WO2020121657A1 - Work roll for rolling, rolling machine equipped with same, and rolling method - Google Patents

Work roll for rolling, rolling machine equipped with same, and rolling method Download PDF

Info

Publication number
WO2020121657A1
WO2020121657A1 PCT/JP2019/041848 JP2019041848W WO2020121657A1 WO 2020121657 A1 WO2020121657 A1 WO 2020121657A1 JP 2019041848 W JP2019041848 W JP 2019041848W WO 2020121657 A1 WO2020121657 A1 WO 2020121657A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
work roll
roll
plating
surface roughness
Prior art date
Application number
PCT/JP2019/041848
Other languages
French (fr)
Japanese (ja)
Inventor
植野 雅康
拓郎 矢▲崎▼
木島 秀夫
三宅 勝
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP19895432.3A priority Critical patent/EP3895818B1/en
Priority to CN201980082402.1A priority patent/CN113195123B/en
Priority to MX2021007044A priority patent/MX2021007044A/en
Priority to JP2019571566A priority patent/JP6680426B1/en
Publication of WO2020121657A1 publication Critical patent/WO2020121657A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • B21B27/03Sleeved rolls
    • B21B27/032Rolls for sheets or strips
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/625Discontinuous layers, e.g. microcracked layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/228Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length skin pass rolling or temper rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2265/00Forming parameters
    • B21B2265/18Elongation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2267/00Roll parameters
    • B21B2267/10Roughness of roll surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2267/00Roll parameters
    • B21B2267/28Elastic moduli of rolls
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium

Definitions

  • the present invention relates to a work roll for rolling for rolling a high-strength steel strip, a rolling mill provided with the work roll, and a rolling method.
  • a temper rolling mill that applies a light reduction of, for example, a reduction rate of 1% or less to a steel strip.
  • the steel strip is uniformly stretched by a temper rolling mill and its shape is corrected to obtain a predetermined flatness.
  • temper rolling improves mechanical properties such as elongation at yield, tensile strength and elongation, and properties of steel strip such as surface roughness.
  • high-strength steel sheet having a tensile strength of 980 MPa or more, a very high rolling load is required to secure the elongation required for shape correction.
  • Patent Document 1 discloses a method of performing temper rolling with the surface average roughness Ra of a work roll used in temper rolling being in the range of 3.0 to 10.0 ⁇ m.
  • Patent Document 2 discloses a method of using, as a roll material, a cemented carbide composed of tungsten carbide (WC) and cobalt (Co) having a Young's modulus of 500 GPa or more in the surface layer portion.
  • Patent Document 3 discloses a method of temper rolling with a roll having a roll surface Young's modulus of 450 GPa or more and a surface roughness Ra of 1 ⁇ m or more and 10 ⁇ m or less.
  • the surface of the work roll for rolling described in Patent Documents 1 to 3 described above has a predetermined arithmetic average roughness due to the dull processing.
  • a shot blasting method, an electric discharge dull machining method, or the like as described in Patent Document 1.
  • problems such as a decrease in surface roughness due to wear or progress of cracks may occur.
  • repair or replacement work is required, and there is a problem that stable operation of rolling work is difficult.
  • the present invention has the following configurations in order to solve these problems.
  • a work roll for rolling characterized in that [2] The work roll for rolling according to [1], wherein the uneven layer is formed by depositing granular chromium by chromium plating.
  • a temper rolling mill comprising one or more stands equipped with the work roll according to [1] or [2].
  • a temper rolling method comprising performing temper rolling with an elongation percentage of 0.2% or more by using one or more temper rolling machines equipped with the work roll for rolling according to [3].
  • the work roll for rolling As described above, according to the work roll for rolling, the rolling mill provided with the work roll, and the rolling method, the work roll for rolling having the arithmetic average roughness in the range of 2.0 to 10.0 ⁇ m is formed on the outer peripheral surface of the body.
  • the work roll for rolling having the arithmetic average roughness in the range of 2.0 to 10.0 ⁇ m is formed on the outer peripheral surface of the body.
  • a concavo-convex layer made of granular chrome it is possible to suppress the occurrence of work roll defects such as a decrease in surface roughness due to wear or the development of cracks even if the rolling distance advances, and a stable operation of rolling work is performed. It can be performed.
  • FIG. 1 is a schematic diagram showing a preferred embodiment of a rolling mill 10 using the work roll for rolling of the present invention.
  • the rolling mill 10 of FIG. 1 performs temper rolling of a wide steel strip having a tensile strength of 980 MPa or more, for example.
  • the temper rolling mill 10 has a pair of rolling work rolls 2 and a backup roll 3 that supports each rolling work roll 2.
  • the pay-off reel 5 is arranged in the front stage of the temper rolling mill 10, and the tension reel 6 is arranged in the rear stage of the temper rolling mill 10.
  • a bridle roll may be arranged before or after the temper rolling mill 10.
  • the work roll 2 for rolling has a structure in which a body 2x made of cemented carbide is fixed to a shaft material, for example.
  • the body portion 2x is made of a cemented carbide having a Young's modulus of 450 GPa or more, for example, tungsten carbide (WC) is 86% by mass% and the balance is a cemented carbide.
  • WC tungsten carbide
  • the rolling work roll 2 is deformed into a flat shape and the rolling work roll 2 and the steel strip 1 come into contact with each other in the roll bite. It is possible to prevent the arc length from increasing and prevent an excessive rolling load from being applied to the work roll 2 for rolling.
  • An uneven layer 2y made of granular Cr is formed on a portion of the body 2x corresponding to the roll barrel surface.
  • the concavo-convex layer 2y is formed with concavities and convexities including a surface morphology formed by depositing granular chromium by chrome plating, and has an arithmetic average roughness (hereinafter referred to as "surface roughness") Ra of 2. It is formed in the range of 0 to 10.0 ⁇ m.
  • the uneven layer 2y may be formed on at least the roll barrel surface of the body 2x, and may be formed on the entire outer peripheral surface of the body 2x.
  • the surface roughness Ra of the work roll 2 for rolling is preferably 3.0 ⁇ m or more.
  • the surface roughness Ra of the work roll 2 for rolling is preferably 3.0 ⁇ m or more.
  • the surface roughness Ra of the uneven layer 2y is more than 4.0 ⁇ m.
  • the surface roughness Ra of the uneven layer 2y is larger than 10.0 ⁇ m, it is industrially very difficult to stably perform the work for increasing the surface roughness on the work roll 2 for rolling. It is also undesirable from the viewpoint of roll life. Therefore, the surface roughness Ra of the work roll is preferably 10.0 ⁇ m or less.
  • the concavo-convex layer 2y is formed of granular Cr having chromium deposited by chromium plating.
  • First, in order to improve the adhesion between the surface of the body 2x and the chrome plating as a pretreatment for the chrome plating, after the surface of the body 2x is polished to have a surface roughness Ra 0.2 ⁇ m, for example. Further, the surface roughness Ra is 0.8 ⁇ m by sandblasting or the like. After that, the surface of the body 2x is cleaned and chromium plated.
  • the plating bath temperature is lowered to 50° C. or lower, and the chromium plating is performed under the condition of high current density of 60 A/dm 2 or higher.
  • the grain size of Cr crystal grains deposited on the surface of the body portion 2x can be increased. That is, in the hard chrome plating used industrially, the form and hardness of deposited Cr vary depending on the electroplating conditions (plating bath temperature, current density, plating time).
  • widely used bright plating is processed under conditions of a plating bath temperature of 50 to 60° C. and a current density of 40 to 60 A/dm 2 in order to smooth the surface.
  • the plating bath temperature is lowered to 50° C. or lower and the high current density condition of 60 A/dm 2 or higher is set. In this way, the deposited chromium is made to be granular.
  • FIG. 2 is an enlarged surface photograph showing an example of the uneven layer of the work roll for rolling in the temper rolling mill of FIG. 1.
  • Chromium plating conditions for the concavo-convex layer 2y in FIG. 2 are as follows: a plating solution containing chromic acid (CrO 3 ) and sulfuric acid (H 2 SO 4 ) is used, a plating bath temperature is 37° C., a current density is 120 A/dm 2 , and plating is performed. The time was set to 150 min. Then, by depositing Cr, a granular uneven layer 2y was formed on the surface of the body 2x. When the surface roughness Ra at this time was measured by a contact type roughness meter, the surface roughness Ra was 3.9 ⁇ m. Further, no cracks or the like were generated on the uneven layer 2y.
  • the surface roughness Ra of the uneven layer 2y is controlled by the plating time.
  • FIG. 3 shows changes in the surface roughness Ra after plating when only the plating time is changed under the plating conditions of FIG.
  • the surface roughness Ra increases as the plating time increases, and can be controlled to a desired surface roughness Ra by changing the plating conditions.
  • the average grain size of Cr deposited by chrome plating on the roll surface is 50 ⁇ m or more. This is for effectively exerting the extension effect due to the depression and depression on the surface of the steel sheet.
  • the average grain size of Cr By increasing the average grain size of Cr, the interval between the adjacent irregularities can be increased, and the interference between the adjacent irregularities when piercing the surface of the steel sheet and causing plastic deformation can be reduced.
  • the four types of work rolls shown in Table 1 were used as work rolls, the roll reduction position was changed, and the relationship between the elongation measured from the change in strip length before and after rolling and the rolling load during rolling was investigated.
  • Conventional Example 2 (No. 3) uses tungsten carbide (WC) as a material of the body portion 2x in an amount of 86% by mass% and the balance is made of a cemented carbide and has a Young's modulus of 503 GPa. ..
  • Example 1 No. 4
  • Example 2 No. 3
  • Example 2 No. 3
  • Example 3 the same cemented carbide as in Conventional Example 2 (No. 3) was used as the material of the body 2x, and the surface of the body 2x was dulled by chrome plating to obtain a surface roughness.
  • FIG. 4 is a graph showing the relationship between elongation rate and width load in Conventional Examples 1 and 2, Comparative Example 1 and Example 1. As shown in FIG. 4, comparing the width loads of Comparative Example 1 (No. 1) in which the roll material is 2% Cr steel and Conventional Example 1 (No. 2), the width load for the same elongation is surface roughness. It is understood that the larger conventional example 1 (No. 2) has a smaller size, and the stretching effect by pushing the convex portion of the surface of the work roll for rolling into the steel plate surface is obtained.
  • Example 2 (No. 3) in which the material of the body 2x is cemented carbide, the width load for the same elongation is smaller than that in Conventional Example 1 (No. 2), and the Young's modulus of the roll is It can be seen that the effect of suppressing the flat deformation due to the increase is obtained.
  • Example 1 No. 4
  • the load was smaller than that of Conventional Example 2 (No. 3) due to both the effect of stretching due to the indentation of the convex portion on the surface of the work roll for rolling and the effect of suppressing the flat deformation of the roll. Therefore, it can be seen that the effect of reducing the rolling load is high.
  • the elongation in temper rolling is usually in the range of 0.2 to 1.0%, and in this range, the flatness of the steel strip becomes better as the elongation increases.
  • the elongation percentage refers to the rate of change in the length of the steel strip in the longitudinal direction before and after rolling. When the elongation is 0.2% or more, even the high-strength cold-rolled steel strip can be sufficiently shaped, and the flatness of the front surface and the back surface of the steel strip can be substantially improved. Further, in order to make the rolling load applied to the work rolls and the temper rolling mill 10 equal to or lower than the withstand load of the temper rolling mill, the elongation rate applied to the steel strip is preferably 0.5% or less.
  • Comparative Example 2 uses a cemented carbide (Young's modulus 503 GPa) containing 86% by weight of tungsten carbide (WC) and the balance of cobalt as the material of the body 2x, and the surface is directly subjected to electric discharge dull machining.
  • the surface roughness Ra was finished to 3.0 ⁇ m.
  • FIG. 5 shows an enlarged photograph of the surface of the concavo-convex layer when dull machining is performed by direct electric discharge machining on the body 2x of cemented carbide as in Comparative Example 2.
  • a crack CK is formed on the surface by an impact during electric discharge machining. It is known that a crack CK occurs when a material such as a cemented carbide, which is mainly composed of brittle ceramics, is subjected to electric discharge machining.
  • Example 2 uses a cemented carbide (Young's modulus 503 GPa) containing tungsten carbide (WC) at 86% by mass and balance cobalt as the material of the body 2x, and the surface is plated with chromium.
  • Comparative Example 4 uses a cemented carbide (elastic modulus 450 GPa) containing 80% by mass of tungsten carbide (WC) and the balance of cobalt as the material of the body 2x, and discharges without chrome plating. The surface roughness Ra was finished to 4.5 ⁇ m by dull processing.
  • Example 3 as the material for the body portion 2x, a cemented carbide (containing elastic modulus 450 GPa) containing 80% by mass of tungsten carbide (WC) and the balance of cobalt was used, and the surface was roughened by chrome plating. Layer 2y was applied and the surface roughness was finished to 4.5 ⁇ m. The average grain size of the Cr deposited at this time was 60 ⁇ m.
  • Example 4 is a roll in which granular chromium was deposited on the surface of the roll by the same method as in Example 3 described above, and then the plating conditions were changed and hard chrome plating with a plating thickness of 1 ⁇ m was applied again.
  • the reason why the hard chrome plating is performed again by changing the plating conditions is as follows. When granular Cr is deposited on the surface to form irregularities under the plating conditions of low plating bath temperature (50° C. or less) and large current density (60 A/dm 2 ), the Vickers hardness of chromium plating is about 700 to 900. Become. On the other hand, when ordinary hard chrome plating is performed under conditions of a plating bath temperature of 50 to 60° C.
  • the hard chrome plating has a Vickers hardness of about 900 to 1100.
  • very hard plating was performed on the outermost surface of the work roll for rolling. This is because a film is formed and wear resistance can be further improved.
  • the thickness of the hard chrome plating again is set to 1 ⁇ m, because when the plating is performed with a thickness greater than that, the unevenness of the grain formed in the initial stage becomes small and the elongation in temper rolling This is because the effect is reduced. That is, by depositing granular chrome in the initial plating and then again performing hard chrome plating of the thin film, the hardness of the plating film surface can be increased without changing the roughness pattern formed by the granular chrome. .. For this reason, it is desirable that the thickness of the hard chrome plating again be applied within the range of 0.5 to 10 ⁇ m.
  • FIG. 6 is a graph showing changes in roll surface roughness with respect to the rolling length of the work rolls when a rolling experiment was performed using the work rolls for rolling in Table 3.
  • Comparative Example 3 in which the 2% Cr steel roll was subjected to the electric discharge dull processing, it was found that the roughness was significantly reduced as the rolling length was increased.
  • Comparative Example 4 in which the cemented carbide is made to have a high roughness by direct electric discharge dull machining, since the hardness of the cemented carbide is extremely high, the maintainability of the roll roughness with respect to the rolling length is the best.
  • cracks were generated on the roll surface, and further rolling became difficult. This is because, as described above, cracks are formed when direct electric discharge machining is performed on the cemented carbide, and the cracks propagate due to the stress applied during rolling, which makes it difficult to use in actual rolling.
  • Example 3 although the roughness decreases due to the initial wear, it can be seen that the roughness retention against the rolling length thereafter is significantly superior to Comparative Example 3. In particular, it can be seen that Example 4 in which a thin film of hard chrome plating is applied to the surface exhibits excellent roughness retention.
  • the rolling is performed by forming the concavo-convex layer 2y formed on the outer peripheral surface of the body 2x and having a surface roughness Ra in the range of 2.0 to 10.0 ⁇ m and made of granular chrome. Even if the distance advances, it is possible to reduce deterioration of the work roll such as a decrease in surface roughness Ra due to wear or the occurrence of cracks, and to perform stable temper rolling. In particular, the rolling load can be reduced only by changing the material and the surface processing method of the work roll 2 for rolling used in the temper rolling mill 10, and it is not necessary to change the equipment itself such as the roll diameter. , Its industrial value is great.
  • steel sheets produced by continuous annealing accompanied by quenching and tempering treatments have the shape (flatness) of the steel strip due to the thermal stress during the quenching treatment and the transformation stress generated along with the transformation of the metal structure. Is easy to get worse. Such a defective shape of the steel strip cannot be eliminated even by flattening the shape of the steel strip by cold rolling before annealing. Therefore, it is necessary to correct the shape of the annealed steel strip by temper rolling.
  • high-strength steel sheets with a tensile strength of 980 MPa or more are used as materials for automobile parts, and are formed into parts by pressing.
  • dull finish uneven finish
  • the dull finish of the surface of the steel strip 1 is usually controlled by dulling the surface of the work roll 2 for rolling of the temper rolling mill 10 and transferring the unevenness to the steel plate.
  • the elongation during temper rolling is controlled by the tension applied to the steel strip and the work roll reduction position.
  • a higher tension and a higher rolling load than in the past are required.
  • the deformation resistance of the steel strip itself is extremely high, and a larger rolling load is required.
  • the body 2x is made of a cemented carbide having a Young's modulus of 450 GPa or more. This makes it possible to obtain a desired linear load without increasing the roll diameter even when rolling a high-strength steel sheet having a tensile strength of 980 MPa or more.
  • the concavo-convex layer 2y is formed of granular chrome formed by chrome plating. As a result, it is possible to form the uneven layer 2y having no cracks, and it is possible to obtain Vickers hardness in which the surface is not easily worn even when repeatedly rolled. Further, when the uneven layer 2y is formed of granular chrome, since the projections of the granular chrome have a spherical shape, local stress concentration during rolling is reduced, and wear resistance is higher than that in the case of ordinary chrome plating coating. improves. As a result, it is possible to reduce the frequency of work roll repairs and replacements, and to perform stable rolling process operations.
  • the embodiment of the present invention is not limited to the above embodiment, and various modifications can be added.
  • the present technology illustrates the case where it is applied to an independent temper rolling mill shown in FIG. 4, it is installed inline in a continuous process line such as a continuous annealing line (CAL) or a continuous hot dip galvanizing line (CGL). It can also be applied to rolling mills.
  • CAL continuous annealing line
  • CGL continuous hot dip galvanizing line

Abstract

[Problem] To provide a work roll for rolling that is capable, when temper rolling a high strength steel strip, of effectively performing rolling while stabilizing the product quality even when the rolling distance advances, and a temper rolling method using the same. [Solution] The work roll for rolling 2 has: a drum part 2x comprising a superhard alloy with a Young's modulus of 450 GPa or greater; and an uneven layer 2y formed over the drum part 2x, having an arithmetic mean roughness Ra ranging from 2.0 to 10.0 μm, and comprising granular chrome.

Description

圧延用ワークロールおよびこれを備えた圧延機ならびに圧延方法Work roll for rolling, rolling machine provided with the same, and rolling method
 本発明は、高強度の鋼帯の圧延を行う圧延用ワークロールおよびこれを備えた圧延機ならびに圧延方法に関する。 The present invention relates to a work roll for rolling for rolling a high-strength steel strip, a rolling mill provided with the work roll, and a rolling method.
 従来から、鋼帯に例えば圧下率1%以下の軽圧下を施す調質圧延機が知られている。鋼帯は調質圧延機により一様に伸ばされ、形状が矯正されて所定の平坦度を得る。さらに、調質圧延によって、降伏点伸び、引張り強さ、伸び等の機械的性質および表面粗度などの鋼帯の性状が改善される。近年、鋼帯の高付加価値化に伴って、高張力鋼に代表される硬質な鋼帯の需要が増加している。特に、引張り強度が980MPa以上の高張力鋼板の場合、形状矯正に必要な伸び率を確保するときには、非常に高い圧延荷重が必要となる。 Conventionally, a temper rolling mill is known that applies a light reduction of, for example, a reduction rate of 1% or less to a steel strip. The steel strip is uniformly stretched by a temper rolling mill and its shape is corrected to obtain a predetermined flatness. Further, temper rolling improves mechanical properties such as elongation at yield, tensile strength and elongation, and properties of steel strip such as surface roughness. In recent years, with the increase in the added value of steel strips, the demand for hard steel strips represented by high-strength steel has increased. In particular, in the case of a high-strength steel sheet having a tensile strength of 980 MPa or more, a very high rolling load is required to secure the elongation required for shape correction.
 そこで、従来から種々の高張力鋼板の調質圧延方法が提案されている(例えば特許文献1~3参照)。特許文献1には、調質圧延で用いるワークロールの表面平均粗さRaを3.0~10.0μmの範囲として調質圧延を行う方法が開示されている。特許文献2には、ロール材料として表層部のヤング率が500GPa以上であるタングステンカーバイド(WC)とコバルト(Co)から成る超硬合金を用いる方法が開示されている。特許文献3には、ロール表層ヤング率が450GPa以上でその表面粗度がRaで1μm以上10μm以下のロールで調質圧延をする方法が開示されている。 Therefore, various temper rolling methods for high-strength steel sheets have been conventionally proposed (see, for example, Patent Documents 1 to 3). Patent Document 1 discloses a method of performing temper rolling with the surface average roughness Ra of a work roll used in temper rolling being in the range of 3.0 to 10.0 μm. Patent Document 2 discloses a method of using, as a roll material, a cemented carbide composed of tungsten carbide (WC) and cobalt (Co) having a Young's modulus of 500 GPa or more in the surface layer portion. Patent Document 3 discloses a method of temper rolling with a roll having a roll surface Young's modulus of 450 GPa or more and a surface roughness Ra of 1 μm or more and 10 μm or less.
特開2008-173684号公報JP, 2008-173684, A 特開2017-119303号公報JP, 2017-119303, A 特開2011-189404号公報JP, 2011-189404, A
 上述した特許文献1~3に記載された圧延用ワークロール表面は、ダル加工により所定の算術平均粗さになっている。通常、ダル加工を行う際には特許文献1に記載されているように、ショットブラスト加工方式、放電ダル加工方式等を用いることが考えられる。しかしながら、これらの方式では、圧延距離が進むにつれて、摩耗による表面粗さの低下またはクラックの進展等の不具合が生じるおそれがある。すると、圧延用ワークロールに不具合が生じると修理もしくは交換作業等が必要になり、圧延作業の安定した操業が難しいという問題がある。 The surface of the work roll for rolling described in Patent Documents 1 to 3 described above has a predetermined arithmetic average roughness due to the dull processing. Generally, when performing dull machining, it is conceivable to use a shot blasting method, an electric discharge dull machining method, or the like, as described in Patent Document 1. However, in these methods, as the rolling distance increases, problems such as a decrease in surface roughness due to wear or progress of cracks may occur. Then, if a defect occurs in the work roll for rolling, repair or replacement work is required, and there is a problem that stable operation of rolling work is difficult.
 本発明は、高強度の鋼帯の調質圧延を行う際に、圧延作業の安定的な操業を行うことができる圧延用ワークロールおよびこれを備えた圧延機ならびに圧延方法を提供することを目的とする。 It is an object of the present invention to provide a work roll for rolling, a rolling mill provided with the work roll, and a rolling method capable of performing stable operation of rolling when temper rolling a high-strength steel strip. And
本発明は、これら課題を解決するために以下の構成を有する。
[1] ヤング率450GPa以上の超硬合金からなる胴部と、
 前記胴部の外周面上に形成され、2.0~10.0μmの範囲の算術平均粗さを有し、粒状のクロムからなる凹凸層と、
 を備えたことを特徴とする圧延用ワークロール。
[2] 前記凹凸層は、クロムめっきにより粒状のクロムを析出させたものであることを特徴とする[1]に記載の圧延用ワークロール。
[3] [1]または[2]に記載のワークロールを備えた1以上のスタンドからなる調質圧延機。
[4] [3]に記載の圧延用ワークロールを備えた1以上の調質圧延機を用いて、伸び率0.2%以上の調質圧延を施すことを特徴とする調質圧延方法。
The present invention has the following configurations in order to solve these problems.
[1] A body made of a cemented carbide having a Young's modulus of 450 GPa or more,
A concavo-convex layer formed on the outer peripheral surface of the body portion, which has an arithmetic mean roughness in the range of 2.0 to 10.0 μm and is made of granular chrome;
A work roll for rolling characterized in that
[2] The work roll for rolling according to [1], wherein the uneven layer is formed by depositing granular chromium by chromium plating.
[3] A temper rolling mill comprising one or more stands equipped with the work roll according to [1] or [2].
[4] A temper rolling method comprising performing temper rolling with an elongation percentage of 0.2% or more by using one or more temper rolling machines equipped with the work roll for rolling according to [3].
 以上、本発明に係る圧延用ワークロールおよびこれを備えた圧延機ならびに圧延方法によれば、胴部の外周面上に形成され、2.0~10.0μmの範囲の算術平均粗さを有し、粒状のクロムからなる凹凸層を有することにより、圧延距離が進んでも摩耗による表面粗さの低下、もしくはクラックの進展等のワークロールの不具合の発生を抑制し、圧延作業の安定的な操業を行うことができる。 As described above, according to the work roll for rolling, the rolling mill provided with the work roll, and the rolling method, the work roll for rolling having the arithmetic average roughness in the range of 2.0 to 10.0 μm is formed on the outer peripheral surface of the body. However, by having a concavo-convex layer made of granular chrome, it is possible to suppress the occurrence of work roll defects such as a decrease in surface roughness due to wear or the development of cracks even if the rolling distance advances, and a stable operation of rolling work is performed. It can be performed.
本発明の圧延用ワークロール2を用いた圧延機10の好ましい実施形態を示す模式図である。It is a schematic diagram which shows the preferable embodiment of the rolling mill 10 which used the work roll 2 for rolling of this invention. 図1の調質圧延機における圧延用ワークロール2の凹凸層2yの一例を示す表面拡大写真である。It is a surface enlarged photograph which shows an example of the uneven|corrugated layer 2y of the work roll 2 for rolling in the temper rolling mill of FIG. めっき時間に対する表面粗さの変化の一例を示すグラフである。It is a graph which shows an example of the change of surface roughness with respect to plating time. 表1における従来例1、2、比較例1及び実施例1での伸び率に対する圧延荷重の変化の一例を示すグラフである。It is a graph which shows an example of the change of the rolling load with respect to the elongation rate in the prior art examples 1 and 2, the comparative example 1, and the example 1 in Table 1. 従来の放電ダル加工で超硬合金の表面をダル加工した場合の表面拡大写真である。It is a surface enlarged photograph when the surface of a cemented carbide is dull-processed by conventional electric discharge dull processing. 表3の圧延用ワークロールを用いて圧延実験を実施した際のワークロールの圧延長に対するロール表面粗さの変化を示すグラフである。It is a graph which shows the change of roll surface roughness with respect to the rolling length of a work roll at the time of performing a rolling experiment using the work roll for rolling of Table 3.
 以下、本発明の実施形態について説明する。図1は本発明の圧延用ワークロールを用いた圧延機10の好ましい実施形態を示す模式図である。図1の圧延機10は、例えば引張り強度が980MPa以上の広幅鋼帯の調質圧延を行うものである。調質圧延機10は、1対の圧延用ワークロール2と、各圧延用ワークロール2をそれぞれ支持するバックアップロール3を有する。調質圧延機10の前段にはペイオフリール5が配置され、調質圧延機10の後段にはテンションリール6が配置されている。そして、ペイオフリール5及びテンションリール6により鋼帯1に張力が掛けられながら、鋼帯1が圧延用ワークロール2によって圧下され、鋼帯1に所定の伸び率(例えば0.2~1.0%)が付与される。ただし、鋼帯1に張力を付与する手段として、調質圧延機10の前段または後段にブライドルロールを配置してもよい。 An embodiment of the present invention will be described below. FIG. 1 is a schematic diagram showing a preferred embodiment of a rolling mill 10 using the work roll for rolling of the present invention. The rolling mill 10 of FIG. 1 performs temper rolling of a wide steel strip having a tensile strength of 980 MPa or more, for example. The temper rolling mill 10 has a pair of rolling work rolls 2 and a backup roll 3 that supports each rolling work roll 2. The pay-off reel 5 is arranged in the front stage of the temper rolling mill 10, and the tension reel 6 is arranged in the rear stage of the temper rolling mill 10. Then, while the steel strip 1 is being tensioned by the payoff reel 5 and the tension reel 6, the steel strip 1 is rolled down by the work roll 2 for rolling, and the steel strip 1 has a predetermined elongation (for example, 0.2 to 1.0). %) is added. However, as a means for applying tension to the steel strip 1, a bridle roll may be arranged before or after the temper rolling mill 10.
 圧延用ワークロール2は、例えば軸材に超硬合金からなる胴部2xが固定された構造を有する。胴部2xは、ヤング率が450GPa以上の超硬合金からなり、例えばタングステンカーバイド(WC)が質量%で86%、残部がコバルト(Co)からなる超硬合金からなっている。ヤング率が450GPa以上であると、高強度の鋼板を調質圧延する際にも、圧延用ワークロール2が扁平状に変形してロールバイト内における圧延用ワークロール2と鋼帯1との接触弧長が大きくなることを防ぎ、圧延用ワークロール2に過大な圧延荷重がかかることを防止することができる。 The work roll 2 for rolling has a structure in which a body 2x made of cemented carbide is fixed to a shaft material, for example. The body portion 2x is made of a cemented carbide having a Young's modulus of 450 GPa or more, for example, tungsten carbide (WC) is 86% by mass% and the balance is a cemented carbide. When the Young's modulus is 450 GPa or more, even during temper rolling of a high-strength steel plate, the rolling work roll 2 is deformed into a flat shape and the rolling work roll 2 and the steel strip 1 come into contact with each other in the roll bite. It is possible to prevent the arc length from increasing and prevent an excessive rolling load from being applied to the work roll 2 for rolling.
 胴部2xのロールバレル面に相当する部位には粒状のCrからなる凹凸層2yが形成されている。凹凸層2yは、クロムめっきによって粒状クロムを析出させて形成される表面形態を含む凹凸が形成されたものであって、算術平均粗さ(以下、「表面粗さ」と称する)Raが2.0~10.0μmの範囲で形成される。なお、凹凸層2yは、少なくとも胴部2xのロールバレル面に形成されていればよく、胴部2xの外周面全体に形成されていてもよい。 An uneven layer 2y made of granular Cr is formed on a portion of the body 2x corresponding to the roll barrel surface. The concavo-convex layer 2y is formed with concavities and convexities including a surface morphology formed by depositing granular chromium by chrome plating, and has an arithmetic average roughness (hereinafter referred to as "surface roughness") Ra of 2. It is formed in the range of 0 to 10.0 μm. The uneven layer 2y may be formed on at least the roll barrel surface of the body 2x, and may be formed on the entire outer peripheral surface of the body 2x.
 ここで、圧下率が1.0%以下である調質圧延では、表面粗さRaの高い圧延用ワークロール2を用いて圧延を行うと、圧延荷重は低減する。これは、圧延用ワークロール2の粗い凹凸が鋼帯の表面に転写されることにより、ワークロールの凸部の押し込みによって排除された部分が伸びとして現れる現象(伸長効果)が顕著となるためと考えられる。 Here, in temper rolling with a rolling reduction of 1.0% or less, if rolling is performed using the rolling work roll 2 having a high surface roughness Ra, the rolling load is reduced. This is because a phenomenon (stretching effect) in which a portion of the work roll 2 that has been removed by pushing in the convex portion of the work roll 2 appears as elongation due to the rough unevenness of the work roll 2 for rolling being transferred to the surface of the steel strip becomes remarkable. Conceivable.
 表面粗さRaが2.0μm未満の場合、圧延用ワークロール2の凹凸が鋼板に突き刺さって塑性変形を生じる際に近接する凹凸が干渉してしまい、十分な伸長効果が得られない。特に、伸長効果を発揮させるためには、圧延用ワークロール2の表面粗さRaは、3.0μm以上とすることが好ましい。なお、0.2%程度の低い伸び率を付与するような調質圧延条件においては、ワークロールの表面粗さRaを4.0μm超とすることにより、隣接する凸部の間隔が十分大きくなり塑性変形の干渉がほとんどなくなる。よって、効果的に伸長効果を発揮させて荷重低減するためには、凹凸層2yの表面粗さRaは4.0μm超とすることが望ましい。 If the surface roughness Ra is less than 2.0 μm, when the irregularities of the work roll 2 for rolling pierce the steel sheet to cause plastic deformation, adjacent irregularities interfere with each other, and a sufficient stretching effect cannot be obtained. In particular, in order to exert the stretching effect, the surface roughness Ra of the work roll 2 for rolling is preferably 3.0 μm or more. Under the temper rolling conditions that give a low elongation rate of about 0.2%, by setting the surface roughness Ra of the work roll to more than 4.0 μm, the interval between the adjacent convex portions becomes sufficiently large. Almost no interference of plastic deformation. Therefore, in order to effectively exert the elongation effect and reduce the load, it is desirable that the surface roughness Ra of the uneven layer 2y is more than 4.0 μm.
 一方、凹凸層2yの表面粗さRaが10.0μmより大きい場合、圧延用ワークロール2に対して表面粗さを大きくする加工を安定的に実施するのは工業上非常に困難であり、またロール寿命の観点からも望ましくない。そのため、ワークロールの表面粗さRaは、10.0μm以下であることが好ましい。 On the other hand, when the surface roughness Ra of the uneven layer 2y is larger than 10.0 μm, it is industrially very difficult to stably perform the work for increasing the surface roughness on the work roll 2 for rolling. It is also undesirable from the viewpoint of roll life. Therefore, the surface roughness Ra of the work roll is preferably 10.0 μm or less.
 この凹凸層2yは、クロムめっき処理によりクロムを析出させた粒状のCrによって形成されている。まず、クロムめっき加工の前処理として、胴部2xの表面とクロムめっきとの密着性を向上させる為、胴部2xの表面が例えば表面粗さRa=0.2μmになるように研磨された後、さらにサンドブラスト処理等により表面粗さRa=0.8μmに加工される。その後、胴部2xの表面の洗浄処理が行われ、クロムめっき処理が施される。 The concavo-convex layer 2y is formed of granular Cr having chromium deposited by chromium plating. First, in order to improve the adhesion between the surface of the body 2x and the chrome plating as a pretreatment for the chrome plating, after the surface of the body 2x is polished to have a surface roughness Ra=0.2 μm, for example. Further, the surface roughness Ra is 0.8 μm by sandblasting or the like. After that, the surface of the body 2x is cleaned and chromium plated.
 クロムめっき処理は、例えば、めっき浴温を50℃以下に低温化し、60A/dm以上の高電流密度の条件でクロムめっきを行う。これにより、胴部2xの表面に析出するCr結晶粒の粒径サイズを大きくすることができる。すなわち、工業的に使用される硬質クロムめっきは、電気めっき条件(めっき浴温度、電流密度、めっき時間)によって析出するCrの形態や硬度が変化する。一般的に、広く使用される光沢めっきは表面を平滑にするために、めっき浴温50~60℃、電流密度40~60A/dm程度の条件で処理される。一方、上述した凹凸層2yには、所定の表面粗さRaを満たす凹凸が存在しなければならないため、めっき浴温を50℃以下に低温化し、60A/dm以上の高電流密度の条件にして、析出されたクロムが粒状化するようにしている。 In the chromium plating treatment, for example, the plating bath temperature is lowered to 50° C. or lower, and the chromium plating is performed under the condition of high current density of 60 A/dm 2 or higher. Thereby, the grain size of Cr crystal grains deposited on the surface of the body portion 2x can be increased. That is, in the hard chrome plating used industrially, the form and hardness of deposited Cr vary depending on the electroplating conditions (plating bath temperature, current density, plating time). Generally, widely used bright plating is processed under conditions of a plating bath temperature of 50 to 60° C. and a current density of 40 to 60 A/dm 2 in order to smooth the surface. On the other hand, since the uneven layer 2y described above must have unevenness satisfying a predetermined surface roughness Ra, the plating bath temperature is lowered to 50° C. or lower and the high current density condition of 60 A/dm 2 or higher is set. In this way, the deposited chromium is made to be granular.
 図2は、図1の調質圧延機における圧延用ワークロールの凹凸層の一例を示す表面拡大写真である。図2の凹凸層2yのクロムめっき条件は、めっき液としてクロム酸(CrO)と硫酸(HSO)からなるめっき液を用い、めっき浴温37℃、電流密度120A/dm、めっき時間150minとした。そして、Crの析出によって胴部2xの表面に粒状の凹凸層2yを形成した。このときの表面粗さRaを接触式の粗さ計で測定したところ、表面粗さRa=3.9μmであった。また、この凹凸層2yにクラック等の発生が無かった。 FIG. 2 is an enlarged surface photograph showing an example of the uneven layer of the work roll for rolling in the temper rolling mill of FIG. 1. Chromium plating conditions for the concavo-convex layer 2y in FIG. 2 are as follows: a plating solution containing chromic acid (CrO 3 ) and sulfuric acid (H 2 SO 4 ) is used, a plating bath temperature is 37° C., a current density is 120 A/dm 2 , and plating is performed. The time was set to 150 min. Then, by depositing Cr, a granular uneven layer 2y was formed on the surface of the body 2x. When the surface roughness Ra at this time was measured by a contact type roughness meter, the surface roughness Ra was 3.9 μm. Further, no cracks or the like were generated on the uneven layer 2y.
 凹凸層2yの表面粗さRaは、めっき時間により制御される。図3は図2のめっき条件でめっき時間のみを変更した場合のめっき後の表面粗さRaの変化を示したものである。めっき時間の増加に伴い、表面粗さRaは大きくなっており、めっき条件を変更することで所望の表面粗さRaに制御することができる。ここで、ロール表面にクロムめっきで析出させるCrの平均粒径は50μm以上とすることが好ましい。これは、凹凸の鋼板表面への押込みによる伸長効果を効果的に作用させるためである。Crの平均粒径を大きくすることによって、隣接する凹凸の間隔を大きくすることができ、鋼板の表面に突き刺さって塑性変形を生じさせる際の近接する凹凸の干渉を低減させることができる。 The surface roughness Ra of the uneven layer 2y is controlled by the plating time. FIG. 3 shows changes in the surface roughness Ra after plating when only the plating time is changed under the plating conditions of FIG. The surface roughness Ra increases as the plating time increases, and can be controlled to a desired surface roughness Ra by changing the plating conditions. Here, it is preferable that the average grain size of Cr deposited by chrome plating on the roll surface is 50 μm or more. This is for effectively exerting the extension effect due to the depression and depression on the surface of the steel sheet. By increasing the average grain size of Cr, the interval between the adjacent irregularities can be increased, and the interference between the adjacent irregularities when piercing the surface of the steel sheet and causing plastic deformation can be reduced.
<圧延荷重に関する実験>
 上記凹凸層2yを有する圧延用ワークロール2による圧延荷重の低減効果を確認する為に、圧延実験を実施した。なお、実験では供試材として、板厚0.215mm、板幅20mm、長さ200mm、降伏応力1500MPaの高張力鋼板を用いた。また、調質圧延機10として、ワークロール径φ70mmの4段式圧延機を用い、無張力での切板圧延を潤滑無しのドライ条件で実施した。これは実際の自動車用の高張力鋼板の圧延に対して、ロール径と供試材の板厚を1/7としたモデル実験である。
<Experiment on rolling load>
A rolling experiment was conducted to confirm the effect of reducing the rolling load by the work roll 2 for rolling having the uneven layer 2y. In the experiment, a high-tensile steel plate having a plate thickness of 0.215 mm, a plate width of 20 mm, a length of 200 mm, and a yield stress of 1500 MPa was used as a test material. Further, as the temper rolling mill 10, a four-stage rolling mill having a work roll diameter of φ70 mm was used, and the rolling of a strip without tension was performed under dry conditions without lubrication. This is a model experiment in which the roll diameter and the plate thickness of the test material were set to 1/7 for the actual rolling of high-strength steel plates for automobiles.
 ワークロールとして表1に示す4種類のワークロールを用い、ロール圧下位置を変更して、圧延前後の板長さの変化から測定した伸び率と圧延時の圧延荷重の関係を調査した。 The four types of work rolls shown in Table 1 were used as work rolls, the roll reduction position was changed, and the relationship between the elongation measured from the change in strip length before and after rolling and the rolling load during rolling was investigated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1において、比較例1(No.1)は、胴部2xの材質としてヤング率206GPaの2%Cr鋼を用い、表面を砥石研磨で仕上げて表面粗さRa=0.2μmとしたものである。従来例1(No.2)は胴部2xの材質として2%Cr鋼を用い、表面を放電ダル加工で仕上げて表面粗さRa=3.0μmとしたものである。従来例2(No.3)は胴部2xの材質として、タングステンカーバイト(WC)を質量%で86%含有し、残部がコバルトからなる超硬合金を用いたものでヤング率は503GPaである。表面は、砥石研磨仕上げで表面粗さRa=0.2μmである。実施例1(No.4)は、胴部2xの材質として従来例2(No.3)と同様の超硬合金を用い、胴部2xの表面にクロムめっきによってダル加工を施し、表面粗さRa=2.5μmの凹凸層2yを形成したものである。 In Table 1, Comparative Example 1 (No. 1) uses 2% Cr steel having a Young's modulus of 206 GPa as the material of the body 2x, and the surface is finished by grinding with a grindstone to have a surface roughness Ra=0.2 μm. is there. In Conventional Example 1 (No. 2), 2% Cr steel is used as the material of the body 2x, and the surface is finished by electric discharge dull machining to have a surface roughness Ra=3.0 μm. Conventional Example 2 (No. 3) uses tungsten carbide (WC) as a material of the body portion 2x in an amount of 86% by mass% and the balance is made of a cemented carbide and has a Young's modulus of 503 GPa. .. The surface is polished by a grindstone and has a surface roughness Ra=0.2 μm. In Example 1 (No. 4), the same cemented carbide as in Conventional Example 2 (No. 3) was used as the material of the body 2x, and the surface of the body 2x was dulled by chrome plating to obtain a surface roughness. The uneven layer 2y having Ra=2.5 μm is formed.
 図4は、従来例1、2、比較例1及び実施例1における伸び率と幅荷重との関係を示すグラフである。図4に示すように、ロール材質が2%Cr鋼である比較例1(No.1)及び従来例1(No.2)の幅荷重を比較すると同一の伸び率に対する幅荷重は表面粗さの大きい従来例1(No.2)の方が小さく、圧延用ワークロールの表面の凸部の鋼板表面への押込みによる伸長効果が得られていることが分かる。 FIG. 4 is a graph showing the relationship between elongation rate and width load in Conventional Examples 1 and 2, Comparative Example 1 and Example 1. As shown in FIG. 4, comparing the width loads of Comparative Example 1 (No. 1) in which the roll material is 2% Cr steel and Conventional Example 1 (No. 2), the width load for the same elongation is surface roughness. It is understood that the larger conventional example 1 (No. 2) has a smaller size, and the stretching effect by pushing the convex portion of the surface of the work roll for rolling into the steel plate surface is obtained.
 一方、胴部2xの材質を超硬合金とした従来例2(No.3)では従来例1(No.2)よりも同一の伸び率に対する幅荷重は小さくなっており、ロールのヤング率の増加による扁平変形抑制に効果が得られていることが分かる。実施例1(No.4)では、圧延用ワークロールの表面の凸部の押込みによる伸長効果と、ロール扁平変形抑制の両方の効果によって、従来例2(No.3)よりも荷重が小さくなっており、圧延荷重を低減する効果が高いことが分かる。 On the other hand, in Conventional Example 2 (No. 3) in which the material of the body 2x is cemented carbide, the width load for the same elongation is smaller than that in Conventional Example 1 (No. 2), and the Young's modulus of the roll is It can be seen that the effect of suppressing the flat deformation due to the increase is obtained. In Example 1 (No. 4), the load was smaller than that of Conventional Example 2 (No. 3) due to both the effect of stretching due to the indentation of the convex portion on the surface of the work roll for rolling and the effect of suppressing the flat deformation of the roll. Therefore, it can be seen that the effect of reducing the rolling load is high.
 なお、調質圧延での伸び率は通常0.2~1.0%程度の範囲で行われ、この範囲であれば伸び率が大きいほど鋼帯の平坦度は良好となる。なお、伸び率とは、圧延前後での鋼帯の長手方向の長さの変化の割合を言う。伸び率が0.2%以上であると、高強度冷延鋼帯であっても十分に形状矯正を施すことができ、鋼帯の表面及び裏面の平坦度を概ね良好にすることができる。また、ワークロール及び調質圧延機10にかかる圧延荷重を、調質圧延機の耐荷重以下にするためには、鋼帯に付与する伸び率は0.5%以下とすることが好ましい。 The elongation in temper rolling is usually in the range of 0.2 to 1.0%, and in this range, the flatness of the steel strip becomes better as the elongation increases. The elongation percentage refers to the rate of change in the length of the steel strip in the longitudinal direction before and after rolling. When the elongation is 0.2% or more, even the high-strength cold-rolled steel strip can be sufficiently shaped, and the flatness of the front surface and the back surface of the steel strip can be substantially improved. Further, in order to make the rolling load applied to the work rolls and the temper rolling mill 10 equal to or lower than the withstand load of the temper rolling mill, the elongation rate applied to the steel strip is preferably 0.5% or less.
<連続操業実験>
 連続操業時のロール表面の健全性を評価する為、以下に示す比較例2及び実施例2の2つの圧延用ワークロールを一定面圧で押し付けた状態で回転させる転動試験を実施した。比較例2は、胴部2xの材質として、タングステンカーバイト(WC)を質量%で86%含有し、残部がコバルトからなる超硬合金(ヤング率503GPa)を用い、表面を直接放電ダル加工によって表面粗さRa=3.0μmに仕上げたものである。
<Continuous operation experiment>
In order to evaluate the soundness of the roll surface during continuous operation, a rolling test was performed in which two rolling work rolls of Comparative Example 2 and Example 2 shown below were rotated while being pressed with a constant surface pressure. Comparative Example 2 uses a cemented carbide (Young's modulus 503 GPa) containing 86% by weight of tungsten carbide (WC) and the balance of cobalt as the material of the body 2x, and the surface is directly subjected to electric discharge dull machining. The surface roughness Ra was finished to 3.0 μm.
 図5は、比較例2のように超硬合金の胴部2xに対して直接放電加工によってダル加工を実施した場合の凹凸層の表面の拡大写真を示したものである。図5に示すように、表面に放電加工時の衝撃によってクラックCKが形成されている。なお、超硬合金のように、脆性材料であるセラミックスを主成分とする材料を放電加工した場合には、クラックCKが発生することが知られている。 FIG. 5 shows an enlarged photograph of the surface of the concavo-convex layer when dull machining is performed by direct electric discharge machining on the body 2x of cemented carbide as in Comparative Example 2. As shown in FIG. 5, a crack CK is formed on the surface by an impact during electric discharge machining. It is known that a crack CK occurs when a material such as a cemented carbide, which is mainly composed of brittle ceramics, is subjected to electric discharge machining.
 一方、実施例2は、胴部2xの材質として、タングステンカーバイト(WC)を質量%で86%含有し、残部がコバルトからなる超硬合金(ヤング率503GPa)を用い、表面にクロムめっきによって凹凸層2yを付与し、その表面粗さRa=3.0μmに仕上げたものである。 On the other hand, Example 2 uses a cemented carbide (Young's modulus 503 GPa) containing tungsten carbide (WC) at 86% by mass and balance cobalt as the material of the body 2x, and the surface is plated with chromium. The uneven layer 2y is provided to finish the surface roughness Ra=3.0 μm.
 連続操業実験として、ワークロールのロール径がφ70mm、バレル幅が40mmの4段式圧延機を用い、このワークロールを荷重1.8tonで押付けた状態にて、速度50mpmの条件で回転させた。実験時のワークロールに作用する最大圧力は押圧しているワークロール間の弾性接触域で発生し、今回の条件では1011MPaとした。これは実際の連続焼鈍ライン等で使用される調質圧延機でワークロールに作用する面圧レベルと同程度のものである。実験では転動試験の時間を変更し、各時間でのワークロールの表面を拡大顕微鏡で観察し、ワークロールの表面のクラックの有無と割れや剥離等の有無を確認した。表2に実験結果をまとめたものを示す。 As a continuous operation experiment, a 4-roll mill with a work roll diameter of 70 mm and a barrel width of 40 mm was used, and the work roll was pressed at a load of 1.8 tons and rotated at a speed of 50 mpm. The maximum pressure acting on the work rolls during the experiment was generated in the elastic contact region between the pressed work rolls, and was 1011 MPa under the present conditions. This is approximately the same as the surface pressure level acting on the work rolls in the temper rolling mill used in an actual continuous annealing line or the like. In the experiment, the rolling test time was changed, and the surface of the work roll at each time was observed with a magnifying microscope to confirm the presence or absence of cracks on the surface of the work roll and the presence or absence of cracks or peeling. Table 2 shows a summary of the experimental results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2において、放電ダル加工で所定の表面粗さRaを付与した比較例2では、初期段階でロール表面にクラックが形成されていることが確認された(図5参照)。このクラックを有する圧延用ワークロールで圧延が行われた場合、圧延中に圧延用ワークロールに作用する応力によって転動時間の増加に伴いクラックが進展していく。その結果、転動時間300minでロール表面が割れて剥離してしまった。一方、クロムめっきによってダル加工をした圧延用ワークロールでは、クラックの発生や割れ等は確認されず(=表2でいう「健全」)、安定的にロールを使用できることが分かった。 In Table 2, it was confirmed that cracks were formed on the roll surface in the initial stage in Comparative Example 2 in which a predetermined surface roughness Ra was provided by electric discharge dull machining (see FIG. 5). When rolling is performed with a work roll for rolling having this crack, the crack develops as the rolling time increases due to the stress acting on the work roll for rolling during rolling. As a result, the roll surface was cracked and peeled off after rolling for 300 minutes. On the other hand, in the work roll for rolling which was dull-processed by chrome plating, no cracks or breaks were confirmed (=“healthy” in Table 2), and it was found that the roll can be used stably.
<連続操業実験2>
 また、連続操業時のロール粗度の維持性を評価する為、下記表3に示す比較例3、比較例4および実施例3、実施例4の4つの圧延用ワークロールを用いて圧延実験を実施した。
<Continuous operation experiment 2>
Further, in order to evaluate the maintainability of the roll roughness during continuous operation, a rolling experiment was performed using four rolling work rolls of Comparative Example 3, Comparative Example 4 and Example 3 and Example 4 shown in Table 3 below. Carried out.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 比較例3は胴部2xの材質として弾性率206GPaの2%Cr鋼を用い、表面を放電ダル加工で表面粗さRa=4.5μmとしたものである。比較例4は、胴部2xの材質として、タングステンカーバイド(WC)を質量%で80%を含有し、残部がコバルトからなる超硬合金(弾性率450GPa)を用い、クロムめっきを施すことなく放電ダル加工によって表面粗さRa=4.5μmに仕上げたものである。 In Comparative Example 3, 2% Cr steel having an elastic modulus of 206 GPa was used as the material of the body 2x, and the surface was subjected to electric discharge dull machining to have a surface roughness Ra=4.5 μm. Comparative Example 4 uses a cemented carbide (elastic modulus 450 GPa) containing 80% by mass of tungsten carbide (WC) and the balance of cobalt as the material of the body 2x, and discharges without chrome plating. The surface roughness Ra was finished to 4.5 μm by dull processing.
 一方、実施例3は、胴部2xの材質として、タングステンカーバイド(WC)を質量%で80%含有し、残部がコバルトからなる超硬合金(弾性率450GPa)を用い、表面にクロムめっきによって凹凸層2yを付与し、その表面粗さを4.5μmに仕上げたものである。このとき析出させたCrの平均粒径は60μmであった。 On the other hand, in Example 3, as the material for the body portion 2x, a cemented carbide (containing elastic modulus 450 GPa) containing 80% by mass of tungsten carbide (WC) and the balance of cobalt was used, and the surface was roughened by chrome plating. Layer 2y was applied and the surface roughness was finished to 4.5 μm. The average grain size of the Cr deposited at this time was 60 μm.
 実施例4は、上記の実施例3と同じ方法でロール表面に粒状のクロムを析出させた後に、めっき条件を変更して再度めっき厚1μmの硬質クロムめっきを施したロールである。ここで、めっき条件を変更して再度硬質クロムめっきを実施したのは、下記理由による。低めっき浴温(50℃以下)、大電流密度(60A/dm)のめっき条件で表面に粒状のCrを析出させて凹凸を形成させた場合、クロムめっきのビッカース硬度は700~900程度になる。一方、めっき浴温50~60℃、電流密度40~60A/dm程度の条件で通常の硬質クロムめっきをした場合、硬質クロムめっきのビッカース硬度は900~1100程度となる。このとき、実施例3と同じ方法でロール表面に粒状のクロムを析出させ、その後めっき条件を変更して再度硬質クロムめっきを実施した場合、圧延用ワークロールの最表面には非常に硬質のめっき被膜が形成され、耐摩耗性をさらに向上させることができるためである。 Example 4 is a roll in which granular chromium was deposited on the surface of the roll by the same method as in Example 3 described above, and then the plating conditions were changed and hard chrome plating with a plating thickness of 1 μm was applied again. The reason why the hard chrome plating is performed again by changing the plating conditions is as follows. When granular Cr is deposited on the surface to form irregularities under the plating conditions of low plating bath temperature (50° C. or less) and large current density (60 A/dm 2 ), the Vickers hardness of chromium plating is about 700 to 900. Become. On the other hand, when ordinary hard chrome plating is performed under conditions of a plating bath temperature of 50 to 60° C. and a current density of about 40 to 60 A/dm 2 , the hard chrome plating has a Vickers hardness of about 900 to 1100. At this time, when granular chromium was deposited on the roll surface by the same method as in Example 3 and then hard chrome plating was performed again by changing the plating conditions, very hard plating was performed on the outermost surface of the work roll for rolling. This is because a film is formed and wear resistance can be further improved.
 上記のように再度の硬質クロムめっきの厚みを1μmとしたのは、それ以上のめっき厚でめっきをした場合には、初期に形成された粒状の凹凸が小さくなってしまい、調質圧延における伸長効果が低減するためである。つまり初期のめっきで粒状クロムを析出させた後に、薄膜の硬質クロムめっきを再度実施することにより、粒状クロムで形成された粗度パターンを変化させることなく、めっき被膜表面の硬度を上げることができる。なお、かかる理由から、再度の硬質クロムめっきの厚みとしては、0.5~10μmの範囲で付与するのが望ましい。 As described above, the thickness of the hard chrome plating again is set to 1 μm, because when the plating is performed with a thickness greater than that, the unevenness of the grain formed in the initial stage becomes small and the elongation in temper rolling This is because the effect is reduced. That is, by depositing granular chrome in the initial plating and then again performing hard chrome plating of the thin film, the hardness of the plating film surface can be increased without changing the roughness pattern formed by the granular chrome. .. For this reason, it is desirable that the thickness of the hard chrome plating again be applied within the range of 0.5 to 10 μm.
 そして、4段式圧延機の圧延用ワークロールとして、ロール径φ70mm、バレル幅40mmの表3に示す4種類の圧延用ワークロールを用い、張力を付与した連続コイル圧延実験を実施した。被圧延材は板厚0.215mm、板幅20mm、降伏応力1500MPaの高張力鋼板を用いた。入出側張力として100MPaを負荷した状態で、無潤滑のドライ条件で単位幅あたりの圧延荷重が0.2ton/mmとなる条件でコイル圧延を実施した。このとき各ロールでの圧延長に対するロール表面粗さの変化を測定した。 Then, four types of work rolls for rolling having a roll diameter of φ70 mm and a barrel width of 40 mm shown in Table 3 were used as rolling work rolls of the four-high rolling mill, and a continuous coil rolling experiment with tension was carried out. As the material to be rolled, a high-tensile steel plate having a plate thickness of 0.215 mm, a plate width of 20 mm, and a yield stress of 1500 MPa was used. Coil rolling was carried out under a dry condition without lubrication under a condition that the rolling load per unit width was 0.2 ton/mm under the condition that the inlet/outlet side tension was 100 MPa. At this time, the change in roll surface roughness with respect to the rolling length of each roll was measured.
 図6は、表3の圧延用ワークロールを用いて圧延実験を実施した際のワークロールの圧延長に対するロール表面粗さの変化を示すグラフである。図6に示すように、2%Cr鋼ロールを放電ダル加工した比較例3では圧延長の増加に伴い、粗度が大きく低下していることが分かる。超硬合金を直接放電ダル加工で高粗度化した比較例4のロールでは、超硬合金の硬度が極めて高い為、圧延長に対するロール粗度の維持性は最も優れている。しかしながら、1.67kmの圧延後にはロール表面に割れが発生しており、それ以上の圧延は困難となった。これは前述したように、超硬合金へ直接放電加工した場合にクラックが形成され、圧延時に負荷される応力によってクラックが進展した為であり、実際の圧延での使用は困難である。 FIG. 6 is a graph showing changes in roll surface roughness with respect to the rolling length of the work rolls when a rolling experiment was performed using the work rolls for rolling in Table 3. As shown in FIG. 6, in Comparative Example 3 in which the 2% Cr steel roll was subjected to the electric discharge dull processing, it was found that the roughness was significantly reduced as the rolling length was increased. In the roll of Comparative Example 4 in which the cemented carbide is made to have a high roughness by direct electric discharge dull machining, since the hardness of the cemented carbide is extremely high, the maintainability of the roll roughness with respect to the rolling length is the best. However, after the rolling of 1.67 km, cracks were generated on the roll surface, and further rolling became difficult. This is because, as described above, cracks are formed when direct electric discharge machining is performed on the cemented carbide, and the cracks propagate due to the stress applied during rolling, which makes it difficult to use in actual rolling.
 一方、本発明の実施例3、実施例4では初期摩耗で粗度は低下するものの、その後の圧延長に対する粗度維持性は比較例3より格段に優れることが分かる。特に、表面に薄膜の硬質クロムめっきを施す実施例4は優れた粗度維持性を示すことが分かる。 On the other hand, in Examples 3 and 4 of the present invention, although the roughness decreases due to the initial wear, it can be seen that the roughness retention against the rolling length thereafter is significantly superior to Comparative Example 3. In particular, it can be seen that Example 4 in which a thin film of hard chrome plating is applied to the surface exhibits excellent roughness retention.
 上記実施形態によれば、胴部2xの外周面上に形成され、2.0~10.0μmの範囲の表面粗さRaを有し、粒状のクロムからなる凹凸層2yを有することにより、圧延距離が進んでも摩耗による表面粗さRaの低下、もしくはクラックの発生等のワークロールの劣化を低減し、安定的な調質圧延を行うことができる。特に、調質圧延機10に使用される圧延用ワークロール2の材質と表面加工方法とを変更するのみで圧延荷重の低減が可能であり、ロール径等の設備自体の変更を行う必要がなく、その工業的価値は大きい。 According to the above-described embodiment, the rolling is performed by forming the concavo-convex layer 2y formed on the outer peripheral surface of the body 2x and having a surface roughness Ra in the range of 2.0 to 10.0 μm and made of granular chrome. Even if the distance advances, it is possible to reduce deterioration of the work roll such as a decrease in surface roughness Ra due to wear or the occurrence of cracks, and to perform stable temper rolling. In particular, the rolling load can be reduced only by changing the material and the surface processing method of the work roll 2 for rolling used in the temper rolling mill 10, and it is not necessary to change the equipment itself such as the roll diameter. , Its industrial value is great.
 特に、高張力鋼の中でも焼入れ及び焼き戻し処理を伴う連続焼鈍により製造された鋼板は、焼入れ処理時の熱応力や金属組織の変態に伴い発生する変態応力によって、鋼帯の形状(平坦度)が悪化しやすい。このような鋼帯の形状不良は、焼鈍する前の冷間圧延で鋼帯形状を平坦化しても解消することはできない。そのため、焼鈍後の鋼帯を調質圧延により形状矯正をする必要がある。 In particular, among high-strength steels, steel sheets produced by continuous annealing accompanied by quenching and tempering treatments have the shape (flatness) of the steel strip due to the thermal stress during the quenching treatment and the transformation stress generated along with the transformation of the metal structure. Is easy to get worse. Such a defective shape of the steel strip cannot be eliminated even by flattening the shape of the steel strip by cold rolling before annealing. Therefore, it is necessary to correct the shape of the annealed steel strip by temper rolling.
 また、引張り強度が980MPa以上の高張力鋼板は自動車用部品の素材として使用され、プレス加工によって部品に成形される。プレス加工時の保油性を高める為、鋼板の表面にダル仕上げ(凹凸仕上げ)が必要になる。鋼帯1の表面のダル仕上げは、通常調質圧延機10の圧延用ワークロール2の表面をダル加工しておき、その凹凸を鋼板に転写して制御する。 Also, high-strength steel sheets with a tensile strength of 980 MPa or more are used as materials for automobile parts, and are formed into parts by pressing. In order to improve oil retention during press working, it is necessary to have dull finish (uneven finish) on the surface of the steel sheet. The dull finish of the surface of the steel strip 1 is usually controlled by dulling the surface of the work roll 2 for rolling of the temper rolling mill 10 and transferring the unevenness to the steel plate.
 調質圧延時の伸び率は、鋼帯に付与される張力とワークロールの圧下位置とによって制御される。より大きな伸び率を得る為には、従来よりも大きな張力と高い圧延荷重とが必要になる。特に、引張り強度が980MPaを超える高張力鋼帯の調質圧延では、鋼帯自体の変形抵抗が極めて高く、より大きな圧延荷重が必要となる。 The elongation during temper rolling is controlled by the tension applied to the steel strip and the work roll reduction position. In order to obtain a higher elongation rate, a higher tension and a higher rolling load than in the past are required. Particularly, in temper rolling of a high-strength steel strip having a tensile strength exceeding 980 MPa, the deformation resistance of the steel strip itself is extremely high, and a larger rolling load is required.
 通常の調質圧延機は、このような高張力鋼帯の調質圧延を行うことを前提として設計されていないことが多く、高張力鋼帯の調質圧延では圧延荷重が圧延機の耐荷重を超えてしまう。ここで、調質圧延機の構造を4段式から6段式等に変更し、ワークロール径を小さくすることで、圧延荷重を低減することが考えられる。しかしながら、大幅な設備改造が必要となりコストがかかるといった問題がある。 Normal temper rolling mills are often not designed on the premise of such temper rolling of high-strength steel strip.In temper rolling of high-strength steel strip, the rolling load is the load-bearing capacity of the rolling mill. Will exceed. Here, it is conceivable to reduce the rolling load by changing the structure of the temper rolling mill from a four-stage type to a six-stage type and reducing the work roll diameter. However, there is a problem that a large amount of equipment remodeling is required and the cost is high.
 このように、形状矯正が必要な高張力鋼ほど、圧延負荷は増大して既設の調質圧延では対処が困難となる場合がある。そのため、次工程以降でレベラー等を用いて形状矯正しているのが実情であり、工程の追加に伴う製造コストの増大や納期の長期化が問題となる。 In this way, the higher the tensile strength steel that requires shape correction, the higher the rolling load and the more difficult it is to deal with existing temper rolling. Therefore, it is the actual situation that the shape is corrected by using a leveler or the like in the subsequent steps, which causes a problem of an increase in manufacturing cost and a longer delivery time due to the addition of steps.
 そこで、圧延用ワークロール2の表面を2.0~10.0μm以下の表面粗さRaで加工することにより、圧延荷重を低減させながら、所望の圧延効果が得られるようにしている。また、胴部2xはヤング率450GPa以上の超硬合金からなっている。これにより、引張り強度が980MPa以上の高張力鋼板の圧延を行う際にも、ロール径を大きくすることなく、所望の線荷重を得ることができる。 Therefore, by processing the surface of the work roll 2 for rolling with a surface roughness Ra of 2.0 to 10.0 μm or less, it is possible to obtain a desired rolling effect while reducing the rolling load. The body 2x is made of a cemented carbide having a Young's modulus of 450 GPa or more. This makes it possible to obtain a desired linear load without increasing the roll diameter even when rolling a high-strength steel sheet having a tensile strength of 980 MPa or more.
 一方で、上述した2.0~10.0μm以下の表面粗さRaを放電ダル加工で形成したとき、圧延距離が進むにつれて、摩耗によって圧延用ワークロールの表面粗さRaが低下し、圧延荷重を低く維持する効果が得られなくなる場合がある。 On the other hand, when the above-described surface roughness Ra of 2.0 to 10.0 μm or less is formed by electric discharge dull machining, the surface roughness Ra of the work roll for rolling decreases due to wear as the rolling distance advances, and the rolling load The effect of maintaining low may not be obtained.
 そこで、凹凸層2yが、クロムめっきによって形成された粒状のクロムにより形成されるようにする。これにより、クラックのない凹凸層2yを形成することができるとともに、繰り返し圧延を行っても表面が摩耗しにくいビッカーズ硬さを得ることができる。また、凹凸層2yが、粒状のクロムにより形成される場合、粒状クロムの突起が球形状の為、圧延中の局所的な応力集中が小さくなり、通常のクロムめっきコーティングの場合より耐摩耗性は向上する。その結果、ワークロールの修理や交換作業の頻度を抑え、圧延工程の安定した操業を行うことができる。 Therefore, the concavo-convex layer 2y is formed of granular chrome formed by chrome plating. As a result, it is possible to form the uneven layer 2y having no cracks, and it is possible to obtain Vickers hardness in which the surface is not easily worn even when repeatedly rolled. Further, when the uneven layer 2y is formed of granular chrome, since the projections of the granular chrome have a spherical shape, local stress concentration during rolling is reduced, and wear resistance is higher than that in the case of ordinary chrome plating coating. improves. As a result, it is possible to reduce the frequency of work roll repairs and replacements, and to perform stable rolling process operations.
 また、1以上の上記圧延機10を用いて、伸び率0.2%以上の調質圧延を施すことにより、高強度冷延鋼帯であっても十分に形状矯正を施すことができ、鋼帯の表面及び裏面の平坦度を概ね良好にとすることができる。 Further, by performing temper rolling with an elongation of 0.2% or more using one or more rolling mills 10, even a high-strength cold-rolled steel strip can be sufficiently shape-corrected. The flatness of the front and back surfaces of the strip can be made generally good.
 本発明の実施形態は、上記実施形態に限定されず、種々の変更を加えることができる。また本技術は図4に示す独立した調質圧延機への適用する場合について例示しているが、連続焼鈍ライン(CAL)や連続溶融亜鉛めっきライン(CGL)といった連続プロセスラインにインラインで設置される圧延機にも適用することができる。 The embodiment of the present invention is not limited to the above embodiment, and various modifications can be added. Although the present technology illustrates the case where it is applied to an independent temper rolling mill shown in FIG. 4, it is installed inline in a continuous process line such as a continuous annealing line (CAL) or a continuous hot dip galvanizing line (CGL). It can also be applied to rolling mills.
1 鋼帯
2 圧延用ワークロール
2x 胴部
2y 凹凸層
3 バックアップロール
5 ペイオフリール
6 テンションリール
10 調質圧延機
CK クラック
Ra 算術平均粗さ(表面粗さ)
1 Steel Strip 2 Work Roll for Rolling 2x Body 2y Concavo-convex Layer 3 Backup Roll 5 Payoff Reel 6 Tension Reel 10 Temper Rolling Mill CK Crack Ra Arithmetic Average Roughness (Surface Roughness)

Claims (4)

  1.  ヤング率450GPa以上の超硬合金からなる胴部と、
     前記胴部の外周面上に形成され、2.0~10.0μmの範囲の算術平均粗さを有し、粒状のクロムからなる凹凸層と、
     を備えたことを特徴とする圧延用ワークロール。
    A body made of a cemented carbide with a Young's modulus of 450 GPa or more,
    A concavo-convex layer formed on the outer peripheral surface of the body portion, which has an arithmetic mean roughness in the range of 2.0 to 10.0 μm and is made of granular chrome;
    A work roll for rolling characterized in that
  2.  前記凹凸層は、クロムめっきにより粒状のクロムを析出させたものであることを特徴とする請求項1に記載の圧延用ワークロール。 The work roll for rolling according to claim 1, wherein the uneven layer is formed by depositing granular chromium by chrome plating.
  3.  請求項1または2に記載の圧延用ワークロールを備えた圧延機。 A rolling mill equipped with the work roll for rolling according to claim 1 or 2.
  4.  請求項3に記載の圧延機を1つ以上用いて、伸び率0.2%以上の調質圧延を施すことを特徴とする圧延方法。 A rolling method characterized by performing temper rolling with an elongation of 0.2% or more by using one or more rolling mills according to claim 3.
PCT/JP2019/041848 2018-12-12 2019-10-25 Work roll for rolling, rolling machine equipped with same, and rolling method WO2020121657A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19895432.3A EP3895818B1 (en) 2018-12-12 2019-10-25 Work roll for rolling, rolling machine equipped with same, and rolling method
CN201980082402.1A CN113195123B (en) 2018-12-12 2019-10-25 Rolling work roll, rolling mill provided with same, and rolling method
MX2021007044A MX2021007044A (en) 2018-12-12 2019-10-25 Work roll for rolling, rolling machine equipped with same, and rolling method.
JP2019571566A JP6680426B1 (en) 2018-12-12 2019-10-25 Work roll for rolling, rolling machine provided with the same, and rolling method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-232080 2018-12-12
JP2018232080 2018-12-12

Publications (1)

Publication Number Publication Date
WO2020121657A1 true WO2020121657A1 (en) 2020-06-18

Family

ID=71077264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041848 WO2020121657A1 (en) 2018-12-12 2019-10-25 Work roll for rolling, rolling machine equipped with same, and rolling method

Country Status (5)

Country Link
EP (1) EP3895818B1 (en)
JP (1) JP6680426B1 (en)
CN (1) CN113195123B (en)
MX (1) MX2021007044A (en)
WO (1) WO2020121657A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7338604B2 (en) 2020-10-27 2023-09-05 Jfeスチール株式会社 Manufacturing method of cold-rolled steel sheet

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107243A (en) * 1976-03-05 1977-09-08 Yoshinobu Kobayashi Surface treating process for cemented carbide
JPS61129205A (en) * 1984-11-29 1986-06-17 Sumitomo Metal Ind Ltd Wear-resistant rolling roll
JPH01258806A (en) * 1988-04-08 1989-10-16 Sumitomo Metal Ind Ltd Chromium-plated roll for cold rolling
JPH071021A (en) * 1993-06-21 1995-01-06 Nisshin Steel Co Ltd Bridle roll device of rolling mill
JP2008173684A (en) 2006-06-23 2008-07-31 Jfe Steel Kk Method of temper-rolling steel strip and method of manufacturing high-tension cold-rolled steel sheet
JP2011189404A (en) 2010-03-17 2011-09-29 Nippon Steel Corp Temper rolling mill having excellent roughness transfer efficiency, and temper rolling method
CN202052762U (en) * 2011-03-30 2011-11-30 芜湖恒达薄板有限公司 Working roll for cold-rolling strip steel
JP2017100149A (en) * 2015-11-30 2017-06-08 Jfeスチール株式会社 Hard metal work roll and method for utilization thereof
JP2017119303A (en) 2015-12-28 2017-07-06 Jfeスチール株式会社 Temper rolling mill and temper rolling method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765227B2 (en) * 1987-11-04 1995-07-12 住友金属工業株式会社 Method for manufacturing chrome plating roll
JPH07122157B2 (en) * 1990-09-11 1995-12-25 株式会社サトーセン Roll surface treatment method
JP3209705B2 (en) * 1997-03-25 2001-09-17 川崎製鉄株式会社 Composite roll for cold rolling
JP3438695B2 (en) * 2000-02-29 2003-08-18 Jfeスチール株式会社 Manufacturing method of chrome plating roll
JP4358524B2 (en) * 2002-01-18 2009-11-04 新日本製鐵株式会社 Cold rolling, conveying, cooling chrome plating roll, manufacturing method thereof, and manufacturing method of steel sheet
JP4096628B2 (en) * 2002-05-29 2008-06-04 Jfeスチール株式会社 Cold rolling machine for metal sheet and cold rolling method using the same
US7296517B2 (en) * 2003-11-11 2007-11-20 Fujifilm Corporation Roll for metal rolling, and support for lithographic printing plate
JP4379115B2 (en) * 2003-12-26 2009-12-09 Jfeスチール株式会社 Dull roll for cold rolling metal sheet and method for producing the same
CN2829927Y (en) * 2005-05-25 2006-10-25 上海通乐冶金设备工程有限公司 Frosting roller for cold rolling banding steel
CN102381878B (en) * 2010-08-31 2013-12-25 宝山钢铁股份有限公司 Manufacturing method of flat roller with self-texturing feature
CN103056173A (en) * 2011-10-21 2013-04-24 襄阳博亚精工装备股份有限公司 Turning roll with spongy chromium plating technique to achieve roll face texturing and manufacturing method thereof
CN105127203A (en) * 2015-10-10 2015-12-09 上海通乐冶金设备工程有限公司 Shot blasting texturing chromeplate work roll for cold rolling temper mill and production process of work roll
CN207043019U (en) * 2017-06-30 2018-02-27 河源正信硬质合金有限公司 Hard alloy roll

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107243A (en) * 1976-03-05 1977-09-08 Yoshinobu Kobayashi Surface treating process for cemented carbide
JPS61129205A (en) * 1984-11-29 1986-06-17 Sumitomo Metal Ind Ltd Wear-resistant rolling roll
JPH01258806A (en) * 1988-04-08 1989-10-16 Sumitomo Metal Ind Ltd Chromium-plated roll for cold rolling
JPH071021A (en) * 1993-06-21 1995-01-06 Nisshin Steel Co Ltd Bridle roll device of rolling mill
JP2008173684A (en) 2006-06-23 2008-07-31 Jfe Steel Kk Method of temper-rolling steel strip and method of manufacturing high-tension cold-rolled steel sheet
JP2011189404A (en) 2010-03-17 2011-09-29 Nippon Steel Corp Temper rolling mill having excellent roughness transfer efficiency, and temper rolling method
CN202052762U (en) * 2011-03-30 2011-11-30 芜湖恒达薄板有限公司 Working roll for cold-rolling strip steel
JP2017100149A (en) * 2015-11-30 2017-06-08 Jfeスチール株式会社 Hard metal work roll and method for utilization thereof
JP2017119303A (en) 2015-12-28 2017-07-06 Jfeスチール株式会社 Temper rolling mill and temper rolling method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3895818A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7338604B2 (en) 2020-10-27 2023-09-05 Jfeスチール株式会社 Manufacturing method of cold-rolled steel sheet

Also Published As

Publication number Publication date
MX2021007044A (en) 2021-08-11
EP3895818A4 (en) 2022-01-26
CN113195123B (en) 2023-05-23
CN113195123A (en) 2021-07-30
JP6680426B1 (en) 2020-04-15
JPWO2020121657A1 (en) 2021-02-15
EP3895818B1 (en) 2023-03-08
EP3895818A1 (en) 2021-10-20

Similar Documents

Publication Publication Date Title
KR101053414B1 (en) Descaling method and removal equipment of hot rolled steel strip
JP3249760B2 (en) Manufacturing method of ultra-thin steel sheet for cans
WO2008075603A1 (en) Method of temper rolling of steel strip and process for manufacturing high tensile cold rolled steel sheet
JP6680426B1 (en) Work roll for rolling, rolling machine provided with the same, and rolling method
JP2002241843A (en) Method for producing ferritic stainless steel sheet having excellent surface gloss and workability
CN112934962A (en) Method for preparing stainless steel for electrical element
JP4096627B2 (en) Temper rolling mill and method for temper rolling of ultra-thin steel sheet
JP3288631B2 (en) Manufacturing method of stainless steel pre-treated steel strip for cold rolling
JPH05161901A (en) Manufacture of cold rolled strip metal having good surface gloss
JP7338604B2 (en) Manufacturing method of cold-rolled steel sheet
JP5761071B2 (en) Temper rolling method, temper rolling equipment and rolling line for high strength steel plate
JP7331874B2 (en) Skin pass rolling mill backup roll, skin pass rolling mill, and skin pass rolling method
JP3236553B2 (en) Roll for rolling metal sheet and rolling method using the roll
JP4096630B2 (en) Cold tandem rolling mill and method for cold rolling of ultra-thin steel plate using the same
JP6673525B2 (en) Steel plate and method for producing the same, and secondary cold rolling mill
JPH0195803A (en) Method for skin-pass rolling of metal strip
JP3750214B2 (en) Steel sheet for ultra-thin cans excellent in formability that does not easily cause press rupture and method for producing the same
JPH08257601A (en) Manufacture of cold rolled stainless steel strip excellent in surface property
JP3438628B2 (en) Cold rolling method for metal plate with excellent gloss
JP2020082163A (en) Temper rolling method, and manufacturing method for steel strip
JPS5947608B2 (en) Temper rolling roll of plated steel plate
CN115739992A (en) Preparation process of titanium plate for coating
KR101322138B1 (en) Facility for Manufacturing Steel Strip and Method for Manufacturing Steel Strip Using the Facility
KR100543514B1 (en) Manufacturing method for bright cold rolled steel sheet
KR101423814B1 (en) Continuous manufacturing device of ferritic stainless steel and Continuous manufacturing method of using the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019571566

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19895432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019895432

Country of ref document: EP

Effective date: 20210712