WO2020121525A1 - Direct-current circuit breaker - Google Patents

Direct-current circuit breaker Download PDF

Info

Publication number
WO2020121525A1
WO2020121525A1 PCT/JP2018/046148 JP2018046148W WO2020121525A1 WO 2020121525 A1 WO2020121525 A1 WO 2020121525A1 JP 2018046148 W JP2018046148 W JP 2018046148W WO 2020121525 A1 WO2020121525 A1 WO 2020121525A1
Authority
WO
WIPO (PCT)
Prior art keywords
mechanical
unit
support plate
circuit breaker
insulating
Prior art date
Application number
PCT/JP2018/046148
Other languages
French (fr)
Japanese (ja)
Inventor
和長 金谷
網田 芳明
崇裕 石黒
Original Assignee
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝エネルギーシステムズ株式会社 filed Critical 東芝エネルギーシステムズ株式会社
Priority to CN201880100078.7A priority Critical patent/CN113168989A/en
Priority to PCT/JP2018/046148 priority patent/WO2020121525A1/en
Priority to JP2020559673A priority patent/JP7150876B2/en
Priority to EP18942816.2A priority patent/EP3896713A4/en
Publication of WO2020121525A1 publication Critical patent/WO2020121525A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H33/596Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle for interrupting dc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/008Pedestal mounted switch gear combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/28Power arrangements internal to the switch for operating the driving mechanism
    • H01H33/285Power arrangements internal to the switch for operating the driving mechanism using electro-dynamic repulsion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T2/00Spark gaps comprising auxiliary triggering means
    • H01T2/02Spark gaps comprising auxiliary triggering means comprising a trigger electrode or an auxiliary spark gap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T4/00Overvoltage arresters using spark gaps
    • H01T4/10Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel
    • H01T4/12Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel hermetically sealed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • H01H2009/543Contacts shunted by static switch means third parallel branch comprising an energy absorber, e.g. MOV, PTC, Zener
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • H01H2033/6665Details concerning the mounting or supporting of the individual vacuum bottles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • H01H33/14Multiple main contacts for the purpose of dividing the current through, or potential drop along, the arc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements

Definitions

  • Embodiments of the present invention relate to a DC circuit breaker.
  • ⁇ DC transmission has higher transmission efficiency than AC transmission.
  • the cost of introducing equipment is higher for DC power transmission.
  • the efficiency of DC power transmission is overwhelmingly high. Therefore, when the operating cost is added to the equipment cost, DC power transmission is generally lower in cost. Therefore, DC power transmission is used, for example, for power transmission between two bases across the sea.
  • offshore wind power generation and solar power generation in desert areas have been used to A method of conducting large-scale power generation in a place far away from the urban area where electricity is consumed and transmitting power over a long distance is being studied. Along with this, it is planned to construct a DC transmission network that connects a plurality of power supply points and demand points.
  • a mechanical contact type circuit breaker is used in an alternating current system.
  • the mechanical contact type circuit breaker opens a contact at a current zero point generated by an alternating current and blows an insulating medium onto the arc current between the contacts to interrupt a fault current.
  • the current zero point does not occur in the fault current, and thus it is difficult to quickly interrupt the fault current with the conventional mechanical contact type circuit breaker.
  • a semiconductor circuit breaker capable of independently blocking a direct current
  • a semiconductor circuit breaker using a plurality of self-excited semiconductor elements having a self-extinguishing ability such as an IGBT (Insulated Gate Bipolar Transistor)
  • IGBT Insulated Gate Bipolar Transistor
  • a hybrid circuit breaker has been proposed in which another semiconductor circuit breaker is connected in parallel to a circuit in which a mechanical contact type circuit breaker and an auxiliary semiconductor circuit breaker are connected in series.
  • the mechanical contact type circuit breaker and the auxiliary semiconductor circuit breaker are in a conducting state during steady power transmission, and the other semiconductor circuit breaker is in a breaking state. Therefore, the transmission current flows through the mechanical contact type disconnector and the auxiliary semiconductor circuit breaker.
  • the auxiliary semiconductor circuit breaker when an accident occurs, the auxiliary semiconductor circuit breaker is turned off, and at the same time an opening command is given to the mechanical contact type disconnector.
  • the auxiliary semiconductor breaker When the auxiliary semiconductor breaker is in the cut-off state in this way, the fault current flowing in the path between the mechanical contact type disconnector and the auxiliary semiconductor breaker is commutated to the other semiconductor breaker. Then, after the opening operation of the mechanical contact type disconnector is completed and the withstand voltage performance of the steady energization path is secured, the other semiconductor circuit breaker is interrupted to complete the interruption of the accident current.
  • the conduction loss during steady power transmission is only the conduction loss of the auxiliary semiconductor circuit breaker, the steady conduction path is limited to the semiconductor circuit breaker that can independently cut the DC current as described above.
  • the conduction loss can be reduced as compared with the configuration.
  • the conduction loss of the auxiliary semiconductor circuit breaker still occurs, the conduction loss of the hybrid circuit breaker is larger than that of the conventional mechanical contact type circuit breaker in which the steady conduction path consists only of mechanical contacts. ..
  • a DC circuit breaker has been proposed in which a mechanical contact type circuit breaker is connected in parallel to a circuit in which a semiconductor circuit breaker and a commutation circuit composed of a half bridge circuit are connected in series.
  • the mechanical contact type circuit breaker is in a conducting state during steady power transmission, and the semiconductor circuit breaker and the commutation circuit are in a breaking state. Therefore, the power transmission current during steady power transmission flows only through the mechanical contact type disconnector.
  • the steady conduction path consists only of mechanical contact type circuit breakers, so it is possible to greatly reduce conduction loss.
  • the semiconductor circuit breaker since the semiconductor circuit breaker is expensive, the device cost may be significantly increased as compared with the conventional mechanical contact type circuit breaker.
  • the problem to be solved by the present invention is to provide a DC circuit breaker capable of shortening the current interruption time and suppressing the equipment cost.
  • the DC circuit breaker of the embodiment has a mechanical circuit breaker, an arrester and a commutation device.
  • the mechanical shutoff unit has at least one mechanical shutoff unit and an insulating column. At least one mechanical shutoff unit has at least one single shutoff.
  • the insulating column supports at least one mechanical shutoff unit.
  • Each of the at least one single-piece breaking section has a mechanical contact section, a closed container, an operating rod, and an operating mechanism.
  • the mechanical contact has a fixed contact and a movable contact.
  • the mechanical contact portion is electrically insulated from the ground.
  • the closed container encloses the mechanical contact and the insulating gas.
  • the closed container is electrically insulated from the ground.
  • the operating rod is connected to the movable contact.
  • the operation rod extends from the inside of the closed container to the outside.
  • the operating mechanism is connected to the operating rod.
  • the operating mechanism causes the movable contactor to move toward and away from the fixed contactor.
  • the operating mechanism is provided at the same potential as the movable contact.
  • At least one single body breaking unit has a first single body breaking unit and a second single body breaking unit.
  • the first single body breaking unit and the second single body breaking unit are arranged such that the respective operating rods operate on the same straight line by the operating mechanism, and the operating directions of the operating rods by the operating mechanism are opposite to each other.
  • the first single body breaking unit and the second single body breaking unit are arranged such that their respective operating mechanisms face each other. All at least one unitary break are connected in series to form a mechanical contact module.
  • the arrester is connected in parallel with the mechanical contact module.
  • the commutation device has a commutation circuit.
  • the commutation circuit is formed by connecting a reactor, a capacitor, and a charger in series.
  • the commutation circuit is connected in parallel with the mechanical contact module.
  • the injector is a high speed injector.
  • the perspective view which shows the commutation apparatus of 1st Embodiment. 1 is a perspective view showing a reactor unit and a feeder unit of the first embodiment.
  • FIG. 1 is a perspective view showing the DC circuit breaker of the first embodiment.
  • FIG. 2 is a circuit diagram showing the DC circuit breaker of the first embodiment.
  • the DC circuit breaker 1 includes a mechanical circuit breaker 2, an arrester 3, and a commutation device 4.
  • the DC circuit breaker 1 is installed on the foundation 5 on the ground.
  • the upper surface of the base 5 is formed horizontally.
  • one horizontal direction is defined as a first direction
  • a horizontal direction orthogonal to the first direction is defined as a second direction.
  • reference numeral X is assigned to the first direction
  • reference numeral Y is assigned to the second direction.
  • the mechanical blocking unit 2 and the arrester unit 3 are arranged side by side in the first direction X.
  • the state of being arranged side by side in the first direction X is a state in which a plurality of objects are arranged so as to overlap each other when viewed in the first direction X.
  • the commutation device 4 is arranged side by side in the second direction Y with respect to the mechanical blocking unit 2 and the arrester unit 3.
  • FIG. 3 is a perspective view showing the mechanical shutoff unit of the first embodiment.
  • the mechanical shutoff unit 2 includes a plurality (two in the present embodiment) of mechanical shutoff units 10 and a plurality (four in the present embodiment) of insulating struts 60 that support the mechanical shutoff unit 10. And a power supply unit 70 that supplies electric power to the mechanical interruption unit 10.
  • the plurality of mechanical shutoff units 10 are stacked in a plurality of stages in the vertical direction on the insulating column 60.
  • the mechanical shutoff unit 10 includes a pair of single shutoff units 11 (first single shutoff unit and second single shutoff unit), a power supply unit 12, a control unit 13, a pair of single shutoff units 11, a power supply unit 12, and a control unit. And a mechanical block supporting plate 14 on which 13 is arranged.
  • the single breaking unit 11 includes a mechanical contact unit 21 having a fixed contact 22 and a movable contact 23 (see FIG. 4).
  • the mechanical contact portion 21 is opened by separating the movable contact 23 from the fixed contact 22.
  • the single cutoff unit 11 opens the mechanical contact unit 21 to cut off the energization path passing through the mechanical contact unit 21.
  • the single circuit breaker 11 constitutes a vacuum circuit breaker 11A or a gas disconnector 11B.
  • the vacuum circuit breaker 11A has a vacuum valve 20 in which a mechanical contact portion 21 is arranged in a vacuum insulating cylinder 24 (see FIG. 4).
  • the gas disconnector 11B has a gas contact in which the mechanical contact 21 is arranged in insulating gas.
  • the mechanical contact portion 21 of the vacuum circuit breaker 11A is a contact capable of mechanically interrupting the current at the current zero point.
  • the current breaking performance of the vacuum circuit breaker 11A is higher than that of the gas disconnecting switch 11B.
  • the withstand voltage performance of the gas disconnector 11B is higher than or equivalent to that of the vacuum circuit breaker 11A.
  • the mechanical interruption unit 10 includes only the vacuum circuit breaker 11A or only the gas disconnector 11B.
  • the upper mechanical breaker unit 10 includes a pair of vacuum breakers 11A.
  • the lower mechanical shutoff unit 10 includes a pair of gas disconnectors 11B.
  • FIG. 4 is a partial cross-sectional view of the mechanical interruption unit of the first embodiment as seen from the side.
  • the vacuum circuit breaker 11A includes a vacuum valve 20 having a mechanical contact portion 21, a closed container 30 enclosing the vacuum valve 20, and a current-carrying shaft connected to a fixed contact 22 of the mechanical contact portion 21. 34, an operating rod 35 connected to the movable contact 23 of the mechanical contact portion 21, an operating mechanism 37 connected to the operating rod 35, and a capacitor 39 (see FIG. 3) connected in parallel to the mechanical contact portion 21. , Is provided.
  • the vacuum valve 20 includes the mechanical contact portion 21, the insulating cylinder 24 that encloses the mechanical contact portion 21, and the bellows 25 provided inside the insulating cylinder 24.
  • the fixed contact 22 and the movable contact 23 of the mechanical contact portion 21 are provided so that they can come into contact with and separate from each other.
  • the fixed contact 22 is fixedly arranged with respect to the insulating cylinder 24.
  • the movable contact 23 is provided so as to be displaceable with respect to the insulating cylinder 24.
  • the contact operation direction is one horizontal direction and is parallel to the first direction X.
  • the insulating cylinder 24 is formed in a cylindrical shape extending along the contact operation direction.
  • the insulating tube 24 is a porcelain tube made of, for example, an insulating material.
  • the inside of the insulating cylinder 24 is kept in a vacuum.
  • a through hole into which the current-carrying shaft 34 is airtightly inserted is formed in the first end portion of the insulating cylinder 24.
  • a through hole into which the operating rod 35 is inserted is formed at the second end of the insulating cylinder 24.
  • the bellows 25 is arranged inside the insulating cylinder 24 so as to surround the operation rod 35.
  • One end of the bellows 25 is fixed to the outer peripheral surface of the movable contact 23.
  • the other end of the bellows 25 is fixed to the second end of the insulating cylinder 24.
  • the bellows 25 maintains the vacuum inside the vacuum valve 20 while allowing the movable contact 23 and the operating rod 35 to be displaced with respect to the insulating cylinder 24.
  • the closed container 30 is filled with, for example, sulfur hexafluoride (SF 6 ) gas as an insulating gas.
  • the closed container 30 includes a cylindrical insulating cylinder 31, and a first flange 32 and a second flange 33 that close the openings at both ends of the insulating cylinder 31.
  • the insulating cylinder 31 extends along the contact operation direction.
  • the insulating cylinder 31 is, for example, a porcelain tube formed of an insulating material.
  • the first flange 32 and the second flange 33 are each made of a metal material.
  • the energizing shaft 34 is fixed to the first flange 32 of the closed container 30.
  • the energizing shaft 34 is arranged so as to penetrate the insulating cylinder 24 of the vacuum valve 20.
  • the energizing shaft 34 fixedly supports the vacuum valve 20 with respect to the closed container 30.
  • the energizing shaft 34 fixedly supports the fixed contact 22 inside the insulating cylinder 24 of the vacuum valve 20.
  • the current-carrying shaft 34 is formed of a conductive material such as metal and is electrically connected to the fixed contact 22.
  • the current-carrying shaft 34 connects the fixed contact 22 and the first flange 32 of the closed container 30 to each other.
  • “conduction” means a state in which a plurality of objects are electrically connected to each other and have the same potential. Even if the potential difference is caused by the impedances of a plurality of objects, if the potential difference is small enough to be ignored (e.g., several tens of V or less) compared to the rated voltage of the device, it is treated as the same potential.
  • the operating rod 35 extends along the contact operation direction.
  • the first end of the operating rod 35 is connected to the movable contact 23 in the insulating cylinder 24 of the vacuum valve 20.
  • the operation rod 35 is provided slidably in the contact operation direction with respect to the second end of the insulating cylinder 24.
  • the operation rod 35 extends from the inside of the closed container 30 to the outside of the closed container 30 through a through hole 33 a provided in the second flange 33.
  • the operation rod 35 is provided so as to be electrically conductive and slidable with respect to the second flange 33 while maintaining the airtightness inside the closed container 30.
  • a portion of the operation rod 35 extending from the first end portion to the sliding portion with the second flange 33 is formed of a conductive material such as metal.
  • the operation rod 35 electrically connects the movable contact 23 and the second flange 33. At least a part of the operation rod 35 located outside the closed container 30 is provided with a rod insulating portion 35 a that electrically insulates between both ends of the operation rod 35.
  • the operating mechanism 37 is a highly responsive electromagnetic actuator that operates by electric power.
  • the electromagnetic actuator is, for example, an electromagnetic repulsion type operation mechanism.
  • the electromagnetic repulsion type operating mechanism 37 includes a metal plate of good conductor connected to the second end of the operating rod 35, and a coil installed so as to face the metal plate. At the time of driving, a current is applied to the coil to generate an induced current in the opposite direction in the metal plate, and an electromagnetic repulsive force in the opposite direction to the coil is applied to the metal plate to operate the operation rod 35.
  • the operation mechanism 37 is arranged outside the closed container 30 along with the second flange 33 in the contact operation direction.
  • the operating mechanism 37 is connected to the second flange 33 by a connecting member 38.
  • At least a part of the connecting member 38 is formed of an insulating material, and electrically insulates both ends of the connecting member 38.
  • the operation mechanism 37 reciprocates the operation rod 35 in the contact operation direction. As a result, the operating mechanism 37 displaces the movable contact 23 fixedly provided with respect to the operating rod 35, and brings the movable contact 23 into contact with and separates from the fixed contact 22.
  • the condenser 39 is arranged outside the closed container 30.
  • the capacitor 39 is electrically and mechanically connected to the first flange 32 and the second flange 33 of the closed container 30.
  • the capacitor 39 has a high-resistance cylinder in which a dielectric material is enclosed, electrodes are provided at both ends, and the capacitor 39 has capacitance and resistance.
  • the capacitor 39 adjusts the voltage applied to the mechanical contact 21 (see FIG. 4) when the current is cut off and in the open state.
  • FIG. 5 is sectional drawing which shows the gas disconnector of 1st Embodiment.
  • the gas disconnector 11B is different from the vacuum circuit breaker 11A in that the mechanical contact portion 21 is directly arranged in the closed container 30. That is, in the gas disconnector 11 ⁇ /b>B, the insulating gas is present between the fixed contact 22 and the movable contact 23 when the mechanical contact 21 is in the open state.
  • each machine breaking unit 10 the pair of single breaking units 11 are arranged so that each operating rod 35 operates on the same straight line when the mechanical contact unit 21 is opened by the operating mechanism 37.
  • the operation rod 35 of each single interruption unit 11 extends on the same straight line.
  • the operation rod 35 operates in the first direction X when the mechanical contact portion 21 is opened by the operation mechanism 37.
  • the pair of single breaking units 11 are arranged so that the operating directions of the operating rods 35 when the operating mechanism 37 opens the mechanical contact unit 21 are opposite to each other.
  • the pair of single shutoff units 11 are arranged so that the respective operation mechanisms 37 are in contact with each other.
  • the single breaking unit 11 of the one mechanical breaking unit 10 and the single breaking unit 11 of the other mechanical breaking unit 10 are arranged so as to operate on the same straight line when viewed in the vertical direction.
  • the power supply unit 12 supplies electric power to the operating mechanism 37 of the pair of single unit breaking units 11.
  • the power supply unit 12 is provided so that the reference potential becomes the same potential as the operation mechanism 37.
  • the power supply unit 12 includes, for example, a capacitor that supplies power to the operating mechanism 37 when the mechanical contact unit 21 (see FIG. 4) is opened, and a capacitor that supplies power to the operating mechanism 37 when the mechanical contact unit 21 is closed. And a charging device for each capacitor, and a switching element that holds each capacitor in a charged state and discharges when power is supplied (both not shown).
  • the control unit 13 monitors the states of the power supply unit 12 and the operation mechanism 37 of the pair of single unit breaking units 11. In addition, the control unit 13 controls the power supply from the power supply unit 12 to the operation mechanism 37 of the pair of single unit breaking units 11.
  • the mechanical breaker support plate 14 supports the pair of single breakers 11, the power supply 12 and the controller 13 from below.
  • the mechanical blocking unit support plate 14 is formed of a metal material such as an aluminum alloy.
  • the mechanical blocking section support plate 14 is formed in a rectangular shape in plan view.
  • the mechanical blocking portion support plate 14 is arranged such that two sides of the outer edge thereof are parallel to the contact operation direction.
  • the mechanical blocking unit support plate 14 extends in both the first direction X and the second direction Y.
  • the mechanical blocking unit support plate 14 is stacked in a plurality of stages in the vertical direction on the insulating column 60.
  • each mechanical shutoff unit 10 at least a part of the sealed container 30 of the pair of single shutoff units 11 is arranged outside the mechanical shutoff unit support plate 14 in the horizontal direction.
  • the hermetically sealed container 30 of the pair of single unit blocking parts 11 is arranged so as to project from the mechanical blocking part support plate 14 when viewed in the vertical direction.
  • only a part of the closed container 30 is horizontally arranged outside the mechanical block supporting plate 14, but the entire closed container 30 is horizontal and outside the mechanical block supporting plate 14. May be placed in. It suffices that a portion of the closed container 30 having the same potential as the fixed contact 22 (for example, the first flange 32) is arranged outside the machine blocking portion support plate 14 in the horizontal direction.
  • the arrangement in the horizontal direction on the outside of the mechanical block supporting plate 14 will be described with another expression with reference to FIG. 3.
  • the contact operation direction described above is regarded as a projection line
  • two vertical projection planes that include two sides that are in a positional relationship of the projection line and the twist among the four sides that configure the mechanical blocking unit support plate 14 are defined. be able to. It suffices that at least a part of the closed container 30 is arranged so as to project from a space (a space on the side where the operation mechanism 37 exists) partitioned by the two vertical projection planes.
  • the mechanical shutoff unit 10 further includes a support portion 15 and an in-unit bus bar 16 (conductive member).
  • the support portion 15 is interposed between each of the pair of single-piece blocking portions 11 and the mechanical blocking portion support plate 14.
  • the support part 15 supports the single block part 11 in a state of being floated from the mechanical block part support plate 14.
  • the support portion 15 includes a pair of first support portions 15 ⁇ /b>A interposed between the second flange 33 of the single cutoff portion 11 and the mechanical cutoff portion support plate 14, an operation mechanism 37 of the single cutoff portion 11, and a mechanical cutoff portion support plate.
  • a pair of second support portions 15B interposed between the second support portion 15B and the second support portion 15B.
  • One first support portion 15A includes an insulating portion 15a that shuts off electrical continuity between the second flange 33 and the mechanical shutoff portion support plate 14.
  • the second flange 33 of the single body breaking portion 11 supported by the one first supporting portion 15A is electrically insulated from the mechanical breaking portion supporting plate 14.
  • the other first support portion 15 ⁇ /b>A electrically connects the second flange 33 of the single cutoff portion 11 and the mechanical cutoff portion support plate 14.
  • the second support portion 15B electrically connects the operation mechanism 37 and the mechanical blocking portion support plate 14.
  • the bus bar 16 in the unit connects a pair of the single breaking units 11 in series.
  • the in-unit bus bar 16 is electrically and mechanically connected to each of the second flanges 33 of the pair of single body breaking portions 11.
  • the in-unit bus bar 16 extends above the operation mechanism 37 of the pair of single-body blocking portions 11 so as to straddle the pair of operation mechanisms 37.
  • the in-unit bus bar 16 is made of a conductive material such as metal. As a result, the in-unit bus bar 16 electrically connects the second flanges 33 of the pair of single body breaking portions 11 and connects the mechanical contact portions 21 of the pair of single body breaking portions 11 in series.
  • the insulating support column 60 is made of, for example, an insulator, polymer, fiber reinforced plastic, or the like.
  • the insulating column 60 is erected on the foundation 5.
  • the insulating support column 60 extends along the vertical direction.
  • Each insulating column 60 supports a corner portion of each machine blocking portion support plate 14 stacked in a plurality of stages.
  • the insulating support column 60 electrically insulates the plurality of machine interruption units 10 from each other, and also electrically insulates each machine interruption unit 10 from the ground, and fixedly supports each machine interruption unit 10. .
  • each of the insulating support columns 60 may extend continuously from the lower end to the upper end, or may be divided into a plurality of parts so as to sandwich the mechanical blocking section support plate 14. The same applies to other insulating columns described later.
  • the power supply unit 70 is installed on the foundation 5 on the side of the mechanical shutoff unit 10.
  • the power supply unit 70 is arranged between the mechanical interruption unit 10 and the commutation device 4 (see FIG. 1 ).
  • the power supply unit 70 is arranged at a position overlapping the mechanical interruption unit 10 when viewed in the second direction Y.
  • the power supply unit 70 supplies power from the ground to the power supply unit 12 of the machine interruption unit 10.
  • the power supply unit 70 supplies electric power while electrically insulating the ground and the power supply unit 12 from each other and electrically insulating the plurality of mechanical interruption units 10 from each other.
  • the power feeding unit 70 includes a two-stage insulating transformer that is vertically stacked.
  • the lower isolation transformer supplies power to the power supply unit 12 of the lower mechanical interruption unit 10.
  • the upper isolation transformer supplies electric power to the power supply unit 12 of the upper mechanical cutoff unit 10 while electrically insulating the power supply unit 12 of the lower mechanical cutoff unit 10 and the power supply unit 12 of the upper mechanical cutoff unit 10.
  • the power supply unit 70 may be a laser power supply device, a device having a power generation function by air through an insulating tube, or the like.
  • FIG. 6 is a diagram showing an energization path in the mechanical interruption unit according to the first embodiment.
  • the first flange 32 and the second flange 33 are electrically connected.
  • the second flange 33 of one of the pair of single blockers 11 is blocked from direct conduction with the mechanical block support plate 14 by the insulating portion 15a of the first support 15A.
  • the second flange 33 is cut off from direct conduction with the operation mechanism 37 by the rod insulating portion 35a of the operation rod 35 and the connecting member 38.
  • the second flanges 33 of the pair of single-body blocking portions 11 are electrically connected to each other via the intra-unit bus bar 16. Therefore, the current flowing through the pair of single cutoff portions 11 does not flow from the first flange 32 of the single cutoff portion 11 to the mechanical cutoff portion support plate 14 and the operation mechanism 37, but flows through the internal bus bar 16 and the other single cutoff portion. It reaches the first flange 32 of the blocking portion 11 (see arrow A in the figure).
  • each part of the mechanical interruption unit 2 will be described.
  • the second flange 33 of the single unit interruption section 11 is directly connected to the machine interruption section support plate 14 via the first support section 15A.
  • the operation mechanism 37 of the pair of single interruption units 11 is electrically connected to the machine interruption unit support plate 14 via the second support 15B.
  • the second flanges 33 of the pair of single-body blocking portions 11 are electrically connected to each other by the intra-unit bus bar 16. Therefore, the pair of operation mechanisms 37 has the same potential as the movable contactors 23 of the pair of mechanical contact portions 21 and the mechanical blocking portion support plate 14.
  • the reference potential of the operation mechanism 37 is the same as the movable contact 23 of the mechanical contact portion 21 and the mechanical blocking portion support plate 14. Further, in each machine interruption unit 10, since the machine interruption part support plate 14 is insulated from the ground, the mechanical contact portion 21 that is electrically connected to the machine interruption part support plate 14 is also electrically insulated from the earth. A part of the sealed container 30 is electrically connected to the mechanical contact portion 21, and thus is electrically insulated from the ground.
  • Both ends of the mechanical contact module 90 are connected to a DC transmission system that connects a supply point and a demand point.
  • the mechanical contact module 90 includes a first connection point A1 and a second connection point A2 that are connected to the DC power transmission system.
  • the first connection point A1 and the second connection point A2 are electrical ends of the mechanical contact module 90.
  • the first connection point A1 is provided in the upper mechanical shutoff unit 10.
  • the first connection point A1 constitutes an end of the mechanical contact module 90 on the supply point side (DC voltage source side) of the DC power transmission system.
  • the second connection point A2 is provided in the lower mechanical shutoff unit 10.
  • the second connection point A2 constitutes an end portion of the mechanical contact module 90 on the demand point side of the DC power transmission system.
  • FIG. 7 is a perspective view showing the arrester portion of the first embodiment.
  • the arrester unit 3 includes an arrester 100, an arrester support plate 110 on which the arrester 100 is arranged, a plurality of (four in this embodiment) insulating columns 120 that support the arrester support plate 110, Equipped with.
  • the arrester 100 is formed by a plurality of non-linear elements 102 that conducts when a certain voltage or more is applied.
  • the arrester 100 includes a plurality of modules 101 (two in the present embodiment) in which a plurality of nonlinear elements 102 are connected in parallel.
  • the arrester 100 is formed by connecting the modules 101 in series.
  • the arrester support plate 110 supports the modules 101 one by one. Therefore, in the present embodiment, two arrester support plates 110 are provided.
  • the arrester support plate 110 is made of a metal material such as an aluminum alloy.
  • the arrester support plate 110 is formed in a rectangular shape in plan view. In this embodiment, the arrester support plate 110 extends in both the first direction X and the second direction Y.
  • the arrester support plate 110 is stacked in a plurality of stages in the vertical direction on the insulating support column 120.
  • the insulating column 120 is made of, for example, an insulator, polymer, fiber reinforced plastic, or the like.
  • the insulating column 120 is erected on the foundation 5.
  • the insulating support column 120 extends along the vertical direction.
  • Each insulating column 120 supports a corner portion of the arrester support plate 110 stacked in a plurality of stages.
  • the insulating support column 120 electrically insulates the plurality of arrester support plates 110 from each other, and also electrically supports the arrester 100 with respect to the ground, and fixedly supports the arrester support plate 110 and the arrester 100.
  • the arrester 100 includes a first connection point B1 and a second connection point B2 that are connected to the DC power transmission system.
  • the first connection point B1 and the second connection point B2 are electrical end portions of the arrester 100.
  • the first connection point B1 is provided in the upper module 101.
  • the first connection point B1 constitutes an end portion on the supply point side of the DC power transmission system in the arrester 100.
  • the second connection point B2 is provided in the lower module 101.
  • the second connection point B2 constitutes an end portion of the arrester 100 on the demand point side of the DC power transmission system.
  • FIG. 8 is a perspective view which shows the commutation apparatus of 1st Embodiment.
  • the commutation device 4 includes a reactor unit 210 including a reactor 211, a capacitor unit 220 including a capacitor bank 221, and a charger unit 240 including a charger 241.
  • the reactor 211, the capacitor bank 221, and the charging device 241 constitute the commutation circuit 200.
  • the commutation circuit 200 is formed by connecting the reactor 211 and the injector 241 in series at both ends of the capacitor bank 221.
  • the reactor unit 210 is arranged side by side with the arrester unit 3 in the second direction Y.
  • the capacitor unit 220 is arranged side by side with the reactor unit 210 in the first direction X.
  • the capacitor unit 220 is arranged side by side in the second direction Y with the mechanical shutoff unit 2.
  • the injector unit 240 is arranged below the reactor unit 210.
  • Reactor 211, capacitor bank 221, and charging device 241 are arranged at the same position in the second direction Y.
  • FIG. 9 is a perspective view showing the reactor unit and the charging unit of the first embodiment.
  • the reactor unit 210 includes a reactor 211, a pair of stays 213 that support the reactor 211, and a plurality of (four in this embodiment) insulating columns 215 that support the pair of stays 213.
  • the both ends of the reactor 211 in the second direction Y are supported by a pair of stays 213.
  • Each of the pair of stays 213 extends in the first direction X.
  • the pair of stays 213 are arranged at intervals in the second direction Y.
  • the pair of stays 213 are arranged so as to overlap each other when viewed in the second direction Y.
  • the insulating support 215 is made of, for example, an insulator, polymer, fiber reinforced plastic, or the like.
  • the insulating support 215 is erected on the foundation 5.
  • the insulating column 215 extends along the vertical direction.
  • the insulating support columns 215 support the ends of the pair of stays 213.
  • the insulating support columns 215 electrically insulate the pair of stays 213 from each other and electrically insulate the reactor 211 from the ground, and also fixedly support the pair of stays 213 and the reactor 211.
  • FIG. 10 is a perspective view showing the capacitor unit according to the first embodiment.
  • the capacitor unit 220 includes a capacitor bank 221, a capacitor support plate 231 on which the capacitor bank 221 is arranged, and a plurality of (four in this embodiment) insulating struts 233 supporting the capacitor support plate 231. And a charging unit 235 that charges the capacitor bank 221.
  • the capacitor bank 221 includes a plurality (three in this embodiment) of capacitor modules 222 in which a plurality (eight in this embodiment) of capacitors 223 are connected in parallel.
  • the capacitor bank 221 is formed by connecting the capacitor modules 222 in series. Thereby, the capacitor bank 221 can be regarded as one capacitor.
  • the capacitor module 222 includes a plurality of capacitors 223, a first bus bar 224 that electrically connects the first terminals of the plurality of capacitors 223 to each other, and a second bus bar 225 that electrically connects the second terminals of the plurality of capacitors 223 to each other.
  • the capacitor modules 221 are electrically connected to each other by the third bus bar 226.
  • the capacitor support plate 231 supports the capacitor modules 222 one by one. Therefore, in this embodiment, three capacitor support plates 231 are provided.
  • the capacitor support plate 231 is made of an insulating material such as fiber reinforced plastic, a metal material such as an aluminum alloy, or the like.
  • the capacitor support plate 231 is formed in a rectangular shape in plan view. In the present embodiment, the capacitor support plate 231 extends in both the first direction X and the second direction Y.
  • the capacitor support plates 231 are vertically stacked on the insulating support columns 233 in multiple stages.
  • the insulating support 233 is made of, for example, an insulator, polymer, fiber reinforced plastic, or the like.
  • the insulating support 233 is erected on the foundation 5.
  • the insulating column 233 extends along the vertical direction.
  • Each insulating support 233 supports the corners of the capacitor support plates 231 that are stacked in multiple stages.
  • the insulating support 233 electrically insulates the plurality of capacitor support plates 231 from each other, electrically insulates the capacitor bank 221 from the ground, and fixedly supports the capacitor support plate 231 and the capacitor bank 221. There is.
  • the charging unit 235 is installed on the foundation 5 beside the capacitor bank 221 and the capacitor support plate 231.
  • the charging unit 235 is arranged between the capacitor bank 221 and the mechanical shutoff unit 2 (see FIG. 1).
  • the charging unit 235 is a resistor.
  • the charging unit 235 electrically connects between the capacitor bank 221 and the charging device 241 in the commutation circuit 200 and the ground (see FIG. 8 ). That is, the first end of the charging unit 235 is electrically connected to the end of the capacitor bank 221 on the side of the charger 241. The second end of the charging unit 235 is grounded. As a result, the capacitor bank 221 can be charged with the potential difference between the system potential and the ground potential.
  • the feeder unit 240 includes a feeder 241, a feeder support plate 243 on which the feeder 241 is arranged, and a plurality of (four in the present embodiment) supporting the feeder support plate 243.
  • An insulating support 245 and a power feeding unit 247 that supplies electric power to the charging device 241 are provided.
  • the injector 241 is opened during the steady power transmission of the DC power transmission system to shut off the commutation circuit 200.
  • the throwing device 241 is turned on when shutting off the DC power transmission system, and brings the both ends of the commutation circuit 200 into a conducting state.
  • At least one insertion device 241 is provided.
  • the thrower 241 is a high speed thrower.
  • the high-speed thrower is a thrower that can be closed faster than mechanical contacts driven by hydraulic pressure, spring restoring force, and electromagnetic force of an electromagnetic solenoid.
  • the injector 241 is a discharge injector (gap switch) that starts energization by lowering the insulation performance between the pair of fixed electrodes 251 and 252 to cause dielectric breakdown (see FIG. 11 ).
  • FIG. 11 is a partial cross-sectional view showing the injector of the first embodiment.
  • the injector 241 includes a first electrode 251 and a second electrode 252, a container 260 that houses the first electrode 251 and the second electrode 252, and a container 260 that is close to the first electrode 251.
  • a trigger electrode 265 that is arranged as a pair
  • a pulse power source 267 that applies a pulse voltage between the first electrode 251 and the trigger electrode 265, and a connecting member 269 that connects the pulse power source 267 and the container 260.
  • the first electrode 251 and the second electrode 252 are formed in a columnar shape having substantially the same diameter.
  • the first electrode 251 and the second electrode 252 are arranged coaxially with a space.
  • the surfaces of the first electrode 251 and the second electrode 252 facing each other are formed in a hemispherical shape.
  • the first electrode 251 is formed with a through hole 251a in which the trigger electrode 265 is arranged.
  • the through hole 251a is formed coaxially with the central axis of the first electrode 251.
  • the through hole 251a penetrates the first electrode 251 with a constant diameter.
  • the container 260 is filled with dry air, sulfur hexafluoride (SF 6 ) gas, or the like.
  • the container 260 has a cylindrical insulating cylinder 261 with both ends opened, a first flange 262 that closes a first end opening of the insulating cylinder 261, and a second flange 263 that closes a second end opening of the insulating cylinder 261. Equipped with.
  • the insulating cylinder 261 surrounds the first electrode 251 and the second electrode 252.
  • the insulating cylinder 261 is arranged coaxially with the first electrode 251 and the second electrode 252.
  • the first flange 262 and the second flange 263 are each made of a metal material.
  • the first electrode 251 is fixed to the first flange 262.
  • the first flange 262 is electrically connected to the first electrode 251.
  • a through hole 262a coaxial with the through hole 251a of the first electrode 251 is formed in the first flange 262.
  • the second electrode 252 is fixed to the second flange 263.
  • the second flange 263 is electrically connected to the second electrode 252.
  • the trigger electrode 265 is made of a conductive material such as metal or carbon and has a needle-like shape with a tapered tip.
  • a conductive material such as metal or carbon
  • stainless steel, copper, tungsten, or the like can be used as the metal conductive material.
  • the trigger electrode 265 is inserted into the through hole 262 a of the first flange 262 and the through hole 251 a of the first electrode 251 from the outside of the container 260 so that the tip of the trigger electrode 265 faces the second electrode 252.
  • An insulating support cylinder 271 is airtightly inserted in the outer peripheral surface of the trigger electrode 265.
  • the insulating support cylinder 271 is airtightly inserted into the inner peripheral surface of each of the through hole 262 a of the first flange 262 and the through hole 251 a of the first electrode 251. That is, the trigger electrode 265 is supported by the first electrode 251 and the first flange 262 via the insulating support cylinder 271. The tip of the trigger electrode 265 is arranged at the same position as the end of the first electrode 251 on the second electrode 252 side in the extending direction of the first electrode 251.
  • the pulse power source 267 is arranged side by side with the container 260 so as to face the first flange 262 of the container 260.
  • the pulse power source 267 is formed in a rectangular parallelepiped shape.
  • the pulse power source 267 includes a capacitor, a capacitor charging circuit, a resistor, a reactor, a switching device, and the like inside a housing forming an outer shell.
  • a first cable 273 and a second cable 275 extend from the pulse power source 267.
  • the first cable 273 is electrically connected to the base end of the trigger electrode 265.
  • the second cable 275 is electrically connected to the first flange 262 of the container 260.
  • the pulse power supply 267 outputs a pulse voltage between the first cable 273 and the second cable 275 when a command signal is input from the outside. As a result, a minute discharge is generated between the first electrode 251 and the trigger electrode 265, so that plasma is generated around the first electrode 251. As a result, the insulation between the first electrode 251 and the second electrode 252 is broken and an arc is generated, and an energization path that passes through the first electrode 251 and the second electrode 252 is formed.
  • the connecting member 269 is arranged between the container 260 and the pulse power source 267.
  • the connecting member 269 is made of a metal material.
  • the connecting member 269 is formed in a cylindrical shape having substantially the same diameter as the container 260.
  • the connecting member 269 is arranged coaxially with the container 260 and surrounds the first cable 273 and the second cable 275.
  • the first end opening of the connecting member 269 is electrically and mechanically connected to the first flange 262 of the container 260.
  • the second end opening of the connecting member 269 is electrically and mechanically connected to the housing of the pulse power supply 267.
  • the casing of the pulse power source 267 has the same potential as the first electrode 251.
  • the reference potential of the pulse power supply 267 is the same as that of the first electrode 251.
  • the pair of injectors 241 are arranged side by side in the horizontal direction.
  • the first charging device 241 is arranged so that the container 260 is located on the side of the capacitor unit 220 in the first direction X with respect to the pulse power source 267.
  • the second thrower 241 is arranged side by side on the arrester section 3 side with respect to the pulse power source 267 of the first thrower 241.
  • the second charging device 241 is arranged such that the container 260 is located on the arrester unit 3 side in the second direction Y with respect to the pulse power supply 267.
  • the thrower support plate 243 collectively supports a pair of throwers 241.
  • the thrower support plate 243 is formed of a metal material such as an aluminum alloy.
  • the thrower support plate 243 is formed in a rectangular shape in plan view.
  • the feeder support plate 243 extends in both the first direction X and the second direction Y.
  • the thrower support plate 243 is vertically stacked on the insulating support column 245 in a plurality of stages.
  • the thrower support plate 243 has the same potential as the casing of the pulse power source 267 of each of the pair of throwers 241.
  • the feeder support plate 243 has the same potential as the reference potential of the pulse power source 267 of each of the pair of feeders 241.
  • the first electrode 251 of the injector 241 is electrically connected to the housing of the pulse power source 267 via the connecting member 269. Further, the casing of the pulse power source 267 is electrically connected to the thrower support plate 243. As a result, the casings of the pair of pulse power sources 267 are electrically connected to each other, so that the first electrodes 251 of the pair of injectors 241 are also electrically connected to each other. Note that the casings of the pair of pulse power sources 267 may be electrically connected to each other by being adjacent to each other.
  • an energization path from the second flange 263 of the one charging device 241 to the second flange 263 of the other charging device 241 is formed.
  • the energization path from the second flange 263 of the charging device 241 to the second flange 263 of the other charging device 241 may be limited to a bus bar (not shown).
  • the insulating support 245 is made of, for example, an insulator, polymer, fiber reinforced plastic, or the like.
  • the insulating column 245 is erected on the foundation 5.
  • the insulating support 245 extends along the vertical direction.
  • Each insulating support 245 supports a corner of the feeder support plate 243.
  • the insulating support 245 is also used as the insulating support 215 of the reactor unit 210.
  • the insulating column 245 electrically insulates the charging device 241 from the ground, and fixedly supports the charging device support plate 243 and the charging device 241.
  • the power feeding unit 247 is installed on the foundation 5 beside the thrower 241 and the thrower support plate 243.
  • the power feeding section 247 is arranged between the feeder support plate 243 and the capacitor unit 220 (see FIG. 8).
  • the power feeding unit 247 supplies power to the pulse power source 267 from the ground.
  • the power feeding unit 247 supplies electric power while electrically insulating the ground and the pulse power source 267.
  • the power feeding unit 247 is, for example, an insulating transformer.
  • the container 260 of the pair of feeders 241 is horizontally arranged outside the feeder support plate 243.
  • the containers 260 of the pair of feeders 241 are arranged so as to project from the feeder support plate 243 when viewed in the vertical direction.
  • the entire container 260 is horizontally arranged outside the feeder support plate 243, but only a part of the container 260 is horizontally arranged outside the feeder support plate 243. May be. It suffices that a portion of the container 260 having the same potential as the second electrode 252 (for example, the second flange 263) is arranged outside the feeder support plate 243 in the horizontal direction.
  • one electrical end of the reactor 211 is electrically connected by a bus bar 201 to an end of the capacitor bank 221 on the supply point side of the DC transmission system.
  • the second flange 263 of the first thrower 241 is electrically connected to the end of the capacitor bank 221 on the demand point side of the DC power transmission system by the bus bar 202.
  • the commutation circuit 200 has a configuration in which the reactor 211 and the charging device 241 are connected in series at both ends of the capacitor bank 221.
  • the arrangement of the reactor 211, the capacitor bank 221, and the charger 241 in the commutation circuit 200 is not limited to the above example.
  • the charging unit of the capacitor unit may be connected between the charging device and the capacitor bank.
  • the commutation device 4 includes a first connection point C1 and a second connection point C2 that are connected to the DC transmission system.
  • the first connection point C1 and the second connection point C2 are electrical ends of the commutation circuit 200.
  • the first connection point C1 is provided on the reactor 211.
  • the first connection point C1 constitutes an end portion of the commutation circuit 200 on the supply point side of the DC power transmission system.
  • the second connection point C2 is provided on the second flange 263 of the second thrower 241.
  • the second connection point C2 constitutes an end of the commutation circuit 200 on the demand point side of the DC power transmission system.
  • the electrical connection of the mechanical interruption part 2, the arrester part 3 and the commutation device 4 will be described.
  • the first connection point A1 of the mechanical interruption section 2 and the first connection point B1 of the arrester section 3 are electrically connected by a bus bar 301.
  • the second connection point A2 of the mechanical interruption unit 2 and the second connection point B2 of the arrester unit 3 are electrically connected by a bus bar 302.
  • the arrester 100 of the arrester unit 3 is connected in parallel to the mechanical contact module 90 of the mechanical interruption unit 2.
  • the first connection point B1 of the arrester unit 3 is electrically connected to the power transmission line on the supply point side of the DC power transmission system by the bus bar 303.
  • the second connection point B2 of the arrester unit 3 is electrically connected to the power transmission line on the demand point side of the DC power transmission system by the bus bar 304.
  • the first connection point C1 of the commutation device 4 and the first connection point B1 of the arrester unit 3 are electrically connected by a bus bar 305.
  • the second connection point C2 of the commutation device 4 and the second connection point B2 of the arrester unit 3 are electrically connected by a bus bar 306.
  • the commutation circuit 200 of the commutation device 4 is connected in parallel to the arrester 100 of the arrester unit 3 and the mechanical contact module 90 of the mechanical interruption unit 2.
  • the injector 241 of the commutation device 4 is arranged in the commutation circuit 200 at the most demand point side of the DC transmission system.
  • the operation of the DC breaker 1 will be described.
  • the power transmission current flows through the mechanical contact module 90.
  • no current flows in the arrester 100 and the commutation circuit 200.
  • the capacitor bank 221 of the commutation circuit 200 is charged by the charging unit 235.
  • the control device detects the fault current, gives a fault shutoff command to the DC circuit breaker 1, and brings the commutation circuit 200 into a conducting state.
  • a control device gives a closing command to the pulse power source 267 of the charging unit 240 to switch on the pair of charging devices 241.
  • the mechanical contact portions 21 of all the single breaking portions 11 of the mechanical contact module 90 are opened.
  • a controller gives an opening operation command to the controller 13 of the machine breaking unit 10 to open the mechanical contact 21 of each single breaking unit 11.
  • the pair of operation rods 35 operate in the opposite directions on the same straight line, so that the impact force and reaction force generated in the operation mechanism 37 are offset.
  • the commutation circuit 200 becomes conductive, the charged capacitor bank 221 is discharged.
  • the current of the mechanical contact module 90 connected in parallel to the commutation circuit 200 decreases due to the LC resonance of the capacitor bank 221 and the reactor 211, and a current zero point is generated in the mechanical contact module 90. To be done.
  • the arc is extinguished at the mechanical contact portion 21 of each single-piece breaking portion 11, and the energization path passing through the mechanical contact module 90 is cut off.
  • the timing of turning on the throwing device 241 may be the same as the timing of opening the mechanical contact portion 21 of the single breaking unit 11, or may be after the timing of opening the mechanical contact portion 21 of the single breaking unit 11. ..
  • the closing device 241 since the closing device 241 has a quicker response than the mechanical contact portion 21, by closing the closing device 241 at the above timing, the zero current point before the mechanical contact portion 21 is completely opened. Can be prevented from being generated.
  • the fault current commutates to the arrester 100 connected in parallel to the mechanical contact module 90. After that, the energy of the fault current is absorbed in the arrester 100, and the interruption of the fault current of the DC transmission system is completed.
  • the DC circuit breaker 1 includes the mechanical contact module 90 formed by connecting all the single circuit breakers 11 in series, and the commutation circuit 200 connected in parallel to the mechanical contact module 90. And with.
  • the commutation circuit 200 is formed by connecting a reactor 211, a capacitor bank 221, and a charging device 241 in series.
  • the mechanical contact module connected in parallel to the commutation circuit 200 is activated by closing the charger 241 to discharge the electric charge of the capacitor bank 221 and LC resonance of the capacitor bank 221 and the reactor 211 in the commutation circuit 200. A zero current point can be generated at 90.
  • the semiconductor circuit breaker connected in parallel with the mechanical contact module as in the prior art is not required, and the device cost can be suppressed.
  • the feeder 241 of the commutation device 4 is a high-speed feeder. According to this configuration, the commutation circuit 200 can be brought into the conducting state at a higher speed than the mechanical contact driven by the hydraulic pressure, the restoring force of the spring, and the electromagnetic force of the electromagnetic solenoid. Therefore, the current flowing through the mechanical contact module 90 can be interrupted at the same speed as the configuration using the semiconductor circuit breaker as in the related art. As described above, it is possible to provide the DC circuit breaker 1 capable of shortening the current interruption time and suppressing the device cost.
  • the injector 241 of the present embodiment is a discharge injector that lowers the insulating performance between the pair of fixed electrodes 251 and 252 to cause dielectric breakdown to start energization.
  • the mechanical drive unit is not provided in the injector. Therefore, it is possible to configure a high-speed injector that can be closed at a higher speed than the mechanical contact driven by the hydraulic pressure, the restoring force of the spring, and the electromagnetic force of the electromagnetic solenoid.
  • the injector 241 has a container 260 that houses the first electrode 251 and the second electrode 252, and a pulse power supply 267 that is provided at the same potential as the first electrode 251.
  • the injector support plate 243 is made of a metal material and is provided at the same potential as the pulse power source 267.
  • the container 260 of the charging device 241 is arranged outside the charging device support plate 243 in the horizontal direction. According to this configuration, it is possible to move the pulse power source 267 closer to the feeder support plate 243 and move the portion of the container 260 having the same potential as the second electrode 252 (second flange 263) away from the feeder support plate 243.
  • the portion of the container 260 having the same potential as the second electrode 252 is insulated from the feeder support plate 243.
  • the feeder 241 and the feeder support plate 243 can be brought closer to each other in the vertical direction. Therefore, it is possible to prevent the space in which the feeder 241 and the feeder support plate 243 are arranged from increasing in size in the vertical direction.
  • the commutation device 4 includes a resistor (charging unit 235) that electrically connects between the capacitor bank 221 and the charging device 241 and the ground.
  • a resistor charging unit 235
  • the capacitor bank 221 can be charged. Therefore, the configuration of the DC circuit breaker 1 can be simplified as compared with the case where a DC power source or the like for charging the capacitor bank is separately provided. Therefore, the equipment cost of the DC circuit breaker 1 can be further suppressed.
  • the mechanical shutoff unit 2 and the arrester unit 3 are arranged side by side in the first direction X.
  • the commutation device 4 is arranged side by side in the second direction Y with respect to the mechanical blocking unit 2 and the arrester unit 3. According to this configuration, the mechanical shutoff unit 2, the arrester unit 3, and the commutation device 4 are collectively arranged as compared with the case where the mechanical shutoff unit, the arrester unit, and the commutation device are arranged in a straight line. You can Therefore, the installation area of the DC circuit breaker 1 can be reduced.
  • the reactor unit 210, the condenser unit 220, and the thrower unit 240 are arranged at the same position in the second direction Y. According to this configuration, the space occupied by the commutation device 4 in the second direction Y is greater than that in the case where any one of the reactor unit, the capacitor unit, and the injector unit is arranged in the second direction Y when viewed from the first direction X. Can be made smaller. Therefore, the mechanical shutoff unit 2, the arrester unit 3, and the commutation device 4 can be arranged more intensively.
  • the mechanical shutoff unit 2 also includes a power feeding unit 70 that supplies power to the operation mechanism 37 of the single shutoff unit 11.
  • the power feeding unit 70 includes an insulating transformer.
  • the insulating transformer is arranged between the mechanical shutoff unit 10 and the commutation device 4. With this configuration, it is possible to effectively utilize the space between the mechanical interruption unit 10 and the commutation device 4 and suppress an increase in the installation area of the DC circuit breaker 1.
  • the single cutoff unit 11 has a fixed contact 22 and a movable contact 23 and is electrically insulated from the ground, and a mechanical contact 21 and an insulating gas are sealed to electrically connect the ground. It has an insulated closed container 30, an operation rod 35 connected to the movable contact 23, and an operation mechanism 37 connected to the operation rod 35 and provided at the same potential as the movable contact 23. According to this configuration, since the closed container 30 is not grounded to the ground, the insulation between the closed container 30 and the mechanical contact portion 21 can be omitted. Therefore, as compared with the case where the closed container is electrically insulated from the mechanical contact portion by being grounded to the ground, the closed container 30 can be downsized and the single cutoff portion 11 can be prevented from increasing in size.
  • the respective operating rods 35 are operated on the same straight line by the operating mechanism 37, and the operating directions of the operating rods 35 by the operating mechanism 37 are opposite directions. It is located in.
  • the pair of single-piece breaking units 11 arranged on the mechanical breaking unit support plate 14 are arranged so that the respective operating mechanisms 37 contact each other.
  • the impact force and the recoil in the situation where the impact force and the recoil that occur in the operation mechanism 37 when the operation rod 35 is operated are offset, It is possible to directly offset between the operating mechanisms 37 made of a metal material having a relatively high strength without canceling through the closed container 30 made of a porcelain tube having a relatively low strength. Therefore, it is possible to prevent a large force from being applied to the closed container 30. Thereby, the breakage of the single breaking unit 11 can be suppressed, and the reliability of the mechanical breaking unit 10 can be improved.
  • the installation area of the DC circuit breaker 1 is larger than that in the case where the machine interruption units are arranged side by side in the horizontal direction. Can be reduced.
  • the mechanical shutoff unit 10 also includes a mechanical shutoff unit support plate 14 supported by an insulating column 60 on which a pair of single shutoff units 11 are arranged.
  • the mechanical blocking section support plate 14 is made of a metal material and is provided at the same potential as the operating mechanism 37 of the pair of single blocking sections 11. At least a part of the closed container 30 of each of the pair of single block units 11 is arranged outside the mechanical block support plate 14 in the horizontal direction. According to this configuration, it is possible to move the operation mechanism 37 closer to the mechanical interruption portion support plate 14 and move the portion (first flange 32) of the closed container 30 having the same potential as the fixed contact 22 away from the mechanical interruption portion support plate 14. it can.
  • the entire hermetically sealed container 30 is horizontally arranged at a position overlapping the mechanical blocking portion support plate 14, a portion of the hermetically sealed container 30 having the same potential as that of the fixed contact 22 and a mechanical blocking portion support plate. It is possible to bring the single cutoff portion 11 and the mechanical cutoff portion support plate 14 closer to each other in the vertical direction while insulating them from each other. Therefore, it is possible to suppress an increase in the size of the mechanical blocking unit 2 in the vertical direction, and to suppress a bending moment generated in the insulating support column 60 that supports the mechanical blocking unit 10.
  • the operation rod 35 of the single body breaking portion 11 has a rod insulating portion 35 a that blocks the conduction between the movable contact 23 and the operating mechanism 37.
  • the mechanical shutoff unit 10 has an in-unit bus bar 16 and an insulating portion 15a.
  • the in-unit bus bar 16 electrically connects the second flanges 33 of the pair of single-piece breaking units 11 to each other.
  • the insulating portion 15 a is provided on the support portion 15 that is interposed between the second flange 33 of the single unit breaking portion 11 and the mechanical blocking portion support plate 14.
  • the insulating portion 15a cuts off electrical continuity between the second flange 33 of the one unit breaking unit 11 and the mechanical blocking unit support plate 14.
  • the second flange 33 of the other single cutoff portion 11 and the mechanical cutoff portion support plate 14 are electrically connected to each other through the first support portion 15A.
  • the power supply path from the second flange 33 through the operation rod 35 to the operation mechanism 37 is cut off by the rod insulating section 35a.
  • the mechanical interruption unit 10 the energization path from the second flange 33 on one side to the second flange 33 on the other side through the mechanical interruption part support plate 14 is interrupted by the insulating part 15 a of the support part 15. Therefore, in the mechanical shutoff unit 10, an energization path that passes through the pair of single shutoff parts 11 is formed in the unit busbar 16.
  • the reliability of the mechanical interruption unit 10 can be improved. Since the second flange 33 of the other single breaking unit 11 and the mechanical breaking supporting plate 14 are electrically connected to each other through the first supporting unit 15A, the movable contact 23 and the operating mechanism 37 may be provided at the same potential. it can.
  • FIG. 12 is a partial cross-sectional view showing the injector of the second embodiment.
  • the second embodiment shown in FIG. 12 is different from the first embodiment in that a charging device 341 is provided instead of the charging device 241 of the first embodiment.
  • the configuration other than that described below is the same as that of the first embodiment.
  • the inserter 341 is a high-speed inserter.
  • the high-speed thrower is a thrower that can be closed faster than mechanical contacts driven by hydraulic pressure, spring restoring force, and electromagnetic force of an electromagnetic solenoid.
  • the injector 341 is a discharge injector that starts energization by lowering the insulation performance between the pair of fixed electrodes 351 and 352 to cause dielectric breakdown.
  • the injector 341 is replaced with the 1st electrode 251, the 2nd electrode 252, the container 260, and the trigger electrode 265 in the injector 241 of 1st Embodiment, and replaces the 1st electrode 351, the 2nd electrode 352, the container 360, and the trigger.
  • An electrode 365 is provided.
  • the first electrode 351 and the second electrode 352 are formed in the same manner as the first electrode 251 and the second electrode 252 of the first embodiment except that the through hole is not formed in the first electrode 351.
  • the container 360 houses the first electrode 351 and the second electrode 352.
  • the container 360 is filled with dry air, sulfur hexafluoride (SF 6 ) gas, or the like.
  • the container 360 includes a cylindrical insulating cylinder 361 having both ends opened, a first flange 362 closing the first end opening of the insulating cylinder 361, and a second flange 363 closing the second end opening of the insulating cylinder 361. Equipped with.
  • the insulating cylinder 361 surrounds the first electrode 351 and the second electrode 352.
  • the insulating cylinder 361 is arranged coaxially with the first electrode 351 and the second electrode 352.
  • the insulating cylinder 361 is divided at an intermediate portion in the extending direction of the insulating cylinder 361, and holds an annular trigger electrode 365 described later in an airtight manner.
  • the first flange 362 and the second flange 363 are formed in the same manner as the first flange 262 and the second flange 263 of the first embodiment except that the through hole is not formed in the first flange 362.
  • the trigger electrode 365 is arranged so as to surround the gap between the first electrode 351 and the second electrode 352.
  • the trigger electrode 365 is formed of a conductive material such as metal or carbon.
  • a conductive material such as metal or carbon.
  • stainless steel, copper, tungsten, or the like can be used as the metal conductive material.
  • the trigger electrode 365 is formed in an annular shape and is arranged coaxially with the first electrode 351 and the second electrode 352.
  • the trigger electrode 365 is fixedly supported by the insulating cylinder 361 of the container 360.
  • the inner peripheral portion of the trigger electrode 365 is formed so as to gradually become thinner from the outer side toward the inner side in the radial direction.
  • the trigger electrode 365 is electrically insulated from the first electrode 351 and the second electrode 352.
  • a first cable 273 extending from the pulse power source 267 is electrically connected to the outer periphery of the trigger electrode 365.
  • the pulse power supply 267 outputs a pulse voltage between the first cable 273 and the second cable 275 when a command signal is input from the outside.
  • the electric field is concentrated between the first electrode 351 and the trigger electrode 365, and the electric field between the first electrode 351 and the second electrode 352 is distorted.
  • the insulation between the first electrode 351 and the second electrode 352 is broken and an arc is generated, and an energization path that passes through the first electrode 351 and the second electrode 352 is formed.
  • the injector 341 of the present embodiment is a discharge injector that starts energization by lowering the insulation performance between the pair of fixed electrodes 351 and 352 to cause dielectric breakdown. According to this configuration, the same operational effect as that of the first embodiment can be obtained.
  • FIG. 13 is a perspective view showing a DC circuit breaker of the third embodiment.
  • the third embodiment shown in FIG. 13 is different from the first embodiment in that a charging unit 335 is provided instead of the charging unit 235 in the capacitor unit 220 of the first embodiment.
  • the configuration other than that described below is the same as that of the first embodiment.
  • the charging unit 335 is installed on the foundation 5 on the side of the capacitor bank 221 and the capacitor support plate 231.
  • the charging unit 335 includes a DC power supply 336 and an insulating transformer 337 that supplies electric power to the DC power supply 336.
  • the DC power supply 336 is electrically connected to both ends of the capacitor bank 221.
  • the DC power supply 336 charges the capacitor bank 221 by applying a voltage across the capacitor bank 221.
  • the DC power supply 336 is supported by a plurality of (four in this embodiment) insulating columns 338.
  • the insulating support 338 fixedly supports the DC power supply 336 while electrically insulating the DC power supply 336 from the ground.
  • the insulating transformer 337 is installed on the foundation 5 below the DC power supply 336.
  • the insulating transformer 337 is arranged in a region surrounded by a plurality of insulating columns 338 when viewed in the vertical direction.
  • the isolation transformer 337 supplies electric power from the ground to the DC power supply 336.
  • the isolation transformer 337 supplies electric power while electrically insulating the ground from the DC power supply 336.
  • the charging unit 335 of this embodiment includes the DC power supply 336 that applies a voltage across the capacitor bank 221. With this configuration, the capacitor bank 221 can be charged. Therefore, the same effect as that of the first embodiment can be obtained.
  • FIG. 14 is a perspective view which shows the DC circuit breaker of 4th Embodiment.
  • the fourth embodiment shown in FIG. 14 is different from the first embodiment in that a feeder unit 440 is provided instead of the feeder unit 240 of the first embodiment.
  • the configuration other than that described below is the same as that of the first embodiment.
  • the thrower unit 440 has a configuration in which a thrower 441, a power supply unit 462, and a control unit 463 are arranged on the thrower support plate 243 instead of the thrower 241 of the first embodiment. ..
  • At least one inserter 441 is provided.
  • the thrower 441 is a high speed thrower.
  • the high-speed thrower is a thrower that can be closed at a higher speed than mechanical contacts driven by hydraulic pressure, spring restoring force, and electromagnetic force of an electromagnetic solenoid.
  • the injector 441 is a mechanical injector that drives a pair of contacts separated from each other by an electromagnetic repulsive force to bring them into contact with each other to energize them.
  • the throwing device 441 has a configuration similar to that of the single body breaking unit 11 shown in FIG.
  • the throwing device 441 is formed in the same manner as the single breaking unit 11 except that the moving contact 23 (see FIG. 4) is moved in a different direction by the throwing device operating mechanism 437.
  • the mechanical contact portion 21 (see FIG. 4) of the injector 441 is opened during the steady power transmission of the DC power transmission system to shut off the commutation circuit 200.
  • the mechanical contact portion 21 is closed when the DC power transmission system is shut off, so that both ends of the commutation circuit 200 are brought into conduction.
  • the operation mechanism 437 for injectors is an electromagnetic repulsion type operation mechanism.
  • the injector operating mechanism 437 includes a metal plate of good conductor connected to the operation rod 35 (see FIG.
  • the mechanical contact 21 may be the contact of the vacuum valve 20 described above or a gas contact.
  • the pair of injectors 441 are arranged so that each operation rod 35 operates on the same straight line when the mechanical contact portion 21 of the injector operation mechanism 437 is closed. Specifically, the operating rod 35 of each thrower 441 extends on the same straight line. In the present embodiment, the operating rod 35 operates in the second direction Y when the mechanical contact portion 21 is closed by the injector operating mechanism 437. Further, the injector 441 is arranged so that the operating directions of the operating rods 35 are opposite to each other when the mechanical contact portion 21 is closed by the injector operating mechanism 437. Specifically, the pair of injectors 441 are arranged such that the respective operation mechanisms 437 for the injectors are in contact with each other.
  • the power supply unit 462 supplies electric power to the operation mechanism 437 for the insertion device of the pair of insertion devices 441.
  • the power supply unit 462 is provided so that the reference potential becomes the same potential as the operation mechanism 437 for the injector.
  • the power supply unit 462 includes, for example, a capacitor that supplies power to the operating mechanism 437 for the injector when the mechanical contact 21 of the injector 441 is opened, and an operating mechanism for the injector when the mechanical contact 21 of the injector 441 is closed.
  • a capacitor for supplying electric power to 437, a charging device for each capacitor, and a switching element that holds each capacitor in a charged state and discharges when power is supplied all are not shown).
  • the power supply unit 462 is supplied with power from the power supply unit 247.
  • the control unit 463 monitors the states of the power supply unit 462 and the operation mechanism 437 for the insertion device of the pair of insertion devices 441. Further, the control unit 463 controls the power supply from the power supply unit 462 to the operating mechanism 437 for the injector of the pair of injectors 441.
  • At least a part of the closed container 30 of the pair of feeders 441 is arranged outside the feeder support plate 243 in the horizontal direction.
  • the closed container 30 of the pair of feeders 441 is arranged so as to project from the feeder support plate 243 when viewed in the vertical direction.
  • only a part of the closed container 30 is horizontally arranged outside the feeder support plate 243, but the entire closed container 30 is horizontally arranged outside the feeder support plate 243. It may have been done. It suffices that a portion of the closed container 30 having the same potential as the fixed contact 22 (for example, the first flange 32) is arranged outside the feeder support plate 243 in the horizontal direction.
  • a support portion 465 is interposed between the pair of feeders 441 and the feeder support plate 243.
  • the support portion 465 is configured similarly to the support portion 15 in the mechanical shutoff unit 10.
  • the pair of injectors 441 are connected in series by a bus bar 466.
  • the bus bar 466 is configured similarly to the in-unit bus bar 16 in the mechanical shutoff unit 10.
  • the injector 441 of the present embodiment is a mechanical injector that drives a pair of contacts that are separated from each other by an electromagnetic repulsive force to bring them into contact with each other to energize them. According to this configuration, it is possible to configure a high-speed injector which can be closed at a higher speed than the mechanical contact driven by the hydraulic pressure, the restoring force of the spring, and the electromagnetic force of the electromagnetic solenoid. Therefore, the same effect as that of the first embodiment can be obtained.
  • the feeder support plate 243 is formed of a metal material and is provided at the same potential as the feeder operating mechanism 437 of the pair of feeders 441. At least a part of the closed container 30 of each of the pair of feeders 441 is arranged outside the feeder support plate 243 in the horizontal direction. According to this configuration, it is possible to bring the portion (first flange 32) having the same potential as the fixed contact 22 in the closed container 30 away from the feeder support plate 243 while bringing the feeder operation mechanism 437 close to the feeder support plate 243. it can.
  • the entire hermetically sealed container 30 is horizontally disposed at a position overlapping the feeder support plate 243, a portion of the hermetically sealed container 30 having the same potential as the fixed contact 22 and the feeder support plate 243 are provided. It is possible to bring the injector 441 and the injector support plate 243 closer to each other in the vertical direction while insulating the same. Therefore, it is possible to prevent the space in which the feeder 441 and the feeder support plate 243 are arranged from increasing in size in the vertical direction.
  • FIG. 15 is a perspective view showing a DC circuit breaker of the fifth embodiment.
  • the fifth embodiment shown in FIG. 15 differs from the first embodiment in that the mechanical shutoff unit 2, the arrester unit 3, and the commutation device 4 are arranged in a straight line.
  • the configuration other than that described below is the same as that of the first embodiment.
  • the mechanical shutoff unit 2, the arrester unit 3, and the commutation device 4 are arranged side by side in the first direction X.
  • the sealed containers 30 of the pair of unit breaking units 11 of each machine breaking unit 10 are arranged so as to project from the machine breaking unit support plate 14 in the first direction X.
  • the power feeding unit 70 is arranged in one of the second directions Y with respect to the mechanical interruption unit 10.
  • the arrester unit 3 is adjacent to the mechanical shutoff unit 2. That is, the arrester unit 3 is arranged between the mechanical interruption unit 2 and the commutation device 4.
  • the commutation device 4 is arranged such that the reactor unit 210, the injector unit 240, and the condenser unit 220 are arranged in the first direction X.
  • the reactor unit 210 and the injector unit 240 are arranged between the arrester unit 3 and the capacitor unit 220.
  • the reactor unit 210 the reactor 211 is supported at both ends in the first direction X by a pair of stays 213.
  • the charging section 235 is arranged on the one side in the second direction Y with respect to the capacitor supporting plate 231.
  • the containers 260 of the pair of feeders 241 are arranged so as to project from the feeder support plate 243 in the first direction X.
  • the power feeding unit 247 is arranged on the one side in the second direction Y with respect to the feeder support plate 243.
  • the mechanical blocking unit 2, the arrester unit 3, and the commutation device 4 are arranged side by side in the first direction X. According to this configuration, it is a place where the layout of the offshore platform or the like is limited, and for example, the mechanical shutoff unit 2, the arrester unit 3, and the commutation device 4 cannot be collectively arranged as in the first embodiment.
  • the DC circuit breaker 1 can be arranged even in a place.
  • the triggertron method that induces dielectric breakdown by generating a minute discharge and the electric field distortion method that induces dielectric breakdown by distorting an electric field have been described.
  • a laser trigger method may be applied in which a dielectric breakdown is induced by irradiating a laser between electrodes to ionize the insulating medium.
  • the triggertron method and the electric field distortion method are advantageous from the viewpoint of suppressing the equipment cost.
  • the trigger electrode is easily worn due to minute discharge, so that the electric field distortion method and the laser trigger method are advantageous from the viewpoint of the life of the injector.
  • the injector unit includes a pair of injectors, but the invention is not limited to this.
  • the injector unit may include only one injector or three or more injectors.
  • the dosing unit may also include both a discharge dosing device and a mechanical dosing device.
  • the mechanical shutoff unit 10 includes a pair of single shutoff units 11, but the invention is not limited to this.
  • the mechanical interruption unit may include only one single interruption unit or three or more interruption units.
  • the mechanical interrupting unit may include only the vacuum interrupter 11A or only the gas disconnector 11B as the single interrupting unit 11.
  • the commutation circuit connected in parallel to the mechanical contact module is formed by connecting the reactor, the capacitor bank, and the injector in series. This eliminates the need for a semiconductor circuit breaker connected in parallel to the mechanical contact module as in the prior art, so that the device cost can be suppressed. Furthermore, since the injector of the commutation device is a high-speed injector, the current flowing through the mechanical contact module can be interrupted at a speed equivalent to that of the configuration using the semiconductor circuit breaker as in the prior art. As described above, it is possible to provide a DC circuit breaker capable of shortening the current interruption time and suppressing the equipment cost.

Abstract

A direct-current circuit breaker according to an embodiment comprises a mechanical breaking part, an arrester, and a commutation device. The mechanical breaking part has at least one mechanical breaking unit. The at least one mechanical breaking unit has at least one unitized breaking part. Each of the at least one unitized breaking part has a mechanical contact section. All of the at least one unitized breaking part are connected in series to form a mechanical contact module. Both ends of the mechanical contact module are connected to a direct-current transmission system. The arrester is connected in parallel with the mechanical contact module. The commutation device has a commutation circuit. The commutation circuit is formed by connecting a reactor, a capacitor, and a closing device. The commutation circuit is connected in parallel with the mechanical contact module. The closing device is a high-speed closing device.

Description

直流遮断器DC circuit breaker
 本発明の実施形態は、直流遮断器に関する。 Embodiments of the present invention relate to a DC circuit breaker.
 直流送電は、交流送電に比べて送電効率が高い。対して設備の導入コストは直流送電の方が高コストとなる。しかし長距離送電や海中送電等では、直流送電の送電効率が圧倒的に高いため、設備コストに運用コストを加えて評価すると、直流送電の方が総合的に低コストとなる。このため、直流送電は、例えば海を挟んだ2箇所の拠点間での送電に利用されている。近年、発電電力のうち再生可能エネルギーを用いた発電電力の比率を向上させ、より大きな電力を再生可能エネルギーで賄うために、洋上風力発電や砂漠地帯での太陽光発電等を用いて、主要な電力消費地である都市部から遠く離れた場所で大規模な発電を行い、長距離送電する方法が検討されている。それに伴い、複数の電力の供給地点と需要地点とを接続した直流送電網の構築が計画されている。 ▽DC transmission has higher transmission efficiency than AC transmission. On the other hand, the cost of introducing equipment is higher for DC power transmission. However, in long-distance power transmission and submarine power transmission, the efficiency of DC power transmission is overwhelmingly high. Therefore, when the operating cost is added to the equipment cost, DC power transmission is generally lower in cost. Therefore, DC power transmission is used, for example, for power transmission between two bases across the sea. In recent years, in order to improve the ratio of generated power using renewable energy to the generated power and cover larger power with renewable energy, offshore wind power generation and solar power generation in desert areas have been used to A method of conducting large-scale power generation in a place far away from the urban area where electricity is consumed and transmitting power over a long distance is being studied. Along with this, it is planned to construct a DC transmission network that connects a plurality of power supply points and demand points.
 3箇所以上の拠点間を接続した送電網を構築する際には、送電網で事故が発生した場合に、事故点を健全な系統から迅速に遮断可能な装置が必要となる。一般的に、交流電流系統においては機械接点式遮断器が用いられている。機械接点式遮断器は、交流電流によって発生する電流ゼロ点において接点を開極し、絶縁性媒体を接点間のアーク電流に吹き付けることで事故電流を遮断するものである。これに対して直流送電系統においては、事故電流には電流ゼロ点が発生しないため、従来の機械接点式遮断器では事故電流を迅速に遮断するのは難しいとされている。 When constructing a power grid that connects three or more bases, it is necessary to have a device that can quickly cut off the fault point from a healthy grid in the event of a power grid accident. Generally, a mechanical contact type circuit breaker is used in an alternating current system. The mechanical contact type circuit breaker opens a contact at a current zero point generated by an alternating current and blows an insulating medium onto the arc current between the contacts to interrupt a fault current. On the other hand, in the DC power transmission system, the current zero point does not occur in the fault current, and thus it is difficult to quickly interrupt the fault current with the conventional mechanical contact type circuit breaker.
 そこで、単独で直流電流を遮断可能な半導体遮断器として、IGBT(Insulated Gate Bipolar Transistor)等の、自己消弧能力をもつ複数の自励式半導体素子を用いた半導体遮断器が提案されている。しかし、送電する電力の全てが複数の自励式半導体素子を常時通過するため大きな導通損失が発生し、通常運転時の送電効率の低下を招いてしまう。 Therefore, as a semiconductor circuit breaker capable of independently blocking a direct current, a semiconductor circuit breaker using a plurality of self-excited semiconductor elements having a self-extinguishing ability, such as an IGBT (Insulated Gate Bipolar Transistor), has been proposed. However, since all of the electric power to be transmitted always passes through the plurality of self-excited semiconductor elements, a large conduction loss occurs, resulting in a decrease in the power transmission efficiency during normal operation.
 この問題を解決するために、機械接点式断路器と補助半導体遮断器とを直列に接続した回路に、もう1つの半導体遮断器を並列に接続するハイブリッド遮断器が提案されている。このハイブリッド遮断器において、定常送電時は機械接点式断路器と補助半導体遮断器とが導通状態になっており、上記のもう1つの半導体遮断器が遮断状態になっている。よって送電電流は機械接点式断路器と補助半導体遮断器とを流れる。 To solve this problem, a hybrid circuit breaker has been proposed in which another semiconductor circuit breaker is connected in parallel to a circuit in which a mechanical contact type circuit breaker and an auxiliary semiconductor circuit breaker are connected in series. In this hybrid circuit breaker, the mechanical contact type circuit breaker and the auxiliary semiconductor circuit breaker are in a conducting state during steady power transmission, and the other semiconductor circuit breaker is in a breaking state. Therefore, the transmission current flows through the mechanical contact type disconnector and the auxiliary semiconductor circuit breaker.
 また、事故発生時においては、補助半導体遮断器を遮断状態にするのと同時に機械接点式断路器には開極指令が与えられる。このように補助半導体遮断器が遮断状態となることで、機械接点式断路器と補助半導体遮断器との経路に流れる事故電流が、上記のもう1つの半導体遮断器へと転流される。そして機械接点式断路器の開極動作が完了し、定常通電経路の耐電圧性能を確保した後に、上記のもう1つの半導体遮断器を遮断することで、事故電流の遮断が完了する。 In addition, when an accident occurs, the auxiliary semiconductor circuit breaker is turned off, and at the same time an opening command is given to the mechanical contact type disconnector. When the auxiliary semiconductor breaker is in the cut-off state in this way, the fault current flowing in the path between the mechanical contact type disconnector and the auxiliary semiconductor breaker is commutated to the other semiconductor breaker. Then, after the opening operation of the mechanical contact type disconnector is completed and the withstand voltage performance of the steady energization path is secured, the other semiconductor circuit breaker is interrupted to complete the interruption of the accident current.
 このようなハイブリッド遮断器は、定常送電時における導通損失が補助半導体遮断器の導通損失だけであるため、定常通電経路を、上記のように単独で直流電流を遮断可能な半導体遮断器のみとした構成に比べて導通損失を低減することが出来る。しかしながら補助半導体遮断器の通電損失は未だ発生してしまうため、従来のような、定常通電経路が機械接点のみで構成される機械接点式遮断器に比べると、ハイブリッド遮断器は、導通損失が大きい。 In such a hybrid circuit breaker, since the conduction loss during steady power transmission is only the conduction loss of the auxiliary semiconductor circuit breaker, the steady conduction path is limited to the semiconductor circuit breaker that can independently cut the DC current as described above. The conduction loss can be reduced as compared with the configuration. However, since the conduction loss of the auxiliary semiconductor circuit breaker still occurs, the conduction loss of the hybrid circuit breaker is larger than that of the conventional mechanical contact type circuit breaker in which the steady conduction path consists only of mechanical contacts. ..
 そこで、半導体遮断器と、ハーフブリッジ回路で構成される転流回路とを直列に接続した回路に、機械接点式遮断器を並列に接続する直流遮断器が提案されている。この直流遮断器において、定常送電時は機械接点式断路器が導通状態になっており、半導体遮断器および転流回路が遮断状態になっている。よって、定常送電時における送電電流は機械接点式断路器のみを流れる。 Therefore, a DC circuit breaker has been proposed in which a mechanical contact type circuit breaker is connected in parallel to a circuit in which a semiconductor circuit breaker and a commutation circuit composed of a half bridge circuit are connected in series. In this DC circuit breaker, the mechanical contact type circuit breaker is in a conducting state during steady power transmission, and the semiconductor circuit breaker and the commutation circuit are in a breaking state. Therefore, the power transmission current during steady power transmission flows only through the mechanical contact type disconnector.
 また、事故発生時においては、機械接点式遮断器に開極指令が与えられ、半導体遮断器が導通状態とされ、転流回路に転流指令が与えられる。すると、転流回路は、機械接点式遮断器に流れる事故電流とは逆の方向に電流を流して機械接点式遮断器の電流にゼロ点を生成し、この機械接点式遮断器が開極することで、事故電流が機械接点式遮断器から半導体遮断器および転流回路へと転流する。事故電流転流後、半導体遮断器が遮断されることで事故電流の遮断が完了する。 In addition, when an accident occurs, an opening command is given to the mechanical contact type circuit breaker, the semiconductor circuit breaker is turned on, and a commutation command is given to the commutation circuit. Then, the commutation circuit sends a current in the direction opposite to the fault current flowing through the mechanical contact type circuit breaker to generate a zero point in the current of the mechanical contact type circuit breaker, and this mechanical contact type circuit breaker opens. As a result, the fault current commutates from the mechanical contact type circuit breaker to the semiconductor circuit breaker and the commutation circuit. After commutation of the accident current, the interruption of the accident current is completed by breaking the semiconductor breaker.
 このような直流遮断器は、定常通電経路が機械接点式遮断器のみで構成されるため、導通損失を大幅に低減することが可能となる。しかしながら、ハイブリッド遮断器は、半導体遮断器が高価であるため、従来の機械接点式遮断器に比べて機器コストが大幅に増加する可能性があった。 In such a DC circuit breaker, the steady conduction path consists only of mechanical contact type circuit breakers, so it is possible to greatly reduce conduction loss. However, in the hybrid circuit breaker, since the semiconductor circuit breaker is expensive, the device cost may be significantly increased as compared with the conventional mechanical contact type circuit breaker.
国際公開第2015/166600号International Publication No. 2015/166600 国際公開第2016/056274号International Publication No. 2016/056274 国際公開第2017/134825号International Publication No. 2017/134825
 本発明が解決しようとする課題は、電流の遮断時間の短縮、および機器コストの抑制が可能な直流遮断器を提供することである。 The problem to be solved by the present invention is to provide a DC circuit breaker capable of shortening the current interruption time and suppressing the equipment cost.
 実施形態の直流遮断器は、機械遮断部、アレスタおよび転流装置を持つ。機械遮断部は、少なくとも1つの機械遮断ユニットと、絶縁支柱と、を持つ。少なくとも1つの機械遮断ユニットは、少なくとも1つの単体遮断部を持つ。絶縁支柱は、少なくとも1つの機械遮断ユニットを支持する。少なくとも1つの単体遮断部のそれぞれは、機械接点部と、密閉容器と、操作ロッドと、操作機構と、を持つ。機械接点部は、固定接触子および可動接触子を持つ。機械接点部は、大地から電気的に絶縁されている。密閉容器は、機械接点部および絶縁性ガスを封入する。密閉容器は、大地から電気的に絶縁されている。操作ロッドは、可動接触子に連結されている。操作ロッドは、密閉容器の内部から外部に延出している。操作機構は、操作ロッドに連結されている。操作機構は、可動接触子を固定接触子に対して接離させる。操作機構は、可動接触子と同電位に設けられている。少なくとも1つの単体遮断部は、第1単体遮断部および第2単体遮断部を持つ。第1単体遮断部および第2単体遮断部は、それぞれの操作ロッドが操作機構により同一直線上で動作し、かつ操作機構による操作ロッドの動作方向が互いに逆方向となるように配置されている。第1単体遮断部および第2単体遮断部は、それぞれの操作機構が互いに対向するように配置されている。全ての少なくとも1つの単体遮断部は、直列接続されて機械接点モジュールを形成している。機械接点モジュールの両端は、直流送電系統に接続されている。アレスタは、機械接点モジュールに並列接続されている。転流装置は、転流回路を持つ。転流回路は、リアクトル、コンデンサおよび投入器を直列接続して形成されている。転流回路は、機械接点モジュールに並列接続されている。投入器は、高速投入器である。 The DC circuit breaker of the embodiment has a mechanical circuit breaker, an arrester and a commutation device. The mechanical shutoff unit has at least one mechanical shutoff unit and an insulating column. At least one mechanical shutoff unit has at least one single shutoff. The insulating column supports at least one mechanical shutoff unit. Each of the at least one single-piece breaking section has a mechanical contact section, a closed container, an operating rod, and an operating mechanism. The mechanical contact has a fixed contact and a movable contact. The mechanical contact portion is electrically insulated from the ground. The closed container encloses the mechanical contact and the insulating gas. The closed container is electrically insulated from the ground. The operating rod is connected to the movable contact. The operation rod extends from the inside of the closed container to the outside. The operating mechanism is connected to the operating rod. The operating mechanism causes the movable contactor to move toward and away from the fixed contactor. The operating mechanism is provided at the same potential as the movable contact. At least one single body breaking unit has a first single body breaking unit and a second single body breaking unit. The first single body breaking unit and the second single body breaking unit are arranged such that the respective operating rods operate on the same straight line by the operating mechanism, and the operating directions of the operating rods by the operating mechanism are opposite to each other. The first single body breaking unit and the second single body breaking unit are arranged such that their respective operating mechanisms face each other. All at least one unitary break are connected in series to form a mechanical contact module. Both ends of the mechanical contact module are connected to the DC transmission system. The arrester is connected in parallel with the mechanical contact module. The commutation device has a commutation circuit. The commutation circuit is formed by connecting a reactor, a capacitor, and a charger in series. The commutation circuit is connected in parallel with the mechanical contact module. The injector is a high speed injector.
第1の実施形態の直流遮断器を示す斜視図。The perspective view which shows the DC circuit breaker of 1st Embodiment. 第1の実施形態の直流遮断器を示す回路図。The circuit diagram which shows the direct-current circuit breaker of 1st Embodiment. 第1の実施形態の機械遮断部を示す斜視図。The perspective view which shows the machine interruption|blocking part of 1st Embodiment. 第1の実施形態の機械遮断ユニットを側方から見た部分断面図。The partial cross section figure which looked at the machine interruption unit of a 1st embodiment from the side. 第1の実施形態のガス断路器を示す断面図。Sectional drawing which shows the gas disconnector of 1st Embodiment. 第1の実施形態の機械遮断ユニットにおける通電経路を示す図。The figure which shows the electricity supply path in the machine interruption unit of 1st Embodiment. 第1の実施形態のアレスタ部を示す斜視図。The perspective view which shows the arrester part of 1st Embodiment. 第1の実施形態の転流装置を示す斜視図。The perspective view which shows the commutation apparatus of 1st Embodiment. 第1の実施形態のリアクトルユニットおよび投入器ユニットを示す斜視図。1 is a perspective view showing a reactor unit and a feeder unit of the first embodiment. 第1の実施形態のコンデンサユニットを示す斜視図。The perspective view which shows the capacitor unit of 1st Embodiment. 第1の実施形態の投入器を示す部分断面図。The partial cross section figure which shows the throwing device of 1st Embodiment. 第2の実施形態の投入器を示す部分断面図。The partial cross section figure which shows the throwing device of 2nd Embodiment. 第3の実施形態の直流遮断器を示す斜視図。The perspective view which shows the direct-current circuit breaker of 3rd Embodiment. 第4の実施形態の直流遮断器を示す斜視図。The perspective view which shows the DC circuit breaker of 4th Embodiment. 第5の実施形態の直流遮断器を示す斜視図。The perspective view which shows the direct current circuit breaker of 5th Embodiment.
 以下、実施形態の直流遮断器を、図面を参照して説明する。なお以下の説明では、同一または類似の機能を有する構成に同一の符号を付す。そして、それら構成の重複する説明は省略する場合がある。 Hereinafter, the DC circuit breaker of the embodiment will be described with reference to the drawings. In the following description, the same reference numerals are given to configurations having the same or similar functions. In addition, redundant description of those configurations may be omitted.
 (第1の実施形態)
 図1は、第1の実施形態の直流遮断器を示す斜視図である。図2は、第1の実施形態の直流遮断器を示す回路図である。
 図1および図2に示すように、直流遮断器1は、機械遮断部2と、アレスタ部3と、転流装置4と、を備える。直流遮断器1は、大地上の基礎5に設置されている。基礎5の上面は、水平に形成されている。本実施形態では、水平の一方向を第1方向と定義し、第1方向に直交する水平方向を第2方向と定義する。また、第1方向に符号Xを付し、第2方向に符号Yを付す。機械遮断部2およびアレスタ部3は、第1方向Xに並んで配置されている。第1方向Xに並んで配置されている状態は、第1方向Xから見て複数の対象が互いに重なるように配置されている状態である。転流装置4は、機械遮断部2およびアレスタ部3に対して第2方向Yに並んで配置されている。
(First embodiment)
FIG. 1 is a perspective view showing the DC circuit breaker of the first embodiment. FIG. 2 is a circuit diagram showing the DC circuit breaker of the first embodiment.
As shown in FIGS. 1 and 2, the DC circuit breaker 1 includes a mechanical circuit breaker 2, an arrester 3, and a commutation device 4. The DC circuit breaker 1 is installed on the foundation 5 on the ground. The upper surface of the base 5 is formed horizontally. In this embodiment, one horizontal direction is defined as a first direction, and a horizontal direction orthogonal to the first direction is defined as a second direction. Further, reference numeral X is assigned to the first direction, and reference numeral Y is assigned to the second direction. The mechanical blocking unit 2 and the arrester unit 3 are arranged side by side in the first direction X. The state of being arranged side by side in the first direction X is a state in which a plurality of objects are arranged so as to overlap each other when viewed in the first direction X. The commutation device 4 is arranged side by side in the second direction Y with respect to the mechanical blocking unit 2 and the arrester unit 3.
 機械遮断部2について説明する。
 図3は、第1の実施形態の機械遮断部を示す斜視図である。
 図3に示すように、機械遮断部2は、複数(本実施形態では2個)の機械遮断ユニット10と、機械遮断ユニット10を支持する複数(本実施形態では4本)の絶縁支柱60と、機械遮断ユニット10に電力を供給する給電部70と、を備える。複数の機械遮断ユニット10は、絶縁支柱60に対して鉛直方向に複数段に積み重ねられている。
The mechanical shutoff unit 2 will be described.
FIG. 3 is a perspective view showing the mechanical shutoff unit of the first embodiment.
As shown in FIG. 3, the mechanical shutoff unit 2 includes a plurality (two in the present embodiment) of mechanical shutoff units 10 and a plurality (four in the present embodiment) of insulating struts 60 that support the mechanical shutoff unit 10. And a power supply unit 70 that supplies electric power to the mechanical interruption unit 10. The plurality of mechanical shutoff units 10 are stacked in a plurality of stages in the vertical direction on the insulating column 60.
 機械遮断ユニット10は、一対の単体遮断部11(第1単体遮断部および第2単体遮断部)と、電源部12と、制御部13と、一対の単体遮断部11、電源部12および制御部13が配置された機械遮断部支持板14と、を備える。 The mechanical shutoff unit 10 includes a pair of single shutoff units 11 (first single shutoff unit and second single shutoff unit), a power supply unit 12, a control unit 13, a pair of single shutoff units 11, a power supply unit 12, and a control unit. And a mechanical block supporting plate 14 on which 13 is arranged.
 単体遮断部11は、固定接触子22および可動接触子23を有する機械接点部21を備える(図4参照)。機械接点部21は、固定接触子22に対して可動接触子23を開離させることで開極する。単体遮断部11は、機械接点部21を開極させることで、機械接点部21を通る通電経路を遮断する。単体遮断部11は、真空遮断器11Aまたはガス断路器11Bを構成している。真空遮断器11Aは、機械接点部21を真空の絶縁筒24内に配置した真空バルブ20を有する(図4参照)。ガス断路器11Bは、機械接点部21を絶縁ガス中に配置したガス接点を有する。真空遮断器11Aの機械接点部21は、電流ゼロ点において電流を機械的に遮断可能な接点である。真空遮断器11Aの電流遮断性能は、ガス断路器11Bよりも高い。ガス断路器11Bの耐電圧性能は、真空遮断器11Aよりも高い、または同等である。 The single breaking unit 11 includes a mechanical contact unit 21 having a fixed contact 22 and a movable contact 23 (see FIG. 4). The mechanical contact portion 21 is opened by separating the movable contact 23 from the fixed contact 22. The single cutoff unit 11 opens the mechanical contact unit 21 to cut off the energization path passing through the mechanical contact unit 21. The single circuit breaker 11 constitutes a vacuum circuit breaker 11A or a gas disconnector 11B. The vacuum circuit breaker 11A has a vacuum valve 20 in which a mechanical contact portion 21 is arranged in a vacuum insulating cylinder 24 (see FIG. 4). The gas disconnector 11B has a gas contact in which the mechanical contact 21 is arranged in insulating gas. The mechanical contact portion 21 of the vacuum circuit breaker 11A is a contact capable of mechanically interrupting the current at the current zero point. The current breaking performance of the vacuum circuit breaker 11A is higher than that of the gas disconnecting switch 11B. The withstand voltage performance of the gas disconnector 11B is higher than or equivalent to that of the vacuum circuit breaker 11A.
 それぞれの機械遮断ユニット10において、一対の単体遮断部11は同じ構成を有することが望ましい。本実施形態では、機械遮断ユニット10は、真空遮断器11Aのみ、またはガス断路器11Bのみを備える。例えば、上段の機械遮断ユニット10は、一対の真空遮断器11Aを備える。また、下段の機械遮断ユニット10は、一対のガス断路器11Bを備える。 In each machine shutoff unit 10, it is desirable that the pair of single shutoff units 11 have the same configuration. In the present embodiment, the mechanical interruption unit 10 includes only the vacuum circuit breaker 11A or only the gas disconnector 11B. For example, the upper mechanical breaker unit 10 includes a pair of vacuum breakers 11A. The lower mechanical shutoff unit 10 includes a pair of gas disconnectors 11B.
 図4は、第1の実施形態の機械遮断ユニットを側方から見た部分断面図である。なお、図4には、単体遮断部11として真空遮断器11Aを備えた機械遮断ユニット10を示している。
 図4に示すように、真空遮断器11Aは、機械接点部21を有する真空バルブ20と、真空バルブ20を封入する密閉容器30と、機械接点部21の固定接触子22に連結された通電軸34と、機械接点部21の可動接触子23に連結された操作ロッド35と、操作ロッド35に連結された操作機構37と、機械接点部21に並列接続されたコンデンサ39(図3参照)と、を備える。
FIG. 4 is a partial cross-sectional view of the mechanical interruption unit of the first embodiment as seen from the side. Note that FIG. 4 shows a mechanical interruption unit 10 including a vacuum circuit breaker 11A as the single interruption unit 11.
As shown in FIG. 4, the vacuum circuit breaker 11A includes a vacuum valve 20 having a mechanical contact portion 21, a closed container 30 enclosing the vacuum valve 20, and a current-carrying shaft connected to a fixed contact 22 of the mechanical contact portion 21. 34, an operating rod 35 connected to the movable contact 23 of the mechanical contact portion 21, an operating mechanism 37 connected to the operating rod 35, and a capacitor 39 (see FIG. 3) connected in parallel to the mechanical contact portion 21. , Is provided.
 真空バルブ20は、上述の機械接点部21と、機械接点部21を封入する絶縁筒24と、絶縁筒24の内側に設けられたベローズ25と、を備える。 The vacuum valve 20 includes the mechanical contact portion 21, the insulating cylinder 24 that encloses the mechanical contact portion 21, and the bellows 25 provided inside the insulating cylinder 24.
 機械接点部21の固定接触子22および可動接触子23は、互いに接離可能に設けられている。固定接触子22は、絶縁筒24に対して固定的に配置されている。可動接触子23は、絶縁筒24に対して変位可能に設けられている。以下の単体遮断部11に関する説明では、固定接触子22および可動接触子23が接離する方向を接点動作方向と称する。本実施形態では、接点動作方向は、水平の一方向であって、第1方向Xと平行である。 The fixed contact 22 and the movable contact 23 of the mechanical contact portion 21 are provided so that they can come into contact with and separate from each other. The fixed contact 22 is fixedly arranged with respect to the insulating cylinder 24. The movable contact 23 is provided so as to be displaceable with respect to the insulating cylinder 24. In the following description regarding the single breaking unit 11, the direction in which the fixed contact 22 and the movable contact 23 come into contact with and separate from each other is referred to as a contact operation direction. In the present embodiment, the contact operation direction is one horizontal direction and is parallel to the first direction X.
 絶縁筒24は、接点動作方向に沿って延びる円筒状に形成されている。絶縁筒24は、例えば絶縁材料により形成された碍管である。絶縁筒24の内部は、真空に保たれている。絶縁筒24の第1端部には、通電軸34が気密に挿入される貫通孔が形成されている。絶縁筒24の第2端部には、操作ロッド35が挿入される貫通孔が形成されている。 The insulating cylinder 24 is formed in a cylindrical shape extending along the contact operation direction. The insulating tube 24 is a porcelain tube made of, for example, an insulating material. The inside of the insulating cylinder 24 is kept in a vacuum. A through hole into which the current-carrying shaft 34 is airtightly inserted is formed in the first end portion of the insulating cylinder 24. A through hole into which the operating rod 35 is inserted is formed at the second end of the insulating cylinder 24.
 ベローズ25は、絶縁筒24の内部において、操作ロッド35を囲うように配置されている。ベローズ25の一端部は、可動接触子23の外周面に固着されている。ベローズ25の他端部は、絶縁筒24の第2端部に固着されている。ベローズ25は、可動接触子23および操作ロッド35を絶縁筒24に対して変位可能としつつ、真空バルブ20内の真空を保っている。 The bellows 25 is arranged inside the insulating cylinder 24 so as to surround the operation rod 35. One end of the bellows 25 is fixed to the outer peripheral surface of the movable contact 23. The other end of the bellows 25 is fixed to the second end of the insulating cylinder 24. The bellows 25 maintains the vacuum inside the vacuum valve 20 while allowing the movable contact 23 and the operating rod 35 to be displaced with respect to the insulating cylinder 24.
 密閉容器30は、絶縁性ガスとして、例えば六フッ化硫黄(SF)ガス等を封入している。密閉容器30は、円筒状の絶縁筒31と、絶縁筒31の両端開口を閉塞する第1フランジ32および第2フランジ33と、を備える。絶縁筒31は、接点動作方向に沿って延びている。絶縁筒31は、例えば絶縁材料により形成された碍管である。第1フランジ32および第2フランジ33は、それぞれ金属材料により形成されている。 The closed container 30 is filled with, for example, sulfur hexafluoride (SF 6 ) gas as an insulating gas. The closed container 30 includes a cylindrical insulating cylinder 31, and a first flange 32 and a second flange 33 that close the openings at both ends of the insulating cylinder 31. The insulating cylinder 31 extends along the contact operation direction. The insulating cylinder 31 is, for example, a porcelain tube formed of an insulating material. The first flange 32 and the second flange 33 are each made of a metal material.
 通電軸34は、密閉容器30の第1フランジ32に固定されている。通電軸34は、真空バルブ20の絶縁筒24を貫くように配置されている。通電軸34は、真空バルブ20を密閉容器30に対して固定的に支持している。通電軸34は、真空バルブ20の絶縁筒24内で固定接触子22を固定的に支持している。通電軸34は、金属等の導電材により形成され、固定接触子22に導通している。通電軸34は、固定接触子22と密閉容器30の第1フランジ32とを導通している。なお、「導通」とは、複数の対象が互いに電気的に接続して同電位となっている状態の意とする。また複数の対象が持つインピーダンスによって電位差が生じている場合でも、機器の定格電圧に比べて十分無視できる程度(例えば、数十V以下)に電位差が小さい場合は同電位として扱う。 The energizing shaft 34 is fixed to the first flange 32 of the closed container 30. The energizing shaft 34 is arranged so as to penetrate the insulating cylinder 24 of the vacuum valve 20. The energizing shaft 34 fixedly supports the vacuum valve 20 with respect to the closed container 30. The energizing shaft 34 fixedly supports the fixed contact 22 inside the insulating cylinder 24 of the vacuum valve 20. The current-carrying shaft 34 is formed of a conductive material such as metal and is electrically connected to the fixed contact 22. The current-carrying shaft 34 connects the fixed contact 22 and the first flange 32 of the closed container 30 to each other. Note that “conduction” means a state in which a plurality of objects are electrically connected to each other and have the same potential. Even if the potential difference is caused by the impedances of a plurality of objects, if the potential difference is small enough to be ignored (e.g., several tens of V or less) compared to the rated voltage of the device, it is treated as the same potential.
 操作ロッド35は、接点動作方向に沿って延在している。操作ロッド35の第1端部は、真空バルブ20の絶縁筒24内で可動接触子23に結合している。操作ロッド35は、絶縁筒24の第2端部に対して接点動作方向に摺動可能に設けられている。操作ロッド35は、密閉容器30の内部から第2フランジ33に設けられた貫通孔33aを通って密閉容器30の外部に延出している。操作ロッド35は、密閉容器30の内部の気密を保ちつつ、第2フランジ33に対して導通し、かつ摺動可能に設けられている。操作ロッド35のうち第1端部から第2フランジ33との摺動部に亘る部分は、金属等の導電材により形成されている。これにより、操作ロッド35は、可動接触子23と第2フランジ33とを導通している。操作ロッド35のうち、密閉容器30外に位置する部分の少なくとも一部には、操作ロッド35の両端部間を電気的に絶縁するロッド絶縁部35aが設けられている。 The operating rod 35 extends along the contact operation direction. The first end of the operating rod 35 is connected to the movable contact 23 in the insulating cylinder 24 of the vacuum valve 20. The operation rod 35 is provided slidably in the contact operation direction with respect to the second end of the insulating cylinder 24. The operation rod 35 extends from the inside of the closed container 30 to the outside of the closed container 30 through a through hole 33 a provided in the second flange 33. The operation rod 35 is provided so as to be electrically conductive and slidable with respect to the second flange 33 while maintaining the airtightness inside the closed container 30. A portion of the operation rod 35 extending from the first end portion to the sliding portion with the second flange 33 is formed of a conductive material such as metal. As a result, the operation rod 35 electrically connects the movable contact 23 and the second flange 33. At least a part of the operation rod 35 located outside the closed container 30 is provided with a rod insulating portion 35 a that electrically insulates between both ends of the operation rod 35.
 操作機構37は、電力により動作する応答性の高い電磁アクチュエータである。電磁アクチュエータは、例えば電磁反発式の操作機構である。電磁反発式の操作機構37は、操作ロッド35の第2端部と連結した良導体の金属板と、金属板と対向するように設置したコイルと、を有する。駆動時はコイルに電流を印加し、金属板に逆方向の誘導電流を発生させ、金属板にコイルと逆方向の電磁反発力を与えて操作ロッド35を動作させる。 The operating mechanism 37 is a highly responsive electromagnetic actuator that operates by electric power. The electromagnetic actuator is, for example, an electromagnetic repulsion type operation mechanism. The electromagnetic repulsion type operating mechanism 37 includes a metal plate of good conductor connected to the second end of the operating rod 35, and a coil installed so as to face the metal plate. At the time of driving, a current is applied to the coil to generate an induced current in the opposite direction in the metal plate, and an electromagnetic repulsive force in the opposite direction to the coil is applied to the metal plate to operate the operation rod 35.
 操作機構37は、密閉容器30の外側において、接点動作方向で第2フランジ33と並んで配置されている。操作機構37は、連結部材38によって第2フランジ33に連結されている。連結部材38は、少なくとも一部が絶縁材料により形成されており、連結部材38の両端部間を電気的に絶縁している。操作機構37は、操作ロッド35を接点動作方向に往復動作させる。これにより、操作機構37は、操作ロッド35に対して固定的に設けられた可動接触子23を変位させ、可動接触子23を固定接触子22に対して接離させる。 The operation mechanism 37 is arranged outside the closed container 30 along with the second flange 33 in the contact operation direction. The operating mechanism 37 is connected to the second flange 33 by a connecting member 38. At least a part of the connecting member 38 is formed of an insulating material, and electrically insulates both ends of the connecting member 38. The operation mechanism 37 reciprocates the operation rod 35 in the contact operation direction. As a result, the operating mechanism 37 displaces the movable contact 23 fixedly provided with respect to the operating rod 35, and brings the movable contact 23 into contact with and separates from the fixed contact 22.
 図3に示すように、コンデンサ39は、密閉容器30の外側に配置されている。コンデンサ39は、密閉容器30の第1フランジ32および第2フランジ33に電気的かつ機械的に接続されている。コンデンサ39は、高抵抗の円筒に誘電体を封入し、両端に電極を備え、静電容量と抵抗を持つ。コンデンサ39は、電流遮断時および開極状態の機械接点部21(図4参照)にかかる電圧を調整する。 As shown in FIG. 3, the condenser 39 is arranged outside the closed container 30. The capacitor 39 is electrically and mechanically connected to the first flange 32 and the second flange 33 of the closed container 30. The capacitor 39 has a high-resistance cylinder in which a dielectric material is enclosed, electrodes are provided at both ends, and the capacitor 39 has capacitance and resistance. The capacitor 39 adjusts the voltage applied to the mechanical contact 21 (see FIG. 4) when the current is cut off and in the open state.
 図5は、第1の実施形態のガス断路器を示す断面図である。
 図5に示すように、ガス断路器11Bは、機械接点部21が密閉容器30内に直接的に配置された点で、真空遮断器11Aと異なる。つまり、ガス断路器11Bにおいては、機械接点部21の開極状態で、固定接触子22および可動接触子23の間に絶縁性ガスが介在する。
FIG. 5: is sectional drawing which shows the gas disconnector of 1st Embodiment.
As shown in FIG. 5, the gas disconnector 11B is different from the vacuum circuit breaker 11A in that the mechanical contact portion 21 is directly arranged in the closed container 30. That is, in the gas disconnector 11</b>B, the insulating gas is present between the fixed contact 22 and the movable contact 23 when the mechanical contact 21 is in the open state.
 図3に示すように、各機械遮断ユニット10において、一対の単体遮断部11は、それぞれの操作ロッド35が操作機構37による機械接点部21の開極動作時に同一直線上で動作するように配置されている。具体的に、各機械遮断ユニット10において、各単体遮断部11の操作ロッド35は、同一直線上に延在している。本実施形態では、操作ロッド35は、操作機構37による機械接点部21の開極動作時に第1方向Xに動作する。さらに、各機械遮断ユニット10において、一対の単体遮断部11は、操作機構37による機械接点部21の開極動作時の操作ロッド35の動作方向が互いに逆方向になるように配置されている。具体的に、各機械遮断ユニット10において、一対の単体遮断部11は、それぞれの操作機構37が互いに接触するように配置されている。また、一の機械遮断ユニット10の単体遮断部11、および他の機械遮断ユニット10の単体遮断部11は、鉛直方向から見て同一直線上で動作するように配置されている。 As shown in FIG. 3, in each machine breaking unit 10, the pair of single breaking units 11 are arranged so that each operating rod 35 operates on the same straight line when the mechanical contact unit 21 is opened by the operating mechanism 37. Has been done. Specifically, in each machine interruption unit 10, the operation rod 35 of each single interruption unit 11 extends on the same straight line. In the present embodiment, the operation rod 35 operates in the first direction X when the mechanical contact portion 21 is opened by the operation mechanism 37. Further, in each machine breaking unit 10, the pair of single breaking units 11 are arranged so that the operating directions of the operating rods 35 when the operating mechanism 37 opens the mechanical contact unit 21 are opposite to each other. Specifically, in each machine shutoff unit 10, the pair of single shutoff units 11 are arranged so that the respective operation mechanisms 37 are in contact with each other. Further, the single breaking unit 11 of the one mechanical breaking unit 10 and the single breaking unit 11 of the other mechanical breaking unit 10 are arranged so as to operate on the same straight line when viewed in the vertical direction.
 電源部12は、一対の単体遮断部11の操作機構37に電力を供給する。電源部12は、基準電位が操作機構37と同電位になるように設けられている。電源部12は、例えば、機械接点部21(図4参照)の開極動作時に操作機構37に電力を供給するコンデンサと、機械接点部21の閉極動作時に操作機構37に電力を供給するコンデンサと、それぞれのコンデンサの充電装置と、それぞれのコンデンサを充電状態に保持し、電力供給時には放電するスイッチング素子と、を備える(いずれも不図示)。 The power supply unit 12 supplies electric power to the operating mechanism 37 of the pair of single unit breaking units 11. The power supply unit 12 is provided so that the reference potential becomes the same potential as the operation mechanism 37. The power supply unit 12 includes, for example, a capacitor that supplies power to the operating mechanism 37 when the mechanical contact unit 21 (see FIG. 4) is opened, and a capacitor that supplies power to the operating mechanism 37 when the mechanical contact unit 21 is closed. And a charging device for each capacitor, and a switching element that holds each capacitor in a charged state and discharges when power is supplied (both not shown).
 制御部13は、電源部12、および一対の単体遮断部11の操作機構37の状態監視を行う。また、制御部13は、電源部12から一対の単体遮断部11の操作機構37への電力供給を制御する。 The control unit 13 monitors the states of the power supply unit 12 and the operation mechanism 37 of the pair of single unit breaking units 11. In addition, the control unit 13 controls the power supply from the power supply unit 12 to the operation mechanism 37 of the pair of single unit breaking units 11.
 機械遮断部支持板14は、一対の単体遮断部11、電源部12および制御部13を下方から支持する。例えば、機械遮断部支持板14は、アルミニウム合金等の金属材料により形成されている。機械遮断部支持板14は、平面視矩形状に形成されている。機械遮断部支持板14は、外縁の2辺が接点動作方向に平行となるように配置されている。本実施形態では、機械遮断部支持板14は、第1方向Xおよび第2方向Yの双方向に延びている。機械遮断部支持板14は、絶縁支柱60に対して鉛直方向に複数段積み重ねられている。 The mechanical breaker support plate 14 supports the pair of single breakers 11, the power supply 12 and the controller 13 from below. For example, the mechanical blocking unit support plate 14 is formed of a metal material such as an aluminum alloy. The mechanical blocking section support plate 14 is formed in a rectangular shape in plan view. The mechanical blocking portion support plate 14 is arranged such that two sides of the outer edge thereof are parallel to the contact operation direction. In the present embodiment, the mechanical blocking unit support plate 14 extends in both the first direction X and the second direction Y. The mechanical blocking unit support plate 14 is stacked in a plurality of stages in the vertical direction on the insulating column 60.
 各機械遮断ユニット10において、一対の単体遮断部11の密閉容器30の少なくとも一部は、水平方向で機械遮断部支持板14の外側に配置されている。換言すると、一対の単体遮断部11の密閉容器30は、鉛直方向から見て、機械遮断部支持板14から突出するように配置されている。なお、図示の例では、密閉容器30の一部のみが水平方向で機械遮断部支持板14の外側に配置されているが、密閉容器30の全体が水平方向で機械遮断部支持板14の外側に配置されていてもよい。密閉容器30における固定接触子22と同電位の箇所(例えば第1フランジ32)が水平方向で機械遮断部支持板14の外側に配置されていればよい。 In each mechanical shutoff unit 10, at least a part of the sealed container 30 of the pair of single shutoff units 11 is arranged outside the mechanical shutoff unit support plate 14 in the horizontal direction. In other words, the hermetically sealed container 30 of the pair of single unit blocking parts 11 is arranged so as to project from the mechanical blocking part support plate 14 when viewed in the vertical direction. In the illustrated example, only a part of the closed container 30 is horizontally arranged outside the mechanical block supporting plate 14, but the entire closed container 30 is horizontal and outside the mechanical block supporting plate 14. May be placed in. It suffices that a portion of the closed container 30 having the same potential as the fixed contact 22 (for example, the first flange 32) is arranged outside the machine blocking portion support plate 14 in the horizontal direction.
 ここで、水平方向で機械遮断部支持板14の外側に配置されていることにつき、図3を参照して、別の表現で説明する。
 例えば、上述した接点動作方向を投射線と見立てると、機械遮断部支持板14を構成する4つの辺のうち投射線とねじれの位置関係にある2つの辺を含む2つの垂直投影面を定義することができる。この2つの垂直投影面によって区切られた空間(操作機構37が存在する側の空間)から密閉容器30の少なくとも一部が突出して配置されていればよい。
Here, the arrangement in the horizontal direction on the outside of the mechanical block supporting plate 14 will be described with another expression with reference to FIG. 3.
For example, if the contact operation direction described above is regarded as a projection line, two vertical projection planes that include two sides that are in a positional relationship of the projection line and the twist among the four sides that configure the mechanical blocking unit support plate 14 are defined. be able to. It suffices that at least a part of the closed container 30 is arranged so as to project from a space (a space on the side where the operation mechanism 37 exists) partitioned by the two vertical projection planes.
 図4に示すように、機械遮断ユニット10は、支持部15と、ユニット内ブスバー16(導通部材)と、をさらに備える。
 支持部15は、一対の単体遮断部11それぞれと、機械遮断部支持板14と、の間に介在している。支持部15は、単体遮断部11を機械遮断部支持板14から浮かせた状態で支持している。支持部15は、単体遮断部11の第2フランジ33と機械遮断部支持板14との間に介在する一対の第1支持部15Aと、単体遮断部11の操作機構37と機械遮断部支持板14との間に介在する一対の第2支持部15Bと、を備える。一方の第1支持部15Aは、第2フランジ33と機械遮断部支持板14との電気的な導通を遮断する絶縁部15aを備える。これにより、一方の第1支持部15Aに支持された単体遮断部11の第2フランジ33は、機械遮断部支持板14から電気的に絶縁されている。他方の第1支持部15Aは、単体遮断部11の第2フランジ33と機械遮断部支持板14とを導通している。第2支持部15Bは、操作機構37と機械遮断部支持板14とを導通している。
As shown in FIG. 4, the mechanical shutoff unit 10 further includes a support portion 15 and an in-unit bus bar 16 (conductive member).
The support portion 15 is interposed between each of the pair of single-piece blocking portions 11 and the mechanical blocking portion support plate 14. The support part 15 supports the single block part 11 in a state of being floated from the mechanical block part support plate 14. The support portion 15 includes a pair of first support portions 15</b>A interposed between the second flange 33 of the single cutoff portion 11 and the mechanical cutoff portion support plate 14, an operation mechanism 37 of the single cutoff portion 11, and a mechanical cutoff portion support plate. And a pair of second support portions 15B interposed between the second support portion 15B and the second support portion 15B. One first support portion 15A includes an insulating portion 15a that shuts off electrical continuity between the second flange 33 and the mechanical shutoff portion support plate 14. As a result, the second flange 33 of the single body breaking portion 11 supported by the one first supporting portion 15A is electrically insulated from the mechanical breaking portion supporting plate 14. The other first support portion 15</b>A electrically connects the second flange 33 of the single cutoff portion 11 and the mechanical cutoff portion support plate 14. The second support portion 15B electrically connects the operation mechanism 37 and the mechanical blocking portion support plate 14.
 ユニット内ブスバー16は、一対の単体遮断部11同士を直列接続する。ユニット内ブスバー16は、一対の単体遮断部11の第2フランジ33それぞれに電気的かつ機械的に接続されている。ユニット内ブスバー16は、一対の単体遮断部11の操作機構37の上方において、一対の操作機構37を跨ぐように延びている。ユニット内ブスバー16は、金属等の導電材により形成されている。これにより、ユニット内ブスバー16は、一対の単体遮断部11の第2フランジ33同士を導通し、一対の単体遮断部11の機械接点部21を直列接続している。 The bus bar 16 in the unit connects a pair of the single breaking units 11 in series. The in-unit bus bar 16 is electrically and mechanically connected to each of the second flanges 33 of the pair of single body breaking portions 11. The in-unit bus bar 16 extends above the operation mechanism 37 of the pair of single-body blocking portions 11 so as to straddle the pair of operation mechanisms 37. The in-unit bus bar 16 is made of a conductive material such as metal. As a result, the in-unit bus bar 16 electrically connects the second flanges 33 of the pair of single body breaking portions 11 and connects the mechanical contact portions 21 of the pair of single body breaking portions 11 in series.
 図3に示すように、絶縁支柱60は、例えば碍子や、ポリマー、繊維強化プラスチック等により形成されている。絶縁支柱60は、基礎5に立設されている。絶縁支柱60は、鉛直方向に沿って延びている。各絶縁支柱60は、複数段に積み重ねらされた各機械遮断部支持板14の角部を支持している。絶縁支柱60は、複数の機械遮断ユニット10を互いに電気的に絶縁するとともに、各機械遮断ユニット10を大地に対して電気的に絶縁しつつ、各機械遮断ユニット10を固定的に支持している。なお、各絶縁支柱60は、下端から上端に亘って連続して延びていてもよいし、各機械遮断部支持板14を挟むように複数に分割されていてもよい。後述する他の絶縁支柱についても同様である。 As shown in FIG. 3, the insulating support column 60 is made of, for example, an insulator, polymer, fiber reinforced plastic, or the like. The insulating column 60 is erected on the foundation 5. The insulating support column 60 extends along the vertical direction. Each insulating column 60 supports a corner portion of each machine blocking portion support plate 14 stacked in a plurality of stages. The insulating support column 60 electrically insulates the plurality of machine interruption units 10 from each other, and also electrically insulates each machine interruption unit 10 from the ground, and fixedly supports each machine interruption unit 10. .. It should be noted that each of the insulating support columns 60 may extend continuously from the lower end to the upper end, or may be divided into a plurality of parts so as to sandwich the mechanical blocking section support plate 14. The same applies to other insulating columns described later.
 給電部70は、機械遮断ユニット10の側方において、基礎5に設置されている。給電部70は、機械遮断ユニット10と転流装置4との間に配置されている(図1参照)。給電部70は、第2方向Yから見て機械遮断ユニット10に重なる位置に配置されている。給電部70は、地上から機械遮断ユニット10の電源部12に電力を供給する。給電部70は、大地と電源部12とを電気的に絶縁しつつ、かつ複数の機械遮断ユニット10同士を電気的に絶縁しつつ、電力を供給する。本実施形態では、給電部70は、上下に積み重ねられた2段の絶縁トランスを備える。下段の絶縁トランスは、下段の機械遮断ユニット10の電源部12に電力を供給する。上段の絶縁トランスは、下段の機械遮断ユニット10の電源部12と上段の機械遮断ユニット10の電源部12とを電気的に絶縁しつつ、上段の機械遮断ユニット10の電源部12に電力を供給する。なお、給電部70は、レーザー給電装置や、絶縁チューブを介した空気による発電機能を備えた装置等であってもよい。 The power supply unit 70 is installed on the foundation 5 on the side of the mechanical shutoff unit 10. The power supply unit 70 is arranged between the mechanical interruption unit 10 and the commutation device 4 (see FIG. 1 ). The power supply unit 70 is arranged at a position overlapping the mechanical interruption unit 10 when viewed in the second direction Y. The power supply unit 70 supplies power from the ground to the power supply unit 12 of the machine interruption unit 10. The power supply unit 70 supplies electric power while electrically insulating the ground and the power supply unit 12 from each other and electrically insulating the plurality of mechanical interruption units 10 from each other. In the present embodiment, the power feeding unit 70 includes a two-stage insulating transformer that is vertically stacked. The lower isolation transformer supplies power to the power supply unit 12 of the lower mechanical interruption unit 10. The upper isolation transformer supplies electric power to the power supply unit 12 of the upper mechanical cutoff unit 10 while electrically insulating the power supply unit 12 of the lower mechanical cutoff unit 10 and the power supply unit 12 of the upper mechanical cutoff unit 10. To do. The power supply unit 70 may be a laser power supply device, a device having a power generation function by air through an insulating tube, or the like.
 機械遮断ユニット10の通電経路について説明する。
 図6は、第1の実施形態の機械遮断ユニットにおける通電経路を示す図である。
 図6に示すように、単体遮断部11において、機械接点部21が閉極していると、第1フランジ32および第2フランジ33が導通する。一対の単体遮断部11のうち一方の単体遮断部11の第2フランジ33は、第1支持部15Aの絶縁部15aによって、機械遮断部支持板14との直接的な導通が遮断されている。また、各単体遮断部11において、第2フランジ33は、操作ロッド35のロッド絶縁部35a、および連結部材38によって、操作機構37との直接的な導通が遮断されている。さらに、一対の単体遮断部11の第2フランジ33同士は、ユニット内ブスバー16を介して導通している。よって、一対の単体遮断部11を流れる電流は、一方の単体遮断部11の第1フランジ32から、機械遮断部支持板14および操作機構37を流れず、ユニット内ブスバー16を流れ、他方の単体遮断部11の第1フランジ32に至る(図中矢印A参照)。
The energization path of the mechanical interruption unit 10 will be described.
FIG. 6 is a diagram showing an energization path in the mechanical interruption unit according to the first embodiment.
As shown in FIG. 6, when the mechanical contact portion 21 is closed in the single cutoff portion 11, the first flange 32 and the second flange 33 are electrically connected. The second flange 33 of one of the pair of single blockers 11 is blocked from direct conduction with the mechanical block support plate 14 by the insulating portion 15a of the first support 15A. Further, in each of the single-body cutoff portions 11, the second flange 33 is cut off from direct conduction with the operation mechanism 37 by the rod insulating portion 35a of the operation rod 35 and the connecting member 38. Further, the second flanges 33 of the pair of single-body blocking portions 11 are electrically connected to each other via the intra-unit bus bar 16. Therefore, the current flowing through the pair of single cutoff portions 11 does not flow from the first flange 32 of the single cutoff portion 11 to the mechanical cutoff portion support plate 14 and the operation mechanism 37, but flows through the internal bus bar 16 and the other single cutoff portion. It reaches the first flange 32 of the blocking portion 11 (see arrow A in the figure).
 機械遮断部2の各部の電位について説明する。
 各機械遮断ユニット10において、一方の単体遮断部11の第2フランジ33は、第1支持部15Aを介して機械遮断部支持板14に直接導通している。各機械遮断ユニット10において、一対の単体遮断部11の操作機構37は、それぞれ第2支持部15Bを介して機械遮断部支持板14に導通している。一対の単体遮断部11の第2フランジ33は、ユニット内ブスバー16によって互いに導通している。よって、一対の操作機構37は、一対の機械接点部21の可動接触子23、および機械遮断部支持板14と同電位になっている。具体的に、操作機構37は、基準電位が機械接点部21の可動接触子23、および機械遮断部支持板14と同電位になっている。また、各機械遮断ユニット10において、機械遮断部支持板14は大地から絶縁されているので、機械遮断部支持板14に導通する機械接点部21も大地から電気的に絶縁されている。密閉容器30は、一部が機械接点部21に導通しているので、大地から電気的に絶縁されている。
The potential of each part of the mechanical interruption unit 2 will be described.
In each machine interruption unit 10, the second flange 33 of the single unit interruption section 11 is directly connected to the machine interruption section support plate 14 via the first support section 15A. In each machine interruption unit 10, the operation mechanism 37 of the pair of single interruption units 11 is electrically connected to the machine interruption unit support plate 14 via the second support 15B. The second flanges 33 of the pair of single-body blocking portions 11 are electrically connected to each other by the intra-unit bus bar 16. Therefore, the pair of operation mechanisms 37 has the same potential as the movable contactors 23 of the pair of mechanical contact portions 21 and the mechanical blocking portion support plate 14. Specifically, the reference potential of the operation mechanism 37 is the same as the movable contact 23 of the mechanical contact portion 21 and the mechanical blocking portion support plate 14. Further, in each machine interruption unit 10, since the machine interruption part support plate 14 is insulated from the ground, the mechanical contact portion 21 that is electrically connected to the machine interruption part support plate 14 is also electrically insulated from the earth. A part of the sealed container 30 is electrically connected to the mechanical contact portion 21, and thus is electrically insulated from the ground.
 機械遮断ユニット10同士の電気的な接続について説明する。
 図3に示すように、鉛直方向で隣り合う一対の機械遮断ユニット10において、第1機械遮断ユニット10の第1単体遮断部11の第1フランジ32、および第2機械遮断ユニット10の第2単体遮断部11の第1フランジ32は、互いにユニット間ブスバー80により直列接続されている。上述したように、各機械遮断ユニット10において一対の単体遮断部11の機械接点部21は、ユニット内ブスバー16によって直列接続されているので、機械遮断部2における全ての単体遮断部11は直列接続されている。直列接続された全ての単体遮断部11は、機械接点モジュール90を形成している。
The electrical connection between the mechanical shutoff units 10 will be described.
As shown in FIG. 3, in a pair of machine interruption units 10 that are vertically adjacent to each other, the first flange 32 of the first unit interruption unit 11 of the first machine interruption unit 10 and the second unit of the second machine interruption unit 10 are separated. The first flanges 32 of the blocking portion 11 are connected in series with each other by the inter-unit bus bar 80. As described above, in each mechanical shutoff unit 10, the mechanical contact portions 21 of the pair of single shutoff units 11 are connected in series by the intra-unit bus bar 16, so that all single shutoff units 11 in the mechanical shutoff unit 2 are connected in series. Has been done. All the single-body breaking parts 11 connected in series form a mechanical contact module 90.
 機械接点モジュール90の両端は、供給地点と需要地点とを接続した直流送電系統に接続されている。機械接点モジュール90は、直流送電系統に接続される第1接続点A1および第2接続点A2を備える。第1接続点A1および第2接続点A2は、機械接点モジュール90の電気的な端部である。第1接続点A1は、上段の機械遮断ユニット10に設けられている。第1接続点A1は、機械接点モジュール90における直流送電系統の供給地点側(直流電圧源側)の端部を構成する。第2接続点A2は、下段の機械遮断ユニット10に設けられている。第2接続点A2は、機械接点モジュール90における直流送電系統の需要地点側の端部を構成する。 Both ends of the mechanical contact module 90 are connected to a DC transmission system that connects a supply point and a demand point. The mechanical contact module 90 includes a first connection point A1 and a second connection point A2 that are connected to the DC power transmission system. The first connection point A1 and the second connection point A2 are electrical ends of the mechanical contact module 90. The first connection point A1 is provided in the upper mechanical shutoff unit 10. The first connection point A1 constitutes an end of the mechanical contact module 90 on the supply point side (DC voltage source side) of the DC power transmission system. The second connection point A2 is provided in the lower mechanical shutoff unit 10. The second connection point A2 constitutes an end portion of the mechanical contact module 90 on the demand point side of the DC power transmission system.
 アレスタ部3について説明する。
 図7は、第1の実施形態のアレスタ部を示す斜視図である。
 図7に示すように、アレスタ部3は、アレスタ100と、アレスタ100が配置されるアレスタ支持板110と、アレスタ支持板110を支持する複数(本実施形態では4本)の絶縁支柱120と、を備える。
The arrester unit 3 will be described.
FIG. 7 is a perspective view showing the arrester portion of the first embodiment.
As shown in FIG. 7, the arrester unit 3 includes an arrester 100, an arrester support plate 110 on which the arrester 100 is arranged, a plurality of (four in this embodiment) insulating columns 120 that support the arrester support plate 110, Equipped with.
 アレスタ100は、一定電圧以上が印加されると導通する複数の非線形素子102により形成されている。アレスタ100は、複数の非線形素子102を並列接続したモジュール101を複数(本実施形態では2個)備える。アレスタ100は、前記モジュール101を直列接続することにより形成されている。 The arrester 100 is formed by a plurality of non-linear elements 102 that conducts when a certain voltage or more is applied. The arrester 100 includes a plurality of modules 101 (two in the present embodiment) in which a plurality of nonlinear elements 102 are connected in parallel. The arrester 100 is formed by connecting the modules 101 in series.
 アレスタ支持板110は、前記モジュール101を1つずつ支持する。このため、本実施形態では、アレスタ支持板110は2個設けられている。アレスタ支持板110は、アルミニウム合金等の金属材料により形成されている。アレスタ支持板110は、平面視矩形状に形成されている。本実施形態では、アレスタ支持板110は、第1方向Xおよび第2方向Yの双方向に延びている。アレスタ支持板110は、絶縁支柱120に対して鉛直方向に複数段積み重ねられている。 The arrester support plate 110 supports the modules 101 one by one. Therefore, in the present embodiment, two arrester support plates 110 are provided. The arrester support plate 110 is made of a metal material such as an aluminum alloy. The arrester support plate 110 is formed in a rectangular shape in plan view. In this embodiment, the arrester support plate 110 extends in both the first direction X and the second direction Y. The arrester support plate 110 is stacked in a plurality of stages in the vertical direction on the insulating support column 120.
 絶縁支柱120は、例えば碍子や、ポリマー、繊維強化プラスチック等により形成されている。絶縁支柱120は、基礎5に立設されている。絶縁支柱120は、鉛直方向に沿って延びている。各絶縁支柱120は、複数段に積み重ねられたアレスタ支持板110の角部を支持している。絶縁支柱120は、複数のアレスタ支持板110を互いに電気的に絶縁するとともに、アレスタ100を大地に対して電気的に絶縁しつつ、アレスタ支持板110およびアレスタ100を固定的に支持している。 The insulating column 120 is made of, for example, an insulator, polymer, fiber reinforced plastic, or the like. The insulating column 120 is erected on the foundation 5. The insulating support column 120 extends along the vertical direction. Each insulating column 120 supports a corner portion of the arrester support plate 110 stacked in a plurality of stages. The insulating support column 120 electrically insulates the plurality of arrester support plates 110 from each other, and also electrically supports the arrester 100 with respect to the ground, and fixedly supports the arrester support plate 110 and the arrester 100.
 アレスタ100は、直流送電系統に接続される第1接続点B1および第2接続点B2を備える。第1接続点B1および第2接続点B2は、アレスタ100の電気的な端部である。第1接続点B1は、上段の前記モジュール101に設けられている。第1接続点B1は、アレスタ100における直流送電系統の供給地点側の端部を構成する。第2接続点B2は、下段の前記モジュール101に設けられている。第2接続点B2は、アレスタ100における直流送電系統の需要地点側の端部を構成する。 The arrester 100 includes a first connection point B1 and a second connection point B2 that are connected to the DC power transmission system. The first connection point B1 and the second connection point B2 are electrical end portions of the arrester 100. The first connection point B1 is provided in the upper module 101. The first connection point B1 constitutes an end portion on the supply point side of the DC power transmission system in the arrester 100. The second connection point B2 is provided in the lower module 101. The second connection point B2 constitutes an end portion of the arrester 100 on the demand point side of the DC power transmission system.
 転流装置4について説明する。
 図8は、第1の実施形態の転流装置を示す斜視図である。
 図2および図8に示すように、転流装置4は、リアクトル211を含むリアクトルユニット210と、コンデンサバンク221を含むコンデンサユニット220と、投入器241を含む投入器ユニット240と、を備える。リアクトル211、コンデンサバンク221および投入器241は、転流回路200を構成している。転流回路200は、コンデンサバンク221の両端にリアクトル211および投入器241を直列接続して形成されている。
The commutation device 4 will be described.
FIG. 8: is a perspective view which shows the commutation apparatus of 1st Embodiment.
As shown in FIGS. 2 and 8, the commutation device 4 includes a reactor unit 210 including a reactor 211, a capacitor unit 220 including a capacitor bank 221, and a charger unit 240 including a charger 241. The reactor 211, the capacitor bank 221, and the charging device 241 constitute the commutation circuit 200. The commutation circuit 200 is formed by connecting the reactor 211 and the injector 241 in series at both ends of the capacitor bank 221.
 図1に示すように、リアクトルユニット210は、アレスタ部3と第2方向Yに並んで配置されている。コンデンサユニット220は、リアクトルユニット210と第1方向Xに並んで配置されている。コンデンサユニット220は、機械遮断部2と第2方向Yに並んで配置されている。投入器ユニット240は、リアクトルユニット210の下方に配置されている。リアクトル211、コンデンサバンク221および投入器241は、第2方向Yで同じ位置に配置されている。 As shown in FIG. 1, the reactor unit 210 is arranged side by side with the arrester unit 3 in the second direction Y. The capacitor unit 220 is arranged side by side with the reactor unit 210 in the first direction X. The capacitor unit 220 is arranged side by side in the second direction Y with the mechanical shutoff unit 2. The injector unit 240 is arranged below the reactor unit 210. Reactor 211, capacitor bank 221, and charging device 241 are arranged at the same position in the second direction Y.
 図9は、第1の実施形態のリアクトルユニットおよび投入器ユニットを示す斜視図である。
 図9に示すように、リアクトルユニット210は、リアクトル211と、リアクトル211を支持する一対のステー213と、一対のステー213を支持する複数(本実施形態では4本)の絶縁支柱215と、を備える。
FIG. 9 is a perspective view showing the reactor unit and the charging unit of the first embodiment.
As shown in FIG. 9, the reactor unit 210 includes a reactor 211, a pair of stays 213 that support the reactor 211, and a plurality of (four in this embodiment) insulating columns 215 that support the pair of stays 213. Prepare
 リアクトル211は、第2方向Yの両端部を一対のステー213によって支持されている。一対のステー213は、それぞれ第1方向Xに延びている。一対のステー213は、互いに第2方向Yに間隔をあけて配置されている。一対のステー213は、第2方向Yから見て互いに重なるように配置されている。 The both ends of the reactor 211 in the second direction Y are supported by a pair of stays 213. Each of the pair of stays 213 extends in the first direction X. The pair of stays 213 are arranged at intervals in the second direction Y. The pair of stays 213 are arranged so as to overlap each other when viewed in the second direction Y.
 絶縁支柱215は、例えば碍子や、ポリマー、繊維強化プラスチック等により形成されている。絶縁支柱215は、基礎5に立設されている。絶縁支柱215は、鉛直方向に沿って延びている。絶縁支柱215は、一対のステー213の端部を支持している。絶縁支柱215は、一対のステー213を互いに電気的に絶縁するとともに、リアクトル211を大地に対して電気的に絶縁しつつ、一対のステー213およびリアクトル211を固定的に支持している。 The insulating support 215 is made of, for example, an insulator, polymer, fiber reinforced plastic, or the like. The insulating support 215 is erected on the foundation 5. The insulating column 215 extends along the vertical direction. The insulating support columns 215 support the ends of the pair of stays 213. The insulating support columns 215 electrically insulate the pair of stays 213 from each other and electrically insulate the reactor 211 from the ground, and also fixedly support the pair of stays 213 and the reactor 211.
 図10は、第1の実施形態のコンデンサユニットを示す斜視図である。
 図9に示すように、コンデンサユニット220は、コンデンサバンク221と、コンデンサバンク221が配置されたコンデンサ支持板231と、コンデンサ支持板231を支持する複数(本実施形態では4本)の絶縁支柱233と、コンデンサバンク221を充電する充電部235と、を備える。
FIG. 10 is a perspective view showing the capacitor unit according to the first embodiment.
As shown in FIG. 9, the capacitor unit 220 includes a capacitor bank 221, a capacitor support plate 231 on which the capacitor bank 221 is arranged, and a plurality of (four in this embodiment) insulating struts 233 supporting the capacitor support plate 231. And a charging unit 235 that charges the capacitor bank 221.
 コンデンサバンク221は、複数(本実施形態では8個)のコンデンサ223を並列接続した複数(本実施形態では3個)のコンデンサモジュール222を備える。コンデンサバンク221は、コンデンサモジュール222を直列接続することにより形成されている。これにより、コンデンサバンク221は、1つのコンデンサと見なすことができる。コンデンサモジュール222は、複数のコンデンサ223と、複数のコンデンサ223の第1端子を互いに導通させる第1ブスバー224と、複数のコンデンサ223の第2端子を互いに導通させる第2ブスバー225と、を備える。コンデンサモジュール221同士は、第3ブスバー226によって電気的に接続されている。 The capacitor bank 221 includes a plurality (three in this embodiment) of capacitor modules 222 in which a plurality (eight in this embodiment) of capacitors 223 are connected in parallel. The capacitor bank 221 is formed by connecting the capacitor modules 222 in series. Thereby, the capacitor bank 221 can be regarded as one capacitor. The capacitor module 222 includes a plurality of capacitors 223, a first bus bar 224 that electrically connects the first terminals of the plurality of capacitors 223 to each other, and a second bus bar 225 that electrically connects the second terminals of the plurality of capacitors 223 to each other. The capacitor modules 221 are electrically connected to each other by the third bus bar 226.
 コンデンサ支持板231は、コンデンサモジュール222を1つずつ支持する。このため、本実施形態では、コンデンサ支持板231は3個設けられている。コンデンサ支持板231は、繊維強化プラスチック等の絶縁材料や、アルミニウム合金等の金属材料等により形成されている。コンデンサ支持板231は、平面視矩形状に形成されている。本実施形態では、コンデンサ支持板231は、第1方向Xおよび第2方向Yの双方向に延びている。コンデンサ支持板231は、絶縁支柱233に対して鉛直方向に複数段積み重ねられている。 The capacitor support plate 231 supports the capacitor modules 222 one by one. Therefore, in this embodiment, three capacitor support plates 231 are provided. The capacitor support plate 231 is made of an insulating material such as fiber reinforced plastic, a metal material such as an aluminum alloy, or the like. The capacitor support plate 231 is formed in a rectangular shape in plan view. In the present embodiment, the capacitor support plate 231 extends in both the first direction X and the second direction Y. The capacitor support plates 231 are vertically stacked on the insulating support columns 233 in multiple stages.
 絶縁支柱233は、例えば碍子や、ポリマー、繊維強化プラスチック等により形成されている。絶縁支柱233は、基礎5に立設されている。絶縁支柱233は、鉛直方向に沿って延びている。各絶縁支柱233は、複数段に積み重ねられたコンデンサ支持板231の角部を支持している。絶縁支柱233は、複数のコンデンサ支持板231を互いに電気的に絶縁するとともに、コンデンサバンク221を大地に対して電気的に絶縁しつつ、コンデンサ支持板231およびコンデンサバンク221を固定的に支持している。 The insulating support 233 is made of, for example, an insulator, polymer, fiber reinforced plastic, or the like. The insulating support 233 is erected on the foundation 5. The insulating column 233 extends along the vertical direction. Each insulating support 233 supports the corners of the capacitor support plates 231 that are stacked in multiple stages. The insulating support 233 electrically insulates the plurality of capacitor support plates 231 from each other, electrically insulates the capacitor bank 221 from the ground, and fixedly supports the capacitor support plate 231 and the capacitor bank 221. There is.
 充電部235は、コンデンサバンク221およびコンデンサ支持板231の側方において、基礎5に設置されている。充電部235は、コンデンサバンク221と機械遮断部2との間に配置されている(図1参照)。充電部235は、抵抗器である。充電部235は、転流回路200におけるコンデンサバンク221と投入器241との間と、大地と、を電気的に接続している(図8参照)。つまり、充電部235の第1端部は、コンデンサバンク221における投入器241側の端部に導通している。充電部235の第2端部は、接地されている。これにより、系統電位と接地電位との電位差でコンデンサバンク221を充電することができる。 The charging unit 235 is installed on the foundation 5 beside the capacitor bank 221 and the capacitor support plate 231. The charging unit 235 is arranged between the capacitor bank 221 and the mechanical shutoff unit 2 (see FIG. 1). The charging unit 235 is a resistor. The charging unit 235 electrically connects between the capacitor bank 221 and the charging device 241 in the commutation circuit 200 and the ground (see FIG. 8 ). That is, the first end of the charging unit 235 is electrically connected to the end of the capacitor bank 221 on the side of the charger 241. The second end of the charging unit 235 is grounded. As a result, the capacitor bank 221 can be charged with the potential difference between the system potential and the ground potential.
 図9に示すように、投入器ユニット240は、投入器241と、投入器241が配置された投入器支持板243と、投入器支持板243を支持する複数(本実施形態では4本)の絶縁支柱245と、投入器241に電力を供給する給電部247と、を備える。 As shown in FIG. 9, the feeder unit 240 includes a feeder 241, a feeder support plate 243 on which the feeder 241 is arranged, and a plurality of (four in the present embodiment) supporting the feeder support plate 243. An insulating support 245 and a power feeding unit 247 that supplies electric power to the charging device 241 are provided.
 投入器241は、直流送電系統の定常送電時に開放されて、転流回路200を遮断する。投入器241は、直流送電系統を遮断する際に投入されて、転流回路200の両端間を導通状態にする。投入器241は、少なくとも1つ設けられている。投入器241が複数設けられる場合、複数の投入器241は互いに直列接続される。本実施形態では、投入器241は、一対設けられている。投入器241は、高速投入器である。高速投入器は、油圧やばねの復元力、電磁ソレノイドの電磁力により駆動する機械接点よりも高速で投入可能な投入器である。本実施形態では、投入器241は、固定された一対の電極251,252間の絶縁性能を下げて絶縁破壊させることで通電開始させる放電式投入器(ギャップスイッチ)である(図11参照)。 The injector 241 is opened during the steady power transmission of the DC power transmission system to shut off the commutation circuit 200. The throwing device 241 is turned on when shutting off the DC power transmission system, and brings the both ends of the commutation circuit 200 into a conducting state. At least one insertion device 241 is provided. When a plurality of throwers 241 are provided, the plurality of throwers 241 are connected in series with each other. In this embodiment, a pair of insertion devices 241 are provided. The thrower 241 is a high speed thrower. The high-speed thrower is a thrower that can be closed faster than mechanical contacts driven by hydraulic pressure, spring restoring force, and electromagnetic force of an electromagnetic solenoid. In this embodiment, the injector 241 is a discharge injector (gap switch) that starts energization by lowering the insulation performance between the pair of fixed electrodes 251 and 252 to cause dielectric breakdown (see FIG. 11 ).
 図11は、第1の実施形態の投入器を示す部分断面図である。
 図11に示すように、投入器241は、第1電極251および第2電極252と、第1電極251および第2電極252を収容する容器260と、容器260内で第1電極251に近接して配置されたトリガ電極265と、第1電極251とトリガ電極265との間にパルス電圧を印加するパルス電源267と、パルス電源267と容器260とを連結する連結部材269と、を備える。
FIG. 11 is a partial cross-sectional view showing the injector of the first embodiment.
As shown in FIG. 11, the injector 241 includes a first electrode 251 and a second electrode 252, a container 260 that houses the first electrode 251 and the second electrode 252, and a container 260 that is close to the first electrode 251. And a trigger electrode 265 that is arranged as a pair, a pulse power source 267 that applies a pulse voltage between the first electrode 251 and the trigger electrode 265, and a connecting member 269 that connects the pulse power source 267 and the container 260.
 第1電極251および第2電極252は、それぞれ略同径の円柱状に形成されている。第1電極251および第2電極252は、同軸上で間隔をあけて配置されている。第1電極251および第2電極252それぞれにおける互いに対向する面は、半球面状に形成されている。第1電極251には、トリガ電極265が配置される貫通孔251aが形成されている。貫通孔251aは、第1電極251の中心軸線と同軸に形成されている。貫通孔251aは、第1電極251を一定の径で貫通している。 The first electrode 251 and the second electrode 252 are formed in a columnar shape having substantially the same diameter. The first electrode 251 and the second electrode 252 are arranged coaxially with a space. The surfaces of the first electrode 251 and the second electrode 252 facing each other are formed in a hemispherical shape. The first electrode 251 is formed with a through hole 251a in which the trigger electrode 265 is arranged. The through hole 251a is formed coaxially with the central axis of the first electrode 251. The through hole 251a penetrates the first electrode 251 with a constant diameter.
 容器260には、ドライエアや六フッ化硫黄(SF)ガス等が封入されている。容器260は、両端が開口した円筒状の絶縁筒261と、絶縁筒261の第1端開口を閉塞する第1フランジ262と、絶縁筒261の第2端開口を閉塞する第2フランジ263と、を備える。絶縁筒261は、第1電極251および第2電極252を囲う。絶縁筒261は、第1電極251および第2電極252と同軸に配置されている。第1フランジ262および第2フランジ263は、それぞれ金属材料により形成されている。第1フランジ262には、第1電極251が固定されている。第1フランジ262は、第1電極251に導通している。第1フランジ262には、第1電極251の貫通孔251aと同軸の貫通孔262aが形成されている。第2フランジ263には、第2電極252が固定されている。第2フランジ263は、第2電極252に導通している。 The container 260 is filled with dry air, sulfur hexafluoride (SF 6 ) gas, or the like. The container 260 has a cylindrical insulating cylinder 261 with both ends opened, a first flange 262 that closes a first end opening of the insulating cylinder 261, and a second flange 263 that closes a second end opening of the insulating cylinder 261. Equipped with. The insulating cylinder 261 surrounds the first electrode 251 and the second electrode 252. The insulating cylinder 261 is arranged coaxially with the first electrode 251 and the second electrode 252. The first flange 262 and the second flange 263 are each made of a metal material. The first electrode 251 is fixed to the first flange 262. The first flange 262 is electrically connected to the first electrode 251. A through hole 262a coaxial with the through hole 251a of the first electrode 251 is formed in the first flange 262. The second electrode 252 is fixed to the second flange 263. The second flange 263 is electrically connected to the second electrode 252.
 トリガ電極265は、金属やカーボン等の導電材により、先端が先細った針状に形成されている。例えば、金属の導電材としては、ステンレス鋼や銅、タングステン等を用いることができる。トリガ電極265は、先端が第2電極252に対向するように、容器260外から第1フランジ262の貫通孔262a、および第1電極251の貫通孔251aに挿入されている。トリガ電極265の外周面には、絶縁支持筒271が気密に挿入されている。絶縁支持筒271は、第1フランジ262の貫通孔262a、および第1電極251の貫通孔251aそれぞれの内周面に気密に挿入されている。つまり、トリガ電極265は、絶縁支持筒271を介して第1電極251および第1フランジ262に支持されている。トリガ電極265の先端は、第1電極251の延在方向において、第1電極251における第2電極252側の端部と同じ位置に配置されている。 The trigger electrode 265 is made of a conductive material such as metal or carbon and has a needle-like shape with a tapered tip. For example, as the metal conductive material, stainless steel, copper, tungsten, or the like can be used. The trigger electrode 265 is inserted into the through hole 262 a of the first flange 262 and the through hole 251 a of the first electrode 251 from the outside of the container 260 so that the tip of the trigger electrode 265 faces the second electrode 252. An insulating support cylinder 271 is airtightly inserted in the outer peripheral surface of the trigger electrode 265. The insulating support cylinder 271 is airtightly inserted into the inner peripheral surface of each of the through hole 262 a of the first flange 262 and the through hole 251 a of the first electrode 251. That is, the trigger electrode 265 is supported by the first electrode 251 and the first flange 262 via the insulating support cylinder 271. The tip of the trigger electrode 265 is arranged at the same position as the end of the first electrode 251 on the second electrode 252 side in the extending direction of the first electrode 251.
 パルス電源267は、容器260の第1フランジ262に対向するように、容器260に並んで配置されている。パルス電源267は、直方体状に形成されている。パルス電源267は、外郭を形成する筐体の内部に、コンデンサや、コンデンサの充電回路、抵抗、リアクトル、スイッチングデバイス等を有する。パルス電源267からは、第1ケーブル273および第2ケーブル275が延出している。第1ケーブル273は、トリガ電極265の基端に電気的に接続されている。第2ケーブル275は、容器260の第1フランジ262に電気的に接続されている。パルス電源267は、外部から指令信号を入力されると、第1ケーブル273および第2ケーブル275間にパルス電圧を出力する。これにより、第1電極251とトリガ電極265との間で微小放電が発生するので、第1電極251の周囲にプラズマが発生する。その結果、第1電極251と第2電極252との間の絶縁が破壊されてアークが生じ、第1電極251および第2電極252を通る通電経路が形成される。 The pulse power source 267 is arranged side by side with the container 260 so as to face the first flange 262 of the container 260. The pulse power source 267 is formed in a rectangular parallelepiped shape. The pulse power source 267 includes a capacitor, a capacitor charging circuit, a resistor, a reactor, a switching device, and the like inside a housing forming an outer shell. A first cable 273 and a second cable 275 extend from the pulse power source 267. The first cable 273 is electrically connected to the base end of the trigger electrode 265. The second cable 275 is electrically connected to the first flange 262 of the container 260. The pulse power supply 267 outputs a pulse voltage between the first cable 273 and the second cable 275 when a command signal is input from the outside. As a result, a minute discharge is generated between the first electrode 251 and the trigger electrode 265, so that plasma is generated around the first electrode 251. As a result, the insulation between the first electrode 251 and the second electrode 252 is broken and an arc is generated, and an energization path that passes through the first electrode 251 and the second electrode 252 is formed.
 連結部材269は、容器260とパルス電源267との間に配置されている。連結部材269は、金属材料により形成されている。連結部材269は、容器260と略同径の円筒状に形成されている。連結部材269は、容器260と同軸上に配置され、第1ケーブル273および第2ケーブル275を囲っている。連結部材269の第1端開口は、容器260の第1フランジ262に電気的かつ機械的に接続している。連結部材269の第2端開口は、パルス電源267の筐体に電気的かつ機械的に接続している。これにより、パルス電源267の筐体は、第1電極251と同電位になっている。具体的に、パルス電源267は、基準電位が第1電極251と同電位になっている。 The connecting member 269 is arranged between the container 260 and the pulse power source 267. The connecting member 269 is made of a metal material. The connecting member 269 is formed in a cylindrical shape having substantially the same diameter as the container 260. The connecting member 269 is arranged coaxially with the container 260 and surrounds the first cable 273 and the second cable 275. The first end opening of the connecting member 269 is electrically and mechanically connected to the first flange 262 of the container 260. The second end opening of the connecting member 269 is electrically and mechanically connected to the housing of the pulse power supply 267. As a result, the casing of the pulse power source 267 has the same potential as the first electrode 251. Specifically, the reference potential of the pulse power supply 267 is the same as that of the first electrode 251.
 図9に示すように、一対の投入器241は、水平方向に並んで配置されている。第1の投入器241は、パルス電源267に対して容器260が第1方向Xでコンデンサユニット220側に位置するように配置されている。第2の投入器241は、第1の投入器241のパルス電源267に対してアレスタ部3側に並んで配置されている。第2の投入器241は、パルス電源267に対して容器260が第2方向Yでアレスタ部3側に位置するように配置されている。 As shown in FIG. 9, the pair of injectors 241 are arranged side by side in the horizontal direction. The first charging device 241 is arranged so that the container 260 is located on the side of the capacitor unit 220 in the first direction X with respect to the pulse power source 267. The second thrower 241 is arranged side by side on the arrester section 3 side with respect to the pulse power source 267 of the first thrower 241. The second charging device 241 is arranged such that the container 260 is located on the arrester unit 3 side in the second direction Y with respect to the pulse power supply 267.
 投入器支持板243は、一対の投入器241をまとめて支持する。投入器支持板243は、アルミニウム合金等の金属材料等により形成されている。投入器支持板243は、平面視矩形状に形成されている。本実施形態では、投入器支持板243は、第1方向Xおよび第2方向Yの双方向に延びている。投入器支持板243は、絶縁支柱245に対して鉛直方向に複数段積み重ねられている。投入器支持板243は、一対の投入器241それぞれのパルス電源267の筐体と同電位になっている。具体的に、投入器支持板243は、一対の投入器241それぞれのパルス電源267の基準電位と同電位になっている。 The thrower support plate 243 collectively supports a pair of throwers 241. The thrower support plate 243 is formed of a metal material such as an aluminum alloy. The thrower support plate 243 is formed in a rectangular shape in plan view. In the present embodiment, the feeder support plate 243 extends in both the first direction X and the second direction Y. The thrower support plate 243 is vertically stacked on the insulating support column 245 in a plurality of stages. The thrower support plate 243 has the same potential as the casing of the pulse power source 267 of each of the pair of throwers 241. Specifically, the feeder support plate 243 has the same potential as the reference potential of the pulse power source 267 of each of the pair of feeders 241.
 上述したように、投入器241の第1電極251は、連結部材269を介してパルス電源267の筐体に導通している。また、パルス電源267の筐体は、投入器支持板243に導通している。これにより、一対のパルス電源267の筐体同士が導通しているので、一対の投入器241の第1電極251同士も導通している。なお、一対のパルス電源267の筐体は、互いに隣接することにより導通していてもよい。よって、投入器ユニット240には、一対の投入器241を投入することで、一方の投入器241の第2フランジ263から他方の投入器241の第2フランジ263に至る通電経路が形成される。なお、一対の投入器241の第1フランジ262同士を図示しないブスバーで接続し、一方の投入器241の第1フランジ262と連結部材269とを図示しない絶縁材料を介して接続することで、一方の投入器241の第2フランジ263から他方の投入器241の第2フランジ263に至る通電経路を図示しないブスバーに限定しても良い。 As described above, the first electrode 251 of the injector 241 is electrically connected to the housing of the pulse power source 267 via the connecting member 269. Further, the casing of the pulse power source 267 is electrically connected to the thrower support plate 243. As a result, the casings of the pair of pulse power sources 267 are electrically connected to each other, so that the first electrodes 251 of the pair of injectors 241 are also electrically connected to each other. Note that the casings of the pair of pulse power sources 267 may be electrically connected to each other by being adjacent to each other. Therefore, by charging the pair of charging devices 241 to the charging device unit 240, an energization path from the second flange 263 of the one charging device 241 to the second flange 263 of the other charging device 241 is formed. By connecting the first flanges 262 of the pair of charging devices 241 with bus bars (not shown), and connecting the first flange 262 of one charging device 241 and the connecting member 269 via an insulating material (not shown), The energization path from the second flange 263 of the charging device 241 to the second flange 263 of the other charging device 241 may be limited to a bus bar (not shown).
 絶縁支柱245は、例えば碍子や、ポリマー、繊維強化プラスチック等により形成されている。絶縁支柱245は、基礎5に立設されている。絶縁支柱245は、鉛直方向に沿って延びている。各絶縁支柱245は、投入器支持板243の角部を支持している。本実施形態では、絶縁支柱245は、リアクトルユニット210の絶縁支柱215と共用している。絶縁支柱245は、投入器241を大地に対して電気的に絶縁しつつ、投入器支持板243および投入器241を固定的に支持している。 The insulating support 245 is made of, for example, an insulator, polymer, fiber reinforced plastic, or the like. The insulating column 245 is erected on the foundation 5. The insulating support 245 extends along the vertical direction. Each insulating support 245 supports a corner of the feeder support plate 243. In this embodiment, the insulating support 245 is also used as the insulating support 215 of the reactor unit 210. The insulating column 245 electrically insulates the charging device 241 from the ground, and fixedly supports the charging device support plate 243 and the charging device 241.
 給電部247は、投入器241および投入器支持板243の側方において、基礎5に設置されている。給電部247は、投入器支持板243とコンデンサユニット220との間に配置されている(図8参照)。給電部247は、地上からパルス電源267に電力を供給する。給電部247は、大地とパルス電源267とを電気的に絶縁しつつ電力を供給する。給電部247は、例えば絶縁トランスである。 The power feeding unit 247 is installed on the foundation 5 beside the thrower 241 and the thrower support plate 243. The power feeding section 247 is arranged between the feeder support plate 243 and the capacitor unit 220 (see FIG. 8). The power feeding unit 247 supplies power to the pulse power source 267 from the ground. The power feeding unit 247 supplies electric power while electrically insulating the ground and the pulse power source 267. The power feeding unit 247 is, for example, an insulating transformer.
 一対の投入器241の容器260は、水平方向で投入器支持板243の外側に配置されている。換言すると、一対の投入器241の容器260は、鉛直方向から見て、投入器支持板243から突出するように配置されている。なお、図示の例では、容器260の全体が水平方向で投入器支持板243の外側に配置されているが、容器260の一部のみが水平方向で投入器支持板243の外側に配置されていてもよい。容器260における第2電極252と同電位の箇所(例えば第2フランジ263)が水平方向で投入器支持板243の外側に配置されていればよい。 The container 260 of the pair of feeders 241 is horizontally arranged outside the feeder support plate 243. In other words, the containers 260 of the pair of feeders 241 are arranged so as to project from the feeder support plate 243 when viewed in the vertical direction. In the illustrated example, the entire container 260 is horizontally arranged outside the feeder support plate 243, but only a part of the container 260 is horizontally arranged outside the feeder support plate 243. May be. It suffices that a portion of the container 260 having the same potential as the second electrode 252 (for example, the second flange 263) is arranged outside the feeder support plate 243 in the horizontal direction.
 図8に示すように、リアクトル211の電気的な一端は、ブスバー201によって、コンデンサバンク221における直流送電系統の供給地点側の端部に電気的に接続されている。前記第1の投入器241の第2フランジ263は、ブスバー202によって、コンデンサバンク221における直流送電系統の需要地点側の端部に電気的に接続されている。これにより、転流回路200は、コンデンサバンク221の両端にリアクトル211および投入器241を直列接続した構成を有する。 As shown in FIG. 8, one electrical end of the reactor 211 is electrically connected by a bus bar 201 to an end of the capacitor bank 221 on the supply point side of the DC transmission system. The second flange 263 of the first thrower 241 is electrically connected to the end of the capacitor bank 221 on the demand point side of the DC power transmission system by the bus bar 202. Accordingly, the commutation circuit 200 has a configuration in which the reactor 211 and the charging device 241 are connected in series at both ends of the capacitor bank 221.
 なお、転流回路200におけるリアクトル211、コンデンサバンク221および投入器241の配置は上記の例に限定されない。コンデンサユニットの充電部が投入器とコンデンサバンクとの間に接続されていればよい。 The arrangement of the reactor 211, the capacitor bank 221, and the charger 241 in the commutation circuit 200 is not limited to the above example. The charging unit of the capacitor unit may be connected between the charging device and the capacitor bank.
 転流装置4は、直流送電系統に接続される第1接続点C1および第2接続点C2を備える。第1接続点C1および第2接続点C2は、転流回路200の電気的な端部である。第1接続点C1は、リアクトル211に設けられている。第1接続点C1は、転流回路200における直流送電系統の供給地点側の端部を構成する。第2接続点C2は、前記第2の投入器241の第2フランジ263に設けられている。第2接続点C2は、転流回路200における直流送電系統の需要地点側の端部を構成する。 The commutation device 4 includes a first connection point C1 and a second connection point C2 that are connected to the DC transmission system. The first connection point C1 and the second connection point C2 are electrical ends of the commutation circuit 200. The first connection point C1 is provided on the reactor 211. The first connection point C1 constitutes an end portion of the commutation circuit 200 on the supply point side of the DC power transmission system. The second connection point C2 is provided on the second flange 263 of the second thrower 241. The second connection point C2 constitutes an end of the commutation circuit 200 on the demand point side of the DC power transmission system.
 図1を参照して、機械遮断部2、アレスタ部3および転流装置4の電気的な接続について説明する。
 機械遮断部2の第1接続点A1、およびアレスタ部3の第1接続点B1は、ブスバー301により電気的に接続されている。機械遮断部2の第2接続点A2、およびアレスタ部3の第2接続点B2は、ブスバー302により電気的に接続されている。これにより、アレスタ部3のアレスタ100は、機械遮断部2の機械接点モジュール90に並列接続されている。
With reference to FIG. 1, the electrical connection of the mechanical interruption part 2, the arrester part 3 and the commutation device 4 will be described.
The first connection point A1 of the mechanical interruption section 2 and the first connection point B1 of the arrester section 3 are electrically connected by a bus bar 301. The second connection point A2 of the mechanical interruption unit 2 and the second connection point B2 of the arrester unit 3 are electrically connected by a bus bar 302. Thereby, the arrester 100 of the arrester unit 3 is connected in parallel to the mechanical contact module 90 of the mechanical interruption unit 2.
 アレスタ部3の第1接続点B1は、ブスバー303により直流送電系統の供給地点側の送電線に電気的に接続されている。アレスタ部3の第2接続点B2は、ブスバー304により直流送電系統の需要地点側の送電線に電気的に接続されている。これにより、機械遮断部2の機械接点モジュール90は、直流送電系統の常時通電経路を構成している。 The first connection point B1 of the arrester unit 3 is electrically connected to the power transmission line on the supply point side of the DC power transmission system by the bus bar 303. The second connection point B2 of the arrester unit 3 is electrically connected to the power transmission line on the demand point side of the DC power transmission system by the bus bar 304. As a result, the mechanical contact module 90 of the mechanical interruption unit 2 constitutes a constant power supply path of the DC power transmission system.
 転流装置4の第1接続点C1、およびアレスタ部3の第1接続点B1は、ブスバー305により電気的に接続されている。転流装置4の第2接続点C2、およびアレスタ部3の第2接続点B2は、ブスバー306により電気的に接続されている。これにより、転流装置4の転流回路200は、アレスタ部3のアレスタ100、および機械遮断部2の機械接点モジュール90に並列接続されている。また、転流装置4の投入器241は、転流回路200において直流送電系統の最も需要地点側に配置される。 The first connection point C1 of the commutation device 4 and the first connection point B1 of the arrester unit 3 are electrically connected by a bus bar 305. The second connection point C2 of the commutation device 4 and the second connection point B2 of the arrester unit 3 are electrically connected by a bus bar 306. As a result, the commutation circuit 200 of the commutation device 4 is connected in parallel to the arrester 100 of the arrester unit 3 and the mechanical contact module 90 of the mechanical interruption unit 2. Further, the injector 241 of the commutation device 4 is arranged in the commutation circuit 200 at the most demand point side of the DC transmission system.
 直流遮断器1の動作について説明する。
 直流送電系統の定常送電時は、送電電流が機械接点モジュール90に流れる。この状態では、アレスタ100および転流回路200には電流は流れていない。また、転流回路200のコンデンサバンク221は、充電部235により充電される。
The operation of the DC breaker 1 will be described.
During steady power transmission of the DC power transmission system, the power transmission current flows through the mechanical contact module 90. In this state, no current flows in the arrester 100 and the commutation circuit 200. Further, the capacitor bank 221 of the commutation circuit 200 is charged by the charging unit 235.
 例えば、直流送電系統に事故電流が発生した際には、図示しない制御装置により事故電流を検出し、直流遮断器1に事故遮断指令を与え、転流回路200を導通状態にする。具体的に、図示しない制御装置により、投入器ユニット240のパルス電源267に投入指令を与え、一対の投入器241を投入する。また、機械接点モジュール90の全ての単体遮断部11の機械接点部21を開極する。具体的に、図示しない制御装置により、機械遮断ユニット10の制御部13に開極動作指令を与え、各単体遮断部11の機械接点部21を開極させる。この際、各機械遮断ユニット10において、一対の操作ロッド35は、同一直線上で互いに逆方向に動作するので、操作機構37に生じる衝撃力および反動が相殺される。 For example, when a fault current occurs in the DC power transmission system, the control device (not shown) detects the fault current, gives a fault shutoff command to the DC circuit breaker 1, and brings the commutation circuit 200 into a conducting state. Specifically, a control device (not shown) gives a closing command to the pulse power source 267 of the charging unit 240 to switch on the pair of charging devices 241. Further, the mechanical contact portions 21 of all the single breaking portions 11 of the mechanical contact module 90 are opened. Specifically, a controller (not shown) gives an opening operation command to the controller 13 of the machine breaking unit 10 to open the mechanical contact 21 of each single breaking unit 11. At this time, in each machine interruption unit 10, the pair of operation rods 35 operate in the opposite directions on the same straight line, so that the impact force and reaction force generated in the operation mechanism 37 are offset.
 転流回路200が導通状態になると、充電されていたコンデンサバンク221の電荷が放電される。コンデンサバンク221の電荷が放電されると、コンデンサバンク221およびリアクトル211によるLC共振によって転流回路200に並列接続された機械接点モジュール90の電流が低下し、機械接点モジュール90に電流ゼロ点が生成される。これにより、各単体遮断部11の機械接点部21においてアークが消弧し、機械接点モジュール90を通る通電経路が遮断される。なお、投入器241を投入するタイミングは、単体遮断部11の機械接点部21を開極するタイミングと同時でもよいし、単体遮断部11の機械接点部21を開極するタイミングよりも後でもよい。一般的には、投入器241のほうが機械接点部21よりも応答が早いため、上記のタイミングで投入器241を投入することで、機械接点部21が完全に開極する前に電流ゼロ点が生成されることを回避できる。 When the commutation circuit 200 becomes conductive, the charged capacitor bank 221 is discharged. When the charge of the capacitor bank 221 is discharged, the current of the mechanical contact module 90 connected in parallel to the commutation circuit 200 decreases due to the LC resonance of the capacitor bank 221 and the reactor 211, and a current zero point is generated in the mechanical contact module 90. To be done. As a result, the arc is extinguished at the mechanical contact portion 21 of each single-piece breaking portion 11, and the energization path passing through the mechanical contact module 90 is cut off. The timing of turning on the throwing device 241 may be the same as the timing of opening the mechanical contact portion 21 of the single breaking unit 11, or may be after the timing of opening the mechanical contact portion 21 of the single breaking unit 11. .. In general, since the closing device 241 has a quicker response than the mechanical contact portion 21, by closing the closing device 241 at the above timing, the zero current point before the mechanical contact portion 21 is completely opened. Can be prevented from being generated.
 機械接点モジュール90を通る通電経路が遮断されると、事故電流は機械接点モジュール90に並列接続されたアレスタ100に転流する。その後、アレスタ100において事故電流のエネルギーが吸収され、直流送電系統の事故電流の遮断が完了する。 When the energization path passing through the mechanical contact module 90 is cut off, the fault current commutates to the arrester 100 connected in parallel to the mechanical contact module 90. After that, the energy of the fault current is absorbed in the arrester 100, and the interruption of the fault current of the DC transmission system is completed.
 以上に説明したように、本実施形態の直流遮断器1は、全ての単体遮断部11を直列接続して形成された機械接点モジュール90と、機械接点モジュール90に並列接続された転流回路200と、を持つ。転流回路200は、リアクトル211、コンデンサバンク221および投入器241を直列接続して形成されている。
 この構成によれば、投入器241を投入してコンデンサバンク221の電荷を放電し、転流回路200におけるコンデンサバンク221およびリアクトル211によるLC共振によって、転流回路200に並列接続された機械接点モジュール90に電流ゼロ点を生成できる。このため、従来技術のような機械接点モジュールに並列接続される半導体遮断器が必要ないので、機器コストを抑制することができる。
 さらに、本実施形態では、転流装置4の投入器241を高速投入器とした。この構成によれば、油圧やばねの復元力、電磁ソレノイドの電磁力により駆動する機械接点よりも高速で転流回路200を導通状態にできる。よって、従来技術のような半導体遮断器を用いた構成と同等の速度で、機械接点モジュール90に流れる電流を遮断できる。
 以上により、電流の遮断時間の短縮、および機器コストの抑制が可能な直流遮断器1を提供できる。
As described above, the DC circuit breaker 1 according to the present embodiment includes the mechanical contact module 90 formed by connecting all the single circuit breakers 11 in series, and the commutation circuit 200 connected in parallel to the mechanical contact module 90. And with. The commutation circuit 200 is formed by connecting a reactor 211, a capacitor bank 221, and a charging device 241 in series.
According to this configuration, the mechanical contact module connected in parallel to the commutation circuit 200 is activated by closing the charger 241 to discharge the electric charge of the capacitor bank 221 and LC resonance of the capacitor bank 221 and the reactor 211 in the commutation circuit 200. A zero current point can be generated at 90. Therefore, the semiconductor circuit breaker connected in parallel with the mechanical contact module as in the prior art is not required, and the device cost can be suppressed.
Further, in this embodiment, the feeder 241 of the commutation device 4 is a high-speed feeder. According to this configuration, the commutation circuit 200 can be brought into the conducting state at a higher speed than the mechanical contact driven by the hydraulic pressure, the restoring force of the spring, and the electromagnetic force of the electromagnetic solenoid. Therefore, the current flowing through the mechanical contact module 90 can be interrupted at the same speed as the configuration using the semiconductor circuit breaker as in the related art.
As described above, it is possible to provide the DC circuit breaker 1 capable of shortening the current interruption time and suppressing the device cost.
 また、本実施形態の投入器241は、固定された一対の電極251,252間の絶縁性能を下げて絶縁破壊させることで通電開始させる放電式投入器である。
 この構成によれば、機械的な駆動部が投入器に設けられない。このため、油圧やばねの復元力、電磁ソレノイドの電磁力により駆動する機械接点よりも高速で投入できる高速投入器を構成することができる。
In addition, the injector 241 of the present embodiment is a discharge injector that lowers the insulating performance between the pair of fixed electrodes 251 and 252 to cause dielectric breakdown to start energization.
According to this structure, the mechanical drive unit is not provided in the injector. Therefore, it is possible to configure a high-speed injector that can be closed at a higher speed than the mechanical contact driven by the hydraulic pressure, the restoring force of the spring, and the electromagnetic force of the electromagnetic solenoid.
 また、投入器241は、第1電極251および第2電極252を収容する容器260と、第1電極251と同電位に設けられたパルス電源267と、を持つ。投入器支持板243は、金属材料により形成され、パルス電源267と同電位に設けられている。投入器241の容器260は、水平方向で投入器支持板243の外側に配置されている。
 この構成によれば、パルス電源267を投入器支持板243に近付けつつ、容器260における第2電極252と同電位の箇所(第2フランジ263)を投入器支持板243から遠ざけることができる。このため、容器260の全体が水平方向で投入器支持板243に重なる位置に配置された場合と比較して、容器260における第2電極252と同電位の箇所と投入器支持板243とを絶縁しつつ、投入器241と投入器支持板243とを鉛直方向に近付けることができる。したがって、投入器241および投入器支持板243が配置されるスペースが鉛直方向への大型化することを抑制できる。
In addition, the injector 241 has a container 260 that houses the first electrode 251 and the second electrode 252, and a pulse power supply 267 that is provided at the same potential as the first electrode 251. The injector support plate 243 is made of a metal material and is provided at the same potential as the pulse power source 267. The container 260 of the charging device 241 is arranged outside the charging device support plate 243 in the horizontal direction.
According to this configuration, it is possible to move the pulse power source 267 closer to the feeder support plate 243 and move the portion of the container 260 having the same potential as the second electrode 252 (second flange 263) away from the feeder support plate 243. Therefore, as compared with the case where the entire container 260 is horizontally arranged at a position overlapping the feeder support plate 243, the portion of the container 260 having the same potential as the second electrode 252 is insulated from the feeder support plate 243. At the same time, the feeder 241 and the feeder support plate 243 can be brought closer to each other in the vertical direction. Therefore, it is possible to prevent the space in which the feeder 241 and the feeder support plate 243 are arranged from increasing in size in the vertical direction.
 また、転流装置4は、コンデンサバンク221と投入器241との間と、大地と、を電気的に接続する抵抗器(充電部235)を備える。
 この構成によれば、直流送電系統の系統電位と接地電位との電位差がコンデンサバンク221にかかるので、コンデンサバンク221を充電することができる。このため、コンデンサバンクを充電する直流電源等を別途設ける場合と比較して、直流遮断器1の構成を簡素化できる。したがって、直流遮断器1の機器コストをより一層抑制できる。
Further, the commutation device 4 includes a resistor (charging unit 235) that electrically connects between the capacitor bank 221 and the charging device 241 and the ground.
According to this configuration, since the potential difference between the system potential of the DC power transmission system and the ground potential is applied to the capacitor bank 221, the capacitor bank 221 can be charged. Therefore, the configuration of the DC circuit breaker 1 can be simplified as compared with the case where a DC power source or the like for charging the capacitor bank is separately provided. Therefore, the equipment cost of the DC circuit breaker 1 can be further suppressed.
 また、機械遮断部2およびアレスタ部3(アレスタ100)は、第1方向Xに並んで配置されている。転流装置4は、機械遮断部2およびアレスタ部3に対して、第2方向Yに並んで配置されている。
 この構成によれば、機械遮断部、アレスタ部および転流装置が一直線に並んで配置される場合と比較して、機械遮断部2、アレスタ部3および転流装置4を集約して配置することができる。したがって、直流遮断器1の設置面積の削減を図ることができる。
Further, the mechanical shutoff unit 2 and the arrester unit 3 (arrestor 100) are arranged side by side in the first direction X. The commutation device 4 is arranged side by side in the second direction Y with respect to the mechanical blocking unit 2 and the arrester unit 3.
According to this configuration, the mechanical shutoff unit 2, the arrester unit 3, and the commutation device 4 are collectively arranged as compared with the case where the mechanical shutoff unit, the arrester unit, and the commutation device are arranged in a straight line. You can Therefore, the installation area of the DC circuit breaker 1 can be reduced.
 また、リアクトルユニット210、コンデンサユニット220および投入器ユニット240は、第2方向Yにおける同じ位置に配置されている。
 この構成によれば、リアクトルユニット、コンデンサユニットおよび投入器ユニットのいずれかが第1方向Xから見て第2方向Yに並ぶ場合と比較して、転流装置4が第2方向Yに占めるスペースを小さくすることができる。よって、機械遮断部2、アレスタ部3および転流装置4をより一層集約して配置することができる。
Further, the reactor unit 210, the condenser unit 220, and the thrower unit 240 are arranged at the same position in the second direction Y.
According to this configuration, the space occupied by the commutation device 4 in the second direction Y is greater than that in the case where any one of the reactor unit, the capacitor unit, and the injector unit is arranged in the second direction Y when viewed from the first direction X. Can be made smaller. Therefore, the mechanical shutoff unit 2, the arrester unit 3, and the commutation device 4 can be arranged more intensively.
 また、機械遮断部2は、単体遮断部11の操作機構37に電力を供給する給電部70を備える。給電部70は、絶縁トランスを備える。絶縁トランスは、機械遮断ユニット10と転流装置4との間に配置されている。
 この構成によれば、機械遮断ユニット10と転流装置4との間のスペースを有効活用して、直流遮断器1の設置面積の増大を抑制することができる。
The mechanical shutoff unit 2 also includes a power feeding unit 70 that supplies power to the operation mechanism 37 of the single shutoff unit 11. The power feeding unit 70 includes an insulating transformer. The insulating transformer is arranged between the mechanical shutoff unit 10 and the commutation device 4.
With this configuration, it is possible to effectively utilize the space between the mechanical interruption unit 10 and the commutation device 4 and suppress an increase in the installation area of the DC circuit breaker 1.
 また、単体遮断部11は、固定接触子22および可動接触子23を有し大地から電気的に絶縁された機械接点部21と、機械接点部21および絶縁性ガスを封入し大地から電気的に絶縁された密閉容器30と、可動接触子23に連結された操作ロッド35と、操作ロッド35に連結され可動接触子23と同電位に設けられた操作機構37と、を持つ。
 この構成によれば、密閉容器30が大地に接地されていないため、密閉容器30と機械接点部21との絶縁を省略できる。よって密閉容器が大地に接地される等により機械接点部に対して電気的に絶縁された場合と比較して、密閉容器30を小型化し、単体遮断部11の大型化を抑制できる。また、高電圧化に伴い、複数の単体遮断部11を直列に接続して遮断性能を向上させる場合においても、直列接続した全ての単体遮断部11の大型化を抑制できる。したがって、高電圧化が容易で、大型化を抑制可能な直流遮断器1を提供できる。
 さらに、上記構成によれば、密閉容器30および操作機構37が大地に接地されていないため、機械接点部21と操作機構37とを絶縁する必要がない。このため、操作機構が大地に接地される等により機械接点部に対して電気的に絶縁された場合と比較して、機械接点部21と操作機構37とを近付けて配置することができる。これにより、操作ロッド35の長尺化が抑制されるとともに、操作機構37の可動部の質量の増加が抑制され、機械接点部21の開極速度の低下を抑制できる。したがって、遮断動作の応答性を確保できる直流遮断器1を提供できる。
In addition, the single cutoff unit 11 has a fixed contact 22 and a movable contact 23 and is electrically insulated from the ground, and a mechanical contact 21 and an insulating gas are sealed to electrically connect the ground. It has an insulated closed container 30, an operation rod 35 connected to the movable contact 23, and an operation mechanism 37 connected to the operation rod 35 and provided at the same potential as the movable contact 23.
According to this configuration, since the closed container 30 is not grounded to the ground, the insulation between the closed container 30 and the mechanical contact portion 21 can be omitted. Therefore, as compared with the case where the closed container is electrically insulated from the mechanical contact portion by being grounded to the ground, the closed container 30 can be downsized and the single cutoff portion 11 can be prevented from increasing in size. Further, even when a plurality of single-piece breaking units 11 are connected in series to improve the breaking performance as the voltage becomes higher, it is possible to suppress the size increase of all the single-piece breaking units 11 connected in series. Therefore, it is possible to provide the DC circuit breaker 1 that can easily increase the voltage and can suppress the increase in size.
Further, according to the above configuration, since the closed container 30 and the operating mechanism 37 are not grounded to the ground, it is not necessary to insulate the mechanical contact portion 21 from the operating mechanism 37. Therefore, the mechanical contact portion 21 and the operating mechanism 37 can be arranged closer to each other as compared with the case where the operating mechanism is electrically insulated from the mechanical contact portion by being grounded to the ground. As a result, it is possible to suppress the lengthening of the operating rod 35, suppress an increase in the mass of the movable portion of the operating mechanism 37, and suppress a decrease in the contact opening speed of the mechanical contact portion 21. Therefore, it is possible to provide the DC circuit breaker 1 capable of ensuring the responsiveness of the breaking operation.
 また、各機械遮断ユニット10における一対の単体遮断部11は、それぞれの操作ロッド35が操作機構37により同一直線上で動作し、かつ操作機構37による操作ロッド35の動作方向が逆方向となるように配置されている。
 この構成によれば、各機械遮断ユニット10の機械遮断部支持板14上で、操作ロッド35を動作させる際に操作機構37に生じる衝撃力および反動を相殺することができる。これにより、操作機構37の動作時に、機械遮断ユニット10を支持する絶縁支柱60に曲げモーメントが発生することを抑制できる。したがって、機械遮断部2の振動を抑制でき、絶縁支柱60の過剰な大型化や支持構造物の増加、またそれらに伴う重量の増加を抑制できる。
In addition, in the pair of single unit breaking units 11 in each machine breaking unit 10, the respective operating rods 35 are operated on the same straight line by the operating mechanism 37, and the operating directions of the operating rods 35 by the operating mechanism 37 are opposite directions. It is located in.
With this configuration, it is possible to cancel the impact force and the recoil generated in the operating mechanism 37 when the operating rod 35 is operated on the mechanical interrupting portion support plate 14 of each mechanical interrupting unit 10. As a result, it is possible to suppress the occurrence of a bending moment in the insulating support column 60 that supports the mechanical shutoff unit 10 during operation of the operation mechanism 37. Therefore, it is possible to suppress the vibration of the mechanical blocking unit 2, and it is possible to suppress an excessive increase in the size of the insulating support column 60, an increase in the support structure, and an increase in the weight associated therewith.
 また、機械遮断部支持板14に配置された一対の単体遮断部11は、それぞれの操作機構37が互いに接触するように配置されている。
 この構成によれば、それぞれの密閉容器30が互いに接触する構成と比較して、操作ロッド35を動作させる際に操作機構37に生じる衝撃力および反動を相殺する状況において、衝撃力および反動を、比較的に強度が低い碍管で構成された密閉容器30を介して相殺せず、比較的に強度が高い金属材料で構成された操作機構37間で直接相殺することができる。よって密閉容器30に大きな力が加わることを防止できる。これにより、単体遮断部11の破損を抑制でき、機械遮断ユニット10の信頼性を向上させることができる。
Further, the pair of single-piece breaking units 11 arranged on the mechanical breaking unit support plate 14 are arranged so that the respective operating mechanisms 37 contact each other.
According to this configuration, compared with the configuration in which the respective closed containers 30 are in contact with each other, the impact force and the recoil in the situation where the impact force and the recoil that occur in the operation mechanism 37 when the operation rod 35 is operated are offset, It is possible to directly offset between the operating mechanisms 37 made of a metal material having a relatively high strength without canceling through the closed container 30 made of a porcelain tube having a relatively low strength. Therefore, it is possible to prevent a large force from being applied to the closed container 30. Thereby, the breakage of the single breaking unit 11 can be suppressed, and the reliability of the mechanical breaking unit 10 can be improved.
 また、複数の機械遮断ユニット10は、絶縁支柱60に対して複数段に積み重ねられているので、機械遮断ユニットが水平方向に並んで配置される場合と比較して、直流遮断器1の設置面積を削減できる。 In addition, since the plurality of machine interruption units 10 are stacked in a plurality of stages on the insulating support column 60, the installation area of the DC circuit breaker 1 is larger than that in the case where the machine interruption units are arranged side by side in the horizontal direction. Can be reduced.
 また、機械遮断ユニット10は、一対の単体遮断部11が配置される絶縁支柱60に支持された機械遮断部支持板14を備える。機械遮断部支持板14は、金属材料により形成され、一対の単体遮断部11の操作機構37と同電位に設けられている。一対の単体遮断部11それぞれの密閉容器30の少なくとも一部は、水平方向で機械遮断部支持板14の外側に配置されている。
 この構成によれば、操作機構37を機械遮断部支持板14に近付けつつ、密閉容器30における固定接触子22と同電位の箇所(第1フランジ32)を機械遮断部支持板14から遠ざけることができる。このため、密閉容器30の全体が水平方向で機械遮断部支持板14に重なる位置に配置された場合と比較して、密閉容器30における固定接触子22と同電位の箇所と機械遮断部支持板14とを絶縁しつつ、単体遮断部11と機械遮断部支持板14とを鉛直方向に近付けることができる。したがって、機械遮断部2の鉛直方向への大型化を抑制でき、かつ機械遮断ユニット10を支持する絶縁支柱60に発生する曲げモーメントを抑制できる。
The mechanical shutoff unit 10 also includes a mechanical shutoff unit support plate 14 supported by an insulating column 60 on which a pair of single shutoff units 11 are arranged. The mechanical blocking section support plate 14 is made of a metal material and is provided at the same potential as the operating mechanism 37 of the pair of single blocking sections 11. At least a part of the closed container 30 of each of the pair of single block units 11 is arranged outside the mechanical block support plate 14 in the horizontal direction.
According to this configuration, it is possible to move the operation mechanism 37 closer to the mechanical interruption portion support plate 14 and move the portion (first flange 32) of the closed container 30 having the same potential as the fixed contact 22 away from the mechanical interruption portion support plate 14. it can. Therefore, as compared with the case where the entire hermetically sealed container 30 is horizontally arranged at a position overlapping the mechanical blocking portion support plate 14, a portion of the hermetically sealed container 30 having the same potential as that of the fixed contact 22 and a mechanical blocking portion support plate. It is possible to bring the single cutoff portion 11 and the mechanical cutoff portion support plate 14 closer to each other in the vertical direction while insulating them from each other. Therefore, it is possible to suppress an increase in the size of the mechanical blocking unit 2 in the vertical direction, and to suppress a bending moment generated in the insulating support column 60 that supports the mechanical blocking unit 10.
 また、単体遮断部11の操作ロッド35は、可動接触子23と操作機構37との導通を遮断するロッド絶縁部35aを持つ。機械遮断ユニット10は、ユニット内ブスバー16と、絶縁部15aと、を持つ。ユニット内ブスバー16は、一対の単体遮断部11それぞれの第2フランジ33を互いに電気的に接続する。絶縁部15aは、一方の単体遮断部11の第2フランジ33と機械遮断部支持板14との間に介在する支持部15に設けられている。絶縁部15aは、前記一方の単体遮断部11の第2フランジ33と機械遮断部支持板14との導通を遮断する。他方の単体遮断部11の第2フランジ33と機械遮断部支持板14とは第1支持部15Aを通じて導通している。
 この構成によれば、単体遮断部11において、第2フランジ33から操作ロッド35を通って操作機構37に至る通電経路は、ロッド絶縁部35aによって遮断される。また、機械遮断ユニット10において、一方の第2フランジ33から機械遮断部支持板14を通って他方の第2フランジ33に至る通電経路は、支持部15の絶縁部15aによって遮断される。よって、機械遮断ユニット10において一対の単体遮断部11を通る通電経路は、ユニット内ブスバー16に形成される。これにより、例えば機械遮断部支持板14または操作機構37の近傍等の意図しない箇所で部分放電や絶縁破壊が生じることを回避できる。したがって、機械遮断ユニット10の信頼性を向上させることができる。
 なお、他方の単体遮断部11の第2フランジ33と機械遮断部支持板14とは第1支持部15Aを通じて導通しているので、可動接触子23と操作機構37とを同電位に設けることができる。
Further, the operation rod 35 of the single body breaking portion 11 has a rod insulating portion 35 a that blocks the conduction between the movable contact 23 and the operating mechanism 37. The mechanical shutoff unit 10 has an in-unit bus bar 16 and an insulating portion 15a. The in-unit bus bar 16 electrically connects the second flanges 33 of the pair of single-piece breaking units 11 to each other. The insulating portion 15 a is provided on the support portion 15 that is interposed between the second flange 33 of the single unit breaking portion 11 and the mechanical blocking portion support plate 14. The insulating portion 15a cuts off electrical continuity between the second flange 33 of the one unit breaking unit 11 and the mechanical blocking unit support plate 14. The second flange 33 of the other single cutoff portion 11 and the mechanical cutoff portion support plate 14 are electrically connected to each other through the first support portion 15A.
According to this configuration, in the single cutoff section 11, the power supply path from the second flange 33 through the operation rod 35 to the operation mechanism 37 is cut off by the rod insulating section 35a. In addition, in the mechanical interruption unit 10, the energization path from the second flange 33 on one side to the second flange 33 on the other side through the mechanical interruption part support plate 14 is interrupted by the insulating part 15 a of the support part 15. Therefore, in the mechanical shutoff unit 10, an energization path that passes through the pair of single shutoff parts 11 is formed in the unit busbar 16. As a result, it is possible to avoid the occurrence of partial discharge or dielectric breakdown at an unintended portion such as in the vicinity of the mechanical blocking portion support plate 14 or the operating mechanism 37. Therefore, the reliability of the mechanical interruption unit 10 can be improved.
Since the second flange 33 of the other single breaking unit 11 and the mechanical breaking supporting plate 14 are electrically connected to each other through the first supporting unit 15A, the movable contact 23 and the operating mechanism 37 may be provided at the same potential. it can.
 (第2の実施形態)
 図12は、第2の実施形態の投入器を示す部分断面図である。
 図12に示す第2の実施形態は、第1の実施形態の投入器241に代えて、投入器341を備える点で、第1の実施形態とは異なる。なお、以下で説明する以外の構成は、第1の実施形態と同様である。
(Second embodiment)
FIG. 12 is a partial cross-sectional view showing the injector of the second embodiment.
The second embodiment shown in FIG. 12 is different from the first embodiment in that a charging device 341 is provided instead of the charging device 241 of the first embodiment. The configuration other than that described below is the same as that of the first embodiment.
 図12に示すように、投入器341は、高速投入器である。高速投入器は、油圧やばねの復元力、電磁ソレノイドの電磁力により駆動する機械接点よりも高速で投入可能な投入器である。本実施形態では、投入器341は、固定された一対の電極351,352間の絶縁性能を下げて絶縁破壊させることで通電開始させる放電式投入器である。 As shown in FIG. 12, the inserter 341 is a high-speed inserter. The high-speed thrower is a thrower that can be closed faster than mechanical contacts driven by hydraulic pressure, spring restoring force, and electromagnetic force of an electromagnetic solenoid. In this embodiment, the injector 341 is a discharge injector that starts energization by lowering the insulation performance between the pair of fixed electrodes 351 and 352 to cause dielectric breakdown.
 投入器341は、第1の実施形態の投入器241における第1電極251、第2電極252、容器260およびトリガ電極265に代えて、第1電極351、第2電極352、容器360、およびトリガ電極365を備える。 The injector 341 is replaced with the 1st electrode 251, the 2nd electrode 252, the container 260, and the trigger electrode 265 in the injector 241 of 1st Embodiment, and replaces the 1st electrode 351, the 2nd electrode 352, the container 360, and the trigger. An electrode 365 is provided.
 第1電極351および第2電極352は、第1電極351に貫通孔が形成されていない点を除き、第1の実施形態の第1電極251および第2電極252と同様に形成されている。 The first electrode 351 and the second electrode 352 are formed in the same manner as the first electrode 251 and the second electrode 252 of the first embodiment except that the through hole is not formed in the first electrode 351.
 容器360は、第1電極351および第2電極352を収容する。容器360には、ドライエアや六フッ化硫黄(SF)ガス等が封入されている。容器360は、両端が開口した円筒状の絶縁筒361と、絶縁筒361の第1端開口を閉塞する第1フランジ362と、絶縁筒361の第2端開口を閉塞する第2フランジ363と、を備える。絶縁筒361は、第1電極351および第2電極352を囲う。絶縁筒361は、第1電極351および第2電極352と同軸に配置されている。絶縁筒361は、絶縁筒361の延在方向における中間部において分割され、後述する円環状のトリガ電極365を気密に挟持している。第1フランジ362および第2フランジ363は、第1フランジ362に貫通孔が形成されていない点を除き、第1の実施形態の第1フランジ262および第2フランジ263と同様に形成されている。 The container 360 houses the first electrode 351 and the second electrode 352. The container 360 is filled with dry air, sulfur hexafluoride (SF 6 ) gas, or the like. The container 360 includes a cylindrical insulating cylinder 361 having both ends opened, a first flange 362 closing the first end opening of the insulating cylinder 361, and a second flange 363 closing the second end opening of the insulating cylinder 361. Equipped with. The insulating cylinder 361 surrounds the first electrode 351 and the second electrode 352. The insulating cylinder 361 is arranged coaxially with the first electrode 351 and the second electrode 352. The insulating cylinder 361 is divided at an intermediate portion in the extending direction of the insulating cylinder 361, and holds an annular trigger electrode 365 described later in an airtight manner. The first flange 362 and the second flange 363 are formed in the same manner as the first flange 262 and the second flange 263 of the first embodiment except that the through hole is not formed in the first flange 362.
 トリガ電極365は、第1電極351と第2電極352との空隙を囲うように配置されている。トリガ電極365は、金属やカーボン等の導電材により形成されている。例えば、金属の導電材としては、ステンレス鋼や銅、タングステン等を用いることができる。トリガ電極365は、円環状に形成され、第1電極351および第2電極352と同軸に配置されている。トリガ電極365は、容器360の絶縁筒361に固定的に支持されている。トリガ電極365の内周部は、径方向外側から内側に向かうに従い漸次薄くなるように形成されている。トリガ電極365は、第1電極351および第2電極352から電気的に絶縁されている。トリガ電極365の外周部には、パルス電源267から延びる第1ケーブル273が電気的に接続している。 The trigger electrode 365 is arranged so as to surround the gap between the first electrode 351 and the second electrode 352. The trigger electrode 365 is formed of a conductive material such as metal or carbon. For example, as the metal conductive material, stainless steel, copper, tungsten, or the like can be used. The trigger electrode 365 is formed in an annular shape and is arranged coaxially with the first electrode 351 and the second electrode 352. The trigger electrode 365 is fixedly supported by the insulating cylinder 361 of the container 360. The inner peripheral portion of the trigger electrode 365 is formed so as to gradually become thinner from the outer side toward the inner side in the radial direction. The trigger electrode 365 is electrically insulated from the first electrode 351 and the second electrode 352. A first cable 273 extending from the pulse power source 267 is electrically connected to the outer periphery of the trigger electrode 365.
 パルス電源267は、外部から指令信号を入力されると、第1ケーブル273および第2ケーブル275間にパルス電圧を出力する。これにより、第1電極351とトリガ電極365との間に電界が集中し、第1電極351と第2電極352との間の電界に歪みが生じる。その結果、第1電極351と第2電極352との間の絶縁が破壊されてアークが生じ、第1電極351および第2電極352を通る通電経路が形成される。 The pulse power supply 267 outputs a pulse voltage between the first cable 273 and the second cable 275 when a command signal is input from the outside. As a result, the electric field is concentrated between the first electrode 351 and the trigger electrode 365, and the electric field between the first electrode 351 and the second electrode 352 is distorted. As a result, the insulation between the first electrode 351 and the second electrode 352 is broken and an arc is generated, and an energization path that passes through the first electrode 351 and the second electrode 352 is formed.
 以上に説明したように、本実施形態の投入器341は、固定された一対の電極351,352間の絶縁性能を下げて絶縁破壊させることで通電開始させる放電式投入器である。この構成によれば、第1の実施形態と同様の作用効果を奏することができる。 As described above, the injector 341 of the present embodiment is a discharge injector that starts energization by lowering the insulation performance between the pair of fixed electrodes 351 and 352 to cause dielectric breakdown. According to this configuration, the same operational effect as that of the first embodiment can be obtained.
 (第3の実施形態)
 図13は、第3の実施形態の直流遮断器を示す斜視図である。
 図13に示す第3の実施形態は、第1の実施形態のコンデンサユニット220における充電部235に代えて、充電部335を備える点で、第1の実施形態とは異なる。なお、以下で説明する以外の構成は、第1の実施形態と同様である。
(Third Embodiment)
FIG. 13 is a perspective view showing a DC circuit breaker of the third embodiment.
The third embodiment shown in FIG. 13 is different from the first embodiment in that a charging unit 335 is provided instead of the charging unit 235 in the capacitor unit 220 of the first embodiment. The configuration other than that described below is the same as that of the first embodiment.
 図13に示すように、充電部335は、コンデンサバンク221およびコンデンサ支持板231の側方において、基礎5に設置されている。充電部335は、直流電源336と、直流電源336に電力を供給する絶縁トランス337と、を備える。 As shown in FIG. 13, the charging unit 335 is installed on the foundation 5 on the side of the capacitor bank 221 and the capacitor support plate 231. The charging unit 335 includes a DC power supply 336 and an insulating transformer 337 that supplies electric power to the DC power supply 336.
 直流電源336は、コンデンサバンク221の両端に電気的に接続されている。直流電源336は、コンデンサバンク221の両端に電圧を印加することで、コンデンサバンク221を充電する。直流電源336は、複数(本実施形態では4本)の絶縁支柱338によって支持されている。絶縁支柱338は、直流電源336を大地に対して電気的に絶縁しつつ、直流電源336を固定的に支持している。絶縁トランス337は、直流電源336の下方において、基礎5に設置されている。絶縁トランス337は、鉛直方向から見て複数の絶縁支柱338に囲まれた領域に配置されている。絶縁トランス337は、地上から直流電源336に電力を供給する。絶縁トランス337は、大地と直流電源336とを電気的に絶縁しつつ電力を供給する。 The DC power supply 336 is electrically connected to both ends of the capacitor bank 221. The DC power supply 336 charges the capacitor bank 221 by applying a voltage across the capacitor bank 221. The DC power supply 336 is supported by a plurality of (four in this embodiment) insulating columns 338. The insulating support 338 fixedly supports the DC power supply 336 while electrically insulating the DC power supply 336 from the ground. The insulating transformer 337 is installed on the foundation 5 below the DC power supply 336. The insulating transformer 337 is arranged in a region surrounded by a plurality of insulating columns 338 when viewed in the vertical direction. The isolation transformer 337 supplies electric power from the ground to the DC power supply 336. The isolation transformer 337 supplies electric power while electrically insulating the ground from the DC power supply 336.
 以上に説明したように、本実施形態の充電部335は、コンデンサバンク221の両端に電圧を印加する直流電源336を備える。この構成によれば、コンデンサバンク221を充電することができる。したがって、第1の実施形態と同様の作用効果を奏することができる。 As described above, the charging unit 335 of this embodiment includes the DC power supply 336 that applies a voltage across the capacitor bank 221. With this configuration, the capacitor bank 221 can be charged. Therefore, the same effect as that of the first embodiment can be obtained.
 (第4の実施形態)
 図14は、第4の実施形態の直流遮断器を示す斜視図である。
 図14に示す第4の実施形態は、第1の実施形態の投入器ユニット240に代えて、投入器ユニット440を備える点で、第1の実施形態とは異なる。なお、以下で説明する以外の構成は、第1の実施形態と同様である。
(Fourth Embodiment)
FIG. 14: is a perspective view which shows the DC circuit breaker of 4th Embodiment.
The fourth embodiment shown in FIG. 14 is different from the first embodiment in that a feeder unit 440 is provided instead of the feeder unit 240 of the first embodiment. The configuration other than that described below is the same as that of the first embodiment.
 図14に示すように、投入器ユニット440は、第1の実施形態の投入器241に代えて、投入器441、電源部462および制御部463が投入器支持板243に配置された構成を有する。 As shown in FIG. 14, the thrower unit 440 has a configuration in which a thrower 441, a power supply unit 462, and a control unit 463 are arranged on the thrower support plate 243 instead of the thrower 241 of the first embodiment. ..
 投入器441は、少なくとも1つ設けられている。投入器441が複数設けられる場合、複数の投入器441は互いに直列接続される。本実施形態では、投入器441は、一対設けられている。投入器441は、高速投入器である。高速投入器は、油圧やばねの復元力、電磁ソレノイドの電磁力により駆動する機械接点よりも高速で投入可能な投入器である。本実施形態では、投入器441は、互いに離間した一対の接触子を電磁反発力により駆動し、接触させて通電させる機械式投入器である。 At least one inserter 441 is provided. When a plurality of throwers 441 are provided, the plurality of throwers 441 are connected in series. In this embodiment, a pair of insertion devices 441 are provided. The thrower 441 is a high speed thrower. The high-speed thrower is a thrower that can be closed at a higher speed than mechanical contacts driven by hydraulic pressure, spring restoring force, and electromagnetic force of an electromagnetic solenoid. In this embodiment, the injector 441 is a mechanical injector that drives a pair of contacts separated from each other by an electromagnetic repulsive force to bring them into contact with each other to energize them.
 投入器441は、図4に示す単体遮断部11と類似の構成を有する。投入器441は、投入器用操作機構437による可動接触子23(図4参照)の動作方向が異なること以外、単体遮断部11と同様に形成されている。投入器441の機械接点部21(図4参照)は、直流送電系統の定常送電時に開極され、転流回路200を遮断している。機械接点部21は、直流送電系統を遮断する際に閉極されて、転流回路200の両端間を導通状態にする。投入器用操作機構437は、電磁反発式の操作機構である。投入器用操作機構437は、操作ロッド35(図4参照)と連結した良導体の金属板と、金属板と対向するように設置したコイルと、を有する。機械接点部21を閉極させる際(すなわち投入器441を投入する際)には、コイルに電流を印加し、金属板に逆方向の誘導電流を発生させ、金属板にコイルと逆方向の電磁反発力を与えて操作ロッド35を動作させる。なお、機械接点部21は、上述した真空バルブ20の接点であってもよいし、ガス接点であってもよい。 The throwing device 441 has a configuration similar to that of the single body breaking unit 11 shown in FIG. The throwing device 441 is formed in the same manner as the single breaking unit 11 except that the moving contact 23 (see FIG. 4) is moved in a different direction by the throwing device operating mechanism 437. The mechanical contact portion 21 (see FIG. 4) of the injector 441 is opened during the steady power transmission of the DC power transmission system to shut off the commutation circuit 200. The mechanical contact portion 21 is closed when the DC power transmission system is shut off, so that both ends of the commutation circuit 200 are brought into conduction. The operation mechanism 437 for injectors is an electromagnetic repulsion type operation mechanism. The injector operating mechanism 437 includes a metal plate of good conductor connected to the operation rod 35 (see FIG. 4), and a coil installed so as to face the metal plate. When the mechanical contact portion 21 is closed (that is, when the throwing device 441 is turned on), a current is applied to the coil to generate an induced current in the opposite direction to the metal plate, and the electromagnetic force in the opposite direction to the coil is applied to the metal plate. A repulsive force is applied to operate the operation rod 35. The mechanical contact 21 may be the contact of the vacuum valve 20 described above or a gas contact.
 一対の投入器441は、それぞれの操作ロッド35が投入器用操作機構437による機械接点部21の閉極動作時に同一直線上で動作するように配置されている。具体的に、各投入器441の操作ロッド35は、同一直線上に延在している。本実施形態では、操作ロッド35は、投入器用操作機構437による機械接点部21の閉極動作時に第2方向Yに動作する。さらに、投入器441は、投入器用操作機構437による機械接点部21の閉極動作時の操作ロッド35の動作方向が互いに逆方向になるように配置されている。具体的に、一対の投入器441は、それぞれの投入器用操作機構437が互いに接触するように配置されている。 The pair of injectors 441 are arranged so that each operation rod 35 operates on the same straight line when the mechanical contact portion 21 of the injector operation mechanism 437 is closed. Specifically, the operating rod 35 of each thrower 441 extends on the same straight line. In the present embodiment, the operating rod 35 operates in the second direction Y when the mechanical contact portion 21 is closed by the injector operating mechanism 437. Further, the injector 441 is arranged so that the operating directions of the operating rods 35 are opposite to each other when the mechanical contact portion 21 is closed by the injector operating mechanism 437. Specifically, the pair of injectors 441 are arranged such that the respective operation mechanisms 437 for the injectors are in contact with each other.
 電源部462は、一対の投入器441の投入器用操作機構437に電力を供給する。電源部462は、基準電位が投入器用操作機構437と同電位になるように設けられている。電源部462は、例えば、投入器441の機械接点部21の開極動作時に投入器用操作機構437に電力を供給するコンデンサと、投入器441の機械接点部21の閉極動作時に投入器用操作機構437に電力を供給するコンデンサと、それぞれのコンデンサの充電装置と、それぞれのコンデンサを充電状態に保持し、電力供給時には放電するスイッチング素子と、を備える(いずれも不図示)。電源部462は、給電部247から電力を供給される。 The power supply unit 462 supplies electric power to the operation mechanism 437 for the insertion device of the pair of insertion devices 441. The power supply unit 462 is provided so that the reference potential becomes the same potential as the operation mechanism 437 for the injector. The power supply unit 462 includes, for example, a capacitor that supplies power to the operating mechanism 437 for the injector when the mechanical contact 21 of the injector 441 is opened, and an operating mechanism for the injector when the mechanical contact 21 of the injector 441 is closed. A capacitor for supplying electric power to 437, a charging device for each capacitor, and a switching element that holds each capacitor in a charged state and discharges when power is supplied (all are not shown). The power supply unit 462 is supplied with power from the power supply unit 247.
 制御部463は、電源部462、および一対の投入器441の投入器用操作機構437の状態監視を行う。また、制御部463は、電源部462から一対の投入器441の投入器用操作機構437への電力供給を制御する。 The control unit 463 monitors the states of the power supply unit 462 and the operation mechanism 437 for the insertion device of the pair of insertion devices 441. Further, the control unit 463 controls the power supply from the power supply unit 462 to the operating mechanism 437 for the injector of the pair of injectors 441.
 一対の投入器441の密閉容器30の少なくとも一部は、水平方向で投入器支持板243の外側に配置されている。換言すると、一対の投入器441の密閉容器30は、鉛直方向から見て、投入器支持板243から突出するように配置されている。なお、図示の例では、密閉容器30の一部のみが水平方向で投入器支持板243の外側に配置されているが、密閉容器30の全体が水平方向で投入器支持板243の外側に配置されていてもよい。密閉容器30おける固定接触子22と同電位の箇所(例えば第1フランジ32)が水平方向で投入器支持板243の外側に配置されていればよい。 At least a part of the closed container 30 of the pair of feeders 441 is arranged outside the feeder support plate 243 in the horizontal direction. In other words, the closed container 30 of the pair of feeders 441 is arranged so as to project from the feeder support plate 243 when viewed in the vertical direction. In the illustrated example, only a part of the closed container 30 is horizontally arranged outside the feeder support plate 243, but the entire closed container 30 is horizontally arranged outside the feeder support plate 243. It may have been done. It suffices that a portion of the closed container 30 having the same potential as the fixed contact 22 (for example, the first flange 32) is arranged outside the feeder support plate 243 in the horizontal direction.
 一対の投入器441と投入器支持板243との間には、支持部465が介在している。支持部465は、機械遮断ユニット10における支持部15と同様に構成されている。また、一対の投入器441同士は、ブスバー466によって直列接続されている。ブスバー466は、機械遮断ユニット10におけるユニット内ブスバー16と同様に構成されている。これらにより、投入器ユニット440における通電経路、および投入器ユニット440の各部の電位は、機械遮断部2と同様になる。 A support portion 465 is interposed between the pair of feeders 441 and the feeder support plate 243. The support portion 465 is configured similarly to the support portion 15 in the mechanical shutoff unit 10. The pair of injectors 441 are connected in series by a bus bar 466. The bus bar 466 is configured similarly to the in-unit bus bar 16 in the mechanical shutoff unit 10. As a result, the energization path in the injector unit 440 and the potential of each part of the injector unit 440 are the same as those in the mechanical shutoff unit 2.
 以上に説明したように、本実施形態の投入器441は、互いに離間した一対の接触子を電磁反発力により駆動し、接触させて通電させる機械式投入器である。この構成によれば、油圧やばねの復元力、電磁ソレノイドの電磁力により駆動する機械接点よりも高速で投入できる高速投入器を構成することができる。したがって、第1の実施形態と同様の作用効果を奏することができる。 As described above, the injector 441 of the present embodiment is a mechanical injector that drives a pair of contacts that are separated from each other by an electromagnetic repulsive force to bring them into contact with each other to energize them. According to this configuration, it is possible to configure a high-speed injector which can be closed at a higher speed than the mechanical contact driven by the hydraulic pressure, the restoring force of the spring, and the electromagnetic force of the electromagnetic solenoid. Therefore, the same effect as that of the first embodiment can be obtained.
 また、投入器支持板243は、金属材料により形成され、一対の投入器441の投入器用操作機構437と同電位に設けられている。一対の投入器441それぞれの密閉容器30の少なくとも一部は、水平方向で投入器支持板243の外側に配置されている。
 この構成によれば、投入器用操作機構437を投入器支持板243に近付けつつ、密閉容器30における固定接触子22と同電位の箇所(第1フランジ32)を投入器支持板243から遠ざけることができる。このため、密閉容器30の全体が水平方向で投入器支持板243に重なる位置に配置された場合と比較して、密閉容器30における固定接触子22と同電位の箇所と投入器支持板243とを絶縁しつつ、投入器441と投入器支持板243とを鉛直方向に近付けることができる。したがって、投入器441および投入器支持板243が配置されるスペースが鉛直方向への大型化することを抑制できる。
Further, the feeder support plate 243 is formed of a metal material and is provided at the same potential as the feeder operating mechanism 437 of the pair of feeders 441. At least a part of the closed container 30 of each of the pair of feeders 441 is arranged outside the feeder support plate 243 in the horizontal direction.
According to this configuration, it is possible to bring the portion (first flange 32) having the same potential as the fixed contact 22 in the closed container 30 away from the feeder support plate 243 while bringing the feeder operation mechanism 437 close to the feeder support plate 243. it can. Therefore, as compared with the case where the entire hermetically sealed container 30 is horizontally disposed at a position overlapping the feeder support plate 243, a portion of the hermetically sealed container 30 having the same potential as the fixed contact 22 and the feeder support plate 243 are provided. It is possible to bring the injector 441 and the injector support plate 243 closer to each other in the vertical direction while insulating the same. Therefore, it is possible to prevent the space in which the feeder 441 and the feeder support plate 243 are arranged from increasing in size in the vertical direction.
 (第5の実施形態)
 図15は、第5の実施形態の直流遮断器を示す斜視図である。
 図15に示す第5の実施形態は、機械遮断部2、アレスタ部3および転流装置4が一直線に並んで配置されている点で、第1の実施形態とは異なる。なお、以下で説明する以外の構成は、第1の実施形態と同様である。
(Fifth Embodiment)
FIG. 15 is a perspective view showing a DC circuit breaker of the fifth embodiment.
The fifth embodiment shown in FIG. 15 differs from the first embodiment in that the mechanical shutoff unit 2, the arrester unit 3, and the commutation device 4 are arranged in a straight line. The configuration other than that described below is the same as that of the first embodiment.
 図15に示すように、本実施形態では、機械遮断部2、アレスタ部3および転流装置4は、第1方向Xに並んで配置されている。機械遮断部2において、各機械遮断ユニット10の一対の単体遮断部11の密閉容器30は、機械遮断部支持板14から第1方向Xに突出するように配置されている。機械遮断部2において、給電部70は、機械遮断ユニット10に対して第2方向Yの一方に配置されている。アレスタ部3は、機械遮断部2に隣り合っている。すなわち、アレスタ部3は、機械遮断部2と転流装置4との間に配置されている。 As shown in FIG. 15, in the present embodiment, the mechanical shutoff unit 2, the arrester unit 3, and the commutation device 4 are arranged side by side in the first direction X. In the machine breaking unit 2, the sealed containers 30 of the pair of unit breaking units 11 of each machine breaking unit 10 are arranged so as to project from the machine breaking unit support plate 14 in the first direction X. In the mechanical interruption unit 2, the power feeding unit 70 is arranged in one of the second directions Y with respect to the mechanical interruption unit 10. The arrester unit 3 is adjacent to the mechanical shutoff unit 2. That is, the arrester unit 3 is arranged between the mechanical interruption unit 2 and the commutation device 4.
 転流装置4は、リアクトルユニット210および投入器ユニット240と、コンデンサユニット220と、が第1方向Xに並ぶように配置されている。リアクトルユニット210および投入器ユニット240は、アレスタ部3とコンデンサユニット220との間に配置されている。リアクトルユニット210において、リアクトル211は、第1方向Xの両端部を一対のステー213によって支持されている。コンデンサユニット220において、充電部235は、コンデンサ支持板231に対して第2方向Yの前記一方に配置されている。投入器ユニット240において、一対の投入器241の容器260は、投入器支持板243から第1方向Xに突出するように配置されている。投入器ユニット240において、給電部247は、投入器支持板243に対して第2方向Yの前記一方に配置されている。 The commutation device 4 is arranged such that the reactor unit 210, the injector unit 240, and the condenser unit 220 are arranged in the first direction X. The reactor unit 210 and the injector unit 240 are arranged between the arrester unit 3 and the capacitor unit 220. In the reactor unit 210, the reactor 211 is supported at both ends in the first direction X by a pair of stays 213. In the capacitor unit 220, the charging section 235 is arranged on the one side in the second direction Y with respect to the capacitor supporting plate 231. In the feeder unit 240, the containers 260 of the pair of feeders 241 are arranged so as to project from the feeder support plate 243 in the first direction X. In the feeder unit 240, the power feeding unit 247 is arranged on the one side in the second direction Y with respect to the feeder support plate 243.
 以上に説明したように、本実施形態では、機械遮断部2、アレスタ部3および転流装置4は、第1方向Xに並んで配置されている。
 この構成によれば、洋上プラットフォーム等のレイアウトが制限されるような場所であって、例えば第1の実施形態のように機械遮断部2、アレスタ部3および転流装置4を集約して配置できない場所であっても、直流遮断器1を配置することができる。
As described above, in the present embodiment, the mechanical blocking unit 2, the arrester unit 3, and the commutation device 4 are arranged side by side in the first direction X.
According to this configuration, it is a place where the layout of the offshore platform or the like is limited, and for example, the mechanical shutoff unit 2, the arrester unit 3, and the commutation device 4 cannot be collectively arranged as in the first embodiment. The DC circuit breaker 1 can be arranged even in a place.
 なお、上記実施形態では、放電式投入器の例として、微小放電を発生させることにより絶縁破壊を誘発するトリガトロン方式、および電界を歪ませることにより絶縁破壊を誘発する電界歪み方式を説明したが、これに限定されない。例えば放電式投入器として、電極間にレーザーを照射して絶縁媒体を電離させることにより絶縁破壊を誘発するレーザートリガ方式を適用してもよい。ただし、レーザー発振装置が高価であることから、機器コストを抑制するという観点では、トリガトロン方式および電界歪み方式が有利である。また、トリガトロン方式においては微小放電によりトリガ電極が損耗しやすいため、投入器の寿命の観点では、電界歪み方式およびレーザートリガ方式が有利である。 In the above embodiment, as an example of the discharge type injector, the triggertron method that induces dielectric breakdown by generating a minute discharge and the electric field distortion method that induces dielectric breakdown by distorting an electric field have been described. , But not limited to this. For example, as the discharge type injector, a laser trigger method may be applied in which a dielectric breakdown is induced by irradiating a laser between electrodes to ionize the insulating medium. However, since the laser oscillator is expensive, the triggertron method and the electric field distortion method are advantageous from the viewpoint of suppressing the equipment cost. Further, in the triggertron method, the trigger electrode is easily worn due to minute discharge, so that the electric field distortion method and the laser trigger method are advantageous from the viewpoint of the life of the injector.
 また、上記実施形態では、投入器ユニットが一対の投入器を備えているが、これに限定されない。投入器ユニットは、投入器を1つだけ備えてもよいし、3つ以上備えてもよい。また、投入器ユニットは、放電式投入器および機械式投入器の両方を備えてもよい。 Further, in the above embodiment, the injector unit includes a pair of injectors, but the invention is not limited to this. The injector unit may include only one injector or three or more injectors. The dosing unit may also include both a discharge dosing device and a mechanical dosing device.
 また、上記実施形態では、機械遮断ユニット10が単体遮断部11を一対備えるが、これに限定されない。機械遮断ユニットは、単体遮断部を1つだけ備えてもよいし、3つ以上備えてもよい。また、機械遮断部は、単体遮断部11として、真空遮断器11Aのみ、またはガス断路器11Bのみを備えてもよい。 Further, in the above-described embodiment, the mechanical shutoff unit 10 includes a pair of single shutoff units 11, but the invention is not limited to this. The mechanical interruption unit may include only one single interruption unit or three or more interruption units. Further, the mechanical interrupting unit may include only the vacuum interrupter 11A or only the gas disconnector 11B as the single interrupting unit 11.
 以上説明した少なくともひとつの実施形態によれば、機械接点モジュールに並列接続された転流回路をリアクトル、コンデンサバンクおよび投入器を直列接続して形成した。これにより、従来技術のような機械接点モジュールに並列接続される半導体遮断器が必要ないので、機器コストを抑制することができる。さらに、転流装置の投入器を高速投入器としたので、従来技術のような半導体遮断器を用いた構成と同等の速度で、機械接点モジュールに流れる電流を遮断できる。以上により、電流の遮断時間の短縮、および機器コストの抑制が可能な直流遮断器を提供できる。 According to at least one embodiment described above, the commutation circuit connected in parallel to the mechanical contact module is formed by connecting the reactor, the capacitor bank, and the injector in series. This eliminates the need for a semiconductor circuit breaker connected in parallel to the mechanical contact module as in the prior art, so that the device cost can be suppressed. Furthermore, since the injector of the commutation device is a high-speed injector, the current flowing through the mechanical contact module can be interrupted at a speed equivalent to that of the configuration using the semiconductor circuit breaker as in the prior art. As described above, it is possible to provide a DC circuit breaker capable of shortening the current interruption time and suppressing the equipment cost.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. The embodiments and their modifications are included in the scope of the invention and the scope thereof, and are included in the invention described in the claims and the scope of equivalents thereof.

Claims (14)

  1.  機械遮断部、アレスタおよび転流装置を備え、
     前記機械遮断部は、
      少なくとも1つの単体遮断部を有する少なくとも1つの機械遮断ユニットと、
      前記少なくとも1つの機械遮断ユニットを支持する絶縁支柱と、
     を備え、
     前記少なくとも1つの単体遮断部のそれぞれは、
      固定接触子および可動接触子を有し、大地から電気的に絶縁された機械接点部と、
      前記機械接点部および絶縁性ガスを封入し、大地から電気的に絶縁された密閉容器と、
      前記可動接触子に連結され、前記密閉容器の内部から外部に延出した操作ロッドと、
      前記操作ロッドに連結され、前記可動接触子を前記固定接触子に対して接離させるとともに、前記可動接触子と同電位に設けられた操作機構と、
     を有し、
     前記少なくとも1つの単体遮断部は、第1単体遮断部および第2単体遮断部を含み、
     前記第1単体遮断部および前記第2単体遮断部は、それぞれの前記操作ロッドが前記操作機構により同一直線上で動作し、かつ前記操作機構による前記操作ロッドの動作方向が互いに逆方向となるように配置され、かつそれぞれの前記操作機構が互いに対向するように配置され、
     全ての前記少なくとも1つの単体遮断部は、直列接続されて機械接点モジュールを形成し、
     前記機械接点モジュールの両端は、直流送電系統に接続され、
     前記アレスタは、前記機械接点モジュールに並列接続され、
     前記転流装置は、リアクトル、コンデンサおよび投入器を直列接続して形成された転流回路を有し、
     前記転流回路は、前記機械接点モジュールに並列接続され、
     前記投入器は、高速投入器である、
     直流遮断器。
    Equipped with a mechanical breaker, arrester and commutation device,
    The mechanical cutoff unit,
    At least one mechanical shutoff unit having at least one single shutoff;
    Insulating struts supporting said at least one mechanical shutoff unit;
    Equipped with
    Each of the at least one single blocker is
    A mechanical contact part that has a fixed contact and a movable contact, and is electrically insulated from the ground,
    A hermetically sealed container that is filled with the mechanical contact portion and an insulating gas and is electrically insulated from the ground,
    An operation rod connected to the movable contactor and extending from the inside of the closed container to the outside,
    An operation mechanism connected to the operation rod, which brings the movable contact into contact with and separates from the fixed contact, and which is provided at the same potential as the movable contact,
    Have
    The at least one single body breaking unit includes a first single body breaking unit and a second single body breaking unit,
    In the first single body breaking unit and the second single body breaking unit, the respective operating rods operate on the same straight line by the operating mechanism, and the operating directions of the operating rods by the operating mechanism are opposite to each other. And the operation mechanisms are arranged so as to face each other,
    All said at least one single breaks are connected in series to form a mechanical contact module,
    Both ends of the mechanical contact module are connected to a DC transmission system,
    The arrester is connected in parallel to the mechanical contact module,
    The commutation device has a commutation circuit formed by connecting a reactor, a capacitor, and a charger in series,
    The commutation circuit is connected in parallel to the mechanical contact module,
    The injector is a high speed injector,
    DC circuit breaker.
  2.  前記投入器は、固定された一対の電極間の絶縁性能を下げて絶縁破壊させることで通電開始させる放電式投入器である、
     請求項1に記載の直流遮断器。
    The injector is a discharge-type injector that starts energization by lowering the insulation performance between a pair of fixed electrodes and causing dielectric breakdown.
    The DC circuit breaker according to claim 1.
  3.  前記転流装置は、前記投入器が配置される投入器支持板を備え、
     前記投入器は、
      前記一対の電極を収容する容器と、
      前記容器内に配置されたトリガ電極と、
      前記一対の電極の一方と前記トリガ電極との間にパルス電圧を印加するとともに、前記一方と同電位に設けられたパルス電源と、
     を備え、
     前記投入器支持板は、金属材料により形成され、前記パルス電源と同電位に設けられ、
     前記容器の少なくとも一部は、水平方向で前記投入器支持板の外側に配置されている、
     請求項2に記載の直流遮断器。
    The commutation device comprises a feeder support plate in which the feeder is arranged,
    The injector is
    A container that houses the pair of electrodes,
    A trigger electrode disposed in the container,
    While applying a pulse voltage between one of the pair of electrodes and the trigger electrode, a pulse power supply provided at the same potential as the one,
    Equipped with
    The feeder support plate is formed of a metal material, and is provided at the same potential as the pulse power source,
    At least a portion of the container is disposed horizontally outside the feeder support plate,
    The DC circuit breaker according to claim 2.
  4.  前記投入器は、互いに離間した一対の接触子を電磁反発力により駆動し、接触させて通電させる機械式投入器である、
     請求項1に記載の直流遮断器。
    The injector is a mechanical injector that drives a pair of contacts that are separated from each other by an electromagnetic repulsive force to bring them into contact with each other to energize them.
    The DC circuit breaker according to claim 1.
  5.  前記転流装置は、前記投入器が配置される投入器支持板を備え、
     前記投入器は、
      前記一対の接触子を収容する容器と、
      前記一対の接触子を互いに接離させるとともに、前記一対の接触子の一方と同電位に設けられた投入器用操作機構と、
     を備え、
     前記投入器支持板は、金属材料により形成され、前記投入器用操作機構と同電位に設けられ、
     前記容器の少なくとも一部は、水平方向で前記投入器支持板の外側に配置されている、
     請求項4に記載の直流遮断器。
    The commutation device comprises a feeder support plate in which the feeder is arranged,
    The injector is
    A container that houses the pair of contacts,
    While bringing the pair of contacts into and out of contact with each other, an operation mechanism for an injector provided at the same potential as one of the pair of contacts,
    Equipped with
    The feeder support plate is formed of a metal material, and is provided at the same potential as the operating mechanism for the feeder,
    At least a portion of the container is disposed horizontally outside the feeder support plate,
    The DC circuit breaker according to claim 4.
  6.  前記転流装置は、前記コンデンサと前記投入器との間と、大地と、を電気的に接続する抵抗器を備える、
     請求項1から請求項5のいずれか1項に記載の直流遮断器。
    The commutation device includes a resistor that electrically connects the capacitor and the thrower, and the ground.
    The DC circuit breaker according to any one of claims 1 to 5.
  7.  前記転流装置は、前記コンデンサの両端に電圧を印加する直流電源を備える、
     請求項1から請求項5のいずれか1項に記載の直流遮断器。
    The commutation device comprises a DC power supply for applying a voltage across the capacitor.
    The DC circuit breaker according to any one of claims 1 to 5.
  8.  前記機械遮断部および前記アレスタは、鉛直方向から見て第1方向に並んで配置され、
     前記転流装置は、前記機械遮断部および前記アレスタに対して、鉛直方向から見て前記第1方向に直交する第2方向に並んで配置されている、
     請求項1から請求項7のいずれか1項に記載の直流遮断器。
    The mechanical cutoff portion and the arrester are arranged side by side in the first direction when viewed from the vertical direction,
    The commutation device is arranged side by side in the second direction orthogonal to the first direction when viewed from the vertical direction, with respect to the mechanical interruption unit and the arrester.
    The DC circuit breaker according to any one of claims 1 to 7.
  9.  前記リアクトル、前記コンデンサおよび前記投入器は、前記第2方向における同じ位置に配置されている、
     請求項8に記載の直流遮断器。
    The reactor, the condenser, and the injector are arranged at the same position in the second direction,
    The DC circuit breaker according to claim 8.
  10.  前記機械遮断部は、前記操作機構に電力を供給する絶縁トランスを備え、
     前記絶縁トランスは、前記少なくとも1つの機械遮断ユニットと前記転流装置との間に配置されている、
     請求項8または請求項9に記載の直流遮断器。
    The mechanical cutoff unit includes an insulating transformer that supplies electric power to the operation mechanism,
    The isolation transformer is arranged between the at least one mechanical interruption unit and the commutation device,
    The DC circuit breaker according to claim 8 or 9.
  11.  前記機械遮断部、前記アレスタおよび前記転流装置は、一直線に並んで配置されている、
     請求項1から請求項7のいずれか1項に記載の直流遮断器。
    The mechanical shutoff unit, the arrester, and the commutation device are arranged in line.
    The DC circuit breaker according to any one of claims 1 to 7.
  12.  前記少なくとも1つの機械遮断ユニットは、前記第1単体遮断部および前記第2単体遮断部が配置されるとともに前記絶縁支柱に支持された機械遮断部支持板を備え、
     前記機械遮断部支持板は、金属材料により形成され、前記操作機構と同電位に設けられ、
     前記第1単体遮断部の前記密閉容器の少なくとも一部は、水平方向で前記機械遮断部支持板の外側に配置され、
     前記第2単体遮断部の前記密閉容器の少なくとも一部は、水平方向で前記機械遮断部支持板の外側に配置されている、
     請求項1から請求項11のいずれか1項に記載の直流遮断器。
    The at least one mechanical shutoff unit includes a mechanical shutoff unit support plate on which the first single shutoff unit and the second single shutoff unit are disposed and which is supported by the insulating column.
    The mechanical block support plate is formed of a metal material, and is provided at the same potential as the operating mechanism,
    At least a part of the closed container of the first single body blocking portion is disposed outside the mechanical blocking portion support plate in the horizontal direction,
    At least a part of the closed container of the second single body blocking part is arranged outside the mechanical blocking part support plate in a horizontal direction,
    The DC circuit breaker according to any one of claims 1 to 11.
  13.  前記第1単体遮断部および前記第2単体遮断部それぞれの前記密閉容器は、前記可動接触子に導通したフランジを備え、
     前記第1単体遮断部および前記第2単体遮断部それぞれの前記操作ロッドは、前記可動接触子と前記操作機構との導通を遮断するロッド絶縁部を備え、
     前記少なくとも1つの機械遮断ユニットは、
      前記第1単体遮断部および前記第2単体遮断部が配置されるとともに前記絶縁支柱に支持された機械遮断部支持板と、
      前記第1単体遮断部および前記第2単体遮断部のそれぞれの前記フランジを互いに電気的に接続する導通部材と、
      前記第1単体遮断部および前記第2単体遮断部のうち一方の前記フランジと前記機械遮断部支持板との間に介在し、前記一方の前記フランジと前記機械遮断部支持板との導通を遮断する絶縁部と、
     を備え、
     前記第1単体遮断部および前記第2単体遮断部のうち他方の前記フランジと前記機械遮断部支持板とは導通している、
     請求項1から請求項12のいずれか1項に記載の直流遮断器。
    Each of the closed containers of the first single-piece breaking unit and the second single-piece breaking unit includes a flange that is electrically connected to the movable contact,
    Each of the operation rods of the first single body breaking unit and the second single body breaking unit includes a rod insulating unit that blocks conduction between the movable contactor and the operating mechanism,
    The at least one mechanical shutoff unit comprises:
    A mechanical blocking section support plate on which the first single blocking section and the second single blocking section are arranged and which is supported by the insulating column;
    A conduction member electrically connecting the respective flanges of the first single body breaking portion and the second single body breaking portion,
    It is interposed between the mechanical blocking section support plate and the flange of one of the first single block section and the second single block section to block electrical connection between the one flange and the mechanical block support plate. Insulation part,
    Equipped with
    The other flange of the first single-piece breaking unit and the second single-piece breaking unit is electrically connected to the mechanical-breaking unit support plate,
    The DC circuit breaker according to any one of claims 1 to 12.
  14.  前記第1単体遮断部および前記第2単体遮断部それぞれの前記密閉容器は、フランジを備え、
     前記第1単体遮断部および前記第2単体遮断部それぞれの前記操作ロッドは、前記可動接触子と前記操作機構との導通を遮断するロッド絶縁部を備え、
     前記少なくとも1つの機械遮断ユニットは、
      前記第1単体遮断部および前記第2単体遮断部が配置されるとともに前記絶縁支柱に支持された機械遮断部支持板と、
      前記第1単体遮断部および前記第2単体遮断部のそれぞれの前記フランジを互いに電気的に接続する導通部材と、
      前記第1単体遮断部および前記第2単体遮断部のうち一方の前記フランジと前記機械遮断部支持板との間に介在し、前記一方の前記フランジと前記機械遮断部支持板との導通を遮断する絶縁部と、
     を備え
     前記第1単体遮断部および前記第2単体遮断部の前記可動接触子と前記フランジと、前記操作機構と、前記機械遮断部支持板とは同電位である、
     請求項1から請求項12のいずれか1項に記載の直流遮断器。
    The sealed container of each of the first single body blocking section and the second single body blocking section includes a flange,
    Each of the operation rods of the first single body breaking unit and the second single body breaking unit includes a rod insulating unit that blocks conduction between the movable contactor and the operating mechanism,
    The at least one mechanical shutoff unit comprises:
    A mechanical blocking section support plate on which the first single blocking section and the second single blocking section are arranged and which is supported by the insulating column;
    A conduction member electrically connecting the respective flanges of the first single body breaking portion and the second single body breaking portion,
    It is interposed between the mechanical blocking section support plate and the flange of one of the first single block section and the second single block section to block electrical connection between the one flange and the mechanical block support plate. Insulation part,
    The first contact breaker and the second contact breaker, the movable contactor, the flange, the operating mechanism, and the mechanical breaker support plate have the same potential.
    The DC circuit breaker according to any one of claims 1 to 12.
PCT/JP2018/046148 2018-12-14 2018-12-14 Direct-current circuit breaker WO2020121525A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880100078.7A CN113168989A (en) 2018-12-14 2018-12-14 Direct current breaker
PCT/JP2018/046148 WO2020121525A1 (en) 2018-12-14 2018-12-14 Direct-current circuit breaker
JP2020559673A JP7150876B2 (en) 2018-12-14 2018-12-14 DC circuit breaker
EP18942816.2A EP3896713A4 (en) 2018-12-14 2018-12-14 Direct-current circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/046148 WO2020121525A1 (en) 2018-12-14 2018-12-14 Direct-current circuit breaker

Publications (1)

Publication Number Publication Date
WO2020121525A1 true WO2020121525A1 (en) 2020-06-18

Family

ID=71076413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046148 WO2020121525A1 (en) 2018-12-14 2018-12-14 Direct-current circuit breaker

Country Status (4)

Country Link
EP (1) EP3896713A4 (en)
JP (1) JP7150876B2 (en)
CN (1) CN113168989A (en)
WO (1) WO2020121525A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126223A (en) * 1980-03-10 1981-10-03 Tokyo Shibaura Electric Co Switch
JPS58144508A (en) * 1982-02-22 1983-08-27 株式会社東芝 Dc breaker
JP2012190704A (en) * 2011-03-11 2012-10-04 Toshiba Corp Direct-current circuit breaker
JP2015185477A (en) * 2014-03-25 2015-10-22 株式会社東芝 Compound type switch
WO2015166600A1 (en) 2014-05-01 2015-11-05 三菱電機株式会社 Direct current shutoff device
WO2016056274A1 (en) 2014-10-09 2016-04-14 三菱電機株式会社 Dc circuit breaker
JP2016127744A (en) * 2015-01-07 2016-07-11 株式会社明電舎 Vacuum circuit breaker
JP2016187275A (en) * 2015-03-27 2016-10-27 株式会社東芝 Dc current cut-off device and control method of the same
WO2017134825A1 (en) 2016-02-05 2017-08-10 三菱電機株式会社 Direct current circuit breaker

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3252050A (en) * 1964-04-07 1966-05-17 Gen Electric Circuit interrupting means for a high voltage direct-current circuit with means for reducing the severity of the recovery voltage
JPS5848317A (en) * 1981-09-18 1983-03-22 株式会社日立製作所 Dc breaking device
JPS6065411A (en) * 1983-09-21 1985-04-15 株式会社日立製作所 Line charging type dc breaker
JP3356457B2 (en) * 1992-04-02 2002-12-16 株式会社日立製作所 Vacuum circuit breaker
EP3082208B1 (en) * 2013-12-11 2018-09-05 Mitsubishi Electric Corporation Dc breaker device
JP6235374B2 (en) * 2014-02-27 2017-11-22 株式会社東芝 Switch operating mechanism

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126223A (en) * 1980-03-10 1981-10-03 Tokyo Shibaura Electric Co Switch
JPS58144508A (en) * 1982-02-22 1983-08-27 株式会社東芝 Dc breaker
JP2012190704A (en) * 2011-03-11 2012-10-04 Toshiba Corp Direct-current circuit breaker
JP2015185477A (en) * 2014-03-25 2015-10-22 株式会社東芝 Compound type switch
WO2015166600A1 (en) 2014-05-01 2015-11-05 三菱電機株式会社 Direct current shutoff device
WO2016056274A1 (en) 2014-10-09 2016-04-14 三菱電機株式会社 Dc circuit breaker
JP2016127744A (en) * 2015-01-07 2016-07-11 株式会社明電舎 Vacuum circuit breaker
JP2016187275A (en) * 2015-03-27 2016-10-27 株式会社東芝 Dc current cut-off device and control method of the same
WO2017134825A1 (en) 2016-02-05 2017-08-10 三菱電機株式会社 Direct current circuit breaker

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3896713A4

Also Published As

Publication number Publication date
JPWO2020121525A1 (en) 2021-09-27
CN113168989A (en) 2021-07-23
EP3896713A4 (en) 2022-07-27
EP3896713A1 (en) 2021-10-20
JP7150876B2 (en) 2022-10-11

Similar Documents

Publication Publication Date Title
US9450394B2 (en) Method, circuit breaker and switching unit for switching off high-voltage DC currents
JP6710811B2 (en) DC breakers and mechanical breakers for DC breakers
US6144005A (en) Vacuum switch and a vacuum switchgear using the same
KR101630093B1 (en) High-voltage DC circuit breaker
WO2015166600A1 (en) Direct current shutoff device
WO2013074156A1 (en) Triggered arc flash arrester and switchgear system including the same
JP3589061B2 (en) Vacuum switchgear and method for opening and closing vacuum switchgear
US10937613B2 (en) Triggered gap switching device
US7986061B2 (en) Electrical switching device
WO2015062644A1 (en) Circuit breaker
EP1119010A1 (en) Vacuum switch and vacuum switch gear using the vacuum switch
WO2016158465A1 (en) Dc circuit breaker device and method for controlling same
US9570263B2 (en) Vacuum switching assembly
WO2020121525A1 (en) Direct-current circuit breaker
EP2715761B1 (en) Vacuum interrupter
WO2023021842A1 (en) Gas-insulated switching device
JP2971816B2 (en) Bypass switch device
JP5161608B2 (en) Gas circuit breaker
KR20230130430A (en) High Speed Closing Switch And Controlling Method Of The Same
JPH06290689A (en) High speed reclosing ground switch
JP2012138223A (en) Cubicle-type gas insulated switchgear
JPH11126544A (en) Gas-blast circuit-breaker for electric power
JP2005005277A (en) Vacuum switch
JPH1189024A (en) Switch gear

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942816

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559673

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018942816

Country of ref document: EP

Effective date: 20210714