WO2020121745A1 - Copolymer, method for producing copolymer, rubber composition, tire, resin composition, and resinous product - Google Patents

Copolymer, method for producing copolymer, rubber composition, tire, resin composition, and resinous product Download PDF

Info

Publication number
WO2020121745A1
WO2020121745A1 PCT/JP2019/045163 JP2019045163W WO2020121745A1 WO 2020121745 A1 WO2020121745 A1 WO 2020121745A1 JP 2019045163 W JP2019045163 W JP 2019045163W WO 2020121745 A1 WO2020121745 A1 WO 2020121745A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
catalyst
compound
aromatic vinyl
group
Prior art date
Application number
PCT/JP2019/045163
Other languages
French (fr)
Japanese (ja)
Inventor
重永 高野
オリビエ タルディフ
文 堀田
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to JP2020559881A priority Critical patent/JPWO2020121745A1/en
Publication of WO2020121745A1 publication Critical patent/WO2020121745A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L47/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene

Definitions

  • the present invention relates to a copolymer, a method for producing the copolymer, a rubber composition, a tire, a resin composition and a resin product.
  • a copolymer of an aromatic vinyl compound such as a styrene-butadiene copolymer and a conjugated diene compound is usually synthesized by polymerization using an anionic or radical polymerization initiator, and has an isomer structure of the conjugated diene compound portion.
  • the 1,4-structure which is one of the above, generally includes many trans 1,4-structures (for example, Patent Document 1).
  • Patent Document 1 Regarding the isomer structure of the conjugated diene compound part, it was difficult to control the structure other than the vinyl bond content.
  • a rare earth metallocene metal catalyst etc A method of synthesizing a copolymer of an aromatic vinyl compound and a conjugated diene compound using a metal catalyst composed of a ligand and a metal atom, etc. has been disclosed (for example, Patent Document 2).
  • the copolymers described in the above Patent Documents 1 and 2 also have performances such as durability like this, but have a high glass transition temperature (Tg) of, for example, ⁇ 60° C. or higher, and thus are flexible. Property becomes low, handling becomes difficult due to an increase in viscosity in a room temperature region, and when a rubber composition containing the copolymer is applied to a tire, there may arise a problem that wet braking performance is not excellent. ..
  • the present invention has been made in view of such a situation, and it is possible to obtain a compound having a low glass transition temperature (Tg) while maintaining the content of the bound aromatic vinyl compound and the content of the vinyl bond at the same level as those of conventional products.
  • a polymer, a method for producing the copolymer, a rubber composition and a resin composition containing the copolymer, a tire using the rubber composition, and a resin product using the resin composition are provided.
  • a method for producing a copolymer which comprises synthesizing a copolymer satisfying the above relational expression with an aromatic vinyl compound and a conjugated diene compound using a catalyst composition prepared by mixing predetermined catalysts A and B ..
  • a rubber composition containing the copolymer according to 1 above. 4.
  • a resin composition containing the copolymer according to 1 above. 6. A resin product using the resin composition described in 5 above.
  • a copolymer having a low glass transition temperature (Tg) while maintaining the content of a bound aromatic vinyl compound and the content of a vinyl bond at the same level as conventional products a method for producing the copolymer, A rubber composition and a resin composition containing the copolymer, a tire using the rubber composition, and a resin product using the resin composition can be provided.
  • Tg glass transition temperature
  • this embodiment an embodiment of the present invention (hereinafter, may be referred to as “this embodiment”) will be described in detail.
  • the numerical values of the upper limit and the lower limit concerning “above”, “below”, and “to” regarding the description of the numerical range are numerical values that can be arbitrarily combined, and the numerical values in Examples are the upper limit and the lower limit. be able to.
  • the copolymer of the present embodiment is a copolymer of an aromatic vinyl compound and a conjugated diene compound and satisfies the following relational expression.
  • the glass transition temperature (Tg) of the copolymer satisfies the above relational expression in relation to the content of the bound aromatic vinyl compound in the copolymer and the vinyl bond content, the bound aromatic vinyl compound
  • the above relational expression could not be satisfied, and the glass transition temperature (Tg) was high.
  • the copolymer of the present embodiment has the same content of the bound aromatic vinyl compound and the vinyl bond content as those of the conventional copolymer of the aromatic vinyl compound and the conjugated diene compound.
  • the glass transition temperature (Tg) is low because the above performance is maintained and the above relational expression can be satisfied.
  • the low glass transition temperature (Tg) means that the glass transition temperature (Tg) measured by a differential scanning calorimeter (DSC) is ⁇ 60° C. or lower, preferably ⁇ 65° C. or lower, and more preferably It means ⁇ 70° C. or lower, more preferably ⁇ 75° C. or lower. Further, the glass transition temperature (Tg) is specifically measured using a differential scanning calorimeter, and the detailed measuring method is the method described in the examples.
  • DSC differential scanning calorimeter
  • X in the above relational expression is preferably 5 or more, more preferably 7 or more, further preferably 10 or more, still more preferably 15 or more, and the upper limit is preferably 40 or less, more preferably 35 or less, further preferably 30. It is below.
  • Tg glass transition temperature
  • the y in the above relational expression that is, the glass transition temperature (Tg) of the copolymer of the present embodiment is as described above, and the lower the lower, the more preferable, -60°C or lower, and more preferably -65°C or lower,
  • the temperature is more preferably ⁇ 70° C. or lower, further preferably ⁇ 75° C. or lower, and the lower limit is not particularly limited, but is usually ⁇ 105° C. or higher.
  • handling hereinafter, also referred to as “workability” is improved due to an increase in viscosity in a room temperature region.
  • the aromatic vinyl compound preferably has 8 to 10 carbon atoms.
  • the aromatic vinyl compound include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o,p-dimethylstyrene, o-ethylstyrene, m-ethylstyrene and p-ethylstyrene. ..
  • the aromatic vinyl compound may be a single compound or a combination of two or more compounds.
  • the aromatic vinyl compound as a monomer of the copolymer preferably contains styrene, and more preferably consists only of styrene, from the viewpoint of maintaining and further improving the performance of conventional products. That is, the aromatic vinyl compound unit in the copolymer preferably contains a styrene unit, and more preferably consists of only a styrene unit. Further, when such an aromatic vinyl compound unit is combined with other units, the performance of the conventional product is maintained and the glass transition temperature (Tg) is easily lowered.
  • Tg glass transition temperature
  • the conjugated diene compound preferably has 4 to 8 carbon atoms, and specific examples of the conjugated diene compound include 1,3-butadiene, isoprene and 1,3. -Pentadiene, 2,3-dimethyl-1,3-butadiene and the like.
  • the conjugated diene compound may be a single compound or a combination of two or more compounds.
  • the conjugated diene compound as a monomer of the copolymer preferably contains at least one selected from 1,3-butadiene and isoprene from the viewpoint of effectively maintaining and further improving the performance of conventional products.
  • the conjugated diene compound unit in the copolymer preferably contains at least one kind selected from a 1,3-butadiene unit and an isoprene unit, and consists of at least one kind selected from a 1,3-butadiene unit and an isoprene unit. Is more preferable, and it is even more preferable that the unit consists of isoprene units only. Further, when such a conjugated diene compound unit is combined with other units, the performance of the conventional product is maintained and the glass transition temperature (Tg) tends to be lowered.
  • Tg glass transition temperature
  • the copolymer of the present embodiment has the following properties, for example, so that the above relational expression is easily satisfied, that is, a lower glass transition temperature (Tg) is easily obtained while maintaining the performance of the conventional product. ..
  • Preferred properties of the copolymer of the present embodiment include the content of a bonded aromatic vinyl compound, the content of a vinyl bond, an aromatic vinyl single chain to all bonded aromatic vinyl compounds, and 8 or more aromatic vinyl units in series. The ratio of the long chain of the aromatic vinyl compound may be mentioned.
  • the content of the bound aromatic vinyl compound is preferably 3% by mass or more, more preferably 5% by mass or more, further preferably 10% by mass or more, still more preferably 15% by mass or more, and the upper limit is preferably It is 40 mass% or less, more preferably 35 mass% or less, and further preferably 30 mass% or less.
  • the content of the bound aromatic vinyl compound is obtained from the integral ratio of the peaks of the H-NMR spectrum.
  • the detailed measuring method is the method described in Examples.
  • the vinyl bond content is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, further preferably 1% by mass or more, and the upper limit is preferably 15% by mass or less, more preferably 10% by mass. Hereafter, it is more preferably 5% by mass or less.
  • the vinyl bond content can be measured by an infrared method (Morero method).
  • the ratio of the above aromatic vinyl single chain is preferably 90% by mass or more, more preferably 95% by mass or more, and further preferably 98% by mass or more.
  • the ratio of the long chain of the aromatic vinyl compound is preferably less than 10% by mass, more preferably 5% by mass or less, and further preferably 2% by mass or less.
  • the chain distribution of the aromatic vinyl compound is measured by a combined method of nuclear magnetic resonance spectrum and gel permeation chromatography (GPC), and the number of aromatic vinyl compound units in the aromatic vinyl compound chain part is It can be measured by the GPC method after decomposing the sample copolymer with ozone.
  • the properties that the copolymer of the present embodiment preferably has also include the content of cis-1,4 bonds in the conjugated diene compound unit.
  • the cis-1,4-bond content is preferably 75% or more, more preferably 85% or more, even more preferably 95% or more, and the upper limit is preferably 99% or less.
  • the polystyrene equivalent weight average molecular weight (Mw) of the copolymer of the present embodiment is preferably 10,000 to 10,000,000, more preferably 100,000 to 5,000,000, and further preferably 150,000. ⁇ 1,000,000.
  • the polystyrene equivalent number average molecular weight (Mn) of the copolymer is preferably 10,000 to 10,000,000, more preferably 30,000 to 5,000,000, and further preferably 50,000 to 1,000. 1,000.
  • the molecular weight distribution [Mw/Mn (weight average molecular weight/number average molecular weight)] of the copolymer is preferably 1.00 to 3.50, more preferably 1.25 to 3.00, and further preferably 1. It is 50 to 2.50.
  • the weight average molecular weight (Mw), the number average molecular weight (Mn), and the molecular weight distribution (Mw/Mn) can be determined by gel permeation chromatography (GPC) using polystyrene as a standard substance. These detailed measuring methods are the methods described in the examples.
  • the copolymer of this embodiment may be modified or unmodified.
  • the method for producing the copolymer of the present embodiment is not particularly limited as long as it is synthesized by using the aromatic vinyl compound and the conjugated diene compound described above and satisfies the above relational expression, but each of the above properties is easily described. In order to satisfy the above relational expression, it is preferable that the copolymer is produced by the method for producing a copolymer of the present embodiment described later.
  • the method for producing the copolymer of the present embodiment uses a catalyst composition in which the following catalyst A and catalyst B are mixed, and an aromatic vinyl compound and a conjugated diene compound satisfy the above relational expressions. It is characterized in that a polymer is synthesized.
  • the aromatic vinyl compound, the conjugated diene compound and the relational formula are as described above.
  • the catalyst composition used in the method for producing the copolymer of the present embodiment will be described in detail below.
  • the catalyst composition used in the method for producing the copolymer of the present embodiment is a mixture of catalyst A and catalyst B.
  • a catalyst composition containing the catalyst A and the catalyst B By using a catalyst composition containing the catalyst A and the catalyst B, a high catalytic activity can be obtained in the synthesis, and the obtained copolymer has a cis-1,4 bond content in the conjugated diene compound unit. Can be improved, and it becomes easy to satisfy the above relational expression.
  • the catalyst A used in the production method of the present embodiment is a rare earth element compound represented by the following general formula (a-1). M-(AQ 1 )(AQ 2 )(AQ 3 ) (a-1)
  • M is scandium, yttrium or a lanthanoid element
  • AQ 1 , AQ 2 and AQ 3 are functional groups which may be the same or different
  • A is nitrogen, oxygen. Or sulfur, which is a functional group having at least one MA bond.
  • the catalyst A one represented by the general formula (a-1) may be used alone, or two or more may be used in combination.
  • the lanthanoid element of M is lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.
  • M a lanthanoid element is preferable, and gadolinium is particularly preferable, from the viewpoint of enhancing the catalytic activity and reaction controllability and making it easier for the resulting copolymer to satisfy the above relational expression.
  • examples of the functional group represented by AQ 1 , AQ 2 and AQ 3 include an amide group and the like.
  • the amide group include an aliphatic amide group such as a dimethylamide group, a diethylamide group and a diisopropylamide group; a phenylamide group, a 2,6-di-tert-butylphenylamide group, a 2,6-diisopropylphenylamide group, 2,6-Dineobenzylphenylamide group, 2-tert-butyl-6-isopropylphenylamide group, 2-tert-butyl-6-neobentylphenylamide group, 2-isopropyl-6-neobentylphenylphenyl Examples thereof include amide groups, arylamide groups such as 2,4,6-tert-butylphenylamide group; and bistrialkylsilyl
  • the general formula (a-1) is represented by M-(OQ 1 )(OQ 2 )(OQ 3 ), and such a rare earth element compound is not particularly limited, but, for example, The following formula (aI): (RO) 3 M (aI) A rare earth alcoholate represented by the following formula (a-II): (R-CO 2 ) 3 M (a-II) And a rare earth carboxylate represented by
  • R is an alkyl group having 1 to 10 carbon atoms, which may be the same or different.
  • the general formula (a-1) is represented by M-(SQ 1 )(SQ 2 )(SQ 3 ), and such a rare earth element compound is not particularly limited.
  • R is an alkyl group having 1 to 10 carbon atoms, which may be the same or different.
  • the catalyst B used in the production method of the present embodiment is a cyclopentadiene skeleton-containing compound selected from substituted or unsubstituted cyclopentadiene, substituted or unsubstituted indene, and substituted or unsubstituted fluorene.
  • a cyclopentadiene skeleton-containing compound selected from substituted or unsubstituted cyclopentadiene, substituted or unsubstituted indene, and substituted or unsubstituted fluorene.
  • the catalyst B one kind among these may be used alone, or two or more kinds may be used in combination.
  • the compound having a cyclopentadiene skeleton is preferably substituted cyclopentadiene, substituted indene or substituted fluorene, and more preferably substituted indene.
  • the bulkiness as a polymerization catalyst is advantageously increased, so that the reaction time can be shortened and the reaction temperature can be raised.
  • the compound having a cyclopentadiene skeleton has many conjugated electrons, the catalytic activity in the reaction system can be further improved.
  • substituted cyclopentadiene examples include pentamethylcyclopentadiene, tetramethylcyclopentadiene, isopropylcyclopentadiene, trimethylsilyl-tetramethylcyclopentadiene and the like.
  • substituted indene examples include 2-phenyl-1H-indene, 3-benzyl-1H-indene, 3-methyl-2-phenyl-1H-indene, 3-benzyl-2-phenyl-1H-indene and 1-benzyl.
  • -1H-indene and the like are mentioned, and among them, 3-benzyl-1H-indene and 1-benzyl-1H-indene are preferable from the viewpoint of narrowing the molecular weight distribution.
  • substituted fluorene examples include trimethylsilylfluorene and isopropylfluorene.
  • the amount of the cyclopentadiene skeleton-containing compound used in catalyst B is preferably 0.1 to 10 times mol, more preferably 0.5 to 5 times mol, and still more preferably 0.75 to 1. It is 5 times mol, and even more preferably about 1 times mol.
  • the catalyst composition is a mixture of the catalyst A and the catalyst B, and the catalyst composition may include the catalyst A, the catalyst B, and the reaction product of the catalyst A and the catalyst B.
  • the catalyst composition may contain the residues of the catalyst A and the catalyst B that did not contribute to the reaction between the catalyst A and the catalyst B, but the catalyst composition is efficiently obtained. From the viewpoint, it is preferable that the residual amounts of the catalyst A and the catalyst B are small.
  • the cis-1,4 bond content in the conjugated diene compound unit is improved to satisfy the above relational expression.
  • at least one selected from the following catalyst C, catalyst D and catalyst E can be preferably added as another catalyst. That is, in the production method of the present embodiment, it is preferable that the catalyst composition further comprises at least one selected from catalyst C, catalyst D and catalyst E.
  • the catalyst composition is selected from the reaction product of catalyst A and catalyst B as well as the reaction product and catalysts C to E. At least one reactant, at least two reactants selected from catalysts A to E, and the like, which may contain the remaining single catalysts A to E that did not contribute to these reactants becomes
  • At least one selected from the other catalysts C to E may be blended, or the catalyst A and the catalyst B and the catalyst C to the catalyst may be blended. At least one selected from E may be blended at the same time, but from the viewpoint of improving the cis-1,4 bond content in the conjugated diene compound unit to easily satisfy the above relational expression,
  • a catalyst composition in which the reaction product and the other catalysts C to E are blended.
  • the catalyst C preferably used in the production method of the present embodiment is an ionic compound.
  • the ionic compound include ionic compounds composed of a non-coordinating anion and a cation, which can react with the rare earth element compound of the catalyst A to form a cationic transition metal compound. ..
  • examples of the non-coordinating anion include tetraphenylborate, tetrakis(monofluorophenyl)borate, tetrakis(difluorophenyl)borate, tetrakis(trifluorophenyl)borate, tetrakis(tetrafluorophenyl)borate, tetrakis( Pentafluorophenyl)borate, tetrakis(tetrafluoromethylphenyl)borate, tetra(tolyl)borate, tetra(xylyl)borate, (triphenyl, pentafluorophenyl)borate, [tris(pentafluorophenyl),phenyl]borate, tri Decahydride-7,8-dicarbaundecaborate and the like can be mentioned.
  • Examples of the cation include a carbonium cation, an oxonium cation, an ammonium cation, a phosphonium cation, a cycloheptatrienyl cation, and a ferrocenium cation having a transition metal.
  • Specific examples of the carbonium cation include tri-substituted carbonium cations such as triphenylcarbonium cation and tri(substituted phenyl)carbonium cation, and more specifically, as tri(substituted phenyl)carbonium cation, , Tri(methylphenyl)carbonium cation, tri(dimethylphenyl)carbonium cation, and the like.
  • ammonium cations include trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tripropylammonium cation, tributylammonium cation (eg, tri(n-butyl)ammonium cation); N,N-dimethylanilinium.
  • phosphonium cation examples include triarylphosphonium cations such as triphenylphosphonium cation, tri(methylphenyl)phosphonium cation, and tri(dimethylphenyl)phosphonium cation.
  • the ionic compound is preferably a compound selected from the above non-coordinating anion and cation and combined, and specifically, N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate, triphenylcarbonium. Tetrakis(pentafluorophenyl)borate and the like are preferable.
  • these ionic compounds may be used alone or in combination of two or more.
  • the amount of the ionic compound used in the catalyst C is preferably 0.01 to 10 times mol, more preferably 0.1 to 3 times mol, and further preferably 0.3 to 1 times mol with respect to the catalyst A.
  • the catalyst D preferably used in the production method of the present embodiment is an organometallic compound represented by the following general formula (d-1). YR 1 a R 2 b R 3 c (d-1)
  • Y is a metal element selected from the elements of Group 1, Group 2, Group 12 and Group 13 of the periodic table, and R 1 and R 2 have 1 to 10 carbon atoms.
  • 10 is a hydrocarbon group or a hydrogen atom
  • R 3 is a hydrocarbon group having 1 to 10 carbon atoms
  • R 1 , R 2 and R 3 may be the same or different from each other
  • Y is When it is a metal element of Group 1 of the periodic table, a is 1 and b and c are 0, and when Y is a metal element of Group 2 or 12 of the periodic table, , A and b are 1 and c is 0, and when Y is a metal element of Group 13 of the periodic table, a, b and c are 1.
  • the organoaluminum compound represented by the following general formula (dI) is preferable.
  • R 1 and R 2 are hydrocarbon groups having 1 to 10 carbon atoms or hydrogen atoms
  • R 3 is a hydrocarbon group having 1 to 10 carbon atoms
  • R 1 and R 2 are And R 3 may be the same or different from each other. That is, in the organoaluminum compound represented by the general formula (dI), in the general formula (d-1), Y is an aluminum element, and R 1 and R 2 are hydrocarbons having 1 to 10 carbon atoms.
  • R 3 is a group or a hydrogen atom
  • R 3 is a hydrocarbon group having 1 to 10 carbon atoms
  • a, b and c are 1.
  • organoaluminum compound represented by the general formula (dI) examples include trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-t- Butyl aluminum, tripentyl aluminum, trihexyl aluminum, tricyclohexyl aluminum, trioctyl aluminum; diethyl aluminum hydride, di-n-propyl aluminum hydride, di-n-butyl aluminum hydride, diisobutyl aluminum hydride, dihexyl hydride Aluminum, diisohexyl aluminum hydride, dioctyl aluminum hydride, diisooctyl aluminum hydride; ethyl aluminum dihydride, n-propyl aluminum dihydride, isobutyl aluminum dihydride and the like can be mentioned. Among them, triethyl aluminum, tri-
  • organometallic compounds may be used alone or in combination of two or more.
  • the amount of the organometallic compound used as the catalyst D is preferably 1 to 50 times mol, more preferably 3 to 15 times mol, and further preferably 5 to 10 times mol, with respect to the catalyst A.
  • the catalyst E preferably used in the production method of the present embodiment is a halogen compound.
  • the halogen compound include a Lewis acid, a complex compound of a metal halide and a Lewis base, an organic compound containing an active halogen, and these Lewis acids, a complex compound of a metal halide and a Lewis base, an organic compound containing an active halogen.
  • One kind selected from compounds can be used.
  • a boron-containing halogen compound such as B(C 6 F 5 ) 3 and an aluminum-containing halogen compound such as Al(C 6 F 5 ) 3 can be used, and the third compound in the periodic table can be used. It is also possible to use a halogen compound containing an element belonging to Group 4, Group 5, Group 5, Group 6, or Group 8.
  • an aluminum halide or an organic metal halide is used. Further, chlorine or bromine is preferable as the halogen element.
  • Lewis acid examples include methylaluminum dibromide, methylaluminum dichloride, ethylaluminum dibromide, ethylaluminum dichloride, butylaluminum dibromide, butylaluminum dichloride, dimethylaluminum bromide, dimethylaluminum chloride and diethylaluminum.
  • diethyl aluminum chloride diethyl aluminum sesquichloride, ethyl aluminum dichloride, diethyl aluminum bromide, ethyl aluminum sesquibromide and ethyl aluminum dibromide are preferable.
  • Examples of the metal halide forming the complex compound of the metal halide of the halogen compound and the Lewis base include beryllium chloride, beryllium bromide, beryllium iodide, magnesium chloride, magnesium bromide, magnesium iodide, calcium chloride, bromide.
  • Calcium calcium iodide, barium chloride, barium bromide, barium iodide, zinc chloride, zinc bromide, zinc iodide, cadmium chloride, cadmium bromide, cadmium iodide, mercury chloride, mercury bromide, mercury iodide, Manganese chloride, manganese bromide, manganese iodide, rhenium chloride, rhenium bromide, rhenium iodide, copper chloride, copper bromide, copper iodide, silver chloride, silver bromide, silver iodide, gold chloride, gold iodide , Gold bromide and the like.
  • magnesium chloride, calcium chloride, barium chloride, manganese chloride, zinc chloride and copper chloride are preferable, and magnesium chloride, manganese chloride, zinc chloride and copper chloride are more preferable.
  • a phosphorus compound, a carbonyl compound, a nitrogen compound, an ether compound, an alcohol and the like are preferable.
  • the Lewis base is usually reacted in a proportion of 0.01 to 30 mol, preferably 0.5 to 10 mol, per 1 mol of metal halide. When the reaction product with the Lewis base is used, the amount of metal remaining in the copolymer obtained by the synthesis can be reduced.
  • examples of the organic compound containing active halogen of the above halogen compound include benzyl chloride.
  • halogen compounds may be used alone or in combination of two or more.
  • the amount of the halogen compound used in the catalyst E is preferably 1 to 5 times mol that of the catalyst A.
  • the synthesis of the aromatic vinyl compound and the conjugated diene compound may be carried out according to a conventional method except that the above catalyst composition is used, and there is no particular limitation.
  • the synthesis of the aromatic vinyl compound and the conjugated diene compound may be performed through a polymerization step, and if necessary, a coupling step, a washing step, and other steps.
  • any method such as a solution polymerization method, a suspension polymerization method, a liquid phase bulk polymerization method, an emulsion polymerization method, a gas phase polymerization method or a solid phase polymerization method can be used.
  • a solvent such as a solvent may be one that is inactive in the polymerization reaction, and examples thereof include toluene, cyclohexane, and normal hexane.
  • the above-mentioned polymerization step may be carried out in one stage or in multiple stages of two or more stages.
  • the one-step polymerization process is a process in which all kinds of monomers to be polymerized, that is, an aromatic vinyl compound and a conjugated diene compound are reacted simultaneously to polymerize.
  • the multi-stage polymerization process is one or more stages in which a part of the compound to be used is first reacted to form a polymer (first polymerization stage), and then the remaining compound is added and polymerized ( In this step, the second to final polymerization steps are carried out for polymerization.
  • the ratio of the aromatic vinyl single chain is controlled by controlling the order of addition of the conjugated diene compound and the dropping rate, Bond content (cis-1,4 bond content) in the entire unit derived from the conjugated diene compound in the produced multi-component copolymer, content of the unit derived from the compound (that is, aromatic vinyl compound and conjugated diene compound It is possible to control the copolymerization ratio).
  • Bond content cis-1,4 bond content
  • the content of the aromatic vinyl single chain is increased and the content of the cis-1,4 bond is increased to obtain the copolymer, and the above relation is satisfied. From the viewpoint of easily satisfying the formula, it is preferable to synthesize the aromatic vinyl compound by dropping a conjugated diene compound.
  • the polymerization step is preferably performed in an atmosphere of an inert gas, preferably nitrogen gas or argon gas.
  • the polymerization temperature in the polymerization step is not particularly limited, but may be, for example, in the range of ⁇ 100 to 200° C., and may be about room temperature. From the viewpoint of increasing the reaction rate and improving the cis-1,4 selectivity of the polymerization reaction, it is preferably -50 to 175°C, more preferably 0 to 150°C, and further preferably 50 to 100°C.
  • the pressure in the polymerization step is preferably in the range of 0.1 to 10.0 MPa in order to sufficiently incorporate the non-conjugated olefin compound into the polymerization reaction system.
  • the reaction time of the polymerization step is not particularly limited, but is, for example, in the range of 1 second to 10 days, and the desired microstructure of the obtained copolymer, the type of each monomer, the input amount and the addition order, the catalyst It can be appropriately selected depending on the conditions such as the type and polymerization temperature.
  • the reaction time is preferably 30. Minutes to 5 days, more preferably 1 hour to 3 days, still more preferably 2 hours to 40 hours.
  • the conjugated diene compound when supplied dropwise to an aromatic vinyl compound, the conjugated diene compound is dissolved in a solvent such as cyclohexane and is usually 5 to 45% by mass, preferably 15 to 30% by mass, When the solution is added dropwise at a dropping rate of usually 0.1 to 5.0 mL/min, preferably 0.3 to 3.0 mL/min, the properties of the obtained copolymer are stabilized, and cis-1, in the conjugated diene compound unit, The 4-bond content can be improved, and it becomes easy to satisfy the above relational expression. Further, in the polymerization step, the polymerization may be stopped by using a polymerization terminator such as methanol, ethanol or isopropanol.
  • a polymerization terminator such as methanol, ethanol or isopropanol.
  • a coupling step may be performed in the method for producing the copolymer of the present embodiment. From the viewpoint of maintaining the performance of conventional products and easily lowering the glass transition temperature (Tg), it is preferable that the copolymer obtained is unmodified. Therefore, in the production method of the present embodiment, the coupling The process may not be performed.
  • the coupling step is a step of performing a reaction for modifying at least a part of the polymer chain end of the copolymer obtained by the above-mentioned polymerization step.
  • the coupling agent used in the coupling reaction is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include tin-containing compounds such as bis(-1-octadecyl maleate dioctyltin); 4,4′ An isocyanate compound such as diphenylmethane diisocyanate; an alkoxysilane compound such as glycidylpropyltrimethoxysilane.
  • bis(1-octadecyl maleate-1-octadecyl)dioctyltin is preferable in terms of reaction efficiency and low gel formation.
  • the washing step is a step of washing the copolymer obtained in the polymerization step. By this washing step, the amount of catalyst residue in the copolymer can be suitably reduced.
  • the medium used for washing is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include methanol, ethanol and isopropanol.
  • an acid for example, hydrochloric acid, sulfuric acid, nitric acid
  • the amount of acid added is preferably 15 mol% or less based on the solvent. If it is more than this, the acid may remain in the copolymer, which may adversely affect the reaction during kneading and vulcanization.
  • the rubber composition of the present embodiment contains the above-mentioned copolymer of the present embodiment.
  • the rubber composition of the present embodiment may include, for example, a rubber component and additives as other components in addition to the copolymer of the present embodiment.
  • Examples of rubber components that can be used in combination with the copolymer of the present embodiment include high-purity natural rubber, epoxidized natural rubber, hydroxylated natural rubber, hydrogenated natural rubber, and grafted natural rubber, in addition to RSS and TSR.
  • Natural rubber such as modified natural rubber (NR), butadiene rubber (BR), styrene butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR), chloroprene rubber, ethylene-propylene rubber (EPM), ethylene-propylene- Other rubber components such as non-conjugated diene rubber (EPDM), polysulfide rubber, silicone rubber, fluororubber and urethane rubber may be contained. These rubber components may be used alone or in combination of two or more.
  • the rubber component may be unmodified or modified.
  • the modified functional group in the case of being modified is not particularly limited as long as it is a functional group having an affinity for the filler (particularly silica), and is composed of a nitrogen atom, a silicon atom, an oxygen atom, and a tin atom. It preferably comprises at least one atom selected from the group. Examples thereof include a modified functional group containing a nitrogen atom, a modified functional group containing a silicon atom, a modified functional group containing an oxygen atom, and a modified functional group containing a tin atom.
  • a modified functional group containing, a modified functional group containing a silicon atom, and a modified functional group containing an oxygen atom are preferable.
  • the modification with these modifying functional groups may be carried out with one kind of modifying functional group alone, or with two or more kinds of modifying functional groups.
  • the content of the copolymer with respect to the total amount of the above-mentioned copolymer and other rubber components in the rubber composition may be appropriately selected depending on the properties such as desired durability and is not particularly limited, but the efficiency From the viewpoint of obtaining properties such as excellent durability, it is preferably 15% by mass or more, more preferably 20% by mass or more, and the upper limit is preferably 100% by mass or less, more preferably 90% by mass or less.
  • the filler is not particularly limited, and for example, a reinforcing filler that reinforces the rubber composition can be used.
  • a reinforcing filler that reinforces the rubber composition
  • examples of the reinforcing filler include, in addition to silica, white fillers such as aluminum hydroxide and calcium carbonate; carbon black and the like are preferable, and silica and carbon black are more preferable.
  • the filler only silica may be used alone, or both silica and carbon black may be used.
  • the carbon black is not particularly limited and can be appropriately selected according to the purpose.
  • the carbon black is, for example, preferably FEF, SRF, HAF, ISAF or SAF grade, more preferably HAF, ISAF or SAF grade.
  • silica is not particularly limited.
  • wet silica hydrous silicic acid
  • dry silica anhydrous silicic acid
  • calcium silicate general grade silica such as aluminum silicate
  • surface treatment with a silane coupling agent etc. It can be used depending on the application such as applied special silica.
  • an antioxidant for example, an antioxidant, a cross-linking agent (including a vulcanizing agent such as sulfur), a cross-linking accelerator (in a range that does not impair the effects of the present invention, Vulcanization accelerator), crosslinking accelerator (vulcanization accelerator), zinc white (ZnO), softener, wax, antioxidant, foaming agent, plasticizer, lubricant, tackifier, petroleum resin, ultraviolet ray Ingredients such as an absorbent, a dispersant, a compatibilizer and a homogenizer can be appropriately contained.
  • a cross-linking agent including a vulcanizing agent such as sulfur
  • a cross-linking accelerator in a range that does not impair the effects of the present invention, Vulcanization accelerator), crosslinking accelerator (vulcanization accelerator), zinc white (ZnO), softener, wax, antioxidant, foaming agent, plasticizer, lubricant, tackifier, petroleum resin, ultraviolet ray Ingredients such as an absorbent, a dispersant, a compatibilizer and
  • the rubber composition of the present embodiment can be produced by kneading the above components using a kneading machine such as a Banbury mixer, a roll, or an internal mixer.
  • a kneading machine such as a Banbury mixer, a roll, or an internal mixer.
  • all components may be blended and kneaded at once, or each component may be blended and kneaded in multiple stages such as two stages or three stages.
  • a kneading machine such as a roll, an internal mixer, or a Banbury rotor can be used.
  • a known molding machine such as an extrusion molding machine or a press machine can be used.
  • the rubber composition used in this embodiment may be produced by crosslinking.
  • the crosslinking conditions are not particularly limited, and usually a temperature of 140 to 180° C. and a time of 5 to 120 minutes can be adopted.
  • the rubber composition of the present embodiment contains a copolymer having a low glass transition temperature (Tg) while maintaining the performance of the conventional product, the rubber composition of the present embodiment has excellent performance on ice, as well as performance of the conventional product such as durability. It is expected that it will also have performance such as wet brake performance. Therefore, the rubber composition of the present embodiment is suitable for rubber products such as a conveyor belt, a rubber crawler, a hose, a vibration isolation device, a vibration isolation rubber used for a seismic isolation device, and a seismic isolation rubber in addition to the tires described below. Used.
  • the tire of the present embodiment uses the rubber composition of the present embodiment described above. Since such a tire uses the rubber composition of the present embodiment, it has not only the performance of conventional products such as durability but also excellent performance on ice, wet braking performance and the like.
  • the application site of the rubber composition of the present embodiment in the tire is not particularly limited and can be appropriately selected depending on the purpose, and examples thereof include a tread, a base tread, a sidewall, a side reinforcing rubber and a bead filler. Be done.
  • the tread is preferable as the application site. Especially, a tread of a studless tire is preferable.
  • a conventional method can be used.
  • a carcass layer, a belt layer, a tread layer, and the like which are made of an unvulcanized rubber composition and/or cord of the present embodiment, are sequentially laminated on a tire molding drum, and the drum is removed. Leave and use green tires.
  • a desired tire for example, a pneumatic tire
  • a desired tire can be manufactured by heating and vulcanizing this green tire according to a conventional method.
  • the resin composition of this embodiment contains the above-mentioned copolymer of this embodiment. By combining the copolymer and the other resin component, various properties such as durability originally possessed by the other resin component are improved. Moreover, the resin product of this embodiment uses the resin composition of this embodiment.
  • the resin component to be combined with the copolymer is not particularly limited and various resin components can be adopted, and may be appropriately selected according to the performance desired for the resin product.
  • resin components include homopolymers of polyethylene, polypropylene, polybutene, polystyrene, etc., ethylene-propylene copolymers, ethylene-methacrylic acid copolymers, ethylene-ethyl acrylate copolymers, ethylene-propylene-diene.
  • the content of the copolymer with respect to all the resin components may be appropriately adjusted depending on other resins to be combined, desired properties, etc., and is usually about 1 to 99% by mass, preferably 5 It is up to 90% by mass.
  • the resin composition of the present embodiment may contain various additives depending on desired performance.
  • the additives usually contained in the resin composition can be used without particular limitation, for example, UV absorbers, weathering agents such as light stabilizers, antioxidants, filling that may be contained in the rubber composition.
  • the agent include fillers, softeners, colorants, flame retardants, plasticizers, antistatic agents and the like.
  • the number average molecular weight (Mn), the weight average molecular weight (Mw), the molecular weight distribution (Mw/Mn), the glass transition temperature (Tg), the content of the bound aromatic vinyl compound, and the vinyl bond content of the multi-component copolymer are The measurement method was as follows.
  • the glass transition temperature (Tg) of the copolymer was measured using a differential scanning calorimeter (DSC, manufactured by TA Instruments Japan Co., Ltd., "DSCQ2000") in accordance with JIS K 7121-1987.
  • DSC differential scanning calorimeter
  • Content of bound aromatic vinyl compound The content Av (mass %) of the bound aromatic vinyl compound in the copolymer is determined by the peak of 1 H-NMR spectrum (100° C., d-tetrachloroethane standard: 6 ppm). It was calculated from the integral ratio of.
  • Vinyl bond content The vinyl bond content Vi (mass %) was determined by the infrared method (Morero method).
  • Example 1 Synthesis of copolymer 1
  • styrene which is an aromatic vinyl compound and 30 g of cyclohexane were added to a sufficiently dried 2000 mL pressure-resistant stainless steel reactor.
  • the number average molecular weight (Mn), the weight average molecular weight (Mw), the molecular weight distribution (Mw/Mn), the glass transition temperature (Tg), and the content of the bound aromatic vinyl compound are obtained by the above method.
  • the amount and vinyl bond content were measured. The measurement results are shown in Table 1.
  • Example 2 Synthesis of copolymer 2
  • An aromatic vinyl compound was prepared in the same manner as in Example 1 except that the cyclohexane solution containing 1,3-butadiene was added dropwise at a rate of 1.0 to 1.5 mL/min and the synthesis time was 369 minutes.
  • styrene and 1,3-butadiene as a conjugated diene compound were synthesized to prepare a copolymer 2.
  • the number average molecular weight (Mn), the weight average molecular weight (Mw), the molecular weight distribution (Mw/Mn), the glass transition temperature (Tg), and the content of the bound aromatic vinyl compound are obtained by the above method. The amount and vinyl bond content were measured. The measurement results are shown in Table 1.
  • Example 3 Synthesis of copolymer 3
  • the amount of cyclohexane supplied to the pressure-resistant stainless steel reactor was 30 g to 328 g
  • the amount of cyclohexane used for the catalyst solution was 73 mL to 40 mL
  • the dropping rate of the cyclohexane solution containing 1,3-butadiene was 1.0.
  • a copolymer of styrene, an aromatic vinyl compound, and 1,3-butadiene, a conjugated diene compound, was synthesized in the same manner as in Example 1 except that the synthesis time was 400 mL for 1.5 mL/min. 3 was synthesized.
  • the number average molecular weight (Mn), the weight average molecular weight (Mw), the molecular weight distribution (Mw/Mn), the glass transition temperature (Tg), and the content of the bound aromatic vinyl compound are obtained by the above method.
  • the amount and vinyl bond content were measured. The measurement results are shown in Table 1.
  • Example 4 Synthesis of copolymer 4
  • the amount of styrene supplied to the pressure-resistant stainless steel reactor was 91 g to 136 g
  • the amount of cyclohexane was 30 g to 730 g
  • the amount of cyclohexane used in the catalyst solution was 73 mL to 40 mL
  • a cyclohexane solution containing 1,3-butadiene was used.
  • styrene as an aromatic vinyl compound and 1,3-butadiene as a conjugated diene compound in the same manner as in Example 1 except that the dropping rate was 0.7 to 1.3 mL/min and the synthesis time was 488 minutes.
  • Example 5 Synthesis of copolymer 5
  • the amount of styrene supplied to the pressure-resistant stainless steel reactor was 91 g to 136 g
  • the amount of cyclohexane was 30 g to 730 g
  • the amount of cyclohexane used in the catalyst solution was 73 mL to 40 mL
  • a cyclohexane solution containing 1,3-butadiene was used.
  • the dropping rate was 0.7 to 1.3 mL/min
  • the synthesis temperature was 90° C.
  • the synthesis time was 505 minutes.
  • 3-Butadiene was synthesized to prepare a copolymer 5.
  • the number average molecular weight (Mn), the weight average molecular weight (Mw), the molecular weight distribution (Mw/Mn), the glass transition temperature (Tg), and the content of the bound aromatic vinyl compound are obtained by the above method.
  • the amount and vinyl bond content were measured. The measurement results are shown in Table 1.
  • Example 6 Synthesis of copolymer 6
  • the amount of styrene supplied to the pressure-resistant stainless steel reactor was 91 g to 136 g
  • the amount of cyclohexane was 30 g to 564 g
  • diisobutylaluminum hydride was triisobutylaluminum 2.2 mmol
  • the amount of cyclohexane used in the catalyst solution was 73 mL.
  • the dropping rate of the cyclohexane solution containing 1,3-butadiene was 0.4 to 1.0 mL/min
  • the synthesis temperature was 90° C.
  • the synthesis time was 666 minutes.
  • Copolymer 6 was synthesized by synthesizing styrene which is an aromatic vinyl compound and 1,3-butadiene which is a conjugated diene compound. Regarding the obtained copolymer 6, the number average molecular weight (Mn), the weight average molecular weight (Mw), the molecular weight distribution (Mw/Mn), the glass transition temperature (Tg), and the content of the bound aromatic vinyl compound are obtained by the above method. The amount and vinyl bond content were measured. The measurement results are shown in Table 1.
  • the copolymers shown in Table 1 are as follows. *Copolymers 1 to 6: The copolymers obtained in Examples 1 to 6 above. *#1500: Emulsion polymerization SBR#1500 (manufactured by JSR) *#0202: SBR#0202 (made by JSR)
  • the copolymers 1 to 6 of Examples 1 to 6 satisfy the relational expression y ⁇ 0.94x ⁇ 104, and the aromatic compounds of the copolymers of Comparative Examples 1 and 2 of the conventional products are bonded. It was confirmed that the glass transition temperature (Tg) was as low as ⁇ 60° C. or lower while being equal to the vinyl compound content and the vinyl bond content. On the other hand, the copolymers of Comparative Examples 1 and 2 did not satisfy the above relational expression, and the glass transition temperature (Tg) was as high as ⁇ 60° C. or higher.
  • the copolymer of the present embodiment has the content of the bound aromatic vinyl compound and the content of the vinyl bond which are comparable to those of the conventional product, and has a lower glass transition temperature (Tg). From the above, it can be said that, for example, when the copolymer is used as a rubber composition in a tire, a tire having excellent on-ice performance and wet brake performance as well as durability of conventional products can be obtained.
  • the glass transition temperature (Tg) is low while maintaining the content of the bound aromatic vinyl compound and the vinyl bond content at the same level as the conventional product, that is, while maintaining the performance of the conventional product.
  • a copolymer having a low glass transition temperature (Tg) a rubber composition and a resin composition containing the copolymer, a tire using the rubber composition, and a resin product using the resin composition.
  • the rubber composition of the present embodiment contains the copolymer of the present embodiment, while maintaining the performance of conventional products such as durability, it also has a lower glass transition temperature (Tg).
  • it is preferably used for conveyor belts, rubber crawlers, hoses, and rubber products such as anti-vibration rubber and anti-vibration rubber used in anti-vibration devices and anti-vibration devices.

Abstract

Provided are: an aromatic vinyl compound/conjugated diene compound copolymer which has a low glass transition temperature (Tg) while having a bonded-aromatic-vinyl-compound content and a vinyl bond content that are substantially the same as those of conventional copolymers and which satisfies a given relationship; a method for producing the copolymer; a rubber composition and a resin composition each including the copolymer; a tire obtained using the rubber composition; and a resinous product obtained using the resin composition.

Description

共重合体、共重合体の製造方法、ゴム組成物、タイヤ、樹脂組成物及び樹脂製品Copolymer, method for producing copolymer, rubber composition, tire, resin composition and resin product
 本発明は、共重合体、共重合体の製造方法、ゴム組成物、タイヤ、樹脂組成物及び樹脂製品に関する。 The present invention relates to a copolymer, a method for producing the copolymer, a rubber composition, a tire, a resin composition and a resin product.
 スチレン-ブタジエン共重合体等の芳香族ビニル化合物と共役ジエン化合物との共重合体は、通常、アニオン系及びラジカル系等の重合開始剤を用いた重合により合成され、共役ジエン化合物部分の異性構造の一つである1,4-構造としてはトランス1,4-構造が多く含まれることが一般的である(例えば、特許文献1)。共役ジエン化合物部分の異性構造は、ビニル結合含有量以外の構造を制御することは困難であったところ、シス1,4-構造の含有量を制御する方法として、希土類メタロセン方金属触媒等の配位子と金属原子とかなる金属触媒等を用いて、芳香族ビニル化合物と共役ジエン化合物との共重合体を合成する方法が開示されている(例えば、特許文献2)。 A copolymer of an aromatic vinyl compound such as a styrene-butadiene copolymer and a conjugated diene compound is usually synthesized by polymerization using an anionic or radical polymerization initiator, and has an isomer structure of the conjugated diene compound portion. The 1,4-structure, which is one of the above, generally includes many trans 1,4-structures (for example, Patent Document 1). Regarding the isomer structure of the conjugated diene compound part, it was difficult to control the structure other than the vinyl bond content. However, as a method for controlling the content of the cis 1,4-structure, a rare earth metallocene metal catalyst etc. A method of synthesizing a copolymer of an aromatic vinyl compound and a conjugated diene compound using a metal catalyst composed of a ligand and a metal atom, etc. has been disclosed (for example, Patent Document 2).
特開平1-135847号公報JP-A-1-135847 特開2006-137897号公報JP, 2006-137897, A
 共重合体において、結合芳香族ビニル化合物の含有量、ビニル結合含有量等の各種性状が一定範囲内にあることで、耐久性等の性能を発揮することが知られている。上記の特許文献1及び2に記載される共重合体も、これと同様に耐久性等の性能を有しているものの、ガラス転移温度(Tg)が、例えば-60℃以上と高いため、柔軟性が低くなり、室温領域における粘度の増加により取り扱いが困難になる、また例えば該共重合体を含むゴム組成物をタイヤに適用しようとすると、ウェットブレーキ性能に優れないといった問題が生じる場合がある。 It is known that when the copolymer has various properties such as the content of the bound aromatic vinyl compound and the content of the vinyl bond within a certain range, the performance such as durability is exhibited. The copolymers described in the above Patent Documents 1 and 2 also have performances such as durability like this, but have a high glass transition temperature (Tg) of, for example, −60° C. or higher, and thus are flexible. Property becomes low, handling becomes difficult due to an increase in viscosity in a room temperature region, and when a rubber composition containing the copolymer is applied to a tire, there may arise a problem that wet braking performance is not excellent. ..
 本発明は、このような状況に鑑みてなされたものであり、結合芳香族ビニル化合物の含有量及びビニル結合含有量を従来品と同程度に維持したまま、ガラス転移温度(Tg)が低い共重合体、該共重合体の製造方法、該共重合体を含むゴム組成物及び樹脂組成物、該ゴム組成物を用いたタイヤ、並びに該樹脂組成物を用いた樹脂製品を提供することを目的とする。 The present invention has been made in view of such a situation, and it is possible to obtain a compound having a low glass transition temperature (Tg) while maintaining the content of the bound aromatic vinyl compound and the content of the vinyl bond at the same level as those of conventional products. A polymer, a method for producing the copolymer, a rubber composition and a resin composition containing the copolymer, a tire using the rubber composition, and a resin product using the resin composition are provided. And
 本発明者は、上記の課題を解決するべく鋭意検討した結果、下記の構成を有する発明により、上記課題を解決できることを見出した。 The present inventor, as a result of diligent study to solve the above problems, found that the invention having the following constitution can solve the above problems.
1.下記の関係式を満たす芳香族ビニル化合物と共役ジエン化合物との共重合体。
   (関係式)y≦0.94x-104
(上記関係式において、x=Av+0.5Viであり、Avは共重合体中の結合芳香族ビニル化合物の含有量(質量%)、Viはビニル結合含有量(質量%)であり、yはガラス転移温度(℃)である。)
2.所定の触媒A及び触媒Bを配合してなる触媒組成物を用いて、芳香族ビニル化合物と、共役ジエン化合物とにより、上記の関係式を満たす共重合体を合成する、共重合体の製造方法。
3.上記1に記載の共重合体を含むゴム組成物。
4.上記3に記載のゴム組成物を用いたタイヤ。
5.上記1に記載の共重合体を含む樹脂組成物。
6.上記5に記載の樹脂組成物を用いた樹脂製品。
1. A copolymer of an aromatic vinyl compound and a conjugated diene compound satisfying the following relational expression.
(Relational expression) y≦0.94x−104
(In the above relation, x=Av+0.5Vi, Av is the content (% by mass) of the bound aromatic vinyl compound in the copolymer, Vi is the content (% by mass) of the vinyl bond, and y is the glass. Transition temperature (°C).)
2. A method for producing a copolymer, which comprises synthesizing a copolymer satisfying the above relational expression with an aromatic vinyl compound and a conjugated diene compound using a catalyst composition prepared by mixing predetermined catalysts A and B ..
3. A rubber composition containing the copolymer according to 1 above.
4. A tire using the rubber composition as described in 3 above.
5. A resin composition containing the copolymer according to 1 above.
6. A resin product using the resin composition described in 5 above.
 本発明によれば、結合芳香族ビニル化合物の含有量及びビニル結合含有量を従来品と同程度に維持したまま、ガラス転移温度(Tg)が低い共重合体、該共重合体の製造方法、該共重合体を含むゴム組成物及び樹脂組成物、該ゴム組成物を用いたタイヤ、並びに該樹脂組成物を用いた樹脂製品を提供することができる。 According to the present invention, a copolymer having a low glass transition temperature (Tg) while maintaining the content of a bound aromatic vinyl compound and the content of a vinyl bond at the same level as conventional products, a method for producing the copolymer, A rubber composition and a resin composition containing the copolymer, a tire using the rubber composition, and a resin product using the resin composition can be provided.
 以下、本発明の実施形態(以下、「本実施形態」と称することがある。)について詳説する。なお、以下の説明において、数値範囲の記載に関する「以上」、「以下」、「~」にかかる上限及び下限の数値は任意に組み合わせできる数値であり、実施例における数値を該上限及び下限とすることができる。 Hereinafter, an embodiment of the present invention (hereinafter, may be referred to as “this embodiment”) will be described in detail. In the following description, the numerical values of the upper limit and the lower limit concerning “above”, “below”, and “to” regarding the description of the numerical range are numerical values that can be arbitrarily combined, and the numerical values in Examples are the upper limit and the lower limit. be able to.
[共重合体]
 本実施形態の共重合体は、芳香族ビニル化合物と共役ジエン化合物との共重合体であり、以下の関係式を満たすものである。
(関係式)y≦0.94x-104
(上記関係式において、x=Av+0.5Viであり、Avは共重合体中の結合芳香族ビニル化合物の含有量(質量%)、Viはビニル結合含有量(質量%)であり、yはガラス転移温度(℃)である。)
[Copolymer]
The copolymer of the present embodiment is a copolymer of an aromatic vinyl compound and a conjugated diene compound and satisfies the following relational expression.
(Relational expression) y≦0.94x−104
(In the above relation, x=Av+0.5Vi, Av is the content (% by mass) of the bound aromatic vinyl compound in the copolymer, Vi is the content (% by mass) of the vinyl bond, and y is the glass. Transition temperature (°C).)
 共重合体のガラス転移温度(Tg)が、該共重合体中の結合芳香族ビニル化合物の含有量、ビニル結合含有量との関係において、上記関係式を満たすことにより、結合芳香族ビニル化合物の含有量及びビニル結合含有量を従来品と同程度に維持し、耐久性等の性能を維持(以後、「従来品の性能を維持」と称することがある。)したまま、ガラス転移温度(Tg)が低い共重合体となり得る。すなわち、従来の芳香族ビニル化合物と共役ジエン化合物との共重合体では、本実施形態の共重合体と同程度の結合芳香族ビニル化合物の含有量、ビニル結合含有量を有したものであっても、上記関係式を満たすことができず、ガラス転移温度(Tg)は高いものであった。しかし、本実施形態の共重合体は、従来の芳香族ビニル化合物と共役ジエン化合物との共重合体と同程度の結合芳香族ビニル化合物の含有量、ビニル結合含有量を有することで、従来品の性能を維持したものであって、かつ上記関係式を満たすことができるため、ガラス転移温度(Tg)が低いものとなる。 When the glass transition temperature (Tg) of the copolymer satisfies the above relational expression in relation to the content of the bound aromatic vinyl compound in the copolymer and the vinyl bond content, the bound aromatic vinyl compound The glass transition temperature (Tg) while maintaining the content and vinyl bond content at the same level as the conventional product and maintaining the performance such as durability (hereinafter, referred to as "maintaining the performance of the conventional product"). ) Can be a low copolymer. That is, in the conventional copolymer of the aromatic vinyl compound and the conjugated diene compound, the content of the bound aromatic vinyl compound and the vinyl bond content of the copolymer of the present embodiment are the same. However, the above relational expression could not be satisfied, and the glass transition temperature (Tg) was high. However, the copolymer of the present embodiment has the same content of the bound aromatic vinyl compound and the vinyl bond content as those of the conventional copolymer of the aromatic vinyl compound and the conjugated diene compound. The glass transition temperature (Tg) is low because the above performance is maintained and the above relational expression can be satisfied.
 本実施形態において、ガラス転移温度(Tg)が低いとは、示差走査熱量計(DSC)で測定したガラス転移温度(Tg)が-60℃以下のもの、好ましくは-65℃以下、より好ましくは-70℃以下、さらに好ましくは-75℃以下のものであることを意味する。また、ガラス転移温度(Tg)は、具体的には、示差走査熱量計を用いて測定されるものであり、詳細な測定方法は実施例に記載の方法となる。 In the present embodiment, the low glass transition temperature (Tg) means that the glass transition temperature (Tg) measured by a differential scanning calorimeter (DSC) is −60° C. or lower, preferably −65° C. or lower, and more preferably It means −70° C. or lower, more preferably −75° C. or lower. Further, the glass transition temperature (Tg) is specifically measured using a differential scanning calorimeter, and the detailed measuring method is the method described in the examples.
 上記関係式におけるxは、好ましくは5以上、より好ましくは7以上、さらに好ましくは10以上、より更に好ましくは15以上であり、上限として好ましくは40以下、より好ましくは35以下、さらに好ましくは30以下である。xが上記範囲内にあると、従来品の性能を維持しながら、より低いガラス転移温度(Tg)が得られやすくなる。 X in the above relational expression is preferably 5 or more, more preferably 7 or more, further preferably 10 or more, still more preferably 15 or more, and the upper limit is preferably 40 or less, more preferably 35 or less, further preferably 30. It is below. When x is in the above range, a lower glass transition temperature (Tg) is easily obtained while maintaining the performance of the conventional product.
 上記関係式におけるy、すなわち本実施形態の共重合体のガラス転移温度(Tg)は、上記の通り低いものであり、低ければ低いほど好ましく、-60℃以下、より好ましくは-65℃以下、より好ましくは-70℃以下、さらに好ましくは-75℃以下であり、下限としては特に制限はないが、通常-105℃以上程度である。ガラス転移温度(Tg)が上記範囲内であると、室温領域における粘度の増加により取り扱い(以下、「作業性」とも称する。)も向上する。 The y in the above relational expression, that is, the glass transition temperature (Tg) of the copolymer of the present embodiment is as described above, and the lower the lower, the more preferable, -60°C or lower, and more preferably -65°C or lower, The temperature is more preferably −70° C. or lower, further preferably −75° C. or lower, and the lower limit is not particularly limited, but is usually −105° C. or higher. When the glass transition temperature (Tg) is within the above range, handling (hereinafter, also referred to as “workability”) is improved due to an increase in viscosity in a room temperature region.
 本実施形態の共重合体において、芳香族ビニル化合物は、炭素数が8~10であることが好ましい。かかる芳香族ビニル化合物としては、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o,p-ジメチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレン等が挙げられる。芳香族ビニル化合物は、一種単独であってもよいし、二種以上の組み合わせであってもよい。共重合体の単量体としての芳香族ビニル化合物は、従来品の性能を維持、さらには向上させる観点から、スチレンを含むことが好ましく、スチレンのみからなることがより好ましい。すなわち、共重合体における芳香族ビニル化合物単位は、スチレン単位を含むことが好ましく、スチレン単位のみからなることがより好ましい。また、このような芳香族ビニル化合物単位であると、他の単位との組み合わせにより、従来品の性能を維持し、かつガラス転移温度(Tg)が低くなりやすくなる。 In the copolymer of the present embodiment, the aromatic vinyl compound preferably has 8 to 10 carbon atoms. Examples of the aromatic vinyl compound include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o,p-dimethylstyrene, o-ethylstyrene, m-ethylstyrene and p-ethylstyrene. .. The aromatic vinyl compound may be a single compound or a combination of two or more compounds. The aromatic vinyl compound as a monomer of the copolymer preferably contains styrene, and more preferably consists only of styrene, from the viewpoint of maintaining and further improving the performance of conventional products. That is, the aromatic vinyl compound unit in the copolymer preferably contains a styrene unit, and more preferably consists of only a styrene unit. Further, when such an aromatic vinyl compound unit is combined with other units, the performance of the conventional product is maintained and the glass transition temperature (Tg) is easily lowered.
 本実施形態の共重合体において、共役ジエン化合物は、炭素数が4~8のものであることが好ましく、かかる共役ジエン化合物として、具体的には、1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン等が挙げられる。共役ジエン化合物は、一種単独であってもよいし、二種以上の組み合わせであってもよい。共重合体の単量体としての共役ジエン化合物は、従来品の性能を効果的に維持、さらには向上させる観点から、1,3-ブタジエン及びイソプレンから選ばれる少なくとも一種を含むことが好ましく、1,3-ブタジエン及びイソプレンから選ばれる少なくとも一種のみからなることがより好ましく、イソプレンのみからなることがさらに好ましい。すなわち、共重合体における共役ジエン化合物単位は、1,3-ブタジエン単位及びイソプレン単位から選ばれる少なくとも一種を含むことが好ましく、1,3-ブタジエン単位及びイソプレン単位から選ばれる少なくとも一種のみからなることがより好ましく、イソプレン単位のみからなることがさらに好ましい。また、このような共役ジエン化合物単位であると、他の単位との組み合わせにより、従来品の性能を維持し、かつガラス転移温度(Tg)が低くなりやすくなる。 In the copolymer of the present embodiment, the conjugated diene compound preferably has 4 to 8 carbon atoms, and specific examples of the conjugated diene compound include 1,3-butadiene, isoprene and 1,3. -Pentadiene, 2,3-dimethyl-1,3-butadiene and the like. The conjugated diene compound may be a single compound or a combination of two or more compounds. The conjugated diene compound as a monomer of the copolymer preferably contains at least one selected from 1,3-butadiene and isoprene from the viewpoint of effectively maintaining and further improving the performance of conventional products. More preferably, it consists of at least one selected from 3,3-butadiene and isoprene, and even more preferably consists only of isoprene. That is, the conjugated diene compound unit in the copolymer preferably contains at least one kind selected from a 1,3-butadiene unit and an isoprene unit, and consists of at least one kind selected from a 1,3-butadiene unit and an isoprene unit. Is more preferable, and it is even more preferable that the unit consists of isoprene units only. Further, when such a conjugated diene compound unit is combined with other units, the performance of the conventional product is maintained and the glass transition temperature (Tg) tends to be lowered.
 本実施形態の共重合体は、例えば以下の性状を有することで、上記関係式を満たしやすくなる、すなわち、従来品の性能を維持しながら、より低いガラス転移温度(Tg)が得られやすくなる。
 本実施形態の共重合体が好ましく有する性状としては、結合芳香族ビニル化合物の含有量、ビニル結合含有量、全結合芳香族ビニル化合物に対する芳香族ビニル単連鎖、芳香族ビニル単位が8個以上連なった芳香族ビニル化合物長連鎖の割合が挙げられる。
The copolymer of the present embodiment has the following properties, for example, so that the above relational expression is easily satisfied, that is, a lower glass transition temperature (Tg) is easily obtained while maintaining the performance of the conventional product. ..
Preferred properties of the copolymer of the present embodiment include the content of a bonded aromatic vinyl compound, the content of a vinyl bond, an aromatic vinyl single chain to all bonded aromatic vinyl compounds, and 8 or more aromatic vinyl units in series. The ratio of the long chain of the aromatic vinyl compound may be mentioned.
 結合芳香族ビニル化合物の含有量は、好ましくは3質量%以上、より好ましくは5質量%以上、さらに好ましくは10質量%以上であり、より更に好ましくは15質量%以上であり、上限として好ましくは40質量%以下、より好ましくは35質量%以下、さらに好ましくは30質量%以下である。ここで、結合芳香族ビニル化合物の含有量は、H-NMRスペクトルのピークの積分比より求められる。詳細な測定方法は、実施例に記載の方法となる。
 ビニル結合含有量は、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、さらに好ましくは1質量%以上であり、上限として好ましくは15質量%以下、より好ましくは10質量%以下、さらに好ましくは5質量%以下である。ビニル結合含有量は、赤外法(モレロ法)により測定することができる。
The content of the bound aromatic vinyl compound is preferably 3% by mass or more, more preferably 5% by mass or more, further preferably 10% by mass or more, still more preferably 15% by mass or more, and the upper limit is preferably It is 40 mass% or less, more preferably 35 mass% or less, and further preferably 30 mass% or less. Here, the content of the bound aromatic vinyl compound is obtained from the integral ratio of the peaks of the H-NMR spectrum. The detailed measuring method is the method described in Examples.
The vinyl bond content is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, further preferably 1% by mass or more, and the upper limit is preferably 15% by mass or less, more preferably 10% by mass. Hereafter, it is more preferably 5% by mass or less. The vinyl bond content can be measured by an infrared method (Morero method).
 上記の芳香族ビニル単連鎖の割合は、好ましくは90質量%以上、より好ましくは95質量%以上、さらに好ましくは98質量%以上である。また、上記の芳香族ビニル化合物長連鎖の割合は、好ましくは10質量%未満、より好ましくは5質量%以下、さらに好ましくは2質量%以下である。ここで、芳香族ビニル化合物の連鎖分布については、核磁気共鳴スペクトルとゲルパーミエーションクロマトグラフィー(GPC)との併用法で測定され、芳香族ビニル化合物連鎖部における芳香族ビニル化合物単位の数は、試料の共重合体をオゾンによって分解したのち、GPC法により測定することができる。 The ratio of the above aromatic vinyl single chain is preferably 90% by mass or more, more preferably 95% by mass or more, and further preferably 98% by mass or more. The ratio of the long chain of the aromatic vinyl compound is preferably less than 10% by mass, more preferably 5% by mass or less, and further preferably 2% by mass or less. Here, the chain distribution of the aromatic vinyl compound is measured by a combined method of nuclear magnetic resonance spectrum and gel permeation chromatography (GPC), and the number of aromatic vinyl compound units in the aromatic vinyl compound chain part is It can be measured by the GPC method after decomposing the sample copolymer with ozone.
 本実施形態の共重合体が好ましく有する性状としては、共役ジエン化合物単位中のシス-1,4結合含有量も挙げられる。具体的には、シス-1,4-結合含有量は、好ましくは75%以上、より好ましくは85%以上、さらに好ましくは95%以上であり、上限として好ましくは99%以下である。 The properties that the copolymer of the present embodiment preferably has also include the content of cis-1,4 bonds in the conjugated diene compound unit. Specifically, the cis-1,4-bond content is preferably 75% or more, more preferably 85% or more, even more preferably 95% or more, and the upper limit is preferably 99% or less.
 本実施形態の共重合体のポリスチレン換算の重量平均分子量(Mw)は、好ましくは10,000~10,000,000、より好ましくは100,000~5,000,000、さらに好ましくは150,000~1,000,000である。共重合体のポリスチレン換算の数平均分子量(Mn)は、好ましくは10,000~10,000,000、より好ましくは30,000~5,000,000、さらに好ましくは50,000~1,000,000である。また、共重合体の分子量分布[Mw/Mn(重量平均分子量/数平均分子量)]は、好ましくは1.00~3.50、より好ましくは1.25~3.00、さらに好ましくは1.50~2.50である。
 共重合体のMw、Mnの上限が上記範囲内であると、共重合体の優れた作業性も得られる。また、共重合体の分子量分布が3.50以下であると、共重合体の物性に十分な均質性も得られる。
 ここで、重量平均分子量(Mw)、数平均分子量(Mn)及び分子量分布(Mw/Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)により、ポリスチレンを標準物質として求めることができる。これらの詳細な測定方法は、実施例に記載の方法となる。
The polystyrene equivalent weight average molecular weight (Mw) of the copolymer of the present embodiment is preferably 10,000 to 10,000,000, more preferably 100,000 to 5,000,000, and further preferably 150,000. ~1,000,000. The polystyrene equivalent number average molecular weight (Mn) of the copolymer is preferably 10,000 to 10,000,000, more preferably 30,000 to 5,000,000, and further preferably 50,000 to 1,000. 1,000. The molecular weight distribution [Mw/Mn (weight average molecular weight/number average molecular weight)] of the copolymer is preferably 1.00 to 3.50, more preferably 1.25 to 3.00, and further preferably 1. It is 50 to 2.50.
When the upper limits of Mw and Mn of the copolymer are within the above ranges, excellent workability of the copolymer can be obtained. When the molecular weight distribution of the copolymer is 3.50 or less, sufficient homogeneity of the physical properties of the copolymer can be obtained.
Here, the weight average molecular weight (Mw), the number average molecular weight (Mn), and the molecular weight distribution (Mw/Mn) can be determined by gel permeation chromatography (GPC) using polystyrene as a standard substance. These detailed measuring methods are the methods described in the examples.
 本実施形態の共重合体は変性又は未変性のいずれであってもよい。 The copolymer of this embodiment may be modified or unmodified.
 本実施形態の共重合体の製造方法は、上記の芳香族ビニル化合物と共役ジエン化合物とを用いて合成し、上記関係式を満たすものとすれば特に制限はないが、容易に上記の各性状を有するものとし、上記関係式を満たすものとするには、後述する本実施形態の共重合体の製造方法により製造することが好ましい。 The method for producing the copolymer of the present embodiment is not particularly limited as long as it is synthesized by using the aromatic vinyl compound and the conjugated diene compound described above and satisfies the above relational expression, but each of the above properties is easily described. In order to satisfy the above relational expression, it is preferable that the copolymer is produced by the method for producing a copolymer of the present embodiment described later.
[共重合体の製造方法]
 本実施形態の共重合体の製造方法は、下記の触媒A及び触媒Bを配合してなる触媒組成物を用いて、芳香族ビニル化合物と、共役ジエン化合物とにより、上記の関係式を満たす共重合体を合成する、ことを特徴とするものである。
 本実施形態の共重合体の製造方法において、芳香族ビニル化合物、共役ジエン化合物及び関係式は既述の通りである。本実施形態の共重合体の製造方法において用いられる触媒組成物について、以下詳述する。
[Method for producing copolymer]
The method for producing the copolymer of the present embodiment uses a catalyst composition in which the following catalyst A and catalyst B are mixed, and an aromatic vinyl compound and a conjugated diene compound satisfy the above relational expressions. It is characterized in that a polymer is synthesized.
In the method for producing the copolymer of the present embodiment, the aromatic vinyl compound, the conjugated diene compound and the relational formula are as described above. The catalyst composition used in the method for producing the copolymer of the present embodiment will be described in detail below.
(触媒組成物)
 本実施形態の共重合体の製造方法において用いられる触媒組成物は、触媒A及び触媒Bを配合してなるものである。触媒A及び触媒Bを配合してなる触媒組成物を用いることにより、合成の際に高い触媒活性が得られ、得られる共重合体について、共役ジエン化合物単位中のシス-1,4結合含有量を向上させることができ、上記の関係式を満たすものとしやすくなる。
(Catalyst composition)
The catalyst composition used in the method for producing the copolymer of the present embodiment is a mixture of catalyst A and catalyst B. By using a catalyst composition containing the catalyst A and the catalyst B, a high catalytic activity can be obtained in the synthesis, and the obtained copolymer has a cis-1,4 bond content in the conjugated diene compound unit. Can be improved, and it becomes easy to satisfy the above relational expression.
(触媒A)
 本実施形態の製造方法において用いられる触媒Aは、下記の一般式(a-1)で表される希土類元素化合物である。
   M-(AQ)(AQ)(AQ)   (a-1)
(Catalyst A)
The catalyst A used in the production method of the present embodiment is a rare earth element compound represented by the following general formula (a-1).
M-(AQ 1 )(AQ 2 )(AQ 3 ) (a-1)
 一般式(a-1)において、Mはスカンジウム、イットリウム又はランタノイド元素であり、AQ、AQ及びAQは同一であっても異なっていてもよい官能基であり、Aは、窒素、酸素又は硫黄であり、少なくとも1つのM-A結合を有する官能基である。触媒Aとしては、上記一般式(a-1)で表されるものを一種単独で、又は二種以上を組み合わせて用いてもよい。 In the general formula (a-1), M is scandium, yttrium or a lanthanoid element, AQ 1 , AQ 2 and AQ 3 are functional groups which may be the same or different, and A is nitrogen, oxygen. Or sulfur, which is a functional group having at least one MA bond. As the catalyst A, one represented by the general formula (a-1) may be used alone, or two or more may be used in combination.
 Mのランタノイド元素とは、具体的には、ランタニウム、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミニウム、エルビウム、ツリウム、イッテルビウム、ルテチウムである。Mとしては、触媒活性及び反応制御性を高め、かつ得られる共重合体について、上記の関係式を満たすものとしやすくする観点から、ランタノイド元素が好ましく、中でもガドリニウムが好ましい。 Specifically, the lanthanoid element of M is lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. As M, a lanthanoid element is preferable, and gadolinium is particularly preferable, from the viewpoint of enhancing the catalytic activity and reaction controllability and making it easier for the resulting copolymer to satisfy the above relational expression.
 Aが窒素である場合、AQ、AQ及びAQ(すなわち、NQ、NQ及びNQ)で表される官能基としては、アミド基等が挙げられる。アミド基としては、例えば、ジメチルアミド基、ジエチルアミド基、ジイソプロピルアミド基等の脂肪族アミド基;フェニルアミド基、2,6-ジ-tert-ブチルフェニルアミド基、2,6-ジイソプロピルフェニルアミド基、2,6-ジネオベンチルフェニルアミド基、2-tert-ブチル-6-イソプロピルフェニルアミド基、2-tert-ブチル-6-ネオベンチルフェニルアミド基、2-イソプロピル-6-ネオベンチルフェニルアミド基、2,4,6-tert-ブチルフェニルアミド基等のアリールアミド基;ビストリメチルシリルアミド基等のビストリアルキルシリルアミド基が挙げられ、特に、脂肪族炭化水素に対する溶解性の観点から、ビストリメチルシリルアミド基が好ましい。上記官能基は、一種単独で、又は二種以上を組み合わせてもよい。 When A is nitrogen, examples of the functional group represented by AQ 1 , AQ 2 and AQ 3 (that is, NQ 1 , NQ 2 and NQ 3 ) include an amide group and the like. Examples of the amide group include an aliphatic amide group such as a dimethylamide group, a diethylamide group and a diisopropylamide group; a phenylamide group, a 2,6-di-tert-butylphenylamide group, a 2,6-diisopropylphenylamide group, 2,6-Dineobenzylphenylamide group, 2-tert-butyl-6-isopropylphenylamide group, 2-tert-butyl-6-neobentylphenylamide group, 2-isopropyl-6-neobentylphenyl Examples thereof include amide groups, arylamide groups such as 2,4,6-tert-butylphenylamide group; and bistrialkylsilylamide groups such as bistrimethylsilylamide group. A trimethylsilylamide group is preferred. The above functional groups may be used alone or in combination of two or more.
 Aが酸素である場合、一般式(a-1)は、M-(OQ)(OQ)(OQ)と表され、そのような希土類元素化合物としては、特に制限されないが、例えば、下記式(a-I):
   (RO)M   (a-I)
で表される希土類アルコラート、下記式(a-II):
   (R-COM   (a-II)
で表される希土類カルボキシレート、等が挙げられる。ここで、下記化合物(a-I)及び(a-II)の各式中、Rは、同一であっても異なっていてもよい、炭素数1~10のアルキル基である。
When A is oxygen, the general formula (a-1) is represented by M-(OQ 1 )(OQ 2 )(OQ 3 ), and such a rare earth element compound is not particularly limited, but, for example, The following formula (aI):
(RO) 3 M (aI)
A rare earth alcoholate represented by the following formula (a-II):
(R-CO 2 ) 3 M (a-II)
And a rare earth carboxylate represented by Here, in each of the following formulas (a-I) and (a-II), R is an alkyl group having 1 to 10 carbon atoms, which may be the same or different.
 Aが硫黄である場合、一般式(a-1)は、M-(SQ)(SQ)(SQ)と表され、そのような希土類元素化合物としては、特に制限されないが、例えば、下記式(a-III):
   (RS)M   (a-III)
で表される希土類アルキルチオラート、下記式(a-IV):
   (R-CSM   (a-IV)
で表される化合物、等が挙げられる。ここで、下記化合物(a-III)及び(a-IV)の各式中、Rは、同一であっても異なっていてもよい、炭素数1~10のアルキル基である。
When A is sulfur, the general formula (a-1) is represented by M-(SQ 1 )(SQ 2 )(SQ 3 ), and such a rare earth element compound is not particularly limited. The following formula (a-III):
(RS) 3 M (a-III)
A rare earth alkyl thiolate represented by the following formula (a-IV):
(R-CS 2 ) 3 M (a-IV)
And the like. Here, in each formula of the following compounds (a-III) and (a-IV), R is an alkyl group having 1 to 10 carbon atoms, which may be the same or different.
(触媒B)
 本実施形態の製造方法において用いられる触媒Bは、置換又は無置換のシクロペンタジエン、置換又は無置換のインデン、及び置換又は無置換のフルオレンから選ばれるシクロペンタジエン骨格含有化合物である。触媒Bとしては、これらの中から一種単独で、又は二種以上を組み合わせて用いてもよい。
(Catalyst B)
The catalyst B used in the production method of the present embodiment is a cyclopentadiene skeleton-containing compound selected from substituted or unsubstituted cyclopentadiene, substituted or unsubstituted indene, and substituted or unsubstituted fluorene. As the catalyst B, one kind among these may be used alone, or two or more kinds may be used in combination.
 シクロペンタジエン骨格を有する化合物は、置換シクロペンタジエン、置換インデン又は置換フルオレンであることが好ましく、置換インデンがより好ましい。このような化合物を用いることにより、重合触媒としてのかさ高さが有利に増大するため、反応時間を短くし、反応温度を高くすることができる。また、シクロペンタジエン骨格を有する化合物が有する共役電子を多く具えるため、反応系における触媒活性を更に向上させることができる。 The compound having a cyclopentadiene skeleton is preferably substituted cyclopentadiene, substituted indene or substituted fluorene, and more preferably substituted indene. By using such a compound, the bulkiness as a polymerization catalyst is advantageously increased, so that the reaction time can be shortened and the reaction temperature can be raised. Moreover, since the compound having a cyclopentadiene skeleton has many conjugated electrons, the catalytic activity in the reaction system can be further improved.
 置換シクロペンタジエンとしては、例えば、ペンタメチルシクロペンタジエン、テトラメチルシクロペンタジエン、イソプロピルシクロペンタジエン、トリメチルシリル-テトラメチルシクロペンタジエン等が挙げられる。 Examples of the substituted cyclopentadiene include pentamethylcyclopentadiene, tetramethylcyclopentadiene, isopropylcyclopentadiene, trimethylsilyl-tetramethylcyclopentadiene and the like.
 置換インデンとしては、例えば、2-フェニル-1H-インデン、3-ベンジル-1H-インデン、3-メチル-2-フェニル-1H-インデン、3-ベンジル-2-フェニル-1H-インデン、1-ベンジル-1H-インデン等が挙げられ、中でも、分子量分布を小さくする観点から、3-ベンジル-1H-インデン、1-ベンジル-1H-インデンが好ましい。 Examples of the substituted indene include 2-phenyl-1H-indene, 3-benzyl-1H-indene, 3-methyl-2-phenyl-1H-indene, 3-benzyl-2-phenyl-1H-indene and 1-benzyl. -1H-indene and the like are mentioned, and among them, 3-benzyl-1H-indene and 1-benzyl-1H-indene are preferable from the viewpoint of narrowing the molecular weight distribution.
 また、置換フルオレンとしては、例えば、トリメチルシリルフルオレン、イソプロピルフルオレン等があげられる。 Further, examples of the substituted fluorene include trimethylsilylfluorene and isopropylfluorene.
 触媒Bのシクロペンタジエン骨格含有化合物の使用量は、触媒Aに対して好ましくは0.1~10倍mol、より好ましくは0.5~5倍molであり、さらに好ましくは0.75~1.5倍molであり、約1倍molであることがよりさらに好ましい。 The amount of the cyclopentadiene skeleton-containing compound used in catalyst B is preferably 0.1 to 10 times mol, more preferably 0.5 to 5 times mol, and still more preferably 0.75 to 1. It is 5 times mol, and even more preferably about 1 times mol.
 本実施形態において、触媒組成物は上記触媒A及び触媒Bを配合してなるものであり、触媒組成物には、触媒A、触媒B及び触媒Aと触媒Bとの反応物が含まれ得る。触媒Aと触媒Bとの反応物が含まれることで、合成の際に高い触媒活性が得られ、得られる共重合体について、共役ジエン化合物単位中のシス-1,4結合含有量を向上させることができ、上記の関係式を満たすものとしやすくすることができる。なお、本実施形態において、触媒組成物には触媒Aと触媒Bとの反応に寄与しなかった触媒A及び触媒Bの残留物が含まれていてもよいが、効率的に触媒組成物を得る観点から、触媒A及び触媒Bの残留物は少ないことが好ましい。 In the present embodiment, the catalyst composition is a mixture of the catalyst A and the catalyst B, and the catalyst composition may include the catalyst A, the catalyst B, and the reaction product of the catalyst A and the catalyst B. By containing the reaction product of catalyst A and catalyst B, a high catalytic activity is obtained during the synthesis, and the copolymer obtained is improved in the cis-1,4 bond content in the conjugated diene compound unit. It is possible to easily satisfy the above relational expression. In the present embodiment, the catalyst composition may contain the residues of the catalyst A and the catalyst B that did not contribute to the reaction between the catalyst A and the catalyst B, but the catalyst composition is efficiently obtained. From the viewpoint, it is preferable that the residual amounts of the catalyst A and the catalyst B are small.
(他の触媒)
 本実施形態の製造方法において、触媒組成物には、上記触媒A及び触媒B以外に、共役ジエン化合物単位中のシス-1,4結合含有量を向上させて、上記の関係式を満たすものとしやすくする観点から、他の触媒として以下の触媒C、触媒D及び触媒Eから選ばれる少なくとも一種を好ましく配合することができる。すなわち、本実施形態の製造方法において、触媒組成物は、さらに触媒C、触媒D及び触媒Eから選ばれる少なくとも一種を配合してなるものが好ましい。触媒C、触媒D及び触媒Eから選ばれる少なくとも一種を配合することにより、触媒組成物は、上記の触媒Aと触媒Bとの反応物の他、該反応物と触媒C~触媒Eから選ばれる少なくとも一種との反応物、触媒A~触媒Eから選ばれる少なくとも二種の反応物等の反応物、これらの反応物に寄与しなかった、残留する単体の触媒A~触媒Eが含まれ得るものとなる。
(Other catalysts)
In the production method of the present embodiment, in the catalyst composition, in addition to the catalyst A and the catalyst B, the cis-1,4 bond content in the conjugated diene compound unit is improved to satisfy the above relational expression. From the viewpoint of facilitating, at least one selected from the following catalyst C, catalyst D and catalyst E can be preferably added as another catalyst. That is, in the production method of the present embodiment, it is preferable that the catalyst composition further comprises at least one selected from catalyst C, catalyst D and catalyst E. By blending at least one selected from catalyst C, catalyst D and catalyst E, the catalyst composition is selected from the reaction product of catalyst A and catalyst B as well as the reaction product and catalysts C to E. At least one reactant, at least two reactants selected from catalysts A to E, and the like, which may contain the remaining single catalysts A to E that did not contribute to these reactants Becomes
 本実施形態においては、上記触媒A及び触媒Bとを配合した後、上記他の触媒C~触媒Eから選ばれる少なくとも一種を配合してもよいし、触媒A及び触媒Bと、触媒C~触媒Eから選ばれる少なくとも一種とを同時に配合してもよいが、共役ジエン化合物単位中のシス-1,4結合含有量を向上させて、上記の関係式を満たすものとしやすくする観点から、予め上記触媒Aと触媒Bとの反応物を得た後、該反応物と、上記他の触媒C~触媒Eとを配合した触媒組成物を用いることが好ましい。
 以下、好ましく用いられる触媒C、触媒D及び触媒Eについて説明する。
In the present embodiment, after the catalyst A and the catalyst B are blended, at least one selected from the other catalysts C to E may be blended, or the catalyst A and the catalyst B and the catalyst C to the catalyst may be blended. At least one selected from E may be blended at the same time, but from the viewpoint of improving the cis-1,4 bond content in the conjugated diene compound unit to easily satisfy the above relational expression, After obtaining a reaction product of catalyst A and catalyst B, it is preferable to use a catalyst composition in which the reaction product and the other catalysts C to E are blended.
Hereinafter, the catalysts C, D and E that are preferably used will be described.
(触媒C)
 本実施形態の製造方法において好ましく用いられる触媒Cは、イオン性化合物である。
 イオン性化合物としては、非配位性アニオンとカチオンとからなるイオン性化合物であり、上記触媒Aの希土類元素化合物と反応してカチオン性遷移金属化合物を生成できるイオン性化合物等を挙げることができる。
 ここで、非配位性アニオンとしては、例えば、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド-7,8-ジカルバウンデカボレート等が挙げられる。
(Catalyst C)
The catalyst C preferably used in the production method of the present embodiment is an ionic compound.
Examples of the ionic compound include ionic compounds composed of a non-coordinating anion and a cation, which can react with the rare earth element compound of the catalyst A to form a cationic transition metal compound. ..
Here, examples of the non-coordinating anion include tetraphenylborate, tetrakis(monofluorophenyl)borate, tetrakis(difluorophenyl)borate, tetrakis(trifluorophenyl)borate, tetrakis(tetrafluorophenyl)borate, tetrakis( Pentafluorophenyl)borate, tetrakis(tetrafluoromethylphenyl)borate, tetra(tolyl)borate, tetra(xylyl)borate, (triphenyl, pentafluorophenyl)borate, [tris(pentafluorophenyl),phenyl]borate, tri Decahydride-7,8-dicarbaundecaborate and the like can be mentioned.
 カチオンとしては、カルボニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等を挙げることができる。
 カルボニウムカチオンの具体例としては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニウムカチオンとして、より具体的には、トリ(メチルフェニル)カルボニウムカチオン、トリ(ジメチルフェニル)カルボニウムカチオン等が挙げられる。
Examples of the cation include a carbonium cation, an oxonium cation, an ammonium cation, a phosphonium cation, a cycloheptatrienyl cation, and a ferrocenium cation having a transition metal.
Specific examples of the carbonium cation include tri-substituted carbonium cations such as triphenylcarbonium cation and tri(substituted phenyl)carbonium cation, and more specifically, as tri(substituted phenyl)carbonium cation, , Tri(methylphenyl)carbonium cation, tri(dimethylphenyl)carbonium cation, and the like.
 アンモニウムカチオンの具体例としては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン(例えば、トリ(n-ブチル)アンモニウムカチオン)等のトリアルキルアンモニウムカチオン;N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオン、N,N-2,4,6-ペンタメチルアニリニウムカチオン等のN,N-ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。
 また、ホスホニウムカチオンの具体例としては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。
Specific examples of ammonium cations include trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tripropylammonium cation, tributylammonium cation (eg, tri(n-butyl)ammonium cation); N,N-dimethylanilinium. Cation, N,N-diethylanilinium cation, N,N-dialkylanilinium cation such as N,N-2,4,6-pentamethylanilinium cation; dialkylammonium cation such as diisopropylammonium cation, dicyclohexylammonium cation, etc. Is mentioned.
Specific examples of the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tri(methylphenyl)phosphonium cation, and tri(dimethylphenyl)phosphonium cation.
 イオン性化合物としては、上記の非配位性アニオン及びカチオンからそれぞれ選択して組み合わせた化合物が好ましく、具体的には、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。また、これらのイオン性化合物は、1種単独で、又は2種以上を組み合わせて用いることもできる。
 触媒Cのイオン性化合物の使用量は、触媒Aに対して好ましくは0.01~10倍mol、より好ましくは0.1~3倍mol、さらに好ましくは0.3~1倍molである。
The ionic compound is preferably a compound selected from the above non-coordinating anion and cation and combined, and specifically, N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate, triphenylcarbonium. Tetrakis(pentafluorophenyl)borate and the like are preferable. In addition, these ionic compounds may be used alone or in combination of two or more.
The amount of the ionic compound used in the catalyst C is preferably 0.01 to 10 times mol, more preferably 0.1 to 3 times mol, and further preferably 0.3 to 1 times mol with respect to the catalyst A.
(触媒D)
 本実施形態の製造方法において好ましく用いられる触媒Dは、下記一般式(d-1)で表される有機金属化合物である。
   YR    (d-1)
(Catalyst D)
The catalyst D preferably used in the production method of the present embodiment is an organometallic compound represented by the following general formula (d-1).
YR 1 a R 2 b R 3 c (d-1)
 一般式(d-1)において、Yは周期律表の第1族、第2族、第12族及び第13族の元素から選ばれる金属元素であり、R及びRは炭素数1~10の炭化水素基又は水素原子であり、Rは炭素数1~10の炭化水素基であり、R、R及びRはそれぞれ互いに同一であっても異なっていてもよく、Yが周期律表の第1族の金属元素である場合には、aは1でかつb及びcは0であり、Yが周期律表の第2族又は第12族の金属元素である場合には、a及びbは1でかつcは0であり、Yが周期律表の第13族の金属元素である場合には、a、b及びcは1である。 In the general formula (d-1), Y is a metal element selected from the elements of Group 1, Group 2, Group 12 and Group 13 of the periodic table, and R 1 and R 2 have 1 to 10 carbon atoms. 10 is a hydrocarbon group or a hydrogen atom, R 3 is a hydrocarbon group having 1 to 10 carbon atoms, R 1 , R 2 and R 3 may be the same or different from each other, and Y is When it is a metal element of Group 1 of the periodic table, a is 1 and b and c are 0, and when Y is a metal element of Group 2 or 12 of the periodic table, , A and b are 1 and c is 0, and when Y is a metal element of Group 13 of the periodic table, a, b and c are 1.
 上記一般式(d-1)で表される有機金属化合物の中でも、下記一般式(d-I)で表される有機アルミニウム化合物が好ましい。
   AlR   (d-I)
 一般式(d-I)において、R及びRは炭素数1~10の炭化水素基又は水素原子であり、Rは炭素数1~10の炭化水素基であり、R、R及びRはそれぞれ互いに同一又は異なっていてもよい。すなわち、上記一般式(d-I)で表される有機アルミニウム化合物は、上記一般式(d-1)において、Yがアルミニウム元素であり、R及びRは炭素数1~10の炭化水素基又は水素原子であり、Rは炭素数1~10の炭化水素基であり、a、b及びcが1のものである。
Among the organometallic compounds represented by the general formula (d-1), the organoaluminum compound represented by the following general formula (dI) is preferable.
AlR 1 R 2 R 3 (dI)
In the general formula (dI), R 1 and R 2 are hydrocarbon groups having 1 to 10 carbon atoms or hydrogen atoms, R 3 is a hydrocarbon group having 1 to 10 carbon atoms, and R 1 and R 2 are And R 3 may be the same or different from each other. That is, in the organoaluminum compound represented by the general formula (dI), in the general formula (d-1), Y is an aluminum element, and R 1 and R 2 are hydrocarbons having 1 to 10 carbon atoms. R 3 is a group or a hydrogen atom, R 3 is a hydrocarbon group having 1 to 10 carbon atoms, and a, b and c are 1.
 上記一般式(d-I)で表される有機アルミニウム化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ-n-プロピルアルミニウム、トリイソプロピルアルミニウム、トリ-n-ブチルアルミニウム、トリイソブチルアルミニウム、トリ-t-ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;水素化ジエチルアルミニウム、水素化ジ-n-プロピルアルミニウム、水素化ジ-n-ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミニウム、水素化ジイソオクチルアルミニウム;エチルアルミニウムジハイドライド、n-プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられる。中でも、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化ジエチルアルミニウム、水素化ジイソブチルアルミニウムが好ましい。 Examples of the organoaluminum compound represented by the general formula (dI) include trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-t- Butyl aluminum, tripentyl aluminum, trihexyl aluminum, tricyclohexyl aluminum, trioctyl aluminum; diethyl aluminum hydride, di-n-propyl aluminum hydride, di-n-butyl aluminum hydride, diisobutyl aluminum hydride, dihexyl hydride Aluminum, diisohexyl aluminum hydride, dioctyl aluminum hydride, diisooctyl aluminum hydride; ethyl aluminum dihydride, n-propyl aluminum dihydride, isobutyl aluminum dihydride and the like can be mentioned. Among them, triethyl aluminum, triisobutyl aluminum, diethyl aluminum hydride and diisobutyl aluminum hydride are preferable.
 これらの有機金属化合物は、1種単独で、又は2種以上を組み合わせて用いることもできる。
 また、触媒Dの有機金属化合物の使用量は、触媒Aに対して好ましくは1~50倍mol、より好ましくは3~15倍mol、さらに好ましくは5~10倍molである。
These organometallic compounds may be used alone or in combination of two or more.
The amount of the organometallic compound used as the catalyst D is preferably 1 to 50 times mol, more preferably 3 to 15 times mol, and further preferably 5 to 10 times mol, with respect to the catalyst A.
(触媒E)
 本実施形態の製造方法において好ましく用いられる触媒Eは、ハロゲン化合物である。
 ハロゲン化合物としては、ルイス酸、金属ハロゲン化物とルイス塩基との錯化合物、活性ハロゲンを含む有機化合物が挙げられ、これらのルイス酸、金属ハロゲン化物とルイス塩基との錯化合物、活性ハロゲンを含む有機化合物から選ばれる一種を用いることができる。触媒Eと上記触媒Aの希土類元素化合物との反応により、カチオン性遷移金属化合物、ハロゲン化遷移金属化合物、遷移金属中心が電荷不足の化合物を生成することができ、共役ジエン化合物単位中のシス-1,4結合含有量を向上させて、上記の関係式を満たすものとしやすくすることができる。
(Catalyst E)
The catalyst E preferably used in the production method of the present embodiment is a halogen compound.
Examples of the halogen compound include a Lewis acid, a complex compound of a metal halide and a Lewis base, an organic compound containing an active halogen, and these Lewis acids, a complex compound of a metal halide and a Lewis base, an organic compound containing an active halogen. One kind selected from compounds can be used. By reacting the catalyst E with the rare earth element compound of the catalyst A, a cationic transition metal compound, a halogenated transition metal compound, or a compound having a transition metal center with insufficient charge can be produced. The 1,4 bond content can be improved to facilitate the satisfaction of the above relational expression.
 上記ハロゲン化合物のルイス酸としては、B(C等のホウ素含有ハロゲン化合物、Al(C等のアルミニウム含有ハロゲン化合物を使用できる他、周期律表中の第3族、第4族、第5族、第6族又は第8族に属する元素を含有するハロゲン化合物を用いることもできる。好ましくは、アルミニウムハロゲン化物又は有機金属ハロゲン化物が挙げられる。また、ハロゲン元素としては、塩素又は臭素が好ましい。
 このようなルイス酸としては、具体的には、メチルアルミニウムジブロマイド、メチルアルミニウムジクロライド、エチルアルミニウムジブロマイド、エチルアルミニウムジクロライド、ブチルアルミニウムジブロマイド、ブチルアルミニウムジクロライド、ジメチルアルミニウムブロマイド、ジメチルアルミニウムクロライド、ジエチルアルミニウムブロマイド、ジエチルアルミニウムクロライド、ジブチルアルミニウムブロマイド、ジブチルアルミニウムクロライド、メチルアルミニウムセスキブロマイド、メチルアルミニウムセスキクロライド、エチルアルミニウムセスキブロマイド、エチルアルミニウムセスキクロライド、ジブチル錫ジクロライド、アルミニウムトリブロマイド、三塩化アンチモン、五塩化アンチモン、三塩化リン、五塩化リン、四塩化錫、四塩化チタン、六塩化タングステン等が挙げられる。中でも、ジエチルアルミニウムクロライド、エチルアルミニウムセスキクロライド、エチルアルミニウムジクロライド、ジエチルアルミニウムブロマイド、エチルアルミニウムセスキブロマイド、エチルアルミニウムジブロマイドが好ましい。
As the Lewis acid of the halogen compound, a boron-containing halogen compound such as B(C 6 F 5 ) 3 and an aluminum-containing halogen compound such as Al(C 6 F 5 ) 3 can be used, and the third compound in the periodic table can be used. It is also possible to use a halogen compound containing an element belonging to Group 4, Group 5, Group 5, Group 6, or Group 8. Preferably, an aluminum halide or an organic metal halide is used. Further, chlorine or bromine is preferable as the halogen element.
Specific examples of such a Lewis acid include methylaluminum dibromide, methylaluminum dichloride, ethylaluminum dibromide, ethylaluminum dichloride, butylaluminum dibromide, butylaluminum dichloride, dimethylaluminum bromide, dimethylaluminum chloride and diethylaluminum. Bromide, diethyl aluminum chloride, dibutyl aluminum bromide, dibutyl aluminum chloride, methyl aluminum sesquibromide, methyl aluminum sesquichloride, ethyl aluminum sesquibromide, ethyl aluminum sesquichloride, dibutyltin dichloride, aluminum tribromide, antimony trichloride, antimony pentachloride, Examples thereof include phosphorus trichloride, phosphorus pentachloride, tin tetrachloride, titanium tetrachloride, and tungsten hexachloride. Among them, diethyl aluminum chloride, ethyl aluminum sesquichloride, ethyl aluminum dichloride, diethyl aluminum bromide, ethyl aluminum sesquibromide and ethyl aluminum dibromide are preferable.
 上記ハロゲン化合物の金属ハロゲン化物とルイス塩基との錯化合物を構成する金属ハロゲン化物としては、塩化ベリリウム、臭化ベリリウム、ヨウ化ベリリウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、塩化バリウム、臭化バリウム、ヨウ化バリウム、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、塩化カドミウム、臭化カドミウム、ヨウ化カドミウム、塩化水銀、臭化水銀、ヨウ化水銀、塩化マンガン、臭化マンガン、ヨウ化マンガン、塩化レニウム、臭化レニウム、ヨウ化レニウム、塩化銅、臭化銅、ヨウ化銅、塩化銀、臭化銀、ヨウ化銀、塩化金、ヨウ化金、臭化金等が挙げられる。これらの中でも、塩化マグネシウム、塩化カルシウム、塩化バリウム、塩化マンガン、塩化亜鉛、塩化銅が好ましく、塩化マグネシウム、塩化マンガン、塩化亜鉛、塩化銅がより好ましい。 Examples of the metal halide forming the complex compound of the metal halide of the halogen compound and the Lewis base include beryllium chloride, beryllium bromide, beryllium iodide, magnesium chloride, magnesium bromide, magnesium iodide, calcium chloride, bromide. Calcium, calcium iodide, barium chloride, barium bromide, barium iodide, zinc chloride, zinc bromide, zinc iodide, cadmium chloride, cadmium bromide, cadmium iodide, mercury chloride, mercury bromide, mercury iodide, Manganese chloride, manganese bromide, manganese iodide, rhenium chloride, rhenium bromide, rhenium iodide, copper chloride, copper bromide, copper iodide, silver chloride, silver bromide, silver iodide, gold chloride, gold iodide , Gold bromide and the like. Among these, magnesium chloride, calcium chloride, barium chloride, manganese chloride, zinc chloride and copper chloride are preferable, and magnesium chloride, manganese chloride, zinc chloride and copper chloride are more preferable.
 金属ハロゲン化物とルイス塩基との錯化合物を構成するルイス塩基としては、リン化合物、カルボニル化合物、窒素化合物、エーテル化合物、アルコール等が好ましい。具体的には、リン酸トリブチル、リン酸トリ-2-エチルヘキシル、リン酸トリフェニル、リン酸トリクレジル、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン、ジエチルホスフィノエタン、ジフェニルホスフィノエタン、アセチルアセトン、ベンゾイルアセトン、プロピオニトリルアセトン、バレリルアセトン、エチルアセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸フェニル、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジフェニル、酢酸、オクタン酸、2-エチルヘキサン酸、オレイン酸、ステアリン酸、安息香酸、ナフテン酸、バーサチック酸、トリエチルアミン、N,N-ジメチルアセトアミド、テトラヒドロフラン、ジフェニルエーテル、2-エチルヘキシルアルコール、オレイルアルコール、ステアリルアルコール、フェノール、ベンジルアルコール、1-デカノール、ラウリルアルコール等が挙げられる。これらの中でも、リン酸トリ-2-エチルヘキシル、リン酸トリクレジル、アセチルアセトン、2-エチルヘキサン酸、バーサチック酸、2-エチルヘキシルアルコール、1-デカノール、ラウリルアルコールが好ましい。
 また、ルイス塩基は、金属ハロゲン化物1mol当り、通常0.01~30molの割合で、好ましくは0.5~10molの割合で反応させる。このルイス塩基との反応物を使用すると、合成して得られる共重合体中に残存する金属を低減することができる。
As the Lewis base constituting the complex compound of the metal halide and the Lewis base, a phosphorus compound, a carbonyl compound, a nitrogen compound, an ether compound, an alcohol and the like are preferable. Specifically, tributyl phosphate, tri-2-ethylhexyl phosphate, triphenyl phosphate, tricresyl phosphate, triethylphosphine, tributylphosphine, triphenylphosphine, diethylphosphinoethane, diphenylphosphinoethane, acetylacetone, benzoylacetone , Propionitrile acetone, valeryl acetone, ethyl acetylacetone, methyl acetoacetate, ethyl acetoacetate, phenyl acetoacetate, dimethyl malonate, diethyl malonate, diphenyl malonate, acetic acid, octanoic acid, 2-ethylhexanoic acid, oleic acid , Stearic acid, benzoic acid, naphthenic acid, versatic acid, triethylamine, N,N-dimethylacetamide, tetrahydrofuran, diphenyl ether, 2-ethylhexyl alcohol, oleyl alcohol, stearyl alcohol, phenol, benzyl alcohol, 1-decanol, lauryl alcohol, etc. Can be mentioned. Among these, tri-2-ethylhexyl phosphate, tricresyl phosphate, acetylacetone, 2-ethylhexanoic acid, versatic acid, 2-ethylhexyl alcohol, 1-decanol, and lauryl alcohol are preferable.
The Lewis base is usually reacted in a proportion of 0.01 to 30 mol, preferably 0.5 to 10 mol, per 1 mol of metal halide. When the reaction product with the Lewis base is used, the amount of metal remaining in the copolymer obtained by the synthesis can be reduced.
 また、上記ハロゲン化合物の活性ハロゲンを含む有機化合物としては、ベンジルクロライド等が挙げられる。 Also, examples of the organic compound containing active halogen of the above halogen compound include benzyl chloride.
 これらのハロゲン化合物は、1種単独で、又は2種以上を組み合わせて用いることもできる。
 また、触媒Eのハロゲン化合物の使用量は、触媒Aに対して好ましくは1~5倍molである。
These halogen compounds may be used alone or in combination of two or more.
The amount of the halogen compound used in the catalyst E is preferably 1 to 5 times mol that of the catalyst A.
(芳香族ビニル化合物と共役ジエン化合物との合成)
 本実施形態の共重合体の製造方法においては、上記触媒組成物を用いる以外、芳香族ビニル化合物と共役ジエン化合物との合成は、常法に従い行えばよく、特に制限はない。例えば、芳香族ビニル化合物と共役ジエン化合物との合成は、重合工程、さらに必要に応じてカップリング工程、洗浄工程、その他の工程を経て行えばよい。
(Synthesis of aromatic vinyl compound and conjugated diene compound)
In the method for producing the copolymer of the present embodiment, the synthesis of the aromatic vinyl compound and the conjugated diene compound may be carried out according to a conventional method except that the above catalyst composition is used, and there is no particular limitation. For example, the synthesis of the aromatic vinyl compound and the conjugated diene compound may be performed through a polymerization step, and if necessary, a coupling step, a washing step, and other steps.
(重合工程)
 重合工程における重合方法としては、溶液重合法、懸濁重合法、液相塊状重合法、乳化重合法、気相重合法、固相重合法等の任意の方法を用いることができる。また、重合反応に溶媒を用いる場合、かかる溶媒としては、重合反応において不活性なものであればよく、例えば、トルエン、シクロヘキサン、ノルマルヘキサン等が挙げられる。
(Polymerization process)
As the polymerization method in the polymerization step, any method such as a solution polymerization method, a suspension polymerization method, a liquid phase bulk polymerization method, an emulsion polymerization method, a gas phase polymerization method or a solid phase polymerization method can be used. When a solvent is used in the polymerization reaction, such a solvent may be one that is inactive in the polymerization reaction, and examples thereof include toluene, cyclohexane, and normal hexane.
 前記重合工程は、一段階で行ってもよく、二段階以上の多段階で行ってもよい。一段階の重合工程とは、重合させる全ての種類の単量体、すなわち、芳香族ビニル化合物と共役ジエン化合物と、を一斉に反応させて重合させる工程である。また、多段階の重合工程とは、使用する化合物の一部を最初に反応させて重合体を形成し(第1重合段階)、次いで、残りの化合物を添加して重合させる一以上の段階(第2重合段階~最終重合段階)を行って重合させる工程である。 The above-mentioned polymerization step may be carried out in one stage or in multiple stages of two or more stages. The one-step polymerization process is a process in which all kinds of monomers to be polymerized, that is, an aromatic vinyl compound and a conjugated diene compound are reacted simultaneously to polymerize. In addition, the multi-stage polymerization process is one or more stages in which a part of the compound to be used is first reacted to form a polymer (first polymerization stage), and then the remaining compound is added and polymerized ( In this step, the second to final polymerization steps are carried out for polymerization.
 触媒組成物の存在下では、芳香族ビニル化合物よりも共役ジエン化合物の反応性がより高いことから、共役ジエン化合物の投入の順序及び滴下速度を制御することによって、芳香族ビニル単連鎖の割合、製造された多元共重合体中における共役ジエン化合物由来の単位全体における結合含量(シス-1,4結合含有量)、上記化合物由来の単位の含有量(すなわち、芳香族ビニル化合物と共役ジエン化合物との共重合比)を制御することができる。
 本実施形態の共重合体の製造方法においては、芳香族ビニル単連鎖の含有量をより多くし、シス-1,4結合含有量をより多くして、得られる共重合体について、上記の関係式を満たすものとしやすくする観点から、芳香族ビニル化合物に、共役ジエン化合物を滴下して合成することが好ましい。
In the presence of the catalyst composition, since the reactivity of the conjugated diene compound is higher than that of the aromatic vinyl compound, the ratio of the aromatic vinyl single chain is controlled by controlling the order of addition of the conjugated diene compound and the dropping rate, Bond content (cis-1,4 bond content) in the entire unit derived from the conjugated diene compound in the produced multi-component copolymer, content of the unit derived from the compound (that is, aromatic vinyl compound and conjugated diene compound It is possible to control the copolymerization ratio).
In the method for producing the copolymer of the present embodiment, the content of the aromatic vinyl single chain is increased and the content of the cis-1,4 bond is increased to obtain the copolymer, and the above relation is satisfied. From the viewpoint of easily satisfying the formula, it is preferable to synthesize the aromatic vinyl compound by dropping a conjugated diene compound.
 本実施形態の共重合体の製造方法において、重合工程は、不活性ガス、好ましくは窒素ガスやアルゴンガスの雰囲気下において行われることが好ましい。
 重合工程における重合温度は、特に制限はないが、例えば、-100~200℃の範囲とすればよく、室温程度とすることもできる。反応速度を高め、かつ重合反応のシス-1,4選択性を向上させる観点から、好ましくは-50~175℃、より好ましくは0~150℃、さらに好ましくは50~100℃である。
 重合工程の圧力は、非共役オレフィン化合物を十分に重合反応系中に取り込むため、0.1~10.0MPaの範囲とすることが好ましい。
In the method for producing the copolymer of the present embodiment, the polymerization step is preferably performed in an atmosphere of an inert gas, preferably nitrogen gas or argon gas.
The polymerization temperature in the polymerization step is not particularly limited, but may be, for example, in the range of −100 to 200° C., and may be about room temperature. From the viewpoint of increasing the reaction rate and improving the cis-1,4 selectivity of the polymerization reaction, it is preferably -50 to 175°C, more preferably 0 to 150°C, and further preferably 50 to 100°C.
The pressure in the polymerization step is preferably in the range of 0.1 to 10.0 MPa in order to sufficiently incorporate the non-conjugated olefin compound into the polymerization reaction system.
 重合工程の反応時間は、特に制限はないが、例えば、1秒~10日の範囲であり、得られる共重合体について所望するミクロ構造、各単量体の種類、投入量及び添加順序、触媒の種類、重合温度等の条件によって適宜選択することができる。芳香族ビニル単連鎖の割合、製造された多元共重合体中における共役ジエン化合物由来の単位全体における結合含量(シス-1,4結合含有量)を向上させる観点から、反応時間は、好ましくは30分~5日、より好ましくは1時間~3日、更に好ましくは2時間~40時間である。 The reaction time of the polymerization step is not particularly limited, but is, for example, in the range of 1 second to 10 days, and the desired microstructure of the obtained copolymer, the type of each monomer, the input amount and the addition order, the catalyst It can be appropriately selected depending on the conditions such as the type and polymerization temperature. From the viewpoint of improving the proportion of aromatic vinyl single chains and the bond content (cis-1,4 bond content) in the entire unit derived from the conjugated diene compound in the produced multicomponent copolymer, the reaction time is preferably 30. Minutes to 5 days, more preferably 1 hour to 3 days, still more preferably 2 hours to 40 hours.
 例えば、芳香族ビニル化合物に、共役ジエン化合物を滴下して供給する場合、共役ジエン化合物はシクロヘキサン等の溶媒に溶解させた、通常5~45質量%、好ましくは15~30質量%の溶液を、通常0.1~5.0mL/分、好ましくは0.3~3.0mL/分の滴下速度で滴下すると、得られる共重合体の性状が安定し、共役ジエン化合物単位中のシス-1,4結合含有量を向上させることができ、上記の関係式を満たすものとしやすくなる。
 また、重合工程において、メタノール、エタノール、イソプロパノール等の重合停止剤を用いて、重合を停止させてもよい。
For example, when a conjugated diene compound is supplied dropwise to an aromatic vinyl compound, the conjugated diene compound is dissolved in a solvent such as cyclohexane and is usually 5 to 45% by mass, preferably 15 to 30% by mass, When the solution is added dropwise at a dropping rate of usually 0.1 to 5.0 mL/min, preferably 0.3 to 3.0 mL/min, the properties of the obtained copolymer are stabilized, and cis-1, in the conjugated diene compound unit, The 4-bond content can be improved, and it becomes easy to satisfy the above relational expression.
Further, in the polymerization step, the polymerization may be stopped by using a polymerization terminator such as methanol, ethanol or isopropanol.
(カップリング工程)
 本実施形態の共重合体の製造方法においては、カップリング工程を行ってもよい。なお、従来品の性能を維持し、かつガラス転移温度(Tg)を低くしやすくする観点から、得られる共重合体は未変性のものが好ましいことから、本実施形態の製造方法において、カップリング工程は行わなくてもよい。
(Coupling process)
A coupling step may be performed in the method for producing the copolymer of the present embodiment. From the viewpoint of maintaining the performance of conventional products and easily lowering the glass transition temperature (Tg), it is preferable that the copolymer obtained is unmodified. Therefore, in the production method of the present embodiment, the coupling The process may not be performed.
 カップリング工程は、上記重合工程により得られた共重合体の高分子鎖の末端等の少なくとも一部を変性する反応を行う工程である。カップリング工程において、重合反応が100%に達した際にカップリング反応を行うことが好ましい。
 カップリング反応に用いるカップリング剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ビス(マレイン酸-1-オクタデシル)ジオクチルスズ等のスズ含有化合物;4,4’-ジフェニルメタンジイソシアネート等のイソシアネート化合物;グリシジルプロピルトリメトキシシラン等のアルコキシシラン化合物、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、ビス(マレイン酸-1-オクタデシル)ジオクチルスズが、反応効率と低ゲル生成の点で、好ましい。
The coupling step is a step of performing a reaction for modifying at least a part of the polymer chain end of the copolymer obtained by the above-mentioned polymerization step. In the coupling step, it is preferable to perform the coupling reaction when the polymerization reaction reaches 100%.
The coupling agent used in the coupling reaction is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include tin-containing compounds such as bis(-1-octadecyl maleate dioctyltin); 4,4′ An isocyanate compound such as diphenylmethane diisocyanate; an alkoxysilane compound such as glycidylpropyltrimethoxysilane. These may be used alone or in combination of two or more. Among these, bis(1-octadecyl maleate-1-octadecyl)dioctyltin is preferable in terms of reaction efficiency and low gel formation.
(洗浄工程)
 洗浄工程は、重合工程において得られた共重合体を洗浄する工程である。この洗浄工程により、共重合体中の触媒残渣量を好適に低下させることができる。
 洗浄に用いる媒体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メタノール、エタノール、イソプロパノール等が挙げられる。重合触媒としてルイス酸由来の触媒を使用する場合は、特にこれらの溶媒に対して酸(たとえば塩酸、硫酸、硝酸)を加えて使用することができる。添加する酸の量は溶媒に対して15mol%以下が好ましい。これ以上では酸が共重合体中に残存してしまうことで混練及び加硫時の反応に悪影響を及ぼす可能性がある。
(Washing process)
The washing step is a step of washing the copolymer obtained in the polymerization step. By this washing step, the amount of catalyst residue in the copolymer can be suitably reduced.
The medium used for washing is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include methanol, ethanol and isopropanol. When a catalyst derived from a Lewis acid is used as a polymerization catalyst, an acid (for example, hydrochloric acid, sulfuric acid, nitric acid) can be added to these solvents before use. The amount of acid added is preferably 15 mol% or less based on the solvent. If it is more than this, the acid may remain in the copolymer, which may adversely affect the reaction during kneading and vulcanization.
[ゴム組成物]
 本実施形態のゴム組成物は、上記の本実施形態の共重合体を含むものである。本実施形態のゴム組成物は、上記の本実施形態の共重合体の他、例えば、ゴム成分、その他の成分として添加剤等を含むことができる。
[Rubber composition]
The rubber composition of the present embodiment contains the above-mentioned copolymer of the present embodiment. The rubber composition of the present embodiment may include, for example, a rubber component and additives as other components in addition to the copolymer of the present embodiment.
 上記本実施形態の共重合体と組み合わせて用いられ得るゴム成分としては、例えばRSS及びTSRの他、高純度天然ゴム、エポキシ化天然ゴム、水酸基化天然ゴム、水素添加天然ゴム、グラフト化天然ゴム等の改質天然ゴム等の天然ゴム(NR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、アクリロニトリル-ブタジエンゴム(NBR)、クロロプレンゴム、エチレン-プロピレンゴム(EPM)、エチレン-プロピレン-非共役ジエンゴム(EPDM)、多硫化ゴム、シリコーンゴム、フッ素ゴム、ウレタンゴム等の他のゴム成分を含んでいてもよい。これらのゴム成分は、一種単独で、又は二種以上を組み合わせて用いることができる。 Examples of rubber components that can be used in combination with the copolymer of the present embodiment include high-purity natural rubber, epoxidized natural rubber, hydroxylated natural rubber, hydrogenated natural rubber, and grafted natural rubber, in addition to RSS and TSR. Natural rubber such as modified natural rubber (NR), butadiene rubber (BR), styrene butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR), chloroprene rubber, ethylene-propylene rubber (EPM), ethylene-propylene- Other rubber components such as non-conjugated diene rubber (EPDM), polysulfide rubber, silicone rubber, fluororubber and urethane rubber may be contained. These rubber components may be used alone or in combination of two or more.
(ゴム成分の変性)
 ゴム成分は、未変性でもよいし、変性されていてもよい。
 変性されている場合の変性官能基としては、充填剤(特に、シリカ)に対して親和性のある官能基であれば特に制限はなく、窒素原子、ケイ素原子、酸素原子、及びスズ原子からなる群から選択される少なくとも1種の原子を含むことが好ましい。
 例えば、窒素原子を含む変性官能基、ケイ素原子を含む変性官能基、酸素原子を含む変性官能基、スズ原子を含む変性官能基等が挙げられ、充填剤との親和性の観点から、窒素原子を含む変性官能基、ケイ素原子を含む変性官能基、酸素原子を含む変性官能基が好ましい。これらの変性官能基による変性は、1種単独の変性官能基により行ってもよいし、2種以上の変性官能基により行ってもよい。
(Modification of rubber component)
The rubber component may be unmodified or modified.
The modified functional group in the case of being modified is not particularly limited as long as it is a functional group having an affinity for the filler (particularly silica), and is composed of a nitrogen atom, a silicon atom, an oxygen atom, and a tin atom. It preferably comprises at least one atom selected from the group.
Examples thereof include a modified functional group containing a nitrogen atom, a modified functional group containing a silicon atom, a modified functional group containing an oxygen atom, and a modified functional group containing a tin atom. A modified functional group containing, a modified functional group containing a silicon atom, and a modified functional group containing an oxygen atom are preferable. The modification with these modifying functional groups may be carried out with one kind of modifying functional group alone, or with two or more kinds of modifying functional groups.
 ゴム組成物中の上記の共重合体と他のゴム成分との合計量に対する共重合体の含有量は、所望の耐久性等の性状に応じて適宜選定すればよく特に制限はないが、効率的に優れた耐久性等の性状を得る観点から、好ましくは15質量%以上、より好ましくは20質量%以上であり、上限として好ましくは100質量%以下、より好ましくは90質量%以下である。 The content of the copolymer with respect to the total amount of the above-mentioned copolymer and other rubber components in the rubber composition may be appropriately selected depending on the properties such as desired durability and is not particularly limited, but the efficiency From the viewpoint of obtaining properties such as excellent durability, it is preferably 15% by mass or more, more preferably 20% by mass or more, and the upper limit is preferably 100% by mass or less, more preferably 90% by mass or less.
(充填剤)
 充填剤は、特に制限されず、例えば、ゴム組成物を補強する補強性充填剤を用いることができる。補強性充填剤は、例えば、シリカの他に、水酸化アルミニウム、炭酸カルシウム等の白色充填剤;カーボンブラック等が好ましく挙げられ、シリカ、カーボンブラックがより好ましい。
 充填剤として、シリカのみを単独で用いてもよいし、シリカ及びカーボンブラックの両方を用いてもよい。
(filler)
The filler is not particularly limited, and for example, a reinforcing filler that reinforces the rubber composition can be used. Examples of the reinforcing filler include, in addition to silica, white fillers such as aluminum hydroxide and calcium carbonate; carbon black and the like are preferable, and silica and carbon black are more preferable.
As the filler, only silica may be used alone, or both silica and carbon black may be used.
 カーボンブラックは、特に限定されず、目的に応じて適宜選択することができる。カーボンブラックは、例えば、FEF、SRF、HAF、ISAF、SAFグレードのものが好ましく、HAF、ISAF、SAFグレードのものがより好ましい。 The carbon black is not particularly limited and can be appropriately selected according to the purpose. The carbon black is, for example, preferably FEF, SRF, HAF, ISAF or SAF grade, more preferably HAF, ISAF or SAF grade.
 シリカの種類は特に限定されず、例えば、湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、ケイ酸カルシウム、ケイ酸アルミニウム等の一般グレードのシリカ、シランカップリング剤などで表面処理を施した特殊シリカなど、用途に応じて使用することができる。 The type of silica is not particularly limited. For example, wet silica (hydrous silicic acid), dry silica (anhydrous silicic acid), calcium silicate, general grade silica such as aluminum silicate, surface treatment with a silane coupling agent, etc. It can be used depending on the application such as applied special silica.
(その他の成分)
 本実施形態で用いられるゴム組成物には、本発明の効果を損なわない範囲で、必要に応じて、例えば、老化防止剤、架橋剤(硫黄等の加硫剤を含む)、架橋促進剤(加硫促進剤)、架橋促進助剤(加硫促進助剤)、亜鉛華(ZnO)、軟化剤、ワックス、酸化防止剤、発泡剤、可塑剤、滑剤、粘着付与剤、石油系樹脂、紫外線吸収剤、分散剤、相溶化剤、均質化剤等の成分を、適宜含有させることができる。
(Other ingredients)
In the rubber composition used in the present embodiment, if necessary, for example, an antioxidant, a cross-linking agent (including a vulcanizing agent such as sulfur), a cross-linking accelerator (in a range that does not impair the effects of the present invention, Vulcanization accelerator), crosslinking accelerator (vulcanization accelerator), zinc white (ZnO), softener, wax, antioxidant, foaming agent, plasticizer, lubricant, tackifier, petroleum resin, ultraviolet ray Ingredients such as an absorbent, a dispersant, a compatibilizer and a homogenizer can be appropriately contained.
(ゴム組成物の製造)
 本実施形態のゴム組成物は、上記の各成分を、バンバリーミキサー、ロール、インターナルミキサー等の混練り機を使用して混練りすることによって製造することができる。ここで、配合及び混練に際しては、全ての成分を一度に配合して混練してもよく、2段階又は3段階等の多段階に分けて各成分を配合して混練してもよい。なお、混練に際しては、ロール、インターナルミキサー、バンバリーローター等の混練機を用いることができる。さらに、ゴム組成物をシート状や帯状等に成形する際には、押出成形機、プレス機等の公知の成形機を用いることができる。
(Production of rubber composition)
The rubber composition of the present embodiment can be produced by kneading the above components using a kneading machine such as a Banbury mixer, a roll, or an internal mixer. Here, upon blending and kneading, all components may be blended and kneaded at once, or each component may be blended and kneaded in multiple stages such as two stages or three stages. In addition, at the time of kneading, a kneading machine such as a roll, an internal mixer, or a Banbury rotor can be used. Further, when molding the rubber composition into a sheet shape, a belt shape or the like, a known molding machine such as an extrusion molding machine or a press machine can be used.
 また、本実施形態で用いられるゴム組成物は、架橋して製造してもよい。架橋条件としては特に制限されず、通常は140~180℃の温度、及び5~120分間の時間を採用することができる。 The rubber composition used in this embodiment may be produced by crosslinking. The crosslinking conditions are not particularly limited, and usually a temperature of 140 to 180° C. and a time of 5 to 120 minutes can be adopted.
 本実施形態のゴム組成物は、従来品の性能を維持したまま、ガラス転移温度(Tg)が低い共重合体を含むものであることから、耐久性等の従来品の性能とともに、優れた氷上性能、ウェットブレーキ性能等の性能をも有するものとなることが期待される。よって、本実施形態のゴム組成物は、後述するタイヤの他、コンベヤベルト、ゴムクローラ、ホース、また防振装置、免震装置に用いられる防振ゴム、免震ゴム等のゴム製品に好適に用いられる。 Since the rubber composition of the present embodiment contains a copolymer having a low glass transition temperature (Tg) while maintaining the performance of the conventional product, the rubber composition of the present embodiment has excellent performance on ice, as well as performance of the conventional product such as durability. It is expected that it will also have performance such as wet brake performance. Therefore, the rubber composition of the present embodiment is suitable for rubber products such as a conveyor belt, a rubber crawler, a hose, a vibration isolation device, a vibration isolation rubber used for a seismic isolation device, and a seismic isolation rubber in addition to the tires described below. Used.
[タイヤ]
 本実施形態のタイヤは、上記の本実施形態のゴム組成物を用いるものである。かかるタイヤは、本実施形態のゴム組成物を用いるものであるため、耐久性等の従来品の性能とともに、優れた氷上性能、ウェットブレーキ性能等の性能をも有するものである。
 タイヤにおける本実施形態のゴム組成物の適用部位としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トレッド、ベーストレッド、サイドウォール、サイド補強ゴム及びビードフィラー等が挙げられる。本実施形態のゴム組成物の優れた耐久性等の従来品の性能とともに、優れた氷上性能、ウェットブレーキ性能等の性能をも有するという特長を有効活用する観点から、適用部位としてはトレッドが好ましく、特にスタッドレスタイヤのトレッドが好ましい。
[tire]
The tire of the present embodiment uses the rubber composition of the present embodiment described above. Since such a tire uses the rubber composition of the present embodiment, it has not only the performance of conventional products such as durability but also excellent performance on ice, wet braking performance and the like.
The application site of the rubber composition of the present embodiment in the tire is not particularly limited and can be appropriately selected depending on the purpose, and examples thereof include a tread, a base tread, a sidewall, a side reinforcing rubber and a bead filler. Be done. In addition to the performance of conventional products such as the excellent durability of the rubber composition of the present embodiment, from the viewpoint of effectively utilizing the characteristics of having excellent performance on ice, performance such as wet braking performance, the tread is preferable as the application site. Especially, a tread of a studless tire is preferable.
 本実施形態のタイヤを製造する方法としては、慣用の方法を用いることができる。例えば、タイヤ成形用ドラム上に未加硫の本実施形態のゴム組成物及び/又はコードからなるカーカス層、ベルト層、トレッド層等の通常タイヤ製造に用いられる部材を順次貼り重ね、ドラムを抜き去ってグリーンタイヤとする。次いで、このグリーンタイヤを常法に従って加熱加硫することにより、所望のタイヤ(例えば、空気入りタイヤ)を製造することができる。 As a method of manufacturing the tire of this embodiment, a conventional method can be used. For example, a carcass layer, a belt layer, a tread layer, and the like, which are made of an unvulcanized rubber composition and/or cord of the present embodiment, are sequentially laminated on a tire molding drum, and the drum is removed. Leave and use green tires. Then, a desired tire (for example, a pneumatic tire) can be manufactured by heating and vulcanizing this green tire according to a conventional method.
[樹脂組成物及び樹脂製品]
 本実施形態の樹脂組成物は、上記の本実施形態の共重合体を含むものである。共重合体と、他の樹脂成分と、を組み合わせることにより、該他の樹脂成分が元来有する耐久性等の諸性能が向上する。また、本実施形態の樹脂製品は、本実施形態の樹脂組成物を用いたものである。
[Resin composition and resin product]
The resin composition of this embodiment contains the above-mentioned copolymer of this embodiment. By combining the copolymer and the other resin component, various properties such as durability originally possessed by the other resin component are improved. Moreover, the resin product of this embodiment uses the resin composition of this embodiment.
 共重合体と組み合わせる樹脂成分としては、特に制限はなく種々の樹脂成分を採用することができ、樹脂製品に所望される性能に応じて適宜選択すればよい。
 このような樹脂成分としては、例えばポリエチレン、ポリプロピレン、ポリブテン、ポリスチレン等の単独重合体、エチレン-プロピレン共重合体、エチレン-メタクリル酸共重合体、エチレン-エチルアクリレート共重合体、エチレン-プロピレン-ジエン三元共重合体、エチレン-酢酸ビニル共重合体等の共重合体、及びこれらのアイオノマー樹脂等のポリオレフィン樹脂、ビニルアルコール単独重合体、エチレン-ビニルアルコール共重合体等のポリビニルアルコール樹脂、ポリ(メタ)アクリル酸樹脂及びそのエステル樹脂、脂肪族ポリアミド樹脂、芳香族ポリアミド樹脂等のポリアミド樹脂、ポリエチレングリコール樹脂、カルボキシビニル共重合体、スチレン-マレイン酸共重合体、ビニルピロリドン単独重合体、ビニルピロリドン-酢酸ビニル共重合体等のポリビニルピロリドン樹脂、ポリエステル樹脂、セルロース樹脂、メルカプトメタノール、水素化スチレン-ブタジエン、シンジオタクチックポリブタジエン、トランスポリイソプレン、トランスポリブタジエン等が挙げられる。
The resin component to be combined with the copolymer is not particularly limited and various resin components can be adopted, and may be appropriately selected according to the performance desired for the resin product.
Examples of such resin components include homopolymers of polyethylene, polypropylene, polybutene, polystyrene, etc., ethylene-propylene copolymers, ethylene-methacrylic acid copolymers, ethylene-ethyl acrylate copolymers, ethylene-propylene-diene. Terpolymers, copolymers such as ethylene-vinyl acetate copolymers, and polyolefin resins such as ionomer resins thereof, vinyl alcohol homopolymers, polyvinyl alcohol resins such as ethylene-vinyl alcohol copolymers, poly( (Meth)acrylic acid resin and its ester resin, polyamide resin such as aliphatic polyamide resin and aromatic polyamide resin, polyethylene glycol resin, carboxyvinyl copolymer, styrene-maleic acid copolymer, vinylpyrrolidone homopolymer, vinylpyrrolidone -Polyvinylpyrrolidone resin such as vinyl acetate copolymer, polyester resin, cellulose resin, mercaptomethanol, hydrogenated styrene-butadiene, syndiotactic polybutadiene, trans polyisoprene, trans polybutadiene and the like can be mentioned.
 本実施形態の樹脂組成物において、全樹脂成分に対する共重合体の含有量は、組み合わせる他の樹脂、所望の性状等により適宜調整すればよく、通常1~99質量%程度であり、好ましくは5~90質量%である。 In the resin composition of the present embodiment, the content of the copolymer with respect to all the resin components may be appropriately adjusted depending on other resins to be combined, desired properties, etc., and is usually about 1 to 99% by mass, preferably 5 It is up to 90% by mass.
 また、本実施形態の樹脂組成物は、所望の性能に応じて、各種添加剤を含むことができる。各種添加剤としては、通常樹脂組成物に含まれる添加剤を特に制限なく用いることができ、例えば紫外線吸収剤、光安定剤等の耐候剤、酸化防止剤、上記ゴム組成物に含まれ得る充填剤として例示した充填剤、軟化剤、着色剤、難燃剤、可塑剤、帯電防止剤等が挙げられる。 Further, the resin composition of the present embodiment may contain various additives depending on desired performance. As various additives, the additives usually contained in the resin composition can be used without particular limitation, for example, UV absorbers, weathering agents such as light stabilizers, antioxidants, filling that may be contained in the rubber composition. Examples of the agent include fillers, softeners, colorants, flame retardants, plasticizers, antistatic agents and the like.
 以下に、実施例を挙げて本発明をさらに詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.
(共重合体の分析)
 多元共重合体についての、数平均分子量(Mn)、重量平均分子量(Mw)、分子量分布(Mw/Mn)、ガラス転移温度(Tg)、結合芳香族ビニル化合物の含有量、ビニル結合含有量は、以下の測定方法により行った。
(Analysis of copolymer)
The number average molecular weight (Mn), the weight average molecular weight (Mw), the molecular weight distribution (Mw/Mn), the glass transition temperature (Tg), the content of the bound aromatic vinyl compound, and the vinyl bond content of the multi-component copolymer are The measurement method was as follows.
(1)数平均分子量(Mn)、重量平均分子量(Mw)及び分子量分布(Mw/Mn)
 ゲルパーミエーションクロマトグラフィー[GPC:東ソー社製HLC-8121GPC/HT、カラム:東ソー社製GMHHR-H(S)HT×2本、検出器:示差屈折率計(RI)]で単分散ポリスチレンを基準として、共重合体のポリスチレン換算の数平均分子量(Mn)、重量平均分子量(Mw)及び分子量分布(Mw/Mn)を求めた。なお、測定温度は40℃である。
(2)ガラス転移温度(Tg)
 示差走査熱量計(DSC、ティー・エイ・インスツルメント・ジャパン社製、「DSCQ2000」)を用い、JIS K 7121-1987に準拠して、共重合体のガラス転移温度(Tg)を測定した。
(3)結合芳香族ビニル化合物の含有量
 共重合体中の結合芳香族ビニル化合物の含有量Av(質量%)を、H-NMRスペクトル(100℃、d-テトラクロロエタン標準:6ppm)のピークの積分比より求めた。
(4)ビニル結合含有量
 ビニル結合含有量Vi(質量%)は、赤外法(モレロ法)により求めた。
(1) Number average molecular weight (Mn), weight average molecular weight (Mw) and molecular weight distribution (Mw/Mn)
Monodisperse polystyrene was analyzed by gel permeation chromatography [GPC: Tosoh HLC-8121GPC/HT, column: Tosoh GMH HR -H(S)HT x 2, detector: differential refractometer (RI)]. As a standard, the polystyrene-equivalent number average molecular weight (Mn), weight average molecular weight (Mw), and molecular weight distribution (Mw/Mn) of the copolymer were determined. The measurement temperature is 40°C.
(2) Glass transition temperature (Tg)
The glass transition temperature (Tg) of the copolymer was measured using a differential scanning calorimeter (DSC, manufactured by TA Instruments Japan Co., Ltd., "DSCQ2000") in accordance with JIS K 7121-1987.
(3) Content of bound aromatic vinyl compound The content Av (mass %) of the bound aromatic vinyl compound in the copolymer is determined by the peak of 1 H-NMR spectrum (100° C., d-tetrachloroethane standard: 6 ppm). It was calculated from the integral ratio of.
(4) Vinyl bond content The vinyl bond content Vi (mass %) was determined by the infrared method (Morero method).
(実施例1:共重合体1の合成)
 十分に乾燥した2000mLの耐圧ステンレス反応器に、芳香族ビニル化合物のスチレン91gと、シクロヘキサン30gを加えた。
 窒素雰囲気下のグローブボックス中で、ガラス製容器にモノ(ビス(1,3-tert-ブチルジメチルシリル)インデニル)ビス(ビス(ジメチルシリル)アミドガドリニウム錯体(1,3-[(t-Bu)MeSi]Gd[N(SiHMe)0.224mmol、トリチルテトラキス(ペンタフルオロフェニル)ボレート(PhCB(C)0.150mmol、及び水素化ジイソブチルアルミニウム1.7mmolを仕込み、シクロヘキサン73mLを加えて触媒溶液とした。
 得られた触媒溶液を、前記耐圧ステンレス反応器に加え、70℃に加温した。
 次いで、共役ジエン化合物の1,3-ブタジエン75gを含むシクロヘキサン溶液318gを、耐圧ステンレス反応器に1.4~1.7mL/分の速度で連続的に滴下し、合成温度を70℃とし、合成時間292分で合成して共重合体を得た。
 次いで、2,2’-メチレン-ビス(4-エチル-6-t-ブチルフェノール)(NS-5)5質量%のイソプロパノール溶液1mlを、該耐圧ステンレス反応器に加えて反応を停止させた。次いで、大量のメタノールを用いて共重合体を分離し、50℃で真空乾燥し、共重合体1を得た。
(Example 1: Synthesis of copolymer 1)
91 g of styrene which is an aromatic vinyl compound and 30 g of cyclohexane were added to a sufficiently dried 2000 mL pressure-resistant stainless steel reactor.
Mono(bis(1,3-tert-butyldimethylsilyl)indenyl)bis(bis(dimethylsilyl)amide gadolinium complex (1,3-[(t-Bu)) was placed in a glass container in a glove box under a nitrogen atmosphere. Me 2 Si] 2 C 9 H 5 Gd [N (SiHMe 2) 2] 2) 0.224mmol, trityl tetrakis (pentafluorophenyl) borate (Ph 2 CB (C 6 F 5) 4) 0.150mmol, and hydrogen 1.7 mmol of diisobutylaluminum chloride was charged, and 73 mL of cyclohexane was added to prepare a catalyst solution.
The obtained catalyst solution was added to the pressure-resistant stainless steel reactor and heated to 70°C.
Next, 318 g of a cyclohexane solution containing 75 g of 1,3-butadiene of the conjugated diene compound was continuously added dropwise to the pressure-resistant stainless steel reactor at a rate of 1.4 to 1.7 mL/min, and the synthesis temperature was 70° C. A copolymer was obtained by synthesizing in 292 minutes.
Then, 1 ml of an isopropanol solution containing 5% by mass of 2,2′-methylene-bis(4-ethyl-6-t-butylphenol) (NS-5) was added to the pressure-resistant stainless steel reactor to stop the reaction. Then, the copolymer was separated using a large amount of methanol and dried in vacuum at 50° C. to obtain a copolymer 1.
 得られた共重合体1について、上記の方法により、数平均分子量(Mn)、重量平均分子量(Mw)、分子量分布(Mw/Mn)、ガラス転移温度(Tg)、結合芳香族ビニル化合物の含有量、及びビニル結合含有量を測定した。測定結果を第1表に示す。 Regarding the obtained copolymer 1, the number average molecular weight (Mn), the weight average molecular weight (Mw), the molecular weight distribution (Mw/Mn), the glass transition temperature (Tg), and the content of the bound aromatic vinyl compound are obtained by the above method. The amount and vinyl bond content were measured. The measurement results are shown in Table 1.
(実施例2:共重合体2の合成)
 実施例1において、1,3-ブタジエンを含むシクロヘキサン溶液の滴下速度を1.0~1.5mL/分とし、合成時間を369分とした以外は実施例1と同様にして、芳香族ビニル化合物のスチレンと共役ジエン化合物の1,3-ブタジエンとの合成を行い、共重合体2を合成した。得られた共重合体2について、上記の方法により、数平均分子量(Mn)、重量平均分子量(Mw)、分子量分布(Mw/Mn)、ガラス転移温度(Tg)、結合芳香族ビニル化合物の含有量、及びビニル結合含有量を測定した。測定結果を第1表に示す。
(Example 2: Synthesis of copolymer 2)
An aromatic vinyl compound was prepared in the same manner as in Example 1 except that the cyclohexane solution containing 1,3-butadiene was added dropwise at a rate of 1.0 to 1.5 mL/min and the synthesis time was 369 minutes. Of styrene and 1,3-butadiene as a conjugated diene compound were synthesized to prepare a copolymer 2. Regarding the obtained copolymer 2, the number average molecular weight (Mn), the weight average molecular weight (Mw), the molecular weight distribution (Mw/Mn), the glass transition temperature (Tg), and the content of the bound aromatic vinyl compound are obtained by the above method. The amount and vinyl bond content were measured. The measurement results are shown in Table 1.
(実施例3:共重合体3の合成)
 実施例1において、耐圧ステンレス反応器に供給するシクロヘキサンの量を30gから328gとし、触媒溶液に用いるシクロヘキサンの量を73mLから40mLとし、1,3-ブタジエンを含むシクロヘキサン溶液の滴下速度を1.0~1.5mL/分とし、合成時間を400分とした以外は実施例1と同様にして、芳香族ビニル化合物のスチレンと共役ジエン化合物の1,3-ブタジエンとの合成を行い、共重合体3を合成した。得られた共重合体3について、上記の方法により、数平均分子量(Mn)、重量平均分子量(Mw)、分子量分布(Mw/Mn)、ガラス転移温度(Tg)、結合芳香族ビニル化合物の含有量、及びビニル結合含有量を測定した。測定結果を第1表に示す。
(Example 3: Synthesis of copolymer 3)
In Example 1, the amount of cyclohexane supplied to the pressure-resistant stainless steel reactor was 30 g to 328 g, the amount of cyclohexane used for the catalyst solution was 73 mL to 40 mL, and the dropping rate of the cyclohexane solution containing 1,3-butadiene was 1.0. A copolymer of styrene, an aromatic vinyl compound, and 1,3-butadiene, a conjugated diene compound, was synthesized in the same manner as in Example 1 except that the synthesis time was 400 mL for 1.5 mL/min. 3 was synthesized. Regarding the obtained copolymer 3, the number average molecular weight (Mn), the weight average molecular weight (Mw), the molecular weight distribution (Mw/Mn), the glass transition temperature (Tg), and the content of the bound aromatic vinyl compound are obtained by the above method. The amount and vinyl bond content were measured. The measurement results are shown in Table 1.
(実施例4:共重合体4の合成)
 実施例1において、耐圧ステンレス反応器に供給するスチレンを91gから136gとし、シクロヘキサンの量を30gから730gとし、触媒溶液に用いるシクロヘキサンの量を73mLから40mLとし、1,3-ブタジエンを含むシクロヘキサン溶液の滴下速度を0.7~1.3mL/分とし、合成時間を488分とした以外は実施例1と同様にして、芳香族ビニル化合物のスチレンと共役ジエン化合物の1,3-ブタジエンとの合成を行い、共重合体4を合成した。得られた共重合体4について、上記の方法により、数平均分子量(Mn)、重量平均分子量(Mw)、分子量分布(Mw/Mn)、ガラス転移温度(Tg)、結合芳香族ビニル化合物の含有量、及びビニル結合含有量を測定した。測定結果を第1表に示す。
(Example 4: Synthesis of copolymer 4)
In Example 1, the amount of styrene supplied to the pressure-resistant stainless steel reactor was 91 g to 136 g, the amount of cyclohexane was 30 g to 730 g, the amount of cyclohexane used in the catalyst solution was 73 mL to 40 mL, and a cyclohexane solution containing 1,3-butadiene was used. Of styrene as an aromatic vinyl compound and 1,3-butadiene as a conjugated diene compound in the same manner as in Example 1 except that the dropping rate was 0.7 to 1.3 mL/min and the synthesis time was 488 minutes. Synthesis was carried out to synthesize copolymer 4. Regarding the obtained copolymer 4, the number average molecular weight (Mn), the weight average molecular weight (Mw), the molecular weight distribution (Mw/Mn), the glass transition temperature (Tg), and the content of the bound aromatic vinyl compound are obtained by the above method. The amount and vinyl bond content were measured. The measurement results are shown in Table 1.
(実施例5:共重合体5の合成)
 実施例1において、耐圧ステンレス反応器に供給するスチレンを91gから136gとし、シクロヘキサンの量を30gから730gとし、触媒溶液に用いるシクロヘキサンの量を73mLから40mLとし、1,3-ブタジエンを含むシクロヘキサン溶液の滴下速度を0.7~1.3mL/分とし、合成温度を90℃、合成時間を505分とした以外は実施例1と同様にして、芳香族ビニル化合物のスチレンと共役ジエン化合物の1,3-ブタジエンとの合成を行い、共重合体5を合成した。得られた共重合体5について、上記の方法により、数平均分子量(Mn)、重量平均分子量(Mw)、分子量分布(Mw/Mn)、ガラス転移温度(Tg)、結合芳香族ビニル化合物の含有量、及びビニル結合含有量を測定した。測定結果を第1表に示す。
(Example 5: Synthesis of copolymer 5)
In Example 1, the amount of styrene supplied to the pressure-resistant stainless steel reactor was 91 g to 136 g, the amount of cyclohexane was 30 g to 730 g, the amount of cyclohexane used in the catalyst solution was 73 mL to 40 mL, and a cyclohexane solution containing 1,3-butadiene was used. Was added in the same manner as in Example 1 except that the dropping rate was 0.7 to 1.3 mL/min, the synthesis temperature was 90° C., and the synthesis time was 505 minutes. , 3-Butadiene was synthesized to prepare a copolymer 5. Regarding the obtained copolymer 5, the number average molecular weight (Mn), the weight average molecular weight (Mw), the molecular weight distribution (Mw/Mn), the glass transition temperature (Tg), and the content of the bound aromatic vinyl compound are obtained by the above method. The amount and vinyl bond content were measured. The measurement results are shown in Table 1.
(実施例6:共重合体6の合成)
 実施例1において、耐圧ステンレス反応器に供給するスチレンを91gから136gとし、シクロヘキサンの量を30gから564gとし、水素化ジイソブチルアルミニウムをトリイソブチルアルミニウム2.2mmolとし、触媒溶液に用いるシクロヘキサンの量を73mLから90mLとし、1,3-ブタジエンを含むシクロヘキサン溶液の滴下速度を0.4~1.0mL/分とし、合成温度を90℃、合成時間を666分とした以外は実施例1と同様にして、芳香族ビニル化合物のスチレンと共役ジエン化合物の1,3-ブタジエンとの合成を行い、共重合体6を合成した。得られた共重合体6について、上記の方法により、数平均分子量(Mn)、重量平均分子量(Mw)、分子量分布(Mw/Mn)、ガラス転移温度(Tg)、結合芳香族ビニル化合物の含有量、及びビニル結合含有量を測定した。測定結果を第1表に示す。
(Example 6: Synthesis of copolymer 6)
In Example 1, the amount of styrene supplied to the pressure-resistant stainless steel reactor was 91 g to 136 g, the amount of cyclohexane was 30 g to 564 g, diisobutylaluminum hydride was triisobutylaluminum 2.2 mmol, and the amount of cyclohexane used in the catalyst solution was 73 mL. To 90 mL, the dropping rate of the cyclohexane solution containing 1,3-butadiene was 0.4 to 1.0 mL/min, the synthesis temperature was 90° C., and the synthesis time was 666 minutes. Copolymer 6 was synthesized by synthesizing styrene which is an aromatic vinyl compound and 1,3-butadiene which is a conjugated diene compound. Regarding the obtained copolymer 6, the number average molecular weight (Mn), the weight average molecular weight (Mw), the molecular weight distribution (Mw/Mn), the glass transition temperature (Tg), and the content of the bound aromatic vinyl compound are obtained by the above method. The amount and vinyl bond content were measured. The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 第1表に示される、共重合体は、以下の通りである。
*共重合体1~6:各々上記実施例1~6で得られた共重合体である。
*#1500:乳化重合SBR#1500(JSR社製)
*#0202:SBR#0202(JSR社製)
The copolymers shown in Table 1 are as follows.
*Copolymers 1 to 6: The copolymers obtained in Examples 1 to 6 above.
*#1500: Emulsion polymerization SBR#1500 (manufactured by JSR)
*#0202: SBR#0202 (made by JSR)
 第1表より、実施例1~6の共重合体1~6は、関係式y≦0.94x-104を満たすものであり、従来品の比較例1及び2の共重合体の結合芳香族ビニル化合物の含有量、ビニル結合含有量と同等でありながら、ガラス転移温度(Tg)はいずれも-60℃以下と低いものであることが確認された。一方、比較例1及び2の共重合体は、上記関係式を満足するものではなく、ガラス転移温度(Tg)はいずれも-60℃以上と高いものであった。
 以上の結果から、本実施形態の共重合体は、従来品と結合芳香族ビニル化合物の含有量、ビニル結合含有量と同等程度であり、かつガラス転移温度(Tg)がより低いものであることから、例えば該共重合体をゴム組成物としてタイヤに用いた場合、耐久性等の従来品の性能とともに、優れた氷上性能、ウェットブレーキ性能をも有するタイヤが得られる、といえる。
From Table 1, the copolymers 1 to 6 of Examples 1 to 6 satisfy the relational expression y≦0.94x−104, and the aromatic compounds of the copolymers of Comparative Examples 1 and 2 of the conventional products are bonded. It was confirmed that the glass transition temperature (Tg) was as low as −60° C. or lower while being equal to the vinyl compound content and the vinyl bond content. On the other hand, the copolymers of Comparative Examples 1 and 2 did not satisfy the above relational expression, and the glass transition temperature (Tg) was as high as −60° C. or higher.
From the above results, the copolymer of the present embodiment has the content of the bound aromatic vinyl compound and the content of the vinyl bond which are comparable to those of the conventional product, and has a lower glass transition temperature (Tg). From the above, it can be said that, for example, when the copolymer is used as a rubber composition in a tire, a tire having excellent on-ice performance and wet brake performance as well as durability of conventional products can be obtained.
 本発明によれば、結合芳香族ビニル化合物の含有量及びビニル結合含有量を従来品と同程度に維持したまま、ガラス転移温度(Tg)が低い、すなわち従来品の性能を維持しながら、より低いガラス転移温度(Tg)をも有する共重合体、該共重合体を含むゴム組成物及び樹脂組成物、該ゴム組成物を用いたタイヤ、並びに該樹脂組成物を用いた樹脂製品を提供することができる。本実施形態のゴム組成物は、本実施形態の共重合体を含むことで、耐久性等の従来品の性能を維持しながら、より低いガラス転移温度(Tg)をも有することから、タイヤの他、コンベヤベルト、ゴムクローラ、ホース、また防振装置、免震装置に用いられる防振ゴム、免震ゴム等のゴム製品にも好適に用いられる。 According to the present invention, the glass transition temperature (Tg) is low while maintaining the content of the bound aromatic vinyl compound and the vinyl bond content at the same level as the conventional product, that is, while maintaining the performance of the conventional product, Provided are a copolymer having a low glass transition temperature (Tg), a rubber composition and a resin composition containing the copolymer, a tire using the rubber composition, and a resin product using the resin composition. be able to. Since the rubber composition of the present embodiment contains the copolymer of the present embodiment, while maintaining the performance of conventional products such as durability, it also has a lower glass transition temperature (Tg). In addition, it is preferably used for conveyor belts, rubber crawlers, hoses, and rubber products such as anti-vibration rubber and anti-vibration rubber used in anti-vibration devices and anti-vibration devices.

Claims (15)

  1.  下記の関係式を満たす芳香族ビニル化合物と共役ジエン化合物との共重合体。
       (関係式)y≦0.94x-104
    (上記関係式において、x=Av+0.5Viであり、Avは共重合体中の結合芳香族ビニル化合物の含有量(質量%)、Viはビニル結合含有量(質量%)であり、yはガラス転移温度(℃)である。)
    A copolymer of an aromatic vinyl compound and a conjugated diene compound satisfying the following relational expression.
    (Relational expression) y≦0.94x−104
    (In the above relation, x=Av+0.5Vi, Av is the content (% by mass) of the bound aromatic vinyl compound in the copolymer, Vi is the content (% by mass) of the vinyl bond, and y is the glass. Transition temperature (°C).)
  2.  芳香族ビニル化合物の単位の、全結合芳香族ビニル化合物に対する芳香族ビニル単位が8個以上連なった芳香族ビニル化合物長連鎖の割合が10質量%未満である請求項1に記載の共重合体。 The copolymer according to claim 1, wherein the ratio of the long chain of the aromatic vinyl compound in which 8 or more aromatic vinyl units are connected to all the bonded aromatic vinyl compounds in the unit of the aromatic vinyl compound is less than 10% by mass.
  3.  共役ジエン化合物の単位中のシス-1,4-結合含有量が75%以上99%以下である請求項1又は2に記載の共重合体。 The copolymer according to claim 1 or 2, wherein the content of cis-1,4-bond in the unit of the conjugated diene compound is 75% or more and 99% or less.
  4.  前記関係式において、xが5以上40以下である請求項1~3のいずれか1項に記載の共重合体。 The copolymer according to any one of claims 1 to 3, wherein x is 5 or more and 40 or less in the relational expression.
  5.  前記関係式において、yが-105℃以上-75℃以下である請求項1~4のいずれか1項に記載の共重合体。 The copolymer according to any one of claims 1 to 4, wherein y is -105°C or higher and -75°C or lower in the above relational expression.
  6.  芳香族ビニル化合物が、スチレンである請求項1~5のいずれか1項に記載の共重合体。 The copolymer according to any one of claims 1 to 5, wherein the aromatic vinyl compound is styrene.
  7.  共役ジエン化合物が、ブタジエン及びイソプレンから選ばれる少なくとも一種である請求項1~6のいずれか1項に記載の共重合体。 The copolymer according to any one of claims 1 to 6, wherein the conjugated diene compound is at least one selected from butadiene and isoprene.
  8.  下記の触媒A及び触媒Bを配合してなる触媒組成物を用いて、芳香族ビニル化合物と、共役ジエン化合物とにより、下記の関係式を満たす共重合体を合成する、共重合体の製造方法。
    (触媒A)下記の一般式(a-1)で表される希土類元素化合物である。
       M-(AQ)(AQ)(AQ)   (a-1)
    (一般式(a-1)において、Mはスカンジウム、イットリウム又はランタノイド元素であり、AQ、AQ及びAQは同一であっても異なっていてもよい官能基であり、Aは、窒素、酸素又は硫黄であり、少なくとも1つのM-A結合を有する官能基である。)
    (触媒B)置換又は無置換のシクロペンタジエン、置換又は無置換のインデン、及び置換又は無置換のフルオレンから選ばれるシクロペンタジエン骨格含有化合物である。
    (関係式)y≦0.94x-104
    (上記関係式において、x=Av+0.5Viであり、Avは芳香族ビニル化合物の含有量(質量%)、Viはビニル結合含有量(質量%)であり、yはガラス転移温度(℃)である。)
    A method for producing a copolymer, which comprises synthesizing a copolymer satisfying the following relational expression with an aromatic vinyl compound and a conjugated diene compound using a catalyst composition obtained by mixing the following catalyst A and catalyst B: ..
    (Catalyst A) A rare earth element compound represented by the following general formula (a-1).
    M-(AQ 1 )(AQ 2 )(AQ 3 ) (a-1)
    (In the general formula (a-1), M is scandium, yttrium or a lanthanoid element, AQ 1 , AQ 2 and AQ 3 are functional groups which may be the same or different, A is nitrogen, It is oxygen or sulfur and is a functional group having at least one MA bond.)
    (Catalyst B) A cyclopentadiene skeleton-containing compound selected from a substituted or unsubstituted cyclopentadiene, a substituted or unsubstituted indene, and a substituted or unsubstituted fluorene.
    (Relational expression) y≦0.94x−104
    (In the above relation, x=Av+0.5Vi, Av is the content (% by mass) of the aromatic vinyl compound, Vi is the content (% by mass) of the vinyl bond, and y is the glass transition temperature (° C.). is there.)
  9.  前記触媒組成物が、さらに下記の触媒Cを配合したものである請求項8に記載の共重合体の製造方法。
    (触媒C)イオン性化合物
    The method for producing a copolymer according to claim 8, wherein the catalyst composition further contains the following catalyst C.
    (Catalyst C) Ionic compound
  10.  前記触媒組成物が、さらに下記の触媒Dを配合したものである請求項8又は9に記載の共重合体の製造方法。
    (触媒D)下記の一般式(d-1)で表される有機金属化合物である。
       YR    (d-1)
    (一般式(d-1)において、Yは周期律表の第1族、第2族、第12族及び第13族の元素から選ばれる金属元素であり、R及びRは炭素数1~10の炭化水素基又は水素原子であり、Rは炭素数1~10の炭化水素基であり、R、R及びRはそれぞれ互いに同一であっても異なっていてもよく、Yが周期律表の第1族の金属元素である場合には、aは1でかつb及びcは0であり、Yが周期律表の第2族又は第12族の金属元素である場合には、a及びbは1でかつcは0であり、Yが周期律表の第13族の金属元素である場合には、a,b及びcは1である。)
    The method for producing a copolymer according to claim 8 or 9, wherein the catalyst composition further contains the following catalyst D.
    (Catalyst D) An organometallic compound represented by the following general formula (d-1).
    YR 1 a R 2 b R 3 c (d-1)
    (In the general formula (d-1), Y is a metal element selected from the elements of Group 1, Group 2, Group 12 and Group 13 of the periodic table, and R 1 and R 2 have 1 carbon atoms. To R 10 are hydrocarbon groups or hydrogen atoms, R 3 is a hydrocarbon group having 1 to 10 carbon atoms, R 1 , R 2 and R 3 may be the same or different from each other, and Y Is a metal element of Group 1 of the periodic table, a is 1 and b and c are 0, and Y is a metal element of Group 2 or 12 of the periodic table. Is a and b are 1 and c is 0, and a, b and c are 1 when Y is a metal element of Group 13 of the periodic table.)
  11.  前記触媒組成物が、さらに下記の触媒Eを配合したものである請求項8~10のいずれか1項に記載の共重合体の製造方法。
    (触媒E)ハロゲン化合物
    The method for producing a copolymer according to any one of claims 8 to 10, wherein the catalyst composition further contains the following catalyst E.
    (Catalyst E) halogen compound
  12.  請求項1~7のいずれか1項に記載の共重合体を含むゴム組成物。 A rubber composition containing the copolymer according to any one of claims 1 to 7.
  13.  請求項12に記載のゴム組成物を用いたタイヤ。 A tire using the rubber composition according to claim 12.
  14.  請求項1~7のいずれか1項に記載の共重合体を含む樹脂組成物。 A resin composition containing the copolymer according to any one of claims 1 to 7.
  15.  請求項14に記載の樹脂組成物を用いた樹脂製品。 A resin product using the resin composition according to claim 14.
PCT/JP2019/045163 2018-12-12 2019-11-19 Copolymer, method for producing copolymer, rubber composition, tire, resin composition, and resinous product WO2020121745A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020559881A JPWO2020121745A1 (en) 2018-12-12 2019-11-19 Copolymers, methods for producing copolymers, rubber compositions, tires, resin compositions and resin products

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-232734 2018-12-12
JP2018232734 2018-12-12

Publications (1)

Publication Number Publication Date
WO2020121745A1 true WO2020121745A1 (en) 2020-06-18

Family

ID=71076901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045163 WO2020121745A1 (en) 2018-12-12 2019-11-19 Copolymer, method for producing copolymer, rubber composition, tire, resin composition, and resinous product

Country Status (2)

Country Link
JP (1) JPWO2020121745A1 (en)
WO (1) WO2020121745A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009148140A1 (en) * 2008-06-04 2009-12-10 株式会社ブリヂストン Aromatic vinyl compound-conjugated diene compound copolymer, method for producing the same, rubber composition and tire
JP2016047889A (en) * 2014-08-27 2016-04-07 横浜ゴム株式会社 Rubber composition for tire and pneumatic tire
WO2016060262A1 (en) * 2014-10-17 2016-04-21 日本ゼオン株式会社 Rubber composition for tire
JP2017088864A (en) * 2015-11-04 2017-05-25 住友ゴム工業株式会社 Vulcanized rubber composition and tire using the same
WO2017104423A1 (en) * 2015-12-15 2017-06-22 株式会社ブリヂストン Rubber composition and tire
JP2018532743A (en) * 2015-10-21 2018-11-08 トリンゼオ ヨーロッパ ゲゼルシャフト ミット ベシュレンクテル ハフツング Aminosilane-functionalized dienes used for functionalization of elastomeric polymers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009148140A1 (en) * 2008-06-04 2009-12-10 株式会社ブリヂストン Aromatic vinyl compound-conjugated diene compound copolymer, method for producing the same, rubber composition and tire
JP2016047889A (en) * 2014-08-27 2016-04-07 横浜ゴム株式会社 Rubber composition for tire and pneumatic tire
WO2016060262A1 (en) * 2014-10-17 2016-04-21 日本ゼオン株式会社 Rubber composition for tire
JP2018532743A (en) * 2015-10-21 2018-11-08 トリンゼオ ヨーロッパ ゲゼルシャフト ミット ベシュレンクテル ハフツング Aminosilane-functionalized dienes used for functionalization of elastomeric polymers
JP2017088864A (en) * 2015-11-04 2017-05-25 住友ゴム工業株式会社 Vulcanized rubber composition and tire using the same
WO2017104423A1 (en) * 2015-12-15 2017-06-22 株式会社ブリヂストン Rubber composition and tire

Also Published As

Publication number Publication date
JPWO2020121745A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
EP3184554B1 (en) Method for manufacturing conjugated diene polymer with modified end, conjugated diene polymer with modified end, rubber composition, and tire
WO2019171679A1 (en) Copolymer, method for producing copolymer, rubber composition and tire
JP6713759B2 (en) Method for producing multi-component copolymer and multi-component copolymer
JP5899011B2 (en) POLYMER, RUBBER COMPOSITION CONTAINING THE POLYMER, AND TIRE HAVING THE RUBBER COMPOSITION
JP6055827B2 (en) Polybutadiene production method, polybutadiene, rubber composition and tire
KR101781699B1 (en) Catalytic composition for the polymerization of conjugated diene
JP5941302B2 (en) Rubber composition and tire having the rubber composition
KR101796360B1 (en) Method of preparing conjugated diene polymer
WO2013132848A1 (en) Polymer and method for producing same, rubber composition containing polymer, and tire having rubber composition
CN108290972B (en) Polymerization catalyst composition and method for producing conjugated diene polymer
EP3680265B1 (en) Method for producing copolymer, copolymer, rubber composition, and tire
WO2020235285A1 (en) Multi-component copolymer, rubber composition, resin composition, tire, and resin product
WO2020121745A1 (en) Copolymer, method for producing copolymer, rubber composition, tire, resin composition, and resinous product
JP7041585B2 (en) Method for producing polymerization catalyst and copolymer
JP2016113496A (en) Rubber composition and tire using the rubber composition
WO2022123993A1 (en) Copolymer, rubber composition, and resin composition
JP7009307B2 (en) Method for producing polymerization catalyst and copolymer
JP7244432B2 (en) Copolymer, method for producing copolymer, rubber composition and tire
JP2022090555A (en) Copolymer, rubber composition, and resin composition
JP2013154618A (en) Vulcanizing bladder for rubber product
JP2021175771A (en) Method for producing graft polymer, graft polymer, rubber composition, and tire
JP2021175772A (en) Graft polymer, method for producing graft polymer, rubber composition, and tire
JP5656686B2 (en) Rubber composition, crosslinked rubber composition, and tire
JP2013159637A (en) Rubber composition and tire
JP2016003272A (en) Rubber component, rubber composition blended with rubber component and tire using the rubber composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19894576

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559881

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19894576

Country of ref document: EP

Kind code of ref document: A1