WO2020121393A1 - Circuit breaker - Google Patents

Circuit breaker Download PDF

Info

Publication number
WO2020121393A1
WO2020121393A1 PCT/JP2018/045415 JP2018045415W WO2020121393A1 WO 2020121393 A1 WO2020121393 A1 WO 2020121393A1 JP 2018045415 W JP2018045415 W JP 2018045415W WO 2020121393 A1 WO2020121393 A1 WO 2020121393A1
Authority
WO
WIPO (PCT)
Prior art keywords
crossbar
circuit breaker
groove
arrow
state
Prior art date
Application number
PCT/JP2018/045415
Other languages
French (fr)
Japanese (ja)
Inventor
真一 千種
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/045415 priority Critical patent/WO2020121393A1/en
Priority to JP2020558827A priority patent/JP6949254B2/en
Publication of WO2020121393A1 publication Critical patent/WO2020121393A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release

Definitions

  • the present invention relates to a circuit breaker equipped with a crossbar that prevents malfunction of the mechanical section.
  • the mechanism section linearly operates the crossbar engaged with the movable contact conductor to separate and contact the fixed contact and the movable contact in the arc extinguishing chamber. It is configured to perform an opening/closing operation (for example, see Patent Document 1).
  • the present invention has been made to solve the above-mentioned problems, and the metal melt generated in the arc extinguishing chamber at the time of interruption and adhering to the crossbar scatters to the mechanism portion during the operation of the crossbar during the duty of interruption. It is an object of the present invention to provide a circuit breaker capable of preventing a malfunction of the mechanism section and realizing a stable operation by reducing the above-mentioned problem.
  • the circuit breaker according to the present invention includes a fixed contact conductor to which a fixed contact is fixed, a movable contact conductor to which a movable contact that is separable from the fixed contact is fixed, and a fixed contact and a movable contact.
  • An arc extinguishing chamber for extinguishing the arc generated in the arc a crossbar having a groove on a surface facing the arc extinguishing chamber, and a mechanism section for driving the crossbar so that the fixed contact and the movable contact are brought into contact with each other. Characterize.
  • the metal melt adhered to the crossbar at the time of disconnection is adhered to and retained in the groove of the crossbar even when the crossbar operates during the interrupting duty, and the adhesion position in the groove. Since the distance from the mechanical unit to the mechanical unit becomes long, the amount of scattering to the mechanical unit side is reduced, and the malfunction of the mechanical unit can be prevented and stable operation can be realized.
  • FIG. 5 is a cross-sectional view of the circuit breaker in the ON state according to the first embodiment.
  • FIG. 3 is a front view of the crossbar according to the first embodiment.
  • FIG. 5 is a cross-sectional view taken along the line AA of the crossbar according to the first embodiment as viewed from the direction of arrow A.
  • FIG. 3 is a cross-sectional view of the circuit breaker in the OFF state according to the first embodiment.
  • FIG. 3 is a cross-sectional view of the circuit breaker in the trip state according to the first embodiment.
  • FIG. 7 is a front view of the crossbar according to the second embodiment.
  • FIG. 11 is a cross-sectional view taken along the line CC of the crossbar of the second embodiment as viewed from the direction of the arrow C.
  • FIG. 1 shows a cross-sectional view of the circuit breaker 100 in the ON state.
  • FIG. 2 shows a front view of the crossbar 81, and
  • FIG. 3 shows a cross-sectional view of the crossbar 81.
  • FIG. 4 shows a cross-sectional view of the circuit breaker 100 in the OFF state, and
  • FIG. 5 shows a cross-sectional view of the circuit breaker 100 in the trip state.
  • the structure of the circuit breaker 100 will be described with reference to FIGS. 1 to 3.
  • the operation of the circuit breaker 100 will be described with reference to FIGS. 1, 4, and 5.
  • the circuit breaker 100 includes a housing 3 including a cover 1 and a base 2 formed of an insulating material such as plastic.
  • the housing 3 is provided with a load-side terminal 18 to which a load-side external wire is connected at a position viewed from the arrow L side in FIG. 1, and a supply-side external wire is connected at a position viewed from the arrow K side.
  • a fixed contact conductor 5 to be connected is provided.
  • the fixed contact conductor 5 has a fixed contact 4 fixed thereto.
  • the movable contact conductor 7 has a fixed movable contact 6.
  • the fixed contact conductor 5 and the movable contact conductor 7 are provided so that the fixed contact 4 and the movable contact 6 are located in the arc extinguishing chamber 17.
  • the fixed contact 4 and the movable contact 6 come into contact with each other in the arc extinguishing chamber 17, so that the circuit breaker 100 becomes conductive.
  • the grid, the movable contact 6 and the fixed contact 4 inside the arc extinguishing chamber 17 are melted and a metal melt is generated and scattered.
  • the metal melt generated when the arc is extinguished is a metal such as a silver alloy, copper, or iron in the form of powder having a size of about several tens ⁇ .
  • the trip bar 9, the link pin 10, the handle 11, the frame 12, the roller 13, the lever 14, and the opening spring 16 which is a compression spring constitute a mechanical portion that drives the crossbar 81.
  • the crossbar 81 is engaged with the movable contact conductor 7.
  • the mechanical portion causes the crossbar 81 to move in the direction of the arrow M in FIG. 1 in order to interrupt the overcurrent or the short-circuit current.
  • the crossbar 81 By moving the crossbar 81, the movable contact 6 is separated from the fixed contact 4, and the circuit breaker 100 is in the OFF state shown in FIG.
  • the trip bar 9 is T-shaped when viewed from the arrow side of K in FIG. 1, and includes a trip bar pressure receiving portion 9a, a trip bar engaging portion 9b, and a trip bar shaft 9c.
  • the link pin 10 is U-shaped when viewed from the arrow side of K in FIG. 1, and includes a link pin pivotally attaching portion 10a and a link pin connecting portion 10b.
  • the handle 11 includes a handle shaft 11a, a handle hole 11b, and a lever pressing portion 11c.
  • the frame 12 is fixed to the housing 3 and supports the link pin 10, the handle 11 and the lever 14.
  • the frame 12 also includes a handle stopper 12a.
  • the lever 14 includes a lever guide surface 14a, a lever engaging portion 14b, and a lever shaft 14c.
  • One of the levers 14 is a lever shaft 14c and the other is a lever engaging portion 14b.
  • the lever shaft 14c has a hole formed in the plate thickness direction of the lever 14 and is bent so as to have a bracket shape when viewed from the arrow side of K in FIG. By pivotally attaching the hole provided in the frame 12 and the lever shaft 14c, the lever 14 becomes rotatable around the lever shaft 14c.
  • the lever engaging portion 14b is biased counterclockwise in FIG. 1 by a twist spring (not shown) and engages with the trip bar engaging portion 9b.
  • An opposite surface of the lever 14 to the lever engaging portion 14b is a lever guide surface 14a which is a guide when the roller 13 operates.
  • the U-shaped open side is the link pin pivotal attachment portion 10a
  • the U-shaped closed side is the link pin coupling portion 10b.
  • the handle 11 is rotatable around the handle shaft 11a by pivotally attaching the hole provided in the frame 12 and the handle shaft 11a.
  • the handle stopper 12a restrains the handle 11 from rotating too far in the direction of the arrow L.
  • the cylindrical roller 13 is rotatably attached to the link pin pivoting portion 10a.
  • the link pin coupling portion 10b is rotatably coupled to the handle hole 11b.
  • the roller 13 is interlocked with the operation of the handle 11 and moves in the direction of the arrow M and the direction of the arrow N along the lever guide surface 14a via the link pin 10.
  • the roller 13 is in contact with the crossbar 81.
  • the crossbar 81 is interlocked with the movement of the roller 13, and when the roller 13 moves in the direction of the arrow M, the crossbar 81 also moves in the direction of the arrow M. Similarly, when the roller 13 moves in the direction of the arrow N, the crossbar 81 also moves in the direction of the arrow N.
  • the crossbar 81 is restrained by the frame 12 so as not to move too much in the direction of the arrow M.
  • the relay unit 15 which is a contact peeling mechanism for interrupting the current at the time of trip will be described.
  • the relay unit 15 includes a coil 15a, an iron core 15b, and an armature 15c.
  • the operation of the relay unit 15 when an overcurrent or a short circuit current flows through the coil 15a will be described.
  • the iron core 15b is attracted to the inside of the coil 15a when an overcurrent or a short circuit current flows through the coil 15a.
  • the iron core 15b is attracted inside the coil 15a, so that the magnetic force generated in the coil 15a increases.
  • the armature 15c is attracted in the direction of the arrow N by the increased magnetic force of the coil 15a in the iron core 15b.
  • FIG. 2 is a front view of the crossbar 81.
  • FIG. 3 is a cross-sectional view taken along the line AA seen from the direction of the arrow A in FIG.
  • the crossbar 81 is made of an insulating material such as plastic and has a crossbar groove 8a on the surface facing the arc extinguishing chamber 17.
  • the metal melt generated and scattered during the arc extinction adheres to the surface of the crossbar 81 facing the arc extinguishing chamber 17. Since the surface of the crossbar 81 facing the arc extinguishing chamber 17 has the crossbar groove 8a, the metal melt adheres to the inner surface of the crossbar groove 8a.
  • the crossbar groove 8a is provided in the central surface portion of the surface of the crossbar 81 facing the arc extinguishing chamber 17 as seen in FIG. This is because the crossbar 81 also functions as a shielding wall that prevents the metal melt scattered from the arc extinguishing chamber 17 from scattering to the mechanism portion.
  • the crossbar 81 of the circuit breaker 100 does not have a function as a shielding wall
  • the surface on the surface of the crossbar 81 facing the arc extinguishing chamber 17 A groove similar to the crossbar groove 8a may be provided at the portion 8a2 and the surface portion 8a3.
  • the shape of the crossbar groove 8a is as shown in FIGS. 3 and 4.
  • the crossbar groove 8a may be tapered or may have a shape with a narrow depth.
  • the shape may be rounded at the back.
  • the handle shaft 11a, the link pin connecting portion 10b, and the link pin pivotally attaching portion 10a move beyond the position where they are aligned in a horizontal direction on the paper surface, and the handle 11 rotates to the handle stopper 12a. Is turned on. Since the handle 11 receives a counterclockwise biasing force by the force of the crossbar 81 in the direction of the arrow M via the link pin 10, the handle 11 can maintain the ON position.
  • the crossbar 81 When the roller 13 moves in the direction of the arrow M along with the movement of the link pin 10, the crossbar 81 also moves in the direction of the arrow M. Further, the movable contact conductor 7 also moves in the direction of the arrow M with the movement of the crossbar 81, and the fixed contact 4 and the movable contact 6 are separated from each other to be in the OFF state in FIG.
  • the iron core 15b When an overcurrent flows through the coil 15a in the ON state of FIG. 1, the iron core 15b is attracted inside the coil 15a, that is, in the direction of the arrow M, and the magnetic force generated by the coil 15a increases.
  • the armature 15c is attracted to the iron core 15b by the increased magnetic force of the coil 15a.
  • the other kicks up the trip bar 9 in the direction of the arrow L.
  • the trip bar 9 rotates clockwise around the trip bar shaft 9c, and the trip bar engaging portion 9b and the lever engaging portion 14b are disengaged from each other.
  • the lever 14 is rotated in the direction of arrow K by a twist spring (not shown).
  • the roller 13 rolls on the surface in contact with the crossbar 81 in the direction of the arrow K, and the engagement with the crossbar 81 is released.
  • the crossbar 81 and the roller 13 are disengaged from each other, the crossbar 81 and the movable contact conductor 7 are moved in the direction of the arrow M by the biasing force of the opening spring 16 in the direction of the arrow M.
  • the movable contact 6 is separated from the fixed contact 4.
  • the handle 11 When the movable contact 6 and the fixed contact 4 are separated, the handle 11 is in a state of not receiving the force from the link pin 10. Therefore, the handle 11 is brought into a position between the ON state and the OFF state, that is, the trip state of FIG. 5, by the tension spring (not shown) attached to the handle 11.
  • the handle 11 is urged clockwise in the drawing by a tension spring (not shown) attached.
  • the roller 13 moves in the direction of the arrow M while contacting the lever guide surface 14a.
  • the roller 13 comes into contact with the surface of the crossbar 81 as seen from the arrow M side, and the OFF state of FIG. 4 is obtained.
  • the operation duty is an operation of energizing and breaking the short circuit current equal to the rated breaking capacity to the circuit breaker, or a series of operations of energizing and breaking at a constant time interval.
  • the operational responsibility in the circuit breaker breaking test is defined by Japanese Industrial Standards and International Standards.
  • the O duty of the operation duty is an operation of supplying a short-circuit current when the circuit breaker is in the ON state to break the circuit breaker.
  • the CO duty of the operation duty is an operation of operating the circuit breaker from the OFF state to the ON state and supplying a short-circuit current to the circuit breaker to break the circuit.
  • an O duty, a CO duty, and finally a CO duty will be described as an example. That is, in the operation described below in the present embodiment, as the O duty, the short-circuit current is supplied to the circuit breaker 100 in the ON state of FIG. Next, as CO duty, after the circuit breaker 100 is turned off in FIG. 4, the circuit breaker 100 is turned on in FIG. Further, as the CO duty, the circuit breaker 100 is turned off again as shown in FIG. 4 and then turned on to supply a short-circuit current to cut off the circuit breaker 100 as shown in FIG.
  • the O duty, the CO duty, and the CO duty at the end are listed as an example. However, there are also cases where the operation is performed in the OFF state and then in the ON state again.
  • the crossbar 81 moves once in the direction of the arrow M in FIG.
  • the circuit breaker 100 is operated from the OFF state of FIG. 4 to the ON state of FIG.
  • the ON state of FIG. 1 the short-circuit current is passed to cut off the current, and the trip state of FIG. 5 is set. Therefore, the crossbar 81 moves once in the direction of the arrow N in FIG. 1 during the operation from FIG. 4 to FIG. Further, it moves once in the direction of the arrow M when operating from FIG.
  • the circuit breaker 100 is operated from the OFF state of FIG. 4 to the ON state of FIG. 1 in the same manner as above. Then, in the ON state of FIG. 1, the short-circuit current is passed to cut off the current, and the trip state of FIG. 5 is set. Therefore, the crossbar 81 moves once in the direction of the arrow N in FIG. 1 during the operation from FIG. 4 to FIG. Then, during the operation from FIG. 1 to FIG. 5, it moves once in the direction of the arrow M.
  • the crossbar 81 Even if the crossbar 81 operates a plurality of times in the directions of the arrows M and N in FIG. 1 during the operation duty at the time of interruption, the metal melt adheres to and is retained in the crossbar groove 8a. Therefore, the amount scattered to the mechanical part side is small. Therefore, the stable operation of the mechanical unit can be performed during the operation duty at the time of interruption.
  • the crossbar 81 moves in the direction of the arrow M, it moves faster than when it moves in the direction of the arrow N. Therefore, the metal melt that scatters when moving in the direction of the arrow M The amount of will increase. Therefore, when the crossbar 81 moves in the direction of the arrow M, it can be said that the provision of the crossbar groove 8a is more effective.
  • the crossbar groove 8a is provided so that the mechanism portion can be moved from the metal melt adhesion position. Since the distance to the point becomes long, the amount of the metal melt scattered to the mechanism unit decreases, which prevents malfunction of the mechanism unit and leads to stable operation.
  • Embodiment 2 In the first embodiment, the inside of the crossbar groove 8a is provided as a space.
  • the crossbar grooves have a grid shape.
  • the same or corresponding portions as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 6 is a front view of the crossbar 82 in the present embodiment
  • FIG. 7 is a sectional view taken along the line CC of FIG.
  • the crossbar grooves 8b of the present embodiment are provided in a grid pattern.
  • the distance from the deposition position of the metal melt to the mechanism portion is further increased.
  • the metal melt that has jumped out hits the lattice and enters the crossbar groove 8b again. Therefore, the crossbar groove 8b can further prevent the metal melt from scattering.
  • the shape of the lattice of the crossbar groove 8b may be provided as shown in FIGS. 5 and 6, or may be tapered. Alternatively, it may have a shape with a thin inner part or a round shape.
  • the crossbar groove 8a to which the metal melt can be attached and held, is more effective in preventing malfunction of the mechanical portion and realizing stable operation.
  • the circuit breaker is mounted so that the crossbar 82 is on the right side or the left side of the arc extinguishing chamber 17, by providing the grid-shaped crossbar grooves 8b, the adhesion position of the metal melt is provided. Since the distance from the mechanical part to the mechanical part is further increased, the amount of the scattered metal melt is reduced, which prevents malfunction of the mechanical part and leads to stable operation.
  • Embodiment 3 is different from the first and second embodiments in that the inner surface of the crossbar groove is coated with a lubricating substance such as grease to cover it.
  • a lubricating substance such as grease to cover it.
  • a grease whose viscosity is increased by adding a binder material in order to prevent the migration of oil is used.
  • the metal melt easily adheres to the crossbar groove. Further, the crossbar groove makes it easier to hold the adhered metal melt, and even if the crossbar moves, it is possible to further prevent the metal melt from scattering to the mechanism section.
  • the crossbar groove to which the metal melt can be attached and held is more effective in preventing malfunction of the mechanism portion and realizing stable operation.
  • the position from the metal melt adhesion position to the mechanism part can be increased. Since the distance becomes long, the amount of the metal melt scattered to the mechanism unit decreases, which leads to stable operation of the mechanism unit.

Landscapes

  • Breakers (AREA)

Abstract

The present invention provides a circuit breaker that prevents a molten metal, which is generated at a time of arc extinction and adheres to a crossbar, from entering a mechanism part during a blocking operation of the crossbar by providing a groove in the crossbar. The circuit breaker (100) of the present invention comprises: a stationary contact conductor (5) to which a stationary contact (4) is fixed; a movable contact conductor (7) to which a movable contact (6) detachable from the stationary contact (4) is fixed; an arc-extinguishing chamber (17) that extinguishes an arc generated when the stationary contact (4) and the movable contact (6) are separated from each other; a crossbar 81 that has a groove (8a) in a surface facing the arc-extinguishing chamber (17); and a mechanism that drives the crossbar (81) such that the stationary contact (4) and the movable contact (6) are separated from each other.

Description

回路遮断器Circuit breaker
 本発明は、機構部の動作不良を防ぐクロスバーを備えた回路遮断器に関するものである。 The present invention relates to a circuit breaker equipped with a crossbar that prevents malfunction of the mechanical section.
 従来の安価な回路遮断器は、機構部が、可動接触導体に係合しているクロスバーを直線的に動作させることで消弧室内の固定接点と可動接点とを離接させ回路遮断器の開閉動作を行うように構成されていた(例えば、特許文献1参照)。 In the conventional inexpensive circuit breaker, the mechanism section linearly operates the crossbar engaged with the movable contact conductor to separate and contact the fixed contact and the movable contact in the arc extinguishing chamber. It is configured to perform an opening/closing operation (for example, see Patent Document 1).
実開昭61-104956号公報Japanese Utility Model Publication No. 61-104956
 しかしながら、このような従来の方式では、アークの消弧時に消弧室内の固定接点及び可動接点間で発生しクロスバーに付着した金属溶融物が、クロスバーの動作に伴い、機構部に飛散して侵入し、機構部の動作を阻害することがあった。 However, in such a conventional method, the metal melt adhered to the crossbar generated between the fixed contact and the movable contact in the arc extinguishing chamber when the arc is extinguished, is scattered to the mechanism portion along with the operation of the crossbar. It sometimes intrudes and interferes with the operation of the mechanical section.
 本発明は、上述のような課題を解決するためになされたもので、遮断時に消弧室内で発生しクロスバーに付着した金属溶融物が、遮断責務中のクロスバーの動作時に機構部へ飛散することを低減することで、機構部の動作不良を防ぎ安定的な動作を実現できる回路遮断器を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and the metal melt generated in the arc extinguishing chamber at the time of interruption and adhering to the crossbar scatters to the mechanism portion during the operation of the crossbar during the duty of interruption. It is an object of the present invention to provide a circuit breaker capable of preventing a malfunction of the mechanism section and realizing a stable operation by reducing the above-mentioned problem.
 本発明に係る回路遮断器は、固定接点が固着されている固定接触導体と、固定接点と離接可能な可動接点が固着されている可動接触導体と、固定接点と可動接点とが離接する際に生じるアークを消弧する消弧室と、消弧室と対面する面に溝を有するクロスバーと、固定接点と可動接点とが離接するようにクロスバーを駆動する機構部とを備えることを特徴とする。 The circuit breaker according to the present invention includes a fixed contact conductor to which a fixed contact is fixed, a movable contact conductor to which a movable contact that is separable from the fixed contact is fixed, and a fixed contact and a movable contact. An arc extinguishing chamber for extinguishing the arc generated in the arc, a crossbar having a groove on a surface facing the arc extinguishing chamber, and a mechanism section for driving the crossbar so that the fixed contact and the movable contact are brought into contact with each other. Characterize.
 本発明に係る回路遮断器は、遮断時にクロスバーに付着した金属溶融物が、遮断責務中のクロスバーの動作時でも、クロスバーの溝に付着して保持されること及び溝内の付着位置から機構部までの距離が長くなることから、機構部側へ飛散する量が少なくなり、機構部の動作不良を防ぎ安定的な動作を実現できる。 In the circuit breaker according to the present invention, the metal melt adhered to the crossbar at the time of disconnection is adhered to and retained in the groove of the crossbar even when the crossbar operates during the interrupting duty, and the adhesion position in the groove. Since the distance from the mechanical unit to the mechanical unit becomes long, the amount of scattering to the mechanical unit side is reduced, and the malfunction of the mechanical unit can be prevented and stable operation can be realized.
実施の形態1のON状態の時の回路遮断器の断面図である。FIG. 5 is a cross-sectional view of the circuit breaker in the ON state according to the first embodiment. 実施の形態1のクロスバーの正面図である。FIG. 3 is a front view of the crossbar according to the first embodiment. 実施の形態1のクロスバーのAの矢印の向きから見たA-A断面図である。FIG. 5 is a cross-sectional view taken along the line AA of the crossbar according to the first embodiment as viewed from the direction of arrow A. 実施の形態1のOFF状態の回路遮断器の断面図である。FIG. 3 is a cross-sectional view of the circuit breaker in the OFF state according to the first embodiment. 実施の形態1のトリップ状態の回路遮断器の断面図である。FIG. 3 is a cross-sectional view of the circuit breaker in the trip state according to the first embodiment. 実施の形態2のクロスバーの正面図である。FIG. 7 is a front view of the crossbar according to the second embodiment. 実施の形態2のクロスバーのCの矢印の向きから見たC-C断面図である。FIG. 11 is a cross-sectional view taken along the line CC of the crossbar of the second embodiment as viewed from the direction of the arrow C.
 実施の形態1.
 本実施の形態である回路遮断器について説明する。図1は、ON状態の時の回路遮断器100の断面図を表している。図2は、クロスバー81の正面図を示しており、図3はクロスバー81の断面図を示している。図4は、OFF状態の時の回路遮断器100の断面図を表しており、図5は、トリップ状態の時の回路遮断器100の断面図を表している。
 まず、図1から図3を用いて回路遮断器100の構造について述べる。併せて、図1、図4及び図5を用いて回路遮断器100の動作について述べる。
Embodiment 1.
The circuit breaker according to the present embodiment will be described. FIG. 1 shows a cross-sectional view of the circuit breaker 100 in the ON state. FIG. 2 shows a front view of the crossbar 81, and FIG. 3 shows a cross-sectional view of the crossbar 81. FIG. 4 shows a cross-sectional view of the circuit breaker 100 in the OFF state, and FIG. 5 shows a cross-sectional view of the circuit breaker 100 in the trip state.
First, the structure of the circuit breaker 100 will be described with reference to FIGS. 1 to 3. In addition, the operation of the circuit breaker 100 will be described with reference to FIGS. 1, 4, and 5.
 図1に示されるように、回路遮断器100は、プラスチック等の絶縁材から形成されたカバー1及びベース2からなる筐体3を備えている。筐体3には、図1のLの矢印側から見た位置に負荷側の外部電線が接続される負荷側端子18が設けられ、Kの矢印側から見た位置に供給側の外部電線が接続される固定接触導体5が設けられている。
 固定接触導体5は固着された固定接点4を備えている。また、可動接触導体7は固着された可動接点6を備えている。固定接点4と可動接点6とが消弧室17内に位置するように、固定接触導体5と可動接触導体7は設けられている。回路遮断器100がON状態の時は、消弧室17内で固定接点4と可動接点6とが接することで回路遮断器100が導通する。
 消弧室17では、アークの消弧時に、消弧室17内にあるグリッド、可動接点6及び固定接点4が溶けて金属溶融物が発生して飛散する。アークの消弧時に発生する金属溶融物は、銀合金、銅、鉄といった金属が数十μ程度の大きさの粉状となったものである。
 また、トリップバー9、リンクピン10、ハンドル11、フレーム12、ローラー13、レバー14及び圧縮ばねである開離ばね16で、クロスバー81を駆動する機構部が構成されている。また、クロスバー81は可動接触導体7と係合している。
 過電流又は短絡電流が回路遮断器100を流れた場合、過電流又は短絡電流を遮断するために、機構部は、開離ばね16の付勢力によりクロスバー81を図1のMの矢印の向きに直線的に移動するように駆動する。クロスバー81が移動することにより、固定接点4から可動接点6が開離され、回路遮断器100は図4のOFF状態となる。
As shown in FIG. 1, the circuit breaker 100 includes a housing 3 including a cover 1 and a base 2 formed of an insulating material such as plastic. The housing 3 is provided with a load-side terminal 18 to which a load-side external wire is connected at a position viewed from the arrow L side in FIG. 1, and a supply-side external wire is connected at a position viewed from the arrow K side. A fixed contact conductor 5 to be connected is provided.
The fixed contact conductor 5 has a fixed contact 4 fixed thereto. Further, the movable contact conductor 7 has a fixed movable contact 6. The fixed contact conductor 5 and the movable contact conductor 7 are provided so that the fixed contact 4 and the movable contact 6 are located in the arc extinguishing chamber 17. When the circuit breaker 100 is in the ON state, the fixed contact 4 and the movable contact 6 come into contact with each other in the arc extinguishing chamber 17, so that the circuit breaker 100 becomes conductive.
In the arc extinguishing chamber 17, when the arc is extinguished, the grid, the movable contact 6 and the fixed contact 4 inside the arc extinguishing chamber 17 are melted and a metal melt is generated and scattered. The metal melt generated when the arc is extinguished is a metal such as a silver alloy, copper, or iron in the form of powder having a size of about several tens μ.
Further, the trip bar 9, the link pin 10, the handle 11, the frame 12, the roller 13, the lever 14, and the opening spring 16 which is a compression spring constitute a mechanical portion that drives the crossbar 81. Further, the crossbar 81 is engaged with the movable contact conductor 7.
When an overcurrent or a short-circuit current flows through the circuit breaker 100, the mechanical portion causes the crossbar 81 to move in the direction of the arrow M in FIG. 1 in order to interrupt the overcurrent or the short-circuit current. Drive to move linearly. By moving the crossbar 81, the movable contact 6 is separated from the fixed contact 4, and the circuit breaker 100 is in the OFF state shown in FIG.
 次に、機構部を構成しているトリップバー9、リンクピン10、ハンドル11、フレーム12、ローラー13、レバー14及び開離ばね16について述べる。
 トリップバー9は、図1のKの矢印側から見てT字状となっており、トリップバー受圧部9a、トリップバー係合部9b及びトリップバー軸9cを備えている。
 リンクピン10は、図1のKの矢印側から見てU字状となっており、リンクピン枢着部10a及びリンクピン結合部10bを備えている。
 ハンドル11は、ハンドル軸11a、ハンドル孔11b及びレバー押圧部11cを備えている。
 フレーム12は筐体3に固定されており、リンクピン10、ハンドル11及びレバー14を支えている。また、フレーム12は、ハンドルストッパー12aを備えている。
 レバー14は、レバーガイド面14a、レバー係合部14b及びレバー軸14cを備えている。
Next, the trip bar 9, the link pin 10, the handle 11, the frame 12, the roller 13, the lever 14 and the opening spring 16 which constitute the mechanism will be described.
The trip bar 9 is T-shaped when viewed from the arrow side of K in FIG. 1, and includes a trip bar pressure receiving portion 9a, a trip bar engaging portion 9b, and a trip bar shaft 9c.
The link pin 10 is U-shaped when viewed from the arrow side of K in FIG. 1, and includes a link pin pivotally attaching portion 10a and a link pin connecting portion 10b.
The handle 11 includes a handle shaft 11a, a handle hole 11b, and a lever pressing portion 11c.
The frame 12 is fixed to the housing 3 and supports the link pin 10, the handle 11 and the lever 14. The frame 12 also includes a handle stopper 12a.
The lever 14 includes a lever guide surface 14a, a lever engaging portion 14b, and a lever shaft 14c.
 レバー14の一方はレバー軸14cであり、もう一方はレバー係合部14bである。
 レバー軸14cは、レバー14の板厚方向に孔が空けられ、図1のKの矢印側から見て角カッコ状になるように曲げて形成されている。フレーム12に設けられた孔とレバー軸14cとを枢着することで、レバー14はレバー軸14cを中心に回動可能となる。
 レバー係合部14bは、図示しないひねりばねによって図1上で反時計周りに付勢され、トリップバー係合部9bと係合している。レバー14のレバー係合部14bに対する反対面は、ローラー13の動作時のガイドであるレバーガイド面14aとなっている。
One of the levers 14 is a lever shaft 14c and the other is a lever engaging portion 14b.
The lever shaft 14c has a hole formed in the plate thickness direction of the lever 14 and is bent so as to have a bracket shape when viewed from the arrow side of K in FIG. By pivotally attaching the hole provided in the frame 12 and the lever shaft 14c, the lever 14 becomes rotatable around the lever shaft 14c.
The lever engaging portion 14b is biased counterclockwise in FIG. 1 by a twist spring (not shown) and engages with the trip bar engaging portion 9b. An opposite surface of the lever 14 to the lever engaging portion 14b is a lever guide surface 14a which is a guide when the roller 13 operates.
 リンクピン10において、U字状に開いている側がリンクピン枢着部10aであり、U字状に閉じている側がリンクピン結合部10bである。
 また、ハンドル11は、フレーム12に設けられた孔とハンドル軸11aとを枢着することで、ハンドル軸11aを中心に回動可能となる。ハンドル11をLの矢印の向きに動作させた際に、ハンドルストッパー12aは、ハンドル11がLの矢印の向きに回り過ぎないように制している。
 円筒状のローラー13は、リンクピン枢着部10aに回動自由に枢着されている。リンクピン結合部10bは、ハンドル孔11bに回動自由に結合されている。ローラー13は、ハンドル11の操作に連動して、リンクピン10を介してレバーガイド面14aに沿ってMの矢印の向き及びNの矢印の向きに移動する。
 また、ローラー13はクロスバー81と当接している。クロスバー81は、ローラー13の移動に連動して、ローラー13がMの矢印の向きに移動するとクロスバー81もMの矢印の向きに移動する。同様に、ローラー13がNの矢印の向きに移動するとクロスバー81もNの矢印の向きに移動する。また、クロスバー81は、フレーム12によってMの矢印の向きに移動し過ぎないように制されている。
In the link pin 10, the U-shaped open side is the link pin pivotal attachment portion 10a, and the U-shaped closed side is the link pin coupling portion 10b.
Further, the handle 11 is rotatable around the handle shaft 11a by pivotally attaching the hole provided in the frame 12 and the handle shaft 11a. When the handle 11 is moved in the direction of the arrow L, the handle stopper 12a restrains the handle 11 from rotating too far in the direction of the arrow L.
The cylindrical roller 13 is rotatably attached to the link pin pivoting portion 10a. The link pin coupling portion 10b is rotatably coupled to the handle hole 11b. The roller 13 is interlocked with the operation of the handle 11 and moves in the direction of the arrow M and the direction of the arrow N along the lever guide surface 14a via the link pin 10.
The roller 13 is in contact with the crossbar 81. The crossbar 81 is interlocked with the movement of the roller 13, and when the roller 13 moves in the direction of the arrow M, the crossbar 81 also moves in the direction of the arrow M. Similarly, when the roller 13 moves in the direction of the arrow N, the crossbar 81 also moves in the direction of the arrow N. The crossbar 81 is restrained by the frame 12 so as not to move too much in the direction of the arrow M.
 次に、トリップ時に電流を遮断するための接点引き剥がし機構であるリレー部15について述べる。
 リレー部15は、コイル15a、鉄心15b及びアーマチュア15cを備えている。
 コイル15aに、過電流又は短絡電流が流れた場合のリレー部15の動作を説明する。
 鉄心15bは、コイル15aに過電流又は短絡電流が流れることで、コイル15aの内側に吸引される。鉄心15bがコイル15aの内側に吸引されることで、コイル15aに発生する磁力が増加する。
 アーマチュア15cは、コイル15aに過電流又は短絡電流が流れた場合に、鉄心15bに増加したコイル15aの磁力によってNの矢印の向きに引き寄せられる。
Next, the relay unit 15 which is a contact peeling mechanism for interrupting the current at the time of trip will be described.
The relay unit 15 includes a coil 15a, an iron core 15b, and an armature 15c.
The operation of the relay unit 15 when an overcurrent or a short circuit current flows through the coil 15a will be described.
The iron core 15b is attracted to the inside of the coil 15a when an overcurrent or a short circuit current flows through the coil 15a. The iron core 15b is attracted inside the coil 15a, so that the magnetic force generated in the coil 15a increases.
When an overcurrent or a short circuit current flows through the coil 15a, the armature 15c is attracted in the direction of the arrow N by the increased magnetic force of the coil 15a in the iron core 15b.
 続いて、回路遮断器100の機構部の動作不良を防ぐクロスバー81の構造について述べる。
 図2は、クロスバー81の正面図である。また、図3は、図2のAの矢印の向きから見たA-A断面図である。
 クロスバー81はプラスチック等の絶縁物で形成され、消弧室17と対面する面にクロスバー溝8aが設けられている。
 消弧時に発生して飛散した金属溶融物は、消弧室17と対面しているクロスバー81の面に付着する。なお、消弧室17と対面するクロスバー81の面はクロスバー溝8aを有しているので、クロスバー溝8aの内面にも金属溶融物は付着する。
Next, the structure of the crossbar 81 that prevents malfunction of the mechanical portion of the circuit breaker 100 will be described.
FIG. 2 is a front view of the crossbar 81. Further, FIG. 3 is a cross-sectional view taken along the line AA seen from the direction of the arrow A in FIG.
The crossbar 81 is made of an insulating material such as plastic and has a crossbar groove 8a on the surface facing the arc extinguishing chamber 17.
The metal melt generated and scattered during the arc extinction adheres to the surface of the crossbar 81 facing the arc extinguishing chamber 17. Since the surface of the crossbar 81 facing the arc extinguishing chamber 17 has the crossbar groove 8a, the metal melt adheres to the inner surface of the crossbar groove 8a.
 本実施の形態では、消弧室17に面しているクロスバー81の面上のうち図2で見て中央の面部分にクロスバー溝8aを設けた。これは、クロスバー81が消弧室17から飛散してくる金属溶融物が機構部にまで飛散するのを防ぐ遮蔽壁としても機能するためである。しかし、回路遮断器100のクロスバー81に遮蔽壁として機能を担わせない構造とする場合は、クロスバー溝8aに加えて、クロスバー81の消弧室17に面している面上の面部分8a2及び面部分8a3の箇所にもクロスバー溝8aと同様な溝を設けてもよい。 In the present embodiment, the crossbar groove 8a is provided in the central surface portion of the surface of the crossbar 81 facing the arc extinguishing chamber 17 as seen in FIG. This is because the crossbar 81 also functions as a shielding wall that prevents the metal melt scattered from the arc extinguishing chamber 17 from scattering to the mechanism portion. However, in the case where the crossbar 81 of the circuit breaker 100 does not have a function as a shielding wall, in addition to the crossbar groove 8a, the surface on the surface of the crossbar 81 facing the arc extinguishing chamber 17 A groove similar to the crossbar groove 8a may be provided at the portion 8a2 and the surface portion 8a3.
 本実施の形態では、クロスバー溝8aの形状は図3及び図4のようになっている。しかし、クロスバー溝8aは、例えば、テーパーを付けてもよいし奥が細くなっている形状でもよい。あるいは、奥が丸くなっている形状でもよい。 In this embodiment, the shape of the crossbar groove 8a is as shown in FIGS. 3 and 4. However, the crossbar groove 8a may be tapered or may have a shape with a narrow depth. Alternatively, the shape may be rounded at the back.
 次に、本実施の形態の回路遮断器100の動作について、OFF状態からON状態、ON状態からOFF状態及びON状態からトリップ状態の各場合に分けて順に述べる。
 まず、回路遮断器100の図4のOFF状態から図1のON状態への動作について、図1及び図4を用いて説明する。
Next, the operation of the circuit breaker 100 of the present embodiment will be described in order for each case from the OFF state to the ON state, the ON state to the OFF state, and the ON state to the trip state.
First, the operation of the circuit breaker 100 from the OFF state of FIG. 4 to the ON state of FIG. 1 will be described with reference to FIGS. 1 and 4.
 図4のOFF状態時に、ハンドル11をLの矢印の向きへ操作すると、ハンドル11はハンドル軸11aを中心に回動する。すると、リンクピン結合部10bはBの矢印の向きへ移動する。リンクピン10の移動に伴って、ローラー13は、レバーガイド面14aに沿って開離ばね16の付勢力に対抗しながらNの矢印の向きへ移動する。 When the handle 11 is operated in the direction of the arrow L in the OFF state of FIG. 4, the handle 11 rotates about the handle shaft 11a. Then, the link pin coupling portion 10b moves in the direction of the arrow B. Along with the movement of the link pin 10, the roller 13 moves in the direction of the arrow N along the lever guide surface 14a while opposing the biasing force of the opening spring 16.
 ローラー13の移動に伴って、ハンドル軸11a、リンクピン結合部10b及びリンクピン枢着部10aが紙面上水平方向に一直線となる位置を超え、ハンドル11はハンドルストッパー12aまで回動し、図1のON状態となる。
 ハンドル11は、リンクピン10を介して、クロスバー81のMの矢印の向きの力により反時計回りの付勢力を受けるため、ON状態の位置を保持することができる。
With the movement of the roller 13, the handle shaft 11a, the link pin connecting portion 10b, and the link pin pivotally attaching portion 10a move beyond the position where they are aligned in a horizontal direction on the paper surface, and the handle 11 rotates to the handle stopper 12a. Is turned on.
Since the handle 11 receives a counterclockwise biasing force by the force of the crossbar 81 in the direction of the arrow M via the link pin 10, the handle 11 can maintain the ON position.
 次に、回路遮断器100の図1のON状態から図4のOFF状態への動作について、同様に図1及び図4を用いて述べる。OFF状態からON状態への動作とは全く逆の動作となる。 Next, the operation of the circuit breaker 100 from the ON state of FIG. 1 to the OFF state of FIG. 4 will be described with reference to FIGS. 1 and 4. The operation is the reverse of the operation from the OFF state to the ON state.
 図1のON状態時に、Kの矢印の向きへハンドル11を操作すると、ハンドル11が回動して、ハンドル軸11a、リンクピン結合部10b及びリンクピン枢着部10aが図1の紙面上水平方向に一直線で並ぶ。
 リンクピン結合部10bが一直線上に並んだ状態からLの矢印の向きに移動すると、開離ばね16の付勢力を受けているクロスバー81が、リンクピン10を介し、ハンドル11をKの矢印の向きに移動させる。
When the handle 11 is operated in the direction of the arrow K in the ON state of FIG. 1, the handle 11 rotates, and the handle shaft 11a, the link pin coupling portion 10b, and the link pin pivotal portion 10a are horizontal on the paper surface of FIG. Line up in a straight line.
When the link pin coupling portions 10b are moved in the direction of the arrow L from the state where they are aligned in a straight line, the crossbar 81 which receives the biasing force of the opening spring 16 moves the handle 11 through the link pin 10 to the arrow K. Move in the direction of.
 リンクピン10の移動と共に、ローラー13がMの矢印の向きへ移動すると、クロスバー81もMの矢印の向きへ移動する。また、クロスバー81の移動に伴って可動接触導体7もMの矢印の向きへ移動し、固定接点4及び可動接点6は開離され図4のOFF状態となる。 When the roller 13 moves in the direction of the arrow M along with the movement of the link pin 10, the crossbar 81 also moves in the direction of the arrow M. Further, the movable contact conductor 7 also moves in the direction of the arrow M with the movement of the crossbar 81, and the fixed contact 4 and the movable contact 6 are separated from each other to be in the OFF state in FIG.
 次に、図1のON状態時の回路遮断器100に過電流が流れ、図5のトリップ状態となる動作について、図1及び図5を用いて述べる。 Next, with reference to FIGS. 1 and 5, the operation in which an overcurrent flows in the circuit breaker 100 in the ON state of FIG. 1 and the trip state of FIG. 5 is described.
 図1のON状態時に、コイル15aに過電流が流れると、鉄心15bはコイル15aの内側、つまりMの矢印の向きに吸引され、コイル15aの発生する磁力が増加する。増加したコイル15aの磁力によって、アーマチュア15cが鉄心15bに引き寄せられる。アーマチュア15cの一方が鉄心15bに接すると、もう一方がトリップバー9をLの矢印の向きに蹴り上げる。蹴り上げられることでトリップバー軸9cを中心に、トリップバー9が時計回りに回動し、トリップバー係合部9bとレバー係合部14bとの係合が外れる。 When an overcurrent flows through the coil 15a in the ON state of FIG. 1, the iron core 15b is attracted inside the coil 15a, that is, in the direction of the arrow M, and the magnetic force generated by the coil 15a increases. The armature 15c is attracted to the iron core 15b by the increased magnetic force of the coil 15a. When one of the armatures 15c contacts the iron core 15b, the other kicks up the trip bar 9 in the direction of the arrow L. By being lifted up, the trip bar 9 rotates clockwise around the trip bar shaft 9c, and the trip bar engaging portion 9b and the lever engaging portion 14b are disengaged from each other.
 トリップバー係合部9bとレバー係合部14bとの係合が外れた結果、レバー14は図示しないひねりばねによりKの矢印の向きに回動する。
 ローラー13は、クロスバー81と接する面をKの矢印の向きに転がり、クロスバー81との係合が外れる。
 クロスバー81とローラー13との係合が外れると、開離ばね16によるMの矢印の向きの付勢力によって、クロスバー81及び可動接触導体7はMの矢印の向きに移動する。その結果、可動接点6が固定接点4から開離する。
 可動接点6及び固定接点4が開離する時、ハンドル11はリンクピン10からの力は受けていない状態となる。したがって、ハンドル11は、ハンドル11に装着された図示しない引っ張りばねにより、ON状態とOFF状態との間の位置、すなわち図5のトリップ状態となる。
As a result of disengagement between the trip bar engaging portion 9b and the lever engaging portion 14b, the lever 14 is rotated in the direction of arrow K by a twist spring (not shown).
The roller 13 rolls on the surface in contact with the crossbar 81 in the direction of the arrow K, and the engagement with the crossbar 81 is released.
When the crossbar 81 and the roller 13 are disengaged from each other, the crossbar 81 and the movable contact conductor 7 are moved in the direction of the arrow M by the biasing force of the opening spring 16 in the direction of the arrow M. As a result, the movable contact 6 is separated from the fixed contact 4.
When the movable contact 6 and the fixed contact 4 are separated, the handle 11 is in a state of not receiving the force from the link pin 10. Therefore, the handle 11 is brought into a position between the ON state and the OFF state, that is, the trip state of FIG. 5, by the tension spring (not shown) attached to the handle 11.
 次に、図5のトリップ状態から、図4のOFF状態となる動作について、図5及び図4を用いて述べる。
 図5のトリップ状態時に、ハンドル11をKの矢印の向きへ操作すると、レバー押圧部11cが、レバー14をトリップバー係合部9bまで紙面上反時計回りに回動させる。
 トリップバー9は図示しないひねりばねにより反時計回りに付勢されている。レバー14がトリップバー係合部9bを過ぎると、トリップバー9は自動的に係合位置まで回動する。回動することで、トリップバー係合部9bとレバー係合部14bとが係合する。
Next, the operation from the trip state of FIG. 5 to the OFF state of FIG. 4 will be described with reference to FIGS. 5 and 4.
When the handle 11 is operated in the direction of the arrow K in the trip state of FIG. 5, the lever pressing portion 11c rotates the lever 14 counterclockwise on the paper surface to the trip bar engaging portion 9b.
The trip bar 9 is biased counterclockwise by a twist spring (not shown). When the lever 14 passes the trip bar engagement portion 9b, the trip bar 9 automatically rotates to the engagement position. By rotating, the trip bar engaging portion 9b and the lever engaging portion 14b are engaged with each other.
 ハンドル11は、装着された図示しない引っ張りばねにより紙面上時計回りに付勢されている。ローラー13は、Mの矢印の向きにレバーガイド面14aに接しながら移動する。ローラー13が、Mの矢印側から見たクロスバー81の面に当接し、図4のOFF状態となる。 The handle 11 is urged clockwise in the drawing by a tension spring (not shown) attached. The roller 13 moves in the direction of the arrow M while contacting the lever guide surface 14a. The roller 13 comes into contact with the surface of the crossbar 81 as seen from the arrow M side, and the OFF state of FIG. 4 is obtained.
 続いて、クロスバー81が図1のMの矢印の向き及びNの矢印の向きに動作する回数の例として、動作責務での回数を考える。
 ここで、動作責務とは、定格遮断容量に等しい短絡電流を遮断器に通電して遮断する動作のこと、又は、通電と遮断とを一定の時間間隔で行う一連の動作のことである。遮断器の遮断試験における動作責務は、日本工業規格及び国際規格などにより定められている。
 動作責務のO責務とは、遮断器がON状態時に短絡電流を通電し、遮断器を遮断する動作のことである。動作責務のCO責務とは、遮断器をOFF状態からON状態へ操作し、遮断器に短絡電流を通電し遮断する動作のことである。
Next, as an example of the number of times the crossbar 81 operates in the direction of the arrow M in FIG. 1 and the direction of the arrow N in FIG.
Here, the operation duty is an operation of energizing and breaking the short circuit current equal to the rated breaking capacity to the circuit breaker, or a series of operations of energizing and breaking at a constant time interval. The operational responsibility in the circuit breaker breaking test is defined by Japanese Industrial Standards and International Standards.
The O duty of the operation duty is an operation of supplying a short-circuit current when the circuit breaker is in the ON state to break the circuit breaker. The CO duty of the operation duty is an operation of operating the circuit breaker from the OFF state to the ON state and supplying a short-circuit current to the circuit breaker to break the circuit.
 本実施の形態では、まずO責務、次にCO責務、最後にCO責務を行う動作責務を例に挙げて説明する。つまり、本実施の形態で以下に述べる動作は、O責務として、図1のON状態時に回路遮断器100に短絡電流を通電し、遮断して図5のトリップ状態とする。次にCO責務として、回路遮断器100を図4のOFF状態にした後、図1のON状態にして短絡電流を通電し、遮断して図5のトリップ状態にする。さらに、CO責務として、再度回路遮断器100を図4のOFF状態にしてからON状態にして短絡電流を通電し、遮断して図5のトリップ状態にする、といった動作である。
 本実施の形態では例として、まずO責務、次にCO責務、最後にCO責務とする動作責務を挙げたが、さらにOFF状態としてその後再びON状態にする、といった動作の場合もある。
In the present embodiment, first, an O duty, a CO duty, and finally a CO duty will be described as an example. That is, in the operation described below in the present embodiment, as the O duty, the short-circuit current is supplied to the circuit breaker 100 in the ON state of FIG. Next, as CO duty, after the circuit breaker 100 is turned off in FIG. 4, the circuit breaker 100 is turned on in FIG. Further, as the CO duty, the circuit breaker 100 is turned off again as shown in FIG. 4 and then turned on to supply a short-circuit current to cut off the circuit breaker 100 as shown in FIG.
In the present embodiment, as an example, the O duty, the CO duty, and the CO duty at the end are listed as an example. However, there are also cases where the operation is performed in the OFF state and then in the ON state again.
 本実施の形態での動作責務の場合におけるクロスバー81の動作について述べる。
 まず、O責務の際には、回路遮断器100を図1のON状態から図5のトリップ状態にさせる。したがって、クロスバー81は図1のMの矢印の向きに1回移動する。
 次に、CO責務の際には、回路遮断器100を図4のOFF状態から図1のON状態へ動作させる。そして図1のON状態時に短絡電流を通電して遮断し、図5のトリップ状態にさせる。したがって、クロスバー81は、図4から図1への動作時に、図1のNの矢印の向きに1回移動する。また、図1から図5への動作時にMの矢印の向きへ1回移動する。
 再度CO責務の際には、上記と同様に、回路遮断器100を図4のOFF状態から図1のON状態へ動作させる。そして図1のON状態時に短絡電流を通電して遮断し、図5のトリップ状態にさせる。したがって、クロスバー81は、図4から図1への動作時に、図1のNの矢印の向きに1回移動する。そして図1から図5への動作時にMの矢印の向きへ1回移動する。
The operation of the crossbar 81 in the case of the operation duty in the present embodiment will be described.
First, at the time of O duty, the circuit breaker 100 is changed from the ON state of FIG. 1 to the trip state of FIG. Therefore, the crossbar 81 moves once in the direction of the arrow M in FIG.
Next, during the CO duty, the circuit breaker 100 is operated from the OFF state of FIG. 4 to the ON state of FIG. Then, in the ON state of FIG. 1, the short-circuit current is passed to cut off the current, and the trip state of FIG. 5 is set. Therefore, the crossbar 81 moves once in the direction of the arrow N in FIG. 1 during the operation from FIG. 4 to FIG. Further, it moves once in the direction of the arrow M when operating from FIG. 1 to FIG.
In the case of the CO duty again, the circuit breaker 100 is operated from the OFF state of FIG. 4 to the ON state of FIG. 1 in the same manner as above. Then, in the ON state of FIG. 1, the short-circuit current is passed to cut off the current, and the trip state of FIG. 5 is set. Therefore, the crossbar 81 moves once in the direction of the arrow N in FIG. 1 during the operation from FIG. 4 to FIG. Then, during the operation from FIG. 1 to FIG. 5, it moves once in the direction of the arrow M.
 遮断時の動作責務中にクロスバー81が、図1のMの矢印の向き及びNの矢印の向きに複数回動作しても、金属溶融物は、クロスバー溝8aへ付着して保持されているため機構部側へ飛散する量が少なくなる。
 したがって、遮断時の動作責務中に機構部の安定した動作が可能となる。
 特に、クロスバー81がMの矢印の向きへ移動する場合、Nの矢印の向きへの移動する場合よりも素早く移動するため、Mの矢印の向きへ移動する場合の方が飛散する金属溶融物の量は多くなる。したがって、クロスバー81がMの矢印の向きへ移動する場合、クロスバー溝8aを設けることはより効果的であるといえる。
Even if the crossbar 81 operates a plurality of times in the directions of the arrows M and N in FIG. 1 during the operation duty at the time of interruption, the metal melt adheres to and is retained in the crossbar groove 8a. Therefore, the amount scattered to the mechanical part side is small.
Therefore, the stable operation of the mechanical unit can be performed during the operation duty at the time of interruption.
In particular, when the crossbar 81 moves in the direction of the arrow M, it moves faster than when it moves in the direction of the arrow N. Therefore, the metal melt that scatters when moving in the direction of the arrow M The amount of will increase. Therefore, when the crossbar 81 moves in the direction of the arrow M, it can be said that the provision of the crossbar groove 8a is more effective.
 図1、図4及び図5で示すように、紙面上クロスバー81が消弧室17よりも下になるように回路遮断器100が例えば配電盤当の盤に取り付けられる場合、クロスバー81に付着した金属溶融物は機構部側へ落下するため、飛散する量が多くなる。したがって、金属溶融物を付着させて保持することができるクロスバー溝8aは、機構部の動作不良を防ぎ安定的な動作の実現により効果的であるといえる。
 しかし、例えば、クロスバー81が消弧室17の右側あるいは左側になるように回路遮断器100が取り付けられる場合であっても、クロスバー溝8aを設けることで金属溶融物の付着位置から機構部までの距離が長くなるため、機構部へ飛散する金属溶融物の量が少なくなり、機構部の動作不良を防ぎ安定した動作につながる。
As shown in FIG. 1, FIG. 4 and FIG. 5, when the circuit breaker 100 is attached to a panel such as a switchboard so that the crossbar 81 on the paper surface is below the arc extinguishing chamber 17, it is attached to the crossbar 81. Since the molten metal melt falls to the mechanism side, the amount of scattering increases. Therefore, it can be said that the crossbar groove 8a, to which the metal melt can be attached and held, is more effective in preventing malfunction of the mechanical portion and realizing stable operation.
However, for example, even when the circuit breaker 100 is mounted so that the crossbar 81 is located on the right side or the left side of the arc extinguishing chamber 17, the crossbar groove 8a is provided so that the mechanism portion can be moved from the metal melt adhesion position. Since the distance to the point becomes long, the amount of the metal melt scattered to the mechanism unit decreases, which prevents malfunction of the mechanism unit and leads to stable operation.
 実施の形態2.
 実施の形態1では、クロスバー溝8aの溝の内部は空間であるものとして設けていた。
Embodiment 2.
In the first embodiment, the inside of the crossbar groove 8a is provided as a space.
 実施の形態2において実施の形態1との相違は、クロスバー溝が格子状である点である。なお、以下では、実施の形態1との相違点のみ説明し、同一又は対応する部分についての説明は省略する。符号についても、実施の形態1と同一又は相当部分は同一符号とし、説明を省略する。 The difference between the second embodiment and the first embodiment is that the crossbar grooves have a grid shape. In the following, only the differences from the first embodiment will be described, and description of the same or corresponding parts will be omitted. With respect to the reference numerals, the same or corresponding portions as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
 図6は、本実施の形態におけるクロスバー82の正面図であり、図7は図6のCの矢印の向きから見たC-C断面図である。
 図6及び図7で示すように、本実施の形態のクロスバー溝8bは格子状に設けている。図6及び図7のように、クロスバー溝8bを格子状に設けることで、金属溶融物の付着位置から機構部までの距離がさらに遠くなる。また、飛び出た金属溶融物は格子にぶつかって再度クロスバー溝8bに入るようになる。したがって、クロスバー溝8bは、さらに金属溶融物の飛散を防ぐことができる。
FIG. 6 is a front view of the crossbar 82 in the present embodiment, and FIG. 7 is a sectional view taken along the line CC of FIG.
As shown in FIGS. 6 and 7, the crossbar grooves 8b of the present embodiment are provided in a grid pattern. As shown in FIGS. 6 and 7, by providing the crossbar grooves 8b in a grid pattern, the distance from the deposition position of the metal melt to the mechanism portion is further increased. Further, the metal melt that has jumped out hits the lattice and enters the crossbar groove 8b again. Therefore, the crossbar groove 8b can further prevent the metal melt from scattering.
 クロスバー溝8bの格子の形状は、図5及び図6のように設けてもよいし、テーパー状でもよい。あるいは、奥が細い形状でもよいし、丸い形状でもよい。 The shape of the lattice of the crossbar groove 8b may be provided as shown in FIGS. 5 and 6, or may be tapered. Alternatively, it may have a shape with a thin inner part or a round shape.
 紙面上クロスバー82が消弧室17よりも下になるように回路遮断器が取り付けられる場合、金属溶融物が機構部側へ落下するため、飛散する量が多くなる。したがって、金属溶融物を付着させて保持することができるクロスバー溝8aは、機構部の動作不良を防ぎ安定的な動作の実現により効果的であるといえる。
 しかし、例えば、クロスバー82が消弧室17の右側あるいは左側になるように回路遮断器が取り付けられる場合であっても、格子状のクロスバー溝8bを設けることで、金属溶融物の付着位置から機構部までの距離がさらに長くなるため、飛散する金属溶融物の量が少なくなり、機構部の動作不良を防ぎ安定した動作につながる。
When the circuit breaker is attached so that the crossbar 82 on the paper surface is below the arc extinguishing chamber 17, the metal melt drops to the mechanism side, and the amount of scattering increases. Therefore, it can be said that the crossbar groove 8a, to which the metal melt can be attached and held, is more effective in preventing malfunction of the mechanical portion and realizing stable operation.
However, for example, even when the circuit breaker is mounted so that the crossbar 82 is on the right side or the left side of the arc extinguishing chamber 17, by providing the grid-shaped crossbar grooves 8b, the adhesion position of the metal melt is provided. Since the distance from the mechanical part to the mechanical part is further increased, the amount of the scattered metal melt is reduced, which prevents malfunction of the mechanical part and leads to stable operation.
 実施の形態3.
 実施の形態3において実施の形態1及び2との相違は、クロスバー溝の内面に、例えばグリスといった潤滑物質を塗布して覆う点である。塗布するグリスは、油分の移動の防止のためにバインダー材を添加することで粘性を高めたグリスを用いる。
Embodiment 3.
The third embodiment is different from the first and second embodiments in that the inner surface of the crossbar groove is coated with a lubricating substance such as grease to cover it. As the grease to be applied, a grease whose viscosity is increased by adding a binder material in order to prevent the migration of oil is used.
 クロスバー溝の内面をグリスで覆うことで、金属溶融物はクロスバー溝に付着しやすくなる。また、クロスバー溝は、付着した金属溶融物を保持しやすくなり、クロスバーが移動しても金属溶融物が機構部へ飛散することをさらに防ぐことができる。 By covering the inner surface of the crossbar groove with grease, the metal melt easily adheres to the crossbar groove. Further, the crossbar groove makes it easier to hold the adhered metal melt, and even if the crossbar moves, it is possible to further prevent the metal melt from scattering to the mechanism section.
 紙面上クロスバーが消弧室よりも下になるように回路遮断器が取り付けられる場合、クロスバーに付着した金属溶融物は機構部側へ落下するため、飛散する量が多くなる。したがって、金属溶融物を付着させて保持することができるクロスバー溝は、機構部の動作不良を防ぎ安定的な動作の実現により効果的であるといえる。しかし、例えば、クロスバーが消弧室よりも右側あるいは左側になるように回路遮断器が取り付けられる場合であっても、クロスバー溝を設けることで、金属溶融物の付着位置から機構部までの距離が長くなるため、機構部へ飛散する金属溶融物の量が少なくなり、機構部の安定した動作につながる。さらに、本実施の形態では、クロスバー溝の内面にグリスを塗布するため、クロスバー溝の金属溶融物の保持力が高くなり、消弧室から機構部へ飛散する金属溶融物の量がより少なくなる。したがって、機構部の安定した動作につながる。 When the circuit breaker is installed so that the crossbar on the paper surface is below the arc extinguishing chamber, the metal melt adhering to the crossbar falls to the mechanism side, and the amount of scattering increases. Therefore, it can be said that the crossbar groove to which the metal melt can be attached and held is more effective in preventing malfunction of the mechanism portion and realizing stable operation. However, for example, even when the circuit breaker is mounted so that the crossbar is on the right side or the left side of the arc extinguishing chamber, by providing the crossbar groove, the position from the metal melt adhesion position to the mechanism part can be increased. Since the distance becomes long, the amount of the metal melt scattered to the mechanism unit decreases, which leads to stable operation of the mechanism unit. Furthermore, in the present embodiment, since grease is applied to the inner surface of the crossbar groove, the holding force of the metal melt in the crossbar groove is increased, and the amount of metal melt scattered from the arc extinguishing chamber to the mechanism portion is further increased. Less. Therefore, the stable operation of the mechanism unit is achieved.
1 カバー
2 ベース
3 筐体
4 固定接点
5 固定接触導体
6 可動接点
7 可動接触導体
81、82 クロスバー
8a2、8a3 面部分
8a、8b クロスバー溝
9 トリップバー
9a トリップバー受圧部
9b トリップバー係合部
9c トリップバー軸
10 リンクピン
10a リンクピン枢着部
10b リンクピン結合部
11 ハンドル
11a ハンドル軸
11b ハンドル孔
11c レバー押圧部
12 フレーム
12a ハンドルストッパー
13 ローラー
14 レバー
14a レバーガイド面
14b レバー係合部
14c レバー軸
15 リレー部
15a コイル
15b 鉄心
15c アーマチュア
16 開離ばね
17 消弧室
18 負荷側端子
100 回路遮断器
1 cover 2 base 3 housing 4 fixed contact 5 fixed contact conductor 6 movable contact 7 movable contact conductors 81, 82 crossbars 8a2, 8a3 surface portions 8a, 8b crossbar groove 9 trip bar 9a trip bar pressure receiving portion 9b trip bar engagement Part 9c Trip bar shaft 10 Link pin 10a Link pin pivoting part 10b Link pin connecting part 11 Handle 11a Handle shaft 11b Handle hole 11c Lever pressing part 12 Frame 12a Handle stopper 13 Roller 14 Lever 14a Lever guide surface 14b Lever engaging part 14c Lever shaft 15 Relay part 15a Coil 15b Iron core 15c Armature 16 Breaking spring 17 Arc extinguishing chamber 18 Load side terminal 100 Circuit breaker

Claims (9)

  1.  固定接点が固着されている固定接触導体と、
     前記固定接点と離接可能な可動接点が固着されている可動接触導体と、
     前記固定接点と前記可動接点とが離接する際に生じるアークを消弧する消弧室と、
     前記消弧室と対面する面に溝を有するクロスバーと、
     前記固定接点と前記可動接点とが離接するように前記クロスバーを駆動する機構部と、
     を備えた回路遮断器。
    A fixed contact conductor to which a fixed contact is fixed,
    A movable contact conductor, to which a fixed contact and a movable contact capable of separating and contacting are fixed,
    An arc extinguishing chamber for extinguishing an arc generated when the fixed contact and the movable contact are brought into contact with each other,
    A cross bar having a groove on the surface facing the arc extinguishing chamber,
    A mechanism unit that drives the crossbar so that the fixed contact and the movable contact are separated and contacted,
    Circuit breaker with.
  2.  前記クロスバーが前記消弧室よりも下になるように取り付けられること
     を特徴とする請求項1に記載の回路遮断器。
    The circuit breaker according to claim 1, wherein the crossbar is mounted below the arc extinguishing chamber.
  3.  前記機構部は、前記対面する面が延長された面内を直線的に移動するように駆動すること
     を特徴とする請求項1又は2に記載の回路遮断器。
    The circuit breaker according to claim 1 or 2, wherein the mechanism unit is driven so as to move linearly within the extended surface of the facing surface.
  4.  前記クロスバーの前記溝は、格子状であること
     を特徴とする請求項1から3のいずれか1項に記載の回路遮断器。
    The circuit breaker according to any one of claims 1 to 3, wherein the grooves of the crossbar have a lattice shape.
  5.  前記クロスバーの前記溝は、テーパー状であること
     を特徴とする請求項1から3のいずれか1項に記載の回路遮断器。
    The circuit breaker according to any one of claims 1 to 3, wherein the groove of the crossbar is tapered.
  6.  前記クロスバーの前記溝は、奥が細い形状であること
     を特徴とする請求項1から3のいずれか1項に記載の回路遮断器。
    The circuit breaker according to any one of claims 1 to 3, wherein the groove of the crossbar has a shape with a thin inner part.
  7.  前記クロスバーの前記溝は、奥が丸い形状であること
     を特徴とする請求項1から3のいずれか1項に記載の回路遮断器。
    The circuit breaker according to any one of claims 1 to 3, wherein the groove of the crossbar has a round inner shape.
  8.  前記クロスバーの前記溝の内面は、粘着材で覆われていること
     を特徴とする請求項1から7のいずれか1項に記載の回路遮断器。
    The circuit breaker according to claim 1, wherein an inner surface of the groove of the crossbar is covered with an adhesive material.
  9.  前記粘着材の材料は、グリスにバインダー材を添加したものであること
     を特徴とする請求項8に記載の回路遮断器。
    The circuit breaker according to claim 8, wherein the material of the adhesive material is grease to which a binder material is added.
PCT/JP2018/045415 2018-12-11 2018-12-11 Circuit breaker WO2020121393A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/045415 WO2020121393A1 (en) 2018-12-11 2018-12-11 Circuit breaker
JP2020558827A JP6949254B2 (en) 2018-12-11 2018-12-11 Circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/045415 WO2020121393A1 (en) 2018-12-11 2018-12-11 Circuit breaker

Publications (1)

Publication Number Publication Date
WO2020121393A1 true WO2020121393A1 (en) 2020-06-18

Family

ID=71075974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045415 WO2020121393A1 (en) 2018-12-11 2018-12-11 Circuit breaker

Country Status (2)

Country Link
JP (1) JP6949254B2 (en)
WO (1) WO2020121393A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61104956U (en) * 1984-12-17 1986-07-03
JP2012186065A (en) * 2011-03-07 2012-09-27 Mitsubishi Electric Corp Circuit breaker
JP2016184516A (en) * 2015-03-26 2016-10-20 豊田合成株式会社 Conduction cutout device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61104956U (en) * 1984-12-17 1986-07-03
JP2012186065A (en) * 2011-03-07 2012-09-27 Mitsubishi Electric Corp Circuit breaker
JP2016184516A (en) * 2015-03-26 2016-10-20 豊田合成株式会社 Conduction cutout device

Also Published As

Publication number Publication date
JP6949254B2 (en) 2021-10-13
JPWO2020121393A1 (en) 2021-06-10

Similar Documents

Publication Publication Date Title
EP2251887B1 (en) Electromagnetic trip device
DE19819242A1 (en) Thermomagnetic circuit breaker
JP2011091042A (en) Circuit breaker for wiring with instantaneous tripping mechanism
CN202259096U (en) Magnetic system for circuit protection switch and switch mounting equipment with magnetic system
JP3548700B2 (en) Circuit breaker
WO2020121393A1 (en) Circuit breaker
US4754246A (en) Circuit interrupter
KR19980079432A (en) Circuit breaker
KR20090085976A (en) Current limiter of circuit breaker
IE950039A1 (en) Blade assembly
KR101297549B1 (en) Trip device of short voltage for molded case circuit breaker
KR20110024263A (en) Slide type movable contactor assembly for circuit breaker
US8149075B2 (en) Plastic cradle
KR100496596B1 (en) Air Circuit Breaker
JP2008270136A (en) Circuit breaker
GB1600113A (en) Current limiting contactor
US11348753B2 (en) Contactor having fixed and movable iron cores and a movable contact
JP5313933B2 (en) Circuit breaker
CN108878226B (en) Circuit breaker
KR200376452Y1 (en) Operation state display device of circuit breaker
JP4090659B2 (en) Circuit breaker
JP2514718B2 (en) Circuit breaker
JP2022538442A (en) electrical switching system
JP2023044401A (en) circuit breaker
JP2005353443A (en) Circuit breaker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942965

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020558827

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18942965

Country of ref document: EP

Kind code of ref document: A1