WO2020121867A1 - 検出学習装置、方法、及びプログラム - Google Patents

検出学習装置、方法、及びプログラム Download PDF

Info

Publication number
WO2020121867A1
WO2020121867A1 PCT/JP2019/047006 JP2019047006W WO2020121867A1 WO 2020121867 A1 WO2020121867 A1 WO 2020121867A1 JP 2019047006 W JP2019047006 W JP 2019047006W WO 2020121867 A1 WO2020121867 A1 WO 2020121867A1
Authority
WO
WIPO (PCT)
Prior art keywords
example data
unit
positive
score
maximization
Prior art date
Application number
PCT/JP2019/047006
Other languages
English (en)
French (fr)
Inventor
和彦 村崎
千紘 齋藤
慎吾 安藤
淳 嵯峨田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US17/312,364 priority Critical patent/US20220019899A1/en
Publication of WO2020121867A1 publication Critical patent/WO2020121867A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/01Probabilistic graphical models, e.g. probabilistic networks

Definitions

  • the present invention relates to a detection learning device, method, and program for classifying data into positive examples or negative examples.
  • the maximization learning unit falls within the range of the upper limit and the lower limit when the ranking is shown from the ranked positive example data as a ratio to all the positive example data.
  • the included positive example data may be selected.
  • the detection learning apparatus has a correspondence relationship between a true positive rate that is a probability of correctly classifying positive example data as a positive example and a false positive rate that is a probability of misclassifying negative example data as a positive example.
  • the maximization target region setting unit uses the true positive rate, which is the probability of correctly classifying positive example data as a positive example, and the probability of misclassifying negative example data as a positive example.
  • a step of setting so as to narrow, the maximizing learning unit in accordance with the upper and lower limits of the set true positive rate or false positive rate, positive example data selected from ranked positive example data,
  • a step of learning the score function so as to optimize the objective function represented by using a negative example data and a score function that calculates a score representing positiveness, and a ranking unit uses the score function.
  • the determination unit After repeating the processing by the maximization learning unit, and the ranking unit until the objective function converges, the step of causing the setting by the maximization target area setting unit to be repeated until the range of the upper limit and the lower limit of the true positive rate or the false positive rate reaches a predetermined size, is executed. ..
  • the step of ranking the negative example data, and the determination unit repeats the processing by the maximization learning unit and the ranking unit until the objective function converges, and then the setting by the maximization target region setting unit. Is repeated until the range of the upper limit and the lower limit of the false positive rate reaches a predetermined value.
  • the detection learning device, method, and program of the present invention it is possible to obtain an effect that a well-balanced detector can be learned around a desired TPR or FPR.
  • the detection learning device 100 includes a CPU, a RAM, and a ROM that stores a program and various data for executing a detection learning processing routine described later. It can be composed of a computer.
  • This detection learning device 100 is functionally provided with learning data 10, a calculation unit 20, and an output unit 50 as shown in FIG.
  • the detection learning device 100 receives the learning data 10 to which the positive example and the negative example are given.
  • the maximization target area setting unit 30 determines the partial area of the AUC that should be the target of maximization.
  • the maximization learning unit 32 learns a detector that maximizes pAUC for the set partial region of the received learning data 10.
  • the ranking unit 34 sorts the learning data in the order of scores according to the learned detector. The score ranking obtained by the ranking unit 34 is used by the maximization learning unit 32. While the determination unit 36 repeats the three processes, the maximization target region 21 is gradually narrowed, and the detector parameter 22 when optimized in a sufficiently narrow region is output as a learning result.
  • the maximization target area setting unit 30 sets such that the range (maximization target area 21) defined by the upper and lower limits of the true positive rate for defining a part of the lower area of the ROC curve is narrowed for each repetition.
  • the partial area of the AUC that is maximized based on the required TPR or FPR value is set as the maximization target area 21.
  • the required TPR is ⁇ .
  • R 1 be the lower limit and R u be the upper limit of the set maximization target region 21, and this is expressed as in equation (1) below.
  • is a parameter indicating the attenuation rate of the maximization target region 21.
  • may be set for each of l and u.
  • the maximization learning unit 32 learns the detector parameter 22 that maximizes pAUC according to the set maximization target area 21.
  • the detector is constructed by a deep neural network (DNN), and the DNN detector parameter 22 is learned by the error back propagation method under an appropriate objective function.
  • the following L(R 1 , R u ) is used as the objective function to be minimized.
  • f(•) indicates the output value of the DNN
  • l(•) sets a function that gives a loss to 0 or a negative value.
  • xp and xn have shown the positive example data and negative example data used as a detection object, respectively.
  • X p (R 1 , R u ) is the lower limit R l when all the positive example data x p are rearranged by the score function f(x p ) in descending order and the rank is shown as a ratio to all the positive example data.
  • a set of positive example data that is larger than and smaller than the upper limit R u is shown. That is, in the maximization learning unit 32, the positive example data X p (R which is included in the upper and lower limits when the rank is shown as a ratio to all the positive example data from the ranked positive example data (score ranking 23). l , R u ).
  • m p (R 1 , R u ) indicates the total number of positive example data included in X p (R 1 , R u ).
  • mn indicates the total number of negative example data.
  • the ranking unit 34 ranks the positive example data based on the score calculated using the score function.
  • the ranking unit 34 uses the learned detector parameters 22 to calculate detection scores for all positive example data, and calculates a score ranking 23 in which the detection scores are arranged in descending order. Since the ranking unit 34 is located after the maximizing unit, there is no score ranking 23 data in the first learning, but since the maximization target region 21 is all data, the ranking data is not used. It is possible to learn.
  • the determination unit 36 repeats the processing by the maximization learning unit 32 and the ranking unit 34 until the objective function of the equation (3) converges, and then causes the maximization target area setting unit 30 to perform the setting. This is repeated until the upper limit and the lower limit of the positive rate (TPR) (maximization target region 21) reaches a predetermined size.
  • TPR positive rate
  • the score f(x) is calculated for the input data x using the detector parameter 22, and if the calculated score is larger than the threshold value ⁇ , the target data is detected. It is desirable to prepare verification data different from the learning data in the learning processing as the threshold value ⁇ used here, and set a threshold value at which the TPR becomes ⁇ in the verification data.
  • the detection learning device 100 executes the detection learning processing routine shown in FIG.
  • the maximization learning unit 32 learns the score function according to the range of the upper limit and the lower limit of the true positive rate (maximization target region 21) set in step S100.
  • the learning of the score function is represented by using positive example data selected from the ranked positive example data (score ranking 23), negative example data, and a score function that calculates a score representing positive example likelihood.
  • the score function is learned so as to optimize the objective function of equation (3).
  • step S106 the determination unit 36 determines whether or not the objective function of the equation (3) has converged. If it has converged, the process proceeds to step S108, and if it has not converged, the process returns to step S102 and repeats the process.
  • step S108 the determination unit 36 determines whether the upper limit and the lower limit range (maximization target region 21) of the true positive rate (TPR) has decreased to a predetermined size, and if it has decreased to a predetermined size, the process is performed. Is completed, and if the size has not decreased to the predetermined size, the process returns to step S100 to repeat the process.
  • TPR true positive rate
  • the detection learning device can learn a well-balanced detector around a desired TPR.
  • the score function is learned in the range determined by the upper limit and the lower limit of the true positive rate (TPR) has been described as an example, but the present invention is not limited to this, and the true positive rate is not the false positive rate.
  • the maximization learning unit 32 selects the positive example data, but when the false positive rate is used, the positive example data and the negative example data are replaced with each other to obtain the negative example data. It is sufficient to rank and select the negative example data.
  • the Zenmakerei data x n when rearranged in descending order by the score function f (x n), the set of negative examples data smaller than larger upper than the lower limit when showing their ranking relative to the total negative examples Data Make sure to select.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Image Analysis (AREA)

Abstract

所望のTPRもしくはFPR周辺でバランスの良い検出器を学習できる。 ROC曲線の下側面積の一部を規定するための真陽性率又は偽陽性率の上限及び下限で定まる範囲を繰り返しごとに狭めるように設定し、上限及び下限の範囲に応じて、ランキングされた正例データから選択される正例データと、負例データと、正例らしさを表すスコアを計算するスコア関数とを用いて表される目的関数を最適化するように、前記スコア関数を学習し、正例データをランキングし、前記目的関数が収束するまで前記最大化学習部、及び前記ランキング部による処理を繰り返させてから、前記最大化対象領域設定部による設定をさせることを、真陽性率又は偽陽性率の前記上限及び下限の範囲が所定の大きさになるまで繰り返させる。

Description

検出学習装置、方法、及びプログラム
 本発明は、データを正例か負例に分類するための検出学習装置、方法、及びプログラムに関する。
 多数のデータから対象のデータを検出する技術は機械学習のアプローチに基づいて多数の手法が考案されており、近年では深層学習による検出器が複雑なデータに対して高い性能を示すことで知られている。
 検出器の性能を示す指標として、検出すべき対象データを正しく検出できている割合を示す再現率(もしくは真陽性率)や検出すべきでないデータを間違えて検出してしまう割合を示す偽陽性率などがあるが、これらはトレードオフの関係にあるため、真陽性率(True Positive Rate:TPR)を高めるよう学習すると偽陽性率(False Positive Rate :FPR)も高まってしまうといった問題がある。こうしたトレードオフを解決するための指標として受信者動作特性(Receiver Operating Characteristic:ROC)曲線における曲線下面積(Area Under the Curve:AUC)を用いるというアプローチがよく用いられる。ROC曲線とはTPRとFPRの対応関係をプロットしたグラフ上の曲線、すなわち正例のデータを正例と正しく分類する確率である真陽性率(TPR)と負例のデータを正例と誤分類する確率である偽陽性率(FPR)との対応関係を表す曲線である。ROC曲線が成す面積であるAUCを最大化することで、バランスの良い検出器を学習することができる。
Ueda, Naonori, and Akinori Fujino. "Partial AUC Maximization via Nonlinear Scoring Functions." arXiv preprint arXiv:1806.04838 (2018).
 しかし、実際に特定の目的において検出器を活用する際には、バランスの良い検出器ではなく特定の性能を保証するような検出器が必要となる場合がある。例えば、画像を用いて工場で生産された部品の点検を行うために不良品の検出を行うことを考えると、不良品を通過させないためにはTPRを十分高く設定する必要があるが、一方でFPRについてはある程度の誤検出が許容されるであろう。このように一定のTPRを前提とした上で検出性能を高めるための指標としてpartial AUC(pAUC)の最大化が提案されている(非特許文献1)。これは、図1に示すように、AUCによって示される面積のうち一部分を対象として最大化することで、該当するTPRもしくはFPRにおいて検出性能を最大化できるアプローチである。pAUC最大化によって検出器の応用先に応じた最適化が可能となるが、pAUC最大化において対象とする部分領域を狭くするほど過学習が起こりやすく局所解に陥りやすいという問題がある。
 本発明では、このような問題に対して段階的に対象領域を狭めるようにしてpAUCを最大化するアプローチによって所望のTPRもしくはFPRにおける検出性能最大化を実現する。
 TPR、FPR、ROC、AUC、及びpAUCの関係を図1に示す。
 本発明は、上記事情を鑑みて成されたものであり、所望のTPRもしくはFPR周辺でバランスの良い検出器を学習できる検出学習装置、方法、及びプログラムを提供することを目的とする。
 上記目的を達成するために、第1の発明に係る検出学習装置は、正例のデータを正例と正しく分類する確率である真陽性率と負例のデータを正例と誤分類する確率である偽陽性率との対応関係を表すグラフ上におけるROC(Receiver Operating Characteristic)曲線の下側面積の一部を規定するための真陽性率又は偽陽性率の上限及び下限で定まる範囲を繰り返しごとに狭めるように設定する最大化対象領域設定部と、設定された真陽性率又は偽陽性率の前記上限及び下限の範囲に応じて、ランキングされた正例データから選択される正例データと、負例データと、正例らしさを表すスコアを計算するスコア関数とを用いて表される目的関数を最適化するように、前記スコア関数を学習する最大化学習部と、前記スコア関数を用いて計算される前記スコアに基づいて、前記正例データをランキングするランキング部と、前記目的関数が収束するまで前記最大化学習部、及び前記ランキング部による処理を繰り返させてから、前記最大化対象領域設定部による設定をさせることを、真陽性率又は偽陽性率の前記上限及び下限の範囲が所定の大きさになるまで繰り返させる判定部と、を含んで構成されている。
 また、第1の発明に係る検出学習装置において、前記最大化学習部は、前記ランキングされた正例データから、順位を全正例データに対する割合で示したときに前記上限及び前記下限の範囲に含まれる正例データを選択するようにしてもよい。
 第2の発明に係る検出学習装置は、正例のデータを正例と正しく分類する確率である真陽性率と負例のデータを正例と誤分類する確率である偽陽性率との対応関係を表すグラフ上におけるROC(Receiver Operating Characteristic)曲線の下側面積の一部を規定するための偽陽性率の上限及び下限で定まる範囲を繰り返しごとに狭めるように設定する最大化対象領域設定部と、設定された偽陽性率の前記上限及び下限の範囲に応じて、ランキングされた負例データから選択される負例データと、正例データと、正例らしさを表すスコアを計算するスコア関数とを用いて表される目的関数を最適化するように、前記スコア関数を学習する最大化学習部と、前記スコア関数を用いて計算される前記スコアに基づいて、前記負例データをランキングするランキング部と、前記目的関数が収束するまで前記最大化学習部、及び前記ランキング部による処理を繰り返させてから、前記最大化対象領域設定部による設定をさせることを、偽陽性率の前記上限及び下限の範囲が所定の大きさになるまで繰り返させる判定部と、を含んで構成されている。
 第3の発明に係る検出学習方法は、最大化対象領域設定部が、正例のデータを正例と正しく分類する確率である真陽性率と負例のデータを正例と誤分類する確率である偽陽性率との対応関係を表すグラフ上におけるROC(Receiver Operating Characteristic)曲線の下側面積の一部を規定するための真陽性率又は偽陽性率の上限及び下限で定まる範囲を繰り返しごとに狭めるように設定するステップと、最大化学習部が、設定された真陽性率又は偽陽性率の前記上限及び下限の範囲に応じて、ランキングされた正例データから選択される正例データと、負例データと、正例らしさを表すスコアを計算するスコア関数とを用いて表される目的関数を最適化するように、前記スコア関数を学習するステップと、ランキング部が、前記スコア関数を用いて計算される前記スコアに基づいて、前記正例データをランキングするステップと、判定部が、前記目的関数が収束するまで前記最大化学習部、及び前記ランキング部による処理を繰り返させてから、前記最大化対象領域設定部による設定をさせることを、真陽性率又は偽陽性率の前記上限及び下限の範囲が所定の大きさになるまで繰り返させるステップと、を含んで実行することを特徴とする。
 また、第3の発明に係る検出学習方法において、前記最大化学習部は、前記ランキングされた正例データから、順位を全正例データに対する割合で示したときに前記上限及び前記下限の範囲に含まれる正例データを選択するようにしてもよい。
 第4の発明に係る検出学習方法は、最大化対象領域設定部が、正例のデータを正例と正しく分類する確率である真陽性率と負例のデータを正例と誤分類する確率である偽陽性率との対応関係を表すグラフ上におけるROC(Receiver Operating Characteristic)曲線の下側面積の一部を規定するための偽陽性率の上限及び下限で定まる範囲を繰り返しごとに狭めるように設定するステップと、最大化学習部が、設定された偽陽性率の前記上限及び下限の範囲に応じて、ランキングされた負例データから選択される負例データと、正例データと、正例らしさを表すスコアを計算するスコア関数とを用いて表される目的関数を最適化するように、前記スコア関数を学習するステップと、ランキング部が、前記スコア関数を用いて計算される前記スコアに基づいて、前記負例データをランキングするステップと、判定部が、前記目的関数が収束するまで前記最大化学習部、及び前記ランキング部による処理を繰り返させてから、前記最大化対象領域設定部による設定をさせることを、偽陽性率の前記上限及び下限の範囲が所定の大きさになるまで繰り返させるステップと、を含んで実行することを特徴とする。
 第5の発明に係るプログラムは、コンピュータを、第1の発明に記載の検出学習装置の各部として機能させるためのプログラムである。
 本発明の検出学習装置、方法、及びプログラムによれば、所望のTPRもしくはFPR周辺でバランスの良い検出器を学習できる、という効果が得られる。
TPR、FPR、ROC、AUC、及びpAUCの関係の一例を示す図である。 本発明の実施の形態に係る検出学習装置の構成を示すブロック図である。 本発明の実施の形態に係る検出学習装置における検出学習処理ルーチンを示すフローチャートである。
 以下、図面を参照して本発明の実施の形態を詳細に説明する。
 所望のTPRもしくはFPR周辺でのpAUC最大化によって検出器の学習を行う。本発明の実施の形態ではTPR周辺でのpAUC最大化によって検出器を学習する場合を例に説明する。この時、pAUCが狭いと局所解に陥りやすく高い性能が得られにくいが、広く設定してしまうと所望のパラメータに特化した性能が得られないという問題がある。本発明の実施の形態では、pAUCの対象領域を初めに広く設定し、徐々に狭めていくことで、学習を容易にし特定のパラメータにおける最適化を実現する。
<本発明の実施の形態に係る検出学習装置の構成>
 次に、本発明の実施の形態に係る検出学習装置の構成について説明する。図2に示すように、本発明の実施の形態に係る検出学習装置100は、CPUと、RAMと、後述する検出学習処理ルーチンを実行するためのプログラムや各種データを記憶したROMと、を含むコンピュータで構成することが出来る。この検出学習装置100は、機能的には図2に示すように学習データ10と、演算部20と、出力部50とを備えている。
 検出学習装置100は、正例及び負例が付与された学習データ10を受け付ける。
 演算部20は、最大化対象領域設定部30と、最大化学習部32と、ランキング部34と、判定部36とを含んで構成されている。また、演算部20は、最大化対象領域設定部30により設定される最大化対象領域21と、最大化学習部32により学習される検出器パラメータ22と、ランキング部34により求められるスコアランキング23とを含んで構成される。
 最大化対象領域設定部30では、最大化の対象とすべきAUCの部分領域を決める。最大化学習部32では、受け付けた学習データ10について、設定された部分領域についてpAUCが最大となるような検出器を学習する。ランキング部34では、学習された検出器に従って学習データをスコア順に並べ替える処理を行う。ランキング部34で得られるスコアランキングは最大化学習部32において用いられる。判定部36により3つの処理を繰り返しながら、徐々に最大化対象領域21を狭めていき、十分に狭い領域において最適化された時の検出器パラメータ22が学習結果として出力される。
 以下に各処理部の詳細を述べる。
 最大化対象領域設定部30は、ROC曲線の下側面積の一部を規定するための真陽性率の上限及び下限で定まる範囲(最大化対象領域21)を繰り返しごとに狭めるように設定する。
 最大化対象領域設定部30においては、要件となるTPRもしくはFPRの値を基準として最大化するAUCの部分領域を最大化対象領域21として設定する。本実施の形態では一例として必要となるTPRがαである場合を想定する。この場合、TPR=αとなる領域周辺を最大化することで、TPRがαの時のFPRを最小化することができるが、局所解に陥ることを避けるために、最大化対象領域21を徐々に狭めていくことで学習を行う。
 設定する最大化対象領域21の下限をR、上限をRとして、以下(1)式のように表す。
Figure JPOXMLDOC01-appb-M000001

                            ・・・(1)
 ここでδの右上に記したnは最大化対象領域設定部30が設定を行った回数を示す。初回の設定時には0<TPR<1の全領域を対象として設定するため、δ (0)=α,δ (0)=1-αとする。2回目以降は最大化対象領域設定部30が設定を行う度に以下(2)式に従って最大化対象領域21を変更する。
Figure JPOXMLDOC01-appb-M000002

                            ・・・(2)
 ここでηは最大化対象領域21の減衰率を示すパラメータである。ηはl及びuのそれぞれについて定めるようにしてもよい。
 最大化学習部32は、最大化対象領域設定部30で設定された真陽性率の上限及び下限の範囲(最大化対象領域21)に応じてスコア関数を学習する。スコア関数の学習は、ランキングされた正例データ(スコアランキング23)から選択される正例データと、負例データと、正例らしさを表すスコアを計算するスコア関数とを用いて表される目的関数を最適化するように学習を行う。
 最大化学習部32においては、設定された最大化対象領域21に従ってpAUCを最大化するような検出器パラメータ22の学習を行う。ここで、検出器は深層ニューラルネットワーク(Deep Neural Network:DNN)によって構築されているものとし、適切な目的関数のもとで誤差逆伝播法によってDNNの検出器パラメータ22を学習する。最小化すべき目的関数として以下のL(R,R)を用いる。
Figure JPOXMLDOC01-appb-M000003

                                   ・・・(3)
 ここで、f(・)はDNNの出力値を示し、l(・)は0や負の値に対して損失を与えるような関数を設定する。例えば、参考文献1において提案されているl(z)=(1-z)を用いることができるが、それ以外の関数を用いても良い。
[参考文献1]Gao, Wei, and Zhi-Hua Zhou. "On the Consistency of AUC Pairwise Optimization." IJCAI. 2015.
 x,xはそれぞれ検出対象となる正例データ及び負例データを示している。X(R,R)は全正例データxをそのスコア関数f(x)によって降順に並び替えた場合に、その順位を全正例データに対する割合で示した時に下限Rよりも大きく上限Rよりも小さい正例データの集合を示す。つまり、最大化学習部32では、ランキングされた正例データ(スコアランキング23)から、順位を全正例データに対する割合で示したときに上限及び下限の範囲に含まれる正例データX(R,R)を選択する。
 同様にしてm(R,R)はX(R,R)に含まれる正例データの総数を示す。mは負例データの総数を示す。上記(3)式の目的関数を最小化することで、正例データに対しては高いスコアを出力し、負例データに対しては低いスコアを出力するような検出器を得ることができる。特に正例データを検出スコアの順位に応じた一部のデータに限定することでpAUCの最大化と同等の最適化が可能となる。
 ランキング部34は、スコア関数を用いて計算されるスコアに基づいて、正例データをランキングする。ランキング部34においては、学習された検出器パラメータ22を用いて全正例データに対する検出スコアを算出し、それらを降順に並べた順位をスコアランキング23として算出する。ランキング部34は最大化部の後段に位置するために、初回の学習においてはスコアランキング23のデータが存在しないが、最大化対象領域21が全データとなっているため、順位データを用いることなく学習が可能となっている。
 判定部36は、上記(3)式の目的関数が収束するまで最大化学習部32、及びランキング部34による処理を繰り返させてから、最大化対象領域設定部30による設定をさせることを、真陽性率(TPR)の上限及び下限の範囲(最大化対象領域21)が所定の大きさになるまで繰り返させる。
 また、本発明の実施の形態の検出学習装置100によって得られる検出器パラメータ22を用いて行われる検出処理の一例を説明する。検出処理においては、入力されるデータxに対して、検出器パラメータ22を用いてスコアf(x)を算出し、算出したスコアが閾値θよりも大きければ対象のデータであるとして検出する。ここで用いる閾値θは学習処理における学習データとは異なる検証用データを用意し、検証用データにおいてTPRがαとなる閾値を設定するのが望ましい。
<本発明の実施の形態に係る検出学習装置の作用>
 次に、本発明の実施の形態に係る検出学習装置100の作用について説明する。検出学習装置100は、図3に示す検出学習処理ルーチンを実行する。
 ステップS100では、最大化対象領域設定部30は、ROC曲線の下側面積の一部を規定するための真陽性率の上限及び下限で定まる範囲(最大化対象領域21)を上記(1)式に従って繰り返しごとに狭めるように設定する。
 ステップS102では、最大化学習部32は、ステップS100で設定された真陽性率の上限及び下限の範囲(最大化対象領域21)に応じてスコア関数を学習する。スコア関数の学習は、ランキングされた正例データ(スコアランキング23)から選択される正例データと、負例データと、正例らしさを表すスコアを計算するスコア関数とを用いて表される上記(3)式の目的関数を最適化するようにスコア関数の学習を行う。
 ステップS104では、ランキング部34は、スコア関数を用いて計算されるスコアに基づいて、正例データをランキングし、スコアランキング23を算出する。
 ステップS106では、判定部36は、上記(3)式の目的関数が収束したかを判定し、収束していればステップS108へ移行し、収束していなければステップS102に戻って処理を繰り返す。
 ステップS108では、判定部36は、真陽性率(TPR)の上限及び下限の範囲(最大化対象領域21)が所定の大きさまで小さくなったかを判定し、所定の大きさまで小さくなっていれば処理を終了し、所定の大きさまで小さくなっていなければステップS100に戻って処理を繰り返す。
 以上説明したように、本発明の実施の形態に係る検出学習装置によれば、所望のTPR周辺でバランスの良い検出器を学習できる。
 なお、本発明は、上述した実施の形態に限定されるものではなく、この発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。
 例えば上述した実施の形態では、真陽性率(TPR)の上限及び下限で定まる範囲において、スコア関数を学習する場合を例に説明したがこれに限定されるものではなく、真陽性率ではなく偽陽性率(FPR)の上限及び下限で定まる範囲において、スコア関数を学習してもよい。例えば、上述した実施の形態では最大化学習部32では正例のデータを選択しているが、偽陽性率を用いる場合には、正例データと負例のデータとを入れ替えて負例データをランキングして、負例データを選択するようにすればよい。全負例データxをそのスコア関数f(x)によって降順に並び替えた場合に、その順位を全負例データに対する割合で示した時に下限よりも大きく上限よりも小さい負例データの集合を選択するようにする。
10 学習データ
20 演算部
21 最大化対象領域
22 検出器パラメータ
23 スコアランキング
30 最大化対象領域設定部
32 最大化学習部
34 ランキング部
36 判定部
50 出力部
100 検出学習装置

Claims (7)

  1.  正例のデータを正例と正しく分類する確率である真陽性率と負例のデータを正例と誤分類する確率である偽陽性率との対応関係を表すグラフ上におけるROC(Receiver Operating Characteristic)曲線の下側面積の一部を規定するための真陽性率の上限及び下限で定まる範囲を繰り返しごとに狭めるように設定する最大化対象領域設定部と、
     設定された真陽性率の前記上限及び下限の範囲に応じて、ランキングされた正例データから選択される正例データと、負例データと、正例らしさを表すスコアを計算するスコア関数とを用いて表される目的関数を最適化するように、前記スコア関数を学習する最大化学習部と、
     前記スコア関数を用いて計算される前記スコアに基づいて、前記正例データをランキングするランキング部と、
     前記目的関数が収束するまで前記最大化学習部、及び前記ランキング部による処理を繰り返させてから、前記最大化対象領域設定部による設定をさせることを、真陽性率の前記上限及び下限の範囲が所定の大きさになるまで繰り返させる判定部と、
     を含む検出学習装置。
  2.  前記最大化学習部は、前記ランキングされた正例データから、順位を全正例データに対する割合で示したときに前記上限及び前記下限の範囲に含まれる正例データを選択する請求項1に記載の検出学習装置。
  3.  正例のデータを正例と正しく分類する確率である真陽性率と負例のデータを正例と誤分類する確率である偽陽性率との対応関係を表すグラフ上におけるROC(Receiver Operating Characteristic)曲線の下側面積の一部を規定するための偽陽性率の上限及び下限で定まる範囲を繰り返しごとに狭めるように設定する最大化対象領域設定部と、
     設定された偽陽性率の前記上限及び下限の範囲に応じて、ランキングされた負例データから選択される負例データと、正例データと、正例らしさを表すスコアを計算するスコア関数とを用いて表される目的関数を最適化するように、前記スコア関数を学習する最大化学習部と、
     前記スコア関数を用いて計算される前記スコアに基づいて、前記負例データをランキングするランキング部と、
     前記目的関数が収束するまで前記最大化学習部、及び前記ランキング部による処理を繰り返させてから、前記最大化対象領域設定部による設定をさせることを、偽陽性率の前記上限及び下限の範囲が所定の大きさになるまで繰り返させる判定部と、
     を含む検出学習装置。
  4.  最大化対象領域設定部が、正例のデータを正例と正しく分類する確率である真陽性率と負例のデータを正例と誤分類する確率である偽陽性率との対応関係を表すグラフ上におけるROC(Receiver Operating Characteristic)曲線の下側面積の一部を規定するための真陽性率の上限及び下限で定まる範囲を繰り返しごとに狭めるように設定するステップと、
     最大化学習部が、設定された真陽性率の前記上限及び下限の範囲に応じて、ランキングされた正例データから選択される正例データと、負例データと、正例らしさを表すスコアを計算するスコア関数とを用いて表される目的関数を最適化するように、前記スコア関数を学習するステップと、
     ランキング部が、前記スコア関数を用いて計算される前記スコアに基づいて、前記正例データをランキングするステップと、
     判定部が、前記目的関数が収束するまで前記最大化学習部、及び前記ランキング部による処理を繰り返させてから、前記最大化対象領域設定部による設定をさせることを、真陽性率の前記上限及び下限の範囲が所定の大きさになるまで繰り返させるステップと、
     を含む検出学習方法。
  5.  前記最大化学習部は、前記ランキングされた正例データから、順位を全正例データに対する割合で示したときに前記上限及び前記下限の範囲に含まれる正例データを選択する請求項4に記載の検出学習方法。
  6.  最大化対象領域設定部が、正例のデータを正例と正しく分類する確率である真陽性率と負例のデータを正例と誤分類する確率である偽陽性率との対応関係を表すグラフ上におけるROC(Receiver Operating Characteristic)曲線の下側面積の一部を規定するための偽陽性率の上限及び下限で定まる範囲を繰り返しごとに狭めるように設定するステップと、
     最大化学習部が、設定された偽陽性率の前記上限及び下限の範囲に応じて、ランキングされた負例データから選択される負例データと、正例データと、正例らしさを表すスコアを計算するスコア関数とを用いて表される目的関数を最適化するように、前記スコア関数を学習するステップと、
     ランキング部が、前記スコア関数を用いて計算される前記スコアに基づいて、前記負例データをランキングするステップと、
     判定部が、前記目的関数が収束するまで前記最大化学習部、及び前記ランキング部による処理を繰り返させてから、前記最大化対象領域設定部による設定をさせることを、偽陽性率の前記上限及び下限の範囲が所定の大きさになるまで繰り返させるステップと、
     を含む検出学習方法。
  7.  コンピュータを、請求項1~請求項3の何れか1項に記載の検出学習装置の各部として機能させるためのプログラム。
PCT/JP2019/047006 2018-12-11 2019-12-02 検出学習装置、方法、及びプログラム WO2020121867A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/312,364 US20220019899A1 (en) 2018-12-11 2019-12-02 Detection learning device, method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018231895A JP7115280B2 (ja) 2018-12-11 2018-12-11 検出学習装置、方法、及びプログラム
JP2018-231895 2018-12-11

Publications (1)

Publication Number Publication Date
WO2020121867A1 true WO2020121867A1 (ja) 2020-06-18

Family

ID=71075996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047006 WO2020121867A1 (ja) 2018-12-11 2019-12-02 検出学習装置、方法、及びプログラム

Country Status (3)

Country Link
US (1) US20220019899A1 (ja)
JP (1) JP7115280B2 (ja)
WO (1) WO2020121867A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021260770A1 (ja) * 2020-06-22 2021-12-30 日本電信電話株式会社 認識器学習装置、認識器学習方法、および認識器学習プログラム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199226A1 (ja) * 2020-03-31 2021-10-07 日本電気株式会社 学習装置、学習方法、及びコンピュータ読み取り可能な記録媒体
WO2021214861A1 (ja) * 2020-04-21 2021-10-28 日本電気株式会社 学習装置、学習済みモデル生成方法、分類装置、分類方法、及びコンピュータ読み取り可能な記録媒体
WO2022038753A1 (ja) * 2020-08-20 2022-02-24 日本電気株式会社 学習装置、学習済みモデル生成方法、分類装置、分類方法、及びコンピュータ読み取り可能な記録媒体

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120098750A1 (en) * 2010-10-22 2012-04-26 Southern Methodist University Method for subject classification using a pattern recognition input device
JP2017102540A (ja) * 2015-11-30 2017-06-08 日本電信電話株式会社 分類装置、方法、及びプログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120098750A1 (en) * 2010-10-22 2012-04-26 Southern Methodist University Method for subject classification using a pattern recognition input device
JP2017102540A (ja) * 2015-11-30 2017-06-08 日本電信電話株式会社 分類装置、方法、及びプログラム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KUWABARA, AKIYUKI: "A Perceptron Learning Rule for Locally Improving the ROC Curve", IEICE TECHNICAL REPORT, vol. 111, no. 483, 7 March 2012 (2012-03-07), pages 399 - 404, ISSN: 0913-5685 *
MAKIHARA, YASUSHI ET AL.: "ROC Curve Optimization Based on Quality Measure-Based Adaptive Acceptance Threshold Control", IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, vol. J94-D, no. 8, 1 August 2011 (2011-08-01), pages 1227 - 1239, ISSN: 1880-4535 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021260770A1 (ja) * 2020-06-22 2021-12-30 日本電信電話株式会社 認識器学習装置、認識器学習方法、および認識器学習プログラム
JP7400972B2 (ja) 2020-06-22 2023-12-19 日本電信電話株式会社 認識器学習装置、認識器学習方法、および認識器学習プログラム

Also Published As

Publication number Publication date
JP7115280B2 (ja) 2022-08-09
US20220019899A1 (en) 2022-01-20
JP2020095411A (ja) 2020-06-18

Similar Documents

Publication Publication Date Title
WO2020121867A1 (ja) 検出学習装置、方法、及びプログラム
Jeong et al. Ood-maml: Meta-learning for few-shot out-of-distribution detection and classification
US20200242480A1 (en) Automated model building search space reduction
Margineantu et al. Bootstrap methods for the cost-sensitive evaluation of classifiers
US11436537B2 (en) Machine learning technique selection and improvement
US8316263B1 (en) Predicting disk drive failure at a central processing facility using an evolving disk drive failure prediction algorithm
CN107392312B (zh) 一种基于dcgan性能的动态调整方法
Doan et al. Optimization strategies of neural networks for impact damage classification of RC panels in a small dataset
JP2017102540A (ja) 分類装置、方法、及びプログラム
CN113222883B (zh) 处理异常检测的装置及方法
JP7028322B2 (ja) 情報処理装置、情報処理方法及び情報処理プログラム
US11448570B2 (en) Method and system for unsupervised anomaly detection and accountability with majority voting for high-dimensional sensor data
KR102079359B1 (ko) 개선된 sax 기법 및 rtc 기법을 이용한 공정 모니터링 장치 및 방법
Song et al. Optimizing joint location-scale monitoring–An adaptive distribution-free approach with minimal loss of information
CN109409508B (zh) 一种基于生成对抗网络使用感知损失解决模型崩塌的方法
WO2020185101A9 (en) Hybrid machine learning system and method
US9275304B2 (en) Feature vector classification device and method thereof
Rawat et al. A comprehensive analysis of the effectiveness of machine learning algorithms for predicting water quality
WO2019155523A1 (ja) 分類器形成装置、分類器形成方法、及びプログラムを格納する非一時的なコンピュータ可読媒体
Zhai et al. Direct 0-1 loss minimization and margin maximization with boosting
CN117134958A (zh) 用于网络技术服务的信息处理方法及系统
CN116451139A (zh) 一种基于人工智能的直播数据快速分析方法
US20220374732A1 (en) Automated control of a manufacturing process
WO2023167817A1 (en) Systems and methods of uncertainty-aware self-supervised-learning for malware and threat detection
Wei et al. Design of a qualitative classification model through fuzzy support vector machine with type‐2 fuzzy expected regression classifier preset

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19895155

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19895155

Country of ref document: EP

Kind code of ref document: A1