an N pole magnetic flux to one yoke and an S pole magnetic flux to the other yoke.
  • a magnetic flux flows in the direction orthogonal to the rotation axis of the throttle valve 3 by forming a magnetic flux inside the holder 10 from one yoke to the other yoke.
  • the housing cover 6 is attached to the magnetic field forming part 5 side of the housing 4 with screws 13 or the like.
  • the housing cover 6 is formed in a dish shape from resin. A wiring 14 is fixed to the housing cover 6.
  • the magnetic field detection device 1 is fixed to the housing cover 6, and a part of the magnetic field detection device 1 is inserted inside the holder 10. As shown in FIGS. 2 to 5, the magnetic field detection device 1 is configured by an IC package 20 and a terminal 30 being molded (covered) by a resin mold body 40.
  • the IC package 20 outputs a voltage signal corresponding to the direction of the magnetic field formed by the magnetic field forming unit 5.
  • the terminal 30 electrically connects the IC package 20 and the wiring 14 of the housing cover 6 described above.
  • the resin mold body 40 fixes the IC package 20 and a part of the terminal 30 with a resin mold, and suppresses positional fluctuation between the IC package 20 and the terminal 30.
  • the signal output from the IC package 20 is transmitted from the terminal 30 to the ECU 15 via the wiring 14 of the housing cover 6.
  • the ECU 15 controls each part of the vehicle.
  • the IC package 20 is obtained by molding a magnetic detection element 21 (see FIG. 5) and a lead frame 22 with a resin material 23.
  • the magnetic detection element 21 is a semiconductor integrated circuit, in which a first magnetic detection unit and a second magnetic detection unit are formed.
  • the first magnetic detection unit and the second magnetic detection unit are not shown because they are formed in part of the semiconductor integrated circuit.
  • the first magnetic detection unit outputs a voltage signal corresponding to the magnetic flux density that passes through its own magnetic detection surface.
  • the second magnetic detection unit also outputs a voltage signal corresponding to the magnetic flux density that passes through its own magnetic detection surface.
  • the magnetic detection surface of the first magnetic detection unit and the magnetic detection surface of the second magnetic detection unit are formed to be orthogonal to each other. Therefore, as shown in FIG. 6, the first magnetic detection unit and the second magnetic detection unit output sin waveform and cos waveform signals whose phases are shifted from each other by 90 ° with respect to a predetermined magnetic field direction.
  • the horizontal axis of FIG. 6 represents the rotation angle
  • the vertical axis represents the signal output when the amplitude of the sin wave and the cos wave is 1.
  • the output signal of the first magnetic detection unit is indicated by a solid line M
  • the output signal of the second magnetic detection unit is indicated by a broken line N.
  • the calculation unit in the IC package 20 performs arctangent calculation using the signal output from the first magnetic detection unit as a sin wave signal and the signal output from the second magnetic detection unit as a cos wave signal, A linear signal corresponding to the rotation angle is output to the ECU 15.
  • the magnetic field detection device 1 can accurately detect the rotation angle of the throttle valve 3.
  • the arc tangent calculation may be performed in the ECU 15.
  • the four lead frames 22 are all arranged so as to extend along the surface direction of the magnetic detection element 21.
  • the four lead frames 22 and the magnetic detection element 21 are electrically connected by a bonding wire (not shown) inside the resin material 23.
  • the resin material 23 is formed by molding a part of the four lead frames 22, the magnetic detection element 21, and a bonding wire.
  • the resin material 23 protects the magnetic detection element 21 and the like from impact, heat, moisture, and the like.
  • Each of the four lead frames 22 has one end protruding from the resin material 23. In the portion protruding from the resin material 23, the four lead frames 22 are bent substantially perpendicular to the surface direction of the magnetic detection element 21.
  • the terminal 30 is provided substantially perpendicular to the surface direction of the magnetic detection element 21. All of the four lead frames 22 described above are electrically and mechanically connected to the terminal 30 by welding or the like. In FIG. 5, the welded portion between the lead frame 22 and the terminal 30 is indicated by reference numeral 31.
  • Resin mold body 40 molds IC package 20 and terminal 30.
  • the resin mold body 40 integrally includes a base portion 41, a head portion 42, a detection side cutout portion 43, and a frame side cutout portion 44.
  • the base portion 41 is formed in a trapezoidal shape, and a portion including a connection portion between the lead frame 22 and the terminal 30 is molded. Specifically, the base portion 41 is formed by molding the resin material 23 on the portion closer to the terminal 30 than the magnetic detection element 21 of the IC package 20, the lead frame 22, and a part of the terminal 30.
  • the foundation 41 protects the welded portion 31 between the lead frame 22 and the terminal 30 and the lead frame 22.
  • the base portion 41 may be formed in a substantially trapezoidal cross section.
  • the head portion 42 protrudes from the base portion 41 toward the side opposite to the terminal 30 and molds a portion including the magnetic detection element 21 of the IC package 20. Specifically, the head portion 42 is formed to have a smaller cross-sectional area than the base portion 41 and is molded with the resin material 23 of the portion including the magnetic detection element 21 of the IC package 20. Due to the head portion 42, position fluctuations between the IC package 20 and the terminal 30 are suppressed.
  • the outer wall surface of the thickest part at the base of the head 42 located on the magnetic detection element 21 side with respect to the lead frame 22 is referred to as a “detection side reference surface 48”.
  • the outer wall surface of the thickest portion at the base of the head 42 positioned on the lead frame 22 side with respect to the magnetic detection element 21 is referred to as a “frame side reference surface 47”.
  • the outer wall surface of the IC package 20 formed of the resin material 23 the outer wall surface of the IC package 20 positioned on the magnetic detection element 21 side with respect to the lead frame 22 is referred to as “element corresponding surface 24”.
  • the maximum thickness portion may be a portion of the head where the thickness from the IC package is maximum.
  • the maximum thickness portion may be a portion of the head portion 42 having a maximum thickness in a direction perpendicular to the surface direction of the magnetic detection element 21.
  • the resin mold body 40 of the first embodiment has a detection-side notch 43 that is recessed from the detection-side reference surface 48 of the IC package 20 toward the element corresponding surface 24.
  • the resin mold body 40 has a frame-side notch 44 that is recessed from the frame-side reference surface 47 of the IC package 20 toward the frame corresponding surface 25.
  • the resin mold body 40 does not mold the element corresponding surface 24 and the frame corresponding surface 25 of the IC package 20. Therefore, both the element corresponding surface 24 and the frame corresponding surface 25 of the IC package 20 are exposed from the resin mold body 40.
  • the magnetic field detection device 1 of the first embodiment has the following operational effects.
  • the resin mold body 40 includes the detection-side cutout portion 43 and the frame-side cutout portion 44 so that the element corresponding surface 24 and the frame corresponding surface 25 of the IC package 20 are generated when the temperature changes. It is possible to reduce the stress caused by the difference in linear expansion. Therefore, it is possible to suppress an error from occurring in signals output from the first magnetic detection unit and the second magnetic detection unit formed in the magnetic detection element 21. As a result, the detection accuracy of the magnetic field detection device 1 can be increased.
  • the resin mold body 40 when the resin mold body 40 is injection-molded, the inner wall of the mold into which the IC package 20 and the terminal 30 are inserted is brought into contact with the element corresponding surface 24 and the frame corresponding surface 25 of the IC package 20. In this state, the resin mold body 40 can be injection molded. Thereby, since the positioning accuracy of the IC package 20 is improved, the detection accuracy of the magnetic field detection device 1 can be increased.
  • the resin mold body 40 does not mold the element corresponding surface 24 of the IC package 20. That is, the element corresponding surface 24 is exposed from the resin mold body 40. Further, the thickness of the maximum thickness portion of the head portion 42 including the detection side reference surface 48 is set to such an extent that the position variation between the terminal 30 and the IC package 20 can be suppressed.
  • the magnetic field detection apparatus 1 can achieve both a configuration for reducing the stress caused by the linear expansion difference that occurs when the temperature changes and a configuration for suppressing the positional variation between the IC package 20 and the terminal 30. .
  • the resin mold body 40 does not mold the frame corresponding surface 25 of the IC package 20. That is, the frame corresponding surface 25 is exposed from the resin mold body 40.
  • the magnetic field detection apparatus 1 can suppress the occurrence of an error in the signal output from the magnetic detection element 21 by adopting a configuration that reduces the stress caused by the difference in linear expansion that occurs when the temperature changes. .
  • the resin mold body 40 can be injection-molded in a state where the inner wall of the mold for injection-molding the resin mold body 40 and the frame corresponding surface 25 of the IC package 20 are in contact with each other. Thereby, since the positioning accuracy of the IC package 20 is improved, the detection accuracy of the magnetic field detection device 1 can be increased.
  • the magnetic detection element 21 has a first magnetic detection unit and a second magnetic detection unit that output signals whose phases are shifted from each other by 90 ° with respect to a predetermined magnetic field direction.
  • a linear signal can be obtained by performing an arctangent calculation using the signal output from the first magnetic detection unit as a sin wave signal and the signal output from the second magnetic detection unit as a cos wave signal. it can.
  • the magnetic field detection device 1 can accurately detect the rotation angle of the throttle valve 3.
  • FIGS. A second embodiment of the present disclosure is shown in FIGS. Also in the second embodiment, as in the first embodiment, the resin mold body 40 has the detection-side cutout portion 43 and the element corresponding surface 24 is exposed from the resin mold body 40. However, in the second embodiment, the frame corresponding surface 25 of the IC package 20 is covered with the frame-side thin portion 45 having a thickness T1. That is, the frame corresponding surface 25 is molded relatively thin. This thickness T1 is such a thickness that the stress by the frame-side thin portion 45 does not affect the output of the magnetic detection element 21.
  • the stress acting on the magnetic detection element 21 from the frame-side thin portion 45 of the resin mold body 40 through the frame corresponding surface 25 of the IC package 20 due to the difference in linear expansion at the time of temperature change is reduced.
  • the accuracy of the output of the detection element 21 can be increased.
  • the thickness from the frame-corresponding surface 25 of the IC package 20 to the frame-side reference surface 47 of the head 42 at a location outside the frame-side thin portion 45 is T2.
  • T1 the thickness from the frame-corresponding surface 25 of the IC package 20 to the frame-side reference surface 47 of the head 42 at a location outside the frame-side thin portion 45.
  • the resin mold body 40 when the resin mold body 40 is injection-molded, the resin mold body 40 can be injection-molded in a state where the inner wall of the mold and the frame corresponding surface 25 of the IC package 20 are not in contact with each other. It is. Therefore, the magnetic field detection device 1 can relax the required accuracy of the mold.
  • FIGS. 9 and 10 A third embodiment of the present disclosure is shown in FIGS. 9 and 10.
  • the element corresponding surface 24 of the IC package 20 is covered with the detection-side thin portion 46 having a thickness T3. That is, the element corresponding surface 24 is molded relatively thin.
  • This thickness T3 is such a thickness that the stress by the detection-side thin portion 46 does not affect the output of the magnetic detection element 21.
  • the thickness from the element corresponding surface 24 of the IC package 20 to the detection side reference surface 48 of the head 42 at a location outside the detection side thin portion 46 is T4.
  • T3 the thickness from the element corresponding surface 24 of the IC package 20 to the detection side reference surface 48 of the head 42 at a location outside the detection side thin portion 46.
  • the resin mold body 40 when the resin mold body 40 is injection-molded, the inner wall of the mold and the element corresponding surface 24 of the IC package 20 do not come into contact with each other, and the inner wall of the mold and the frame of the IC package 20 are compatible.
  • the resin mold body 40 can be injection-molded in a state where the surface 25 is not in contact. Therefore, the magnetic field detection device 1 can relax the required accuracy of the mold.
  • FIGS. 11 and 12 A fourth embodiment of the present disclosure is shown in FIGS. 11 and 12.
  • the outer wall surface of the head portion 42 of the resin mold body 40 that covers the frame corresponding surface 25 of the IC package 20 is a surface obtained by extending the frame-side reference surface 47. Therefore, the frame corresponding surface 25 is molded relatively thick like the maximum thickness portion at the base of the head 42 where the frame side reference surface 47 is defined.
  • the element corresponding surface 24 of the IC package 20 is covered with the detection-side thin portion 46 having a thickness T3. That is, the element corresponding surface 24 is molded relatively thin.
  • the inner wall of the mold does not contact the element corresponding surface 24 of the IC package 20, and the inner wall of the mold and the frame of the IC package 20
  • the resin mold body 40 can be injection-molded in a state where the corresponding surface 25 is not in contact. Therefore, the magnetic field detection device 1 can relax the required accuracy of the mold.
  • the magnetic field detection device 1 that detects the rotation angle of the throttle valve 3 as the detection target has been described.
  • the magnetic field detection device 1 may detect a rotation angle of an accelerator pedal or a crankshaft, for example.
  • the present disclosure is not limited to the above-described embodiment, and can be implemented in various forms without departing from the spirit of the disclosure in addition to combining the above-described plurality of embodiments.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

This magnetic field detection device has an IC package (20), a terminal (30), and a resin molded body (40). The IC package has a magnetic detection element (21), a lead frame (22) positioned on the first side of the magnetic detection element, and a resin material (23) covering the magnetic detection element and the lead frame. The terminal is connected to the lead frame of the IC package. The resin molded body has a base section (41) and a head section (42). The base section covers a connection area where the lead frame and the terminal are connected to each other. The head section covers the magnetic detection element of the IC package. The head section has the thickest portion. The outer wall surface of the thickest portion positioned on the second side of the magnetic detection element is defined as a detection-side reference surface (48). An element-corresponding surface (24) positioned on the second side, said element-corresponding surface being the outer wall surface of the IC package, is exposed from the resin molded body, or covered with a detection-side thin portion (46) that is thinner than a thickness (T4) from the element-corresponding surface to the detection-side reference surface.

Description

磁界検出装置Magnetic field detector 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2015年8月28日に出願された日本特許出願2015-168767および、2016年6月13日に出願された日本特許出願2016-116888を基にしている。 This application includes Japanese Patent Application No. 2015-168767 filed on August 28, 2015, and Japanese Patent Application No. 2016- filed on June 13, 2016, the disclosures of which are incorporated herein by reference. Based on 116888.
 本開示は、磁界検出装置に関する。 The present disclosure relates to a magnetic field detection device.
 従来、磁界の向きに応じた信号を出力する磁界検出装置が知られている。 Conventionally, a magnetic field detector that outputs a signal corresponding to the direction of the magnetic field is known.
 特許文献1に記載の磁界検出装置は、エンジンへの吸気量を制御する電子制御スロットルが備えるスロットルバルブの回転角を検出する回転角センサとして用いられている。この磁界検出装置は、電子制御スロットルのハウジングカバーと、そのハウジングカバーから延びる2本の支柱と、その2本の支柱の間に挿入された2個のICパッケージとが樹脂体で一体にモールドされることにより構成されている。 The magnetic field detection device described in Patent Document 1 is used as a rotation angle sensor that detects the rotation angle of a throttle valve provided in an electronically controlled throttle that controls the intake air amount to the engine. In this magnetic field detection device, a housing cover of an electronically controlled throttle, two columns extending from the housing cover, and two IC packages inserted between the two columns are integrally molded with a resin body. It is constituted by.
特許第5517083号公報Japanese Patent No. 5517083
 特許文献1には、ICパッケージが固定された金型に、紫外線硬化樹脂または加熱溶融したホットメルトを注入することが開示されている。しかし、注入された樹脂材料とICパッケージとの線膨張差により、温度変化時にICパッケージ内の磁気検出素子に応力が発生し、出力信号に誤差が生じるおそれがある。その結果、磁界検出装置によるスロットルバルブの回転角の検出精度が低下するおそれがある。 Patent Document 1 discloses injecting an ultraviolet curable resin or heat-melted hot melt into a mold on which an IC package is fixed. However, due to the difference in linear expansion between the injected resin material and the IC package, a stress may be generated in the magnetic detection element in the IC package when the temperature changes, and an error may occur in the output signal. As a result, the detection accuracy of the rotation angle of the throttle valve by the magnetic field detection device may be reduced.
 本開示は、上述の点に鑑みてなされたものであり、温度変化時に発生する線膨張差に起因する応力を低減し、検出精度を高めることの可能な磁界検出装置を提供することを目的とする。 This indication is made in view of the above-mentioned point, and it aims at providing the magnetic field detection apparatus which can reduce the stress resulting from the linear expansion difference generated at the time of a temperature change, and can raise detection accuracy. To do.
 本開示の第1態様による磁界検出装置は、ICパッケージと、ターミナルと、樹脂モールド体と、を有する。ICパッケージは、磁界の向きに応じた信号を出力する磁気検出素子と、磁気検出素子の第1側に位置して、磁気検出素子に接続されたリードフレームと、磁気検出素子とリードフレームとを被覆する樹脂材と、を有する。ターミナルは、ICパッケージのリードフレームのうち樹脂材から突出した箇所に接続される。樹脂モールド体は、基礎部と頭部を有し、ICパッケージとターミナルの一部とを被覆する。基礎部は、リードフレームとターミナルとの接続箇所を含む部分を被覆する。頭部は、基礎部からターミナルとは反対側に向かって突出し、ICパッケージの磁気検出素子を含む部分を被覆する。頭部は、頭部のうちICパッケージ表面からの厚みが最大となる最大肉厚部を有する。第1側と反対である、磁気検出素子の第2側に位置する最大肉厚部の外壁面を検出側基準面と定義する。第2側に位置するICパッケージの外壁面である素子対応面は、樹脂モールド体から露出しているか、または、樹脂モールド体のうち、素子対応面から検出側基準面までの厚さより薄い肉厚を有する検出側薄肉部で覆われている。 The magnetic field detection device according to the first aspect of the present disclosure includes an IC package, a terminal, and a resin mold body. The IC package includes a magnetic detection element that outputs a signal according to the direction of the magnetic field, a lead frame that is located on the first side of the magnetic detection element and is connected to the magnetic detection element, and the magnetic detection element and the lead frame. And a resin material to be coated. The terminal is connected to a portion of the lead frame of the IC package that protrudes from the resin material. The resin mold body has a base portion and a head portion, and covers the IC package and a part of the terminal. The base portion covers a portion including a connection portion between the lead frame and the terminal. The head protrudes from the base portion toward the side opposite to the terminal, and covers a portion including the magnetic detection element of the IC package. The head has a maximum thickness portion of the head where the thickness from the IC package surface is maximum. The outer wall surface of the maximum thickness portion located on the second side of the magnetic detection element, which is opposite to the first side, is defined as the detection side reference surface. The element corresponding surface, which is the outer wall surface of the IC package located on the second side, is exposed from the resin mold body, or is thinner than the thickness from the element corresponding surface to the detection side reference surface in the resin mold body. It is covered with the detection side thin part which has.
 これにより、温度変化時の線膨張差によって樹脂モールド体からICパッケージの素子対応面に作用する応力が低減されるので、磁気検出素子の出力信号に誤差が生じることを抑制することができる。また、樹脂モールド体がICパッケージとターミナルの一部とをモールドすることにより、それらの位置関係が固定されるので、磁界検出装置の検出精度を高めることができる。 Thereby, since the stress acting on the element corresponding surface of the IC package from the resin mold body due to the difference in linear expansion at the time of temperature change is reduced, it is possible to suppress the occurrence of an error in the output signal of the magnetic detection element. Further, since the resin mold body molds the IC package and a part of the terminal, the positional relationship between them is fixed, so that the detection accuracy of the magnetic field detection device can be improved.
 ここで、樹脂モールド体が素子対応面をモールドしていない、すなわち、素子対応面が樹脂モールド体から露出している構成の場合、樹脂モールド体を形成する金型の内壁と素子対応面とが当接した状態で、樹脂モールド体を射出成形することが可能である。これにより、ICパッケージの位置決めの精度が向上し、磁界検出装置の検出精度を高めることができる。 Here, when the resin mold body does not mold the element corresponding surface, that is, when the element corresponding surface is exposed from the resin mold body, the inner wall of the mold forming the resin mold body and the element corresponding surface are The resin mold body can be injection-molded in the contacted state. Thereby, the positioning accuracy of the IC package is improved, and the detection accuracy of the magnetic field detection device can be increased.
 一方、素子対応面が樹脂モールド体の検出側薄肉部で覆われている構成の場合、樹脂モールド体を形成する金型の内壁と素子対応面とが当接していない状態で、樹脂モールド体が射出成形される。これにより、金型の要求精度を緩和することが可能である。 On the other hand, when the element-corresponding surface is covered with the detection-side thin portion of the resin mold body, the resin mold body is not in contact with the inner wall of the mold forming the resin mold body and the element-corresponding surface. Injection molded. Thereby, it is possible to ease the required accuracy of the mold.
本開示の第1実施形態による磁界検出装置が用いられる電子制御スロットルの断面図である。It is sectional drawing of the electronically controlled throttle in which the magnetic field detection apparatus by 1st Embodiment of this indication is used. 第1実施形態による磁界検出装置の斜視図である。It is a perspective view of the magnetic field detection apparatus by 1st Embodiment. 図2のIII方向における磁界検出装置の正面図である。It is a front view of the magnetic field detection apparatus in the III direction of FIG. 図2のIV方向における磁界検出装置の平面図である。It is a top view of the magnetic field detection apparatus in the IV direction of FIG. 図3のV-V線の断面図である。FIG. 5 is a sectional view taken along line VV in FIG. 3. 第1実施形態の磁界検出装置から出力される信号の特性図である。It is a characteristic view of the signal output from the magnetic field detection apparatus of 1st Embodiment. 本開示の第2実施形態による磁界検出装置の平面図である。It is a top view of the magnetic field detection apparatus by a 2nd embodiment of this indication. 図7のVIII-VIII線の断面図である。FIG. 8 is a sectional view taken along line VIII-VIII in FIG. 本開示の第3実施形態による磁界検出装置の平面図である。It is a top view of the magnetic field detection apparatus by a 3rd embodiment of this indication. 図9のX-X線の断面図である。FIG. 10 is a sectional view taken along line XX in FIG. 9. 本開示の第4実施形態による磁界検出装置の平面図である。It is a top view of the magnetic field detection apparatus by a 4th embodiment of this indication. 図11のXII-XII線の断面図である。FIG. 12 is a cross-sectional view taken along line XII-XII in FIG. 11.
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。 Hereinafter, a plurality of modes for carrying out the present disclosure will be described with reference to the drawings. In each embodiment, parts corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. When only a part of the configuration is described in each mode, the other modes described above can be applied to the other parts of the configuration. Not only combinations of parts that clearly show that combinations are possible in each embodiment, but also combinations of the embodiments even if they are not explicitly stated unless there is a problem with the combination. Is also possible.
 以下、本開示の複数の実施形態を図面に基づき説明する。 Hereinafter, a plurality of embodiments of the present disclosure will be described with reference to the drawings.
 (第1実施形態)
 本開示の第1実施形態を図1~図6に示す。第1実施形態の磁界検出装置1は、例えば、車両のエンジンへの吸気量を制御する電子制御スロットル2に用いられる。磁界検出装置1は、電子制御スロットル2が備える被検出体としてのスロットルバルブ3の回転角に応じた信号を出力するものである。
(First embodiment)
A first embodiment of the present disclosure is shown in FIGS. The magnetic field detection device 1 of the first embodiment is used, for example, for an electronically controlled throttle 2 that controls the intake air amount to the engine of a vehicle. The magnetic field detection device 1 outputs a signal corresponding to the rotation angle of a throttle valve 3 as a detection object provided in the electronic control throttle 2.
 先ず、電子制御スロットル2の概略構成を説明する。 First, the schematic configuration of the electronic control throttle 2 will be described.
 図1に示すように、電子制御スロットル2は、スロットルバルブ3、ハウジング4、磁界形成部5、ハウジングカバー6および磁界検出装置1などを備えている。 As shown in FIG. 1, the electronic control throttle 2 includes a throttle valve 3, a housing 4, a magnetic field forming unit 5, a housing cover 6, a magnetic field detection device 1, and the like.
 ハウジング4には、エンジンに空気を導入する吸気通路7が形成されている。その吸気通路7に、略円板状に形成されたスロットルバルブ3が設けられる。スロットルバルブ3はバルブシャフト8に固定されている。そのバルブシャフト8の両端は、ハウジング4に回転可能に軸受けされている。これにより、スロットルバルブ3は、バルブシャフト8の中心を回転軸として回転可能である。 The housing 4 is formed with an intake passage 7 for introducing air into the engine. A throttle valve 3 formed in a substantially disc shape is provided in the intake passage 7. The throttle valve 3 is fixed to the valve shaft 8. Both ends of the valve shaft 8 are rotatably supported by the housing 4. As a result, the throttle valve 3 can rotate about the center of the valve shaft 8 as a rotation axis.
 バルブシャフト8の一端にモータ9が取り付けられている。モータ9は、エンジンの電子制御装置(ECU)15の指令により駆動制御される。モータ9の駆動によりスロットルバルブ3の開度が制御され、エンジンに供給される吸気量が調節される。 A motor 9 is attached to one end of the valve shaft 8. The motor 9 is driven and controlled by a command from an engine electronic control unit (ECU) 15. The opening degree of the throttle valve 3 is controlled by driving the motor 9, and the intake air amount supplied to the engine is adjusted.
 バルブシャフト8の他端に有底筒状のホルダ10が設けられている。ホルダ10の径方向の内壁には、磁界形成部5を構成する2個の磁石11,12、および、その2個の磁石11,12を周方向に接続する図示していない2個のヨークが設けられている。2個の磁石11,12は、スロットルバルブ3の回転軸に対し径方向に向き合うように設けられ、一方のヨークにN極の磁束を与え、他方のヨークにS極の磁束を与える。これにより、ホルダ10の内側を一方のヨークから他方のヨークに磁束が流れることで、スロットルバルブ3の回転軸に直交する方向に磁束が流れる磁界が形成される。スロットルバルブ3が回転すると、ホルダ10の内側の磁界の向きが変化する。 A bottomed cylindrical holder 10 is provided at the other end of the valve shaft 8. On the inner wall of the holder 10 in the radial direction, there are two magnets 11, 12 constituting the magnetic field forming unit 5 and two yokes (not shown) that connect the two magnets 11, 12 in the circumferential direction. Is provided. The two magnets 11 and 12 are provided so as to face the rotation axis of the throttle valve 3 in the radial direction, and provide an N pole magnetic flux to one yoke and an S pole magnetic flux to the other yoke. As a result, a magnetic flux flows in the direction orthogonal to the rotation axis of the throttle valve 3 by forming a magnetic flux inside the holder 10 from one yoke to the other yoke. When the throttle valve 3 rotates, the direction of the magnetic field inside the holder 10 changes.
 ハウジング4の磁界形成部5側にハウジングカバー6がねじ13などにより取り付けられている。 The housing cover 6 is attached to the magnetic field forming part 5 side of the housing 4 with screws 13 or the like.
 ハウジングカバー6は、樹脂により皿状に形成されている。ハウジングカバー6には、配線14が固定されている。 The housing cover 6 is formed in a dish shape from resin. A wiring 14 is fixed to the housing cover 6.
 磁界検出装置1は、ハウジングカバー6に固定され、その一部がホルダ10の径内側に挿入される。図2から図5に示すように、磁界検出装置1は、ICパッケージ20とターミナル30とが樹脂モールド体40によりモールドされて(被覆されて)構成されたものである。 The magnetic field detection device 1 is fixed to the housing cover 6, and a part of the magnetic field detection device 1 is inserted inside the holder 10. As shown in FIGS. 2 to 5, the magnetic field detection device 1 is configured by an IC package 20 and a terminal 30 being molded (covered) by a resin mold body 40.
 ICパッケージ20は、磁界形成部5が形成する磁界の向きに応じた電圧信号を出力する。ターミナル30は、ICパッケージ20と、上述したハウジングカバー6の配線14とを電気的に接続する。樹脂モールド体40は、ICパッケージ20とターミナル30の一部とを樹脂モールドにより固定し、ICパッケージ20とターミナル30との位置変動を抑制する。 The IC package 20 outputs a voltage signal corresponding to the direction of the magnetic field formed by the magnetic field forming unit 5. The terminal 30 electrically connects the IC package 20 and the wiring 14 of the housing cover 6 described above. The resin mold body 40 fixes the IC package 20 and a part of the terminal 30 with a resin mold, and suppresses positional fluctuation between the IC package 20 and the terminal 30.
 ICパッケージ20から出力された信号は、ターミナル30からハウジングカバー6の配線14を経由してECU15に伝送される。ECU15は、車両の各部を制御する。 The signal output from the IC package 20 is transmitted from the terminal 30 to the ECU 15 via the wiring 14 of the housing cover 6. The ECU 15 controls each part of the vehicle.
 続いて、第1実施形態の磁界検出装置1を構成するICパッケージ20、ターミナル30および樹脂モールド体40について、図2から図6を参照して詳細に説明する。 Subsequently, the IC package 20, the terminal 30, and the resin mold body 40 constituting the magnetic field detection device 1 of the first embodiment will be described in detail with reference to FIGS.
 ICパッケージ20は、磁気検出素子21(図5参照)とリードフレーム22とが樹脂材23によりモールドされたものである。 The IC package 20 is obtained by molding a magnetic detection element 21 (see FIG. 5) and a lead frame 22 with a resin material 23.
 磁気検出素子21は、半導体集積回路であり、その中に、第1磁気検出部と第2磁気検出部が形成されている。なお、第1磁気検出部と第2磁気検出部は半導体集積回路の一部に形成されるものであるので図示していない。第1磁気検出部は、自らの磁気検出面を通過する磁束密度に応じた電圧信号を出力する。第2磁気検出部も、自らの磁気検出面を通過する磁束密度に応じた電圧信号を出力する。ここで、半導体集積回路において、第1磁気検出部の磁気検出面と第2磁気検出部の磁気検出面とは、直交するように形成されたものである。そのため、図6に示すように、第1磁気検出部と第2磁気検出部とは、所定の磁界の向きに対し、位相が互いに90°ずれたsin波形とcos波形の信号を出力する。 The magnetic detection element 21 is a semiconductor integrated circuit, in which a first magnetic detection unit and a second magnetic detection unit are formed. The first magnetic detection unit and the second magnetic detection unit are not shown because they are formed in part of the semiconductor integrated circuit. The first magnetic detection unit outputs a voltage signal corresponding to the magnetic flux density that passes through its own magnetic detection surface. The second magnetic detection unit also outputs a voltage signal corresponding to the magnetic flux density that passes through its own magnetic detection surface. Here, in the semiconductor integrated circuit, the magnetic detection surface of the first magnetic detection unit and the magnetic detection surface of the second magnetic detection unit are formed to be orthogonal to each other. Therefore, as shown in FIG. 6, the first magnetic detection unit and the second magnetic detection unit output sin waveform and cos waveform signals whose phases are shifted from each other by 90 ° with respect to a predetermined magnetic field direction.
 なお、図6の横軸は回転角を示し、縦軸は、sin波とcos波の振幅を1としたときの信号出力を示す。また、図6では、第1磁気検出部の出力信号を実線Mで示し、第2磁気検出部の出力信号を破線Nで示している。 Note that the horizontal axis of FIG. 6 represents the rotation angle, and the vertical axis represents the signal output when the amplitude of the sin wave and the cos wave is 1. In FIG. 6, the output signal of the first magnetic detection unit is indicated by a solid line M, and the output signal of the second magnetic detection unit is indicated by a broken line N.
 例えばICパッケージ20内の演算部は、第1磁気検出部が出力する信号をsin波信号とし、第2磁気検出部が出力する信号をcos波信号として、アークタンジェント演算を行い、スロットルバルブ3の回転角に応じたリニアな信号をECU15に出力する。その結果、磁界検出装置1は、スロットルバルブ3の回転角を正確に検出することが可能である。なお、他の実施形態では、ECU15内でアークタンジェント演算を行うようにしてもよい。 For example, the calculation unit in the IC package 20 performs arctangent calculation using the signal output from the first magnetic detection unit as a sin wave signal and the signal output from the second magnetic detection unit as a cos wave signal, A linear signal corresponding to the rotation angle is output to the ECU 15. As a result, the magnetic field detection device 1 can accurately detect the rotation angle of the throttle valve 3. In other embodiments, the arc tangent calculation may be performed in the ECU 15.
 図3および図5に示すように、4本のリードフレーム22は、いずれも磁気検出素子21の面方向に沿って延伸するように配置されている。4本のリードフレーム22と磁気検出素子21とは、樹脂材23の内側で、図示していないボンディングワイヤにより電気的に接続されている。 3 and 5, the four lead frames 22 are all arranged so as to extend along the surface direction of the magnetic detection element 21. The four lead frames 22 and the magnetic detection element 21 are electrically connected by a bonding wire (not shown) inside the resin material 23.
 樹脂材23は、4本のリードフレーム22の一部と磁気検出素子21とボンディングワイヤとをモールドしている。樹脂材23は、衝撃、熱または湿気等から磁気検出素子21等を保護している。 The resin material 23 is formed by molding a part of the four lead frames 22, the magnetic detection element 21, and a bonding wire. The resin material 23 protects the magnetic detection element 21 and the like from impact, heat, moisture, and the like.
 4本のリードフレーム22はいずれも、その一端が樹脂材23から突出している。樹脂材23から突出した箇所において、4本のリードフレーム22は、磁気検出素子21の面方向に対しほぼ垂直に折り曲げられている。 Each of the four lead frames 22 has one end protruding from the resin material 23. In the portion protruding from the resin material 23, the four lead frames 22 are bent substantially perpendicular to the surface direction of the magnetic detection element 21.
 ターミナル30は、磁気検出素子21の面方向に対しほぼ垂直に設けられている。上述した4本のリードフレーム22はいずれもターミナル30に溶接などにより電気的および機械的に接続している。なお、図5では、リードフレーム22とターミナル30との溶接箇所を符号31で示している。 The terminal 30 is provided substantially perpendicular to the surface direction of the magnetic detection element 21. All of the four lead frames 22 described above are electrically and mechanically connected to the terminal 30 by welding or the like. In FIG. 5, the welded portion between the lead frame 22 and the terminal 30 is indicated by reference numeral 31.
 樹脂モールド体40は、ICパッケージ20とターミナル30とをモールドしている。 Resin mold body 40 molds IC package 20 and terminal 30.
 樹脂モールド体40は、基礎部41、頭部42、検出側切欠部43およびフレーム側切欠部44を一体に有している。 The resin mold body 40 integrally includes a base portion 41, a head portion 42, a detection side cutout portion 43, and a frame side cutout portion 44.
 基礎部41は、台状に形成され、リードフレーム22とターミナル30との接続箇所を含む部分をモールドする。詳しくは、基礎部41は、ICパッケージ20の磁気検出素子21よりターミナル30側の部分の樹脂材23と、リードフレーム22と、ターミナル30の一部とをモールドしている。この基礎部41により、リードフレーム22とターミナル30との溶接箇所31およびリードフレーム22が保護される。基礎部41は、断面が略台形状に形成されてもよい。 The base portion 41 is formed in a trapezoidal shape, and a portion including a connection portion between the lead frame 22 and the terminal 30 is molded. Specifically, the base portion 41 is formed by molding the resin material 23 on the portion closer to the terminal 30 than the magnetic detection element 21 of the IC package 20, the lead frame 22, and a part of the terminal 30. The foundation 41 protects the welded portion 31 between the lead frame 22 and the terminal 30 and the lead frame 22. The base portion 41 may be formed in a substantially trapezoidal cross section.
 頭部42は、基礎部41からターミナル30とは反対側に向かって突出し、ICパッケージ20の磁気検出素子21を含む部分をモールドする。詳しくは、頭部42は、基礎部41よりも断面積が小さく形成され、ICパッケージ20の磁気検出素子21を含む部分の樹脂材23をモールドしている。この頭部42により、ICパッケージ20とターミナル30との位置変動が抑制される。 The head portion 42 protrudes from the base portion 41 toward the side opposite to the terminal 30 and molds a portion including the magnetic detection element 21 of the IC package 20. Specifically, the head portion 42 is formed to have a smaller cross-sectional area than the base portion 41 and is molded with the resin material 23 of the portion including the magnetic detection element 21 of the IC package 20. Due to the head portion 42, position fluctuations between the IC package 20 and the terminal 30 are suppressed.
 ここで、リードフレーム22に対し磁気検出素子21側に位置する頭部42の根元の最大肉厚部の外壁面を「検出側基準面48」と称する。また、磁気検出素子21に対しリードフレーム22側に位置する頭部42の根元の最大肉厚部の外壁面を「フレーム側基準面47」と称する。さらに、樹脂材23で構成されるICパッケージ20の外壁面のうち、リードフレーム22に対し磁気検出素子21側に位置するICパッケージ20の外壁面を「素子対応面24」と称する。また、磁気検出素子21に対しリードフレーム22側に位置するICパッケージ20の外壁面を「フレーム対応面25」と称する。最大肉厚部は、頭部のうち、ICパッケージからの厚みが最大となる部分であってもよい。最大肉厚部は、頭部42のうち、磁気検出素子21の面方向に垂直な方向の厚さが最大である部分でもよい。 Here, the outer wall surface of the thickest part at the base of the head 42 located on the magnetic detection element 21 side with respect to the lead frame 22 is referred to as a “detection side reference surface 48”. In addition, the outer wall surface of the thickest portion at the base of the head 42 positioned on the lead frame 22 side with respect to the magnetic detection element 21 is referred to as a “frame side reference surface 47”. Further, among the outer wall surfaces of the IC package 20 formed of the resin material 23, the outer wall surface of the IC package 20 positioned on the magnetic detection element 21 side with respect to the lead frame 22 is referred to as “element corresponding surface 24”. Further, the outer wall surface of the IC package 20 positioned on the lead frame 22 side with respect to the magnetic detection element 21 is referred to as a “frame corresponding surface 25”. The maximum thickness portion may be a portion of the head where the thickness from the IC package is maximum. The maximum thickness portion may be a portion of the head portion 42 having a maximum thickness in a direction perpendicular to the surface direction of the magnetic detection element 21.
 第1実施形態の樹脂モールド体40は、ICパッケージ20の検出側基準面48から素子対応面24に向かって凹む検出側切欠部43を有している。また、樹脂モールド体40は、ICパッケージ20のフレーム側基準面47からフレーム対応面25に向かって凹むフレーム側切欠部44を有している。 The resin mold body 40 of the first embodiment has a detection-side notch 43 that is recessed from the detection-side reference surface 48 of the IC package 20 toward the element corresponding surface 24. In addition, the resin mold body 40 has a frame-side notch 44 that is recessed from the frame-side reference surface 47 of the IC package 20 toward the frame corresponding surface 25.
 すなわち、樹脂モールド体40は、ICパッケージ20の素子対応面24およびフレーム対応面25をモールドしていない。したがって、ICパッケージ20の素子対応面24およびフレーム対応面25は、いずれも樹脂モールド体40から露出している。 That is, the resin mold body 40 does not mold the element corresponding surface 24 and the frame corresponding surface 25 of the IC package 20. Therefore, both the element corresponding surface 24 and the frame corresponding surface 25 of the IC package 20 are exposed from the resin mold body 40.
 上述した構成により、第1実施形態の磁界検出装置1は、次の作用効果を奏する。 With the above-described configuration, the magnetic field detection device 1 of the first embodiment has the following operational effects.
 (1)第1実施形態では、樹脂モールド体40が検出側切欠部43およびフレーム側切欠部44を有することにより、ICパッケージ20の素子対応面24およびフレーム対応面25に対し、温度変化時に発生する線膨張差に起因する応力を低減することができる。したがって、磁気検出素子21に形成された第1磁気検出部と第2磁気検出部から出力される信号に誤差が生じることを抑制することができる。その結果、磁界検出装置1の検出精度を高めることができる。 (1) In the first embodiment, the resin mold body 40 includes the detection-side cutout portion 43 and the frame-side cutout portion 44 so that the element corresponding surface 24 and the frame corresponding surface 25 of the IC package 20 are generated when the temperature changes. It is possible to reduce the stress caused by the difference in linear expansion. Therefore, it is possible to suppress an error from occurring in signals output from the first magnetic detection unit and the second magnetic detection unit formed in the magnetic detection element 21. As a result, the detection accuracy of the magnetic field detection device 1 can be increased.
 また、第1実施形態では、樹脂モールド体40を射出成形する際、ICパッケージ20とターミナル30とを挿入した金型の内壁とICパッケージ20の素子対応面24およびフレーム対応面25とを当接させた状態で、樹脂モールド体40を射出成形することが可能である。これにより、ICパッケージ20の位置決めの精度が向上するので、磁界検出装置1の検出精度を高めることができる。 In the first embodiment, when the resin mold body 40 is injection-molded, the inner wall of the mold into which the IC package 20 and the terminal 30 are inserted is brought into contact with the element corresponding surface 24 and the frame corresponding surface 25 of the IC package 20. In this state, the resin mold body 40 can be injection molded. Thereby, since the positioning accuracy of the IC package 20 is improved, the detection accuracy of the magnetic field detection device 1 can be increased.
 (2)第1実施形態では、樹脂モールド体40は、ICパッケージ20の素子対応面24をモールドしていない。すなわち、素子対応面24は、樹脂モールド体40から露出している。また、検出側基準面48を含む頭部42の最大肉厚部の肉厚は、ターミナル30とICパッケージ20との位置変動を抑制可能な程度に設定されている。 (2) In the first embodiment, the resin mold body 40 does not mold the element corresponding surface 24 of the IC package 20. That is, the element corresponding surface 24 is exposed from the resin mold body 40. Further, the thickness of the maximum thickness portion of the head portion 42 including the detection side reference surface 48 is set to such an extent that the position variation between the terminal 30 and the IC package 20 can be suppressed.
 これにより、磁界検出装置1は、温度変化時に発生する線膨張差に起因する応力を低減する構成と、ICパッケージ20とターミナル30との位置変動を抑制する構成とを両立することが可能である。 Thereby, the magnetic field detection apparatus 1 can achieve both a configuration for reducing the stress caused by the linear expansion difference that occurs when the temperature changes and a configuration for suppressing the positional variation between the IC package 20 and the terminal 30. .
 (3)第1実施形態では、樹脂モールド体40は、ICパッケージ20のフレーム対応面25をモールドしていない。すなわち、フレーム対応面25は、樹脂モールド体40から露出している。これにより、磁界検出装置1は、温度変化時に発生する線膨張差に起因する応力を低減する構成とすることで、磁気検出素子21から出力される信号に誤差が生じることを抑制することができる。 (3) In the first embodiment, the resin mold body 40 does not mold the frame corresponding surface 25 of the IC package 20. That is, the frame corresponding surface 25 is exposed from the resin mold body 40. Thereby, the magnetic field detection apparatus 1 can suppress the occurrence of an error in the signal output from the magnetic detection element 21 by adopting a configuration that reduces the stress caused by the difference in linear expansion that occurs when the temperature changes. .
 また、樹脂モールド体40を射出形成する金型の内壁とICパッケージ20のフレーム対応面25とを当接させた状態で、樹脂モールド体40を射出成形することが可能である。これにより、ICパッケージ20の位置決めの精度が向上するので、磁界検出装置1の検出精度を高めることができる。 Further, the resin mold body 40 can be injection-molded in a state where the inner wall of the mold for injection-molding the resin mold body 40 and the frame corresponding surface 25 of the IC package 20 are in contact with each other. Thereby, since the positioning accuracy of the IC package 20 is improved, the detection accuracy of the magnetic field detection device 1 can be increased.
 (4)第1実施形態では、磁気検出素子21は、所定の磁界の向きに対し、位相が互いに90°ずれた信号を出力する第1磁気検出部および第2磁気検出部を有する。 (4) In the first embodiment, the magnetic detection element 21 has a first magnetic detection unit and a second magnetic detection unit that output signals whose phases are shifted from each other by 90 ° with respect to a predetermined magnetic field direction.
 これにより、第1磁気検出部から出力される信号をsin波信号とし、第2磁気検出部から出力される信号をcos波信号として、アークタンジェント演算を行うことにより、リニアな信号を得ることができる。その結果、磁界検出装置1は、スロットルバルブ3の回転角を正確に検出することが可能である。 Accordingly, a linear signal can be obtained by performing an arctangent calculation using the signal output from the first magnetic detection unit as a sin wave signal and the signal output from the second magnetic detection unit as a cos wave signal. it can. As a result, the magnetic field detection device 1 can accurately detect the rotation angle of the throttle valve 3.
 (第2実施形態)
 本開示の第2実施形態を図7および図8に示す。第2実施形態においても、第1実施形態と同様、樹脂モールド体40は検出側切欠部43を有し、素子対応面24は、樹脂モールド体40から露出している。ただし、第2実施形態では、ICパッケージ20のフレーム対応面25は、厚さT1のフレーム側薄肉部45で覆われている。すなわち、フレーム対応面25は、比較的薄くモールドされている。この厚さT1は、フレーム側薄肉部45による応力が磁気検出素子21の出力に影響を与えない程度の厚さである。
(Second Embodiment)
A second embodiment of the present disclosure is shown in FIGS. Also in the second embodiment, as in the first embodiment, the resin mold body 40 has the detection-side cutout portion 43 and the element corresponding surface 24 is exposed from the resin mold body 40. However, in the second embodiment, the frame corresponding surface 25 of the IC package 20 is covered with the frame-side thin portion 45 having a thickness T1. That is, the frame corresponding surface 25 is molded relatively thin. This thickness T1 is such a thickness that the stress by the frame-side thin portion 45 does not affect the output of the magnetic detection element 21.
 これにより、温度変化時の線膨張差によって樹脂モールド体40のフレーム側薄肉部45からICパッケージ20のフレーム対応面25を介して磁気検出素子21に対して作用する応力が低減されるので、磁気検出素子21の出力の精度を高めることができる。 As a result, the stress acting on the magnetic detection element 21 from the frame-side thin portion 45 of the resin mold body 40 through the frame corresponding surface 25 of the IC package 20 due to the difference in linear expansion at the time of temperature change is reduced. The accuracy of the output of the detection element 21 can be increased.
 また、フレーム側薄肉部45より外側の箇所において、ICパッケージ20のフレーム対応面25から頭部42のフレーム側基準面47までの厚さをT2とする。このとき、T1<T2である。このように、頭部42のフレーム側基準面47までの厚さT2を厚くすることにより、ターミナル30とICパッケージ20との位置変動を抑制することができる。 Further, the thickness from the frame-corresponding surface 25 of the IC package 20 to the frame-side reference surface 47 of the head 42 at a location outside the frame-side thin portion 45 is T2. At this time, T1 <T2. As described above, by increasing the thickness T2 of the head portion 42 up to the frame side reference surface 47, it is possible to suppress the positional variation between the terminal 30 and the IC package 20.
 第2実施形態では、樹脂モールド体40を射出成形する際、その金型の内壁とICパッケージ20のフレーム対応面25とが当接していない状態で、樹脂モールド体40を射出成形することが可能である。したがって、磁界検出装置1は、金型の要求精度を緩和することが可能である。 In the second embodiment, when the resin mold body 40 is injection-molded, the resin mold body 40 can be injection-molded in a state where the inner wall of the mold and the frame corresponding surface 25 of the IC package 20 are not in contact with each other. It is. Therefore, the magnetic field detection device 1 can relax the required accuracy of the mold.
 (第3実施形態)
 本開示の第3実施形態を図9および図10に示す。第3実施形態では、ICパッケージ20の素子対応面24は、厚さT3の検出側薄肉部46で覆われている。すなわち、素子対応面24は、比較的薄くモールドされている。この厚さT3は、検出側薄肉部46による応力が磁気検出素子21の出力に影響を与えない程度の厚さである。
(Third embodiment)
A third embodiment of the present disclosure is shown in FIGS. 9 and 10. In the third embodiment, the element corresponding surface 24 of the IC package 20 is covered with the detection-side thin portion 46 having a thickness T3. That is, the element corresponding surface 24 is molded relatively thin. This thickness T3 is such a thickness that the stress by the detection-side thin portion 46 does not affect the output of the magnetic detection element 21.
 これにより、温度変化時の線膨張差によって樹脂モールド体40の検出側薄肉部46からICパッケージ20の素子対応面24を介して磁気検出素子21に作用する応力が低減されるので、磁気検出素子21の出力の精度を高めることができる。 As a result, stress acting on the magnetic detection element 21 from the detection-side thin portion 46 of the resin mold body 40 via the element corresponding surface 24 of the IC package 20 due to a difference in linear expansion at the time of temperature change is reduced. The accuracy of 21 outputs can be increased.
 また、検出側薄肉部46より外側の箇所において、ICパッケージ20の素子対応面24から頭部42の検出側基準面48までの厚さをT4とする。このとき、T3<T4である。このように、頭部42の検出側基準面48までの厚さT4を厚くすることにより、ターミナル30とICパッケージ20との位置変動を抑制することができる。 Further, the thickness from the element corresponding surface 24 of the IC package 20 to the detection side reference surface 48 of the head 42 at a location outside the detection side thin portion 46 is T4. At this time, T3 <T4. As described above, by increasing the thickness T4 of the head 42 up to the detection side reference surface 48, it is possible to suppress the positional variation between the terminal 30 and the IC package 20.
 第3実施形態では、樹脂モールド体40を射出成形する際、その金型の内壁とICパッケージ20の素子対応面24とが当接せず、且つ、金型の内壁とICパッケージ20のフレーム対応面25とが当接していない状態で、樹脂モールド体40を射出成形することが可能である。したがって、磁界検出装置1は、金型の要求精度を緩和することが可能である。 In the third embodiment, when the resin mold body 40 is injection-molded, the inner wall of the mold and the element corresponding surface 24 of the IC package 20 do not come into contact with each other, and the inner wall of the mold and the frame of the IC package 20 are compatible. The resin mold body 40 can be injection-molded in a state where the surface 25 is not in contact. Therefore, the magnetic field detection device 1 can relax the required accuracy of the mold.
 (第4実施形態)
 本開示の第4実施形態を図11および図12に示す。第4実施形態では、樹脂モールド体40の頭部42においてICパッケージ20のフレーム対応面25を覆う部分の外壁面は、フレーム側基準面47を延長した面である。そのため、フレーム対応面25は、フレーム側基準面47が定義される頭部42の根元の最大肉厚部と同様に、比較的厚くモールドされている。
(Fourth embodiment)
A fourth embodiment of the present disclosure is shown in FIGS. 11 and 12. In the fourth embodiment, the outer wall surface of the head portion 42 of the resin mold body 40 that covers the frame corresponding surface 25 of the IC package 20 is a surface obtained by extending the frame-side reference surface 47. Therefore, the frame corresponding surface 25 is molded relatively thick like the maximum thickness portion at the base of the head 42 where the frame side reference surface 47 is defined.
 一方、第4実施形態においても、第3実施形態と同様、ICパッケージ20の素子対応面24は、厚さT3の検出側薄肉部46で覆われている。すなわち、素子対応面24は、比較的薄くモールドされている。 On the other hand, also in the fourth embodiment, as in the third embodiment, the element corresponding surface 24 of the IC package 20 is covered with the detection-side thin portion 46 having a thickness T3. That is, the element corresponding surface 24 is molded relatively thin.
 これにより、温度変化時の線膨張差によって樹脂モールド体40の検出側薄肉部46からICパッケージ20の素子対応面24を介して磁気検出素子21に作用する応力が低減されるので、磁気検出素子21の出力の精度を高めることができる。 As a result, stress acting on the magnetic detection element 21 from the detection-side thin portion 46 of the resin mold body 40 via the element corresponding surface 24 of the IC package 20 due to a difference in linear expansion at the time of temperature change is reduced. The accuracy of 21 outputs can be increased.
 第4実施形態においても、樹脂モールド体40を射出成形する際、その金型の内壁とICパッケージ20の素子対応面24とが当接せず、且つ、金型の内壁とICパッケージ20のフレーム対応面25とが当接していない状態で、樹脂モールド体40を射出成形することが可能である。したがって、磁界検出装置1は、金型の要求精度を緩和することが可能である。 Also in the fourth embodiment, when the resin mold body 40 is injection-molded, the inner wall of the mold does not contact the element corresponding surface 24 of the IC package 20, and the inner wall of the mold and the frame of the IC package 20 The resin mold body 40 can be injection-molded in a state where the corresponding surface 25 is not in contact. Therefore, the magnetic field detection device 1 can relax the required accuracy of the mold.
 上述した実施形態では、被検出体としてのスロットルバルブ3の回転角を検出する磁界検出装置1について説明した。しかし、磁界検出装置1は、例えばアクセルペダルまたはクランクシャフト等の回転角を検出するものであってもよい。 In the above-described embodiment, the magnetic field detection device 1 that detects the rotation angle of the throttle valve 3 as the detection target has been described. However, the magnetic field detection device 1 may detect a rotation angle of an accelerator pedal or a crankshaft, for example.
 このように、本開示は、上述した実施形態に限定されるものではなく、上述した複数の実施形態を組み合わせることに加え、開示の趣旨を逸脱しない範囲で種々の形態で実施可能である。 As described above, the present disclosure is not limited to the above-described embodiment, and can be implemented in various forms without departing from the spirit of the disclosure in addition to combining the above-described plurality of embodiments.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

 
Although the present disclosure has been described with reference to the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (5)

  1.  磁界の向きに応じた信号を出力する磁気検出素子(21)と、当該磁気検出素子の第1側に位置して、前記磁気検出素子に接続されたリードフレーム(22)と、前記磁気検出素子(21)と前記リードフレーム(22)とを被覆する樹脂材(23)と、を有するICパッケージ(20)と、
     前記ICパッケージの前記リードフレームのうち前記樹脂材から突出した箇所に接続されたターミナル(30)と、
     前記リードフレームと前記ターミナルとの接続箇所を含む部分を被覆する基礎部(41)、および、前記基礎部から前記ターミナルとは反対側に向かって突出し、前記ICパッケージの前記磁気検出素子を含む部分を被覆する頭部(42)を有し、前記ICパッケージと前記ターミナルの一部とを被覆する樹脂モールド体(40)と、
     を備え、
     前記頭部は、前記頭部のうちICパッケージ表面からの厚みが最大となる最大肉厚部を有し、
     前記第1側と反対である、前記磁気検出素子の第2側に位置する前記最大肉厚部の外壁面を検出側基準面(48)と定義し、
     前記第2側に位置する前記ICパッケージの外壁面である素子対応面(24)は、前記樹脂モールド体から露出しているか、または、前記樹脂モールド体のうち、当該素子対応面から前記検出側基準面までの厚さ(T4)より薄い肉厚(T3)を有する検出側薄肉部(46)で覆われている磁界検出装置。
    A magnetic detection element (21) for outputting a signal corresponding to the direction of the magnetic field; a lead frame (22) located on the first side of the magnetic detection element; connected to the magnetic detection element; and the magnetic detection element An IC package (20) having (21) and a resin material (23) covering the lead frame (22);
    A terminal (30) connected to a portion protruding from the resin material of the lead frame of the IC package;
    A base portion (41) covering a portion including a connection portion between the lead frame and the terminal, and a portion protruding from the base portion toward the opposite side of the terminal and including the magnetic detection element of the IC package A resin mold body (40) that covers the IC package and a part of the terminal;
    With
    The head has a maximum thickness portion where the thickness from the surface of the IC package is maximum among the head.
    An outer wall surface of the maximum thickness portion located on the second side of the magnetic detection element opposite to the first side is defined as a detection side reference surface (48),
    The element corresponding surface (24) which is the outer wall surface of the IC package located on the second side is exposed from the resin mold body, or, among the resin mold bodies, from the element corresponding surface to the detection side The magnetic field detection apparatus covered with the detection side thin part (46) which has thickness (T3) thinner than the thickness (T4) to a reference plane.
  2.  前記素子対応面は、前記樹脂モールド体から露出している請求項1に記載の磁界検出装置。 The magnetic field detection device according to claim 1, wherein the element corresponding surface is exposed from the resin mold body.
  3.  前記第1側に位置する前記ICパッケージの外壁面であるフレーム対応面(25)は、前記樹脂モールド体から露出している請求項1または2に記載の磁界検出装置。 The magnetic field detection device according to claim 1 or 2, wherein a frame corresponding surface (25) which is an outer wall surface of the IC package located on the first side is exposed from the resin mold body.
  4.  前記第1側に位置する前記頭部の最大肉厚部の外壁面をフレーム側基準面(47)とすると、
     前記第1側に位置する前記ICパッケージの外壁面であるフレーム対応面(25)は、前記樹脂モールド体のうち、当該フレーム対応面から前記フレーム側基準面までの厚さ(T2)より薄い肉厚(T1)を有するフレーム側薄肉部(45)で覆われている請求項1または2に記載の磁界検出装置。
    When the outer wall surface of the maximum thickness portion of the head located on the first side is a frame side reference surface (47),
    The frame corresponding surface (25) which is the outer wall surface of the IC package located on the first side is thinner than the thickness (T2) from the frame corresponding surface to the frame side reference surface in the resin mold body. The magnetic field detection device according to claim 1 or 2, wherein the magnetic field detection device is covered with a frame-side thin portion (45) having a thickness (T1).
  5.  前記磁気検出素子は、所定の磁界の向きに対し、位相が互いに90°ずれた信号を出力する第1磁気検出部および第2磁気検出部を有する請求項1から4のいずれか一項に記載の磁界検出装置。

     
    5. The magnetic detection element according to claim 1, wherein the magnetic detection element includes a first magnetic detection unit and a second magnetic detection unit that output signals whose phases are shifted from each other by 90 ° with respect to a predetermined magnetic field direction. Magnetic field detection device.

PCT/JP2016/073241 2015-08-28 2016-08-08 Magnetic field detection device WO2017038388A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112016003915.8T DE112016003915B4 (en) 2015-08-28 2016-08-08 Magnetic field detection device
US15/755,234 US10830611B2 (en) 2015-08-28 2016-08-08 Magnetic field detection device
CN201680049100.0A CN107923770B (en) 2015-08-28 2016-08-08 Magnetic field detection device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015168767 2015-08-28
JP2015-168767 2015-08-28
JP2016-116888 2016-06-13
JP2016116888A JP6485408B2 (en) 2015-08-28 2016-06-13 Magnetic field detector

Publications (1)

Publication Number Publication Date
WO2017038388A1 true WO2017038388A1 (en) 2017-03-09

Family

ID=58187266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073241 WO2017038388A1 (en) 2015-08-28 2016-08-08 Magnetic field detection device

Country Status (1)

Country Link
WO (1) WO2017038388A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260813A (en) * 1994-03-23 1995-10-13 Nippondenso Co Ltd Magnetic detection sensor
JP2006098140A (en) * 2004-09-28 2006-04-13 Denso Corp Rotation angle detector
JP2006329922A (en) * 2005-05-30 2006-12-07 Aisin Seiki Co Ltd Sensor device
JP2014059207A (en) * 2012-09-18 2014-04-03 Denso Corp Position detection device
JP5517083B2 (en) * 2011-04-22 2014-06-11 株式会社デンソー Rotation angle sensor
JP2015064331A (en) * 2013-08-28 2015-04-09 株式会社デンソー Position detection device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260813A (en) * 1994-03-23 1995-10-13 Nippondenso Co Ltd Magnetic detection sensor
JP2006098140A (en) * 2004-09-28 2006-04-13 Denso Corp Rotation angle detector
JP2006329922A (en) * 2005-05-30 2006-12-07 Aisin Seiki Co Ltd Sensor device
JP5517083B2 (en) * 2011-04-22 2014-06-11 株式会社デンソー Rotation angle sensor
JP2014059207A (en) * 2012-09-18 2014-04-03 Denso Corp Position detection device
JP2015064331A (en) * 2013-08-28 2015-04-09 株式会社デンソー Position detection device

Similar Documents

Publication Publication Date Title
JP5517083B2 (en) Rotation angle sensor
CN104729543B (en) position detecting device
KR101206864B1 (en) Motor and manufacturing method thereof
JP5626298B2 (en) Position detection device
US20080121831A1 (en) Rotational angle sensors and throttle devices
JP6160549B2 (en) Position detection device
JP2007101230A (en) Rotation detection device
US8779761B2 (en) Rotation angle detecting unit
JP4294036B2 (en) Rotation angle detector
JP6485408B2 (en) Magnetic field detector
JP6065793B2 (en) Position detection device
WO2017038388A1 (en) Magnetic field detection device
JP2008128646A (en) Rotating angle sensor and throttle device
JP2008145258A (en) Rotation detection sensor
US10800078B2 (en) Terminal insert article
JP2008128647A (en) Angle of rotation sensor and throttle device
JP7106947B2 (en) Position detector
WO2017126262A1 (en) Position detecting device
JP7264102B2 (en) Position detector
JP4862840B2 (en) Method for adjusting rotation detector
JP3304278B2 (en) Magnetic detector
JP2008275490A (en) Rotation detection sensor
JP2008145257A (en) Rotation detection sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841420

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15755234

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016003915

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841420

Country of ref document: EP

Kind code of ref document: A1