WO2020119427A1 - 一种TOF Lidar多机抗干扰工作方法 - Google Patents

一种TOF Lidar多机抗干扰工作方法 Download PDF

Info

Publication number
WO2020119427A1
WO2020119427A1 PCT/CN2019/120419 CN2019120419W WO2020119427A1 WO 2020119427 A1 WO2020119427 A1 WO 2020119427A1 CN 2019120419 W CN2019120419 W CN 2019120419W WO 2020119427 A1 WO2020119427 A1 WO 2020119427A1
Authority
WO
WIPO (PCT)
Prior art keywords
sampling
constant
tof lidar
sum
signals
Prior art date
Application number
PCT/CN2019/120419
Other languages
English (en)
French (fr)
Inventor
疏达
李�远
李旭兴
冯强
张庆舜
贺兴华
Original Assignee
北醒(北京)光子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北醒(北京)光子科技有限公司 filed Critical 北醒(北京)光子科技有限公司
Publication of WO2020119427A1 publication Critical patent/WO2020119427A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • G01S7/4876Extracting wanted echo signals, e.g. pulse detection by removing unwanted signals

Definitions

  • the invention belongs to the technical field of sensors and radar communication, and in particular relates to a TOF Lidar multi-machine anti-interference working method.
  • Fine adjustment by modulation frequency When fine adjustment of modulation frequency is adopted, when different depth sensor devices adopt different modulation frequencies, different depth measurement errors of each depth sensor will often occur, affecting its performance, and due to the difference near the fundamental frequency The frequency is limited, so there is still the possibility of mutual influence of the same frequency depth sensor.
  • Random delay Using random delay requires a certain judgment on whether different depth sensors affect each other, but the current judgment conditions cannot be effectively detected, which sometimes causes multiple depth sensors to still exist after random delay. The possibility of mutual influence.
  • the embodiment of the present invention aims to provide a TOF Lidar multi-machine anti-jamming working method, which can theoretically determine whether the data received by the depth sensor is affected by other depth sensors through data analysis, and avoid abnormalities according to certain rules Ranging.
  • the TOF Lidar multi-machine anti-interference working method in the embodiment of the present invention can effectively detect whether the depth sensor is affected when the depth sensors of the multi-sensing unit work at the same time, and take certain measures to avoid mutual interference between the depth sensors and ensure The ranging information finally output is accurate and reliable.
  • the TOF Lidar distance measuring device includes at least two depth sensors, each of which has a photosensitive unit, and the photosensitive unit can receive phases corresponding to 90°, 180°, and 270°, respectively.
  • the amplitudes of the four sampling signals at 0° and S1 are S1, S2, S3, and S4, respectively.
  • the four sampling signals satisfy the relationship: the sum of S1 and S3 is constant and the sum of S2 and S4 is constant.
  • the present invention provides a TOF Lidar multi-machine anti-jamming working method.
  • the method includes an adjustment step of adjusting the sampling time interval.
  • the adjustment step changes the time interval of the next sampling, so that the four sampled signals re-satisfy the sum of S1 and S3 is constant and S2 The sum with S4 is constant.
  • the TOF Lidar ranging device includes a depth sensor area array with at least two depth sensors, and the depth sensor has two photosensitive cells adjacent to each other, so that the depth sensor area array has M rows and N Column photosensitive unit, when M is an odd number, the photosensitive unit in the Mth row can receive four sampling signals corresponding to phases 0°, 90°, 180°, and 270°, respectively with amplitudes of S4, S1, S2, and S3 , When M is an even number, the photosensitive unit in the Mth row can receive four sampling signals corresponding to the phases of 180°, 270°, 0°, and 90°, and their amplitudes are S2, S3, S4, and S1; The sampling signals satisfy the relationship: the sum of S1 and S3 is constant and the sum of S2 and S4 is constant.
  • an embodiment of the present invention also provides another TOF Lidar multi-machine anti-jamming working method, when at least one of the four sampled signals is interfered and cannot satisfy the sum of S1 and S3 as a constant or S2 and S4 When the sum is constant, this method uses the undisturbed signal to calculate the delay phase
  • the TOF Lidar multi-machine anti-interference working method provided by the embodiment of the present invention can effectively detect whether the depth sensor is affected, and take certain measures to avoid mutual interference between the depth sensors and ensure the accuracy and reliability of the final output of the ranging information.
  • FIG. 1 is a working principle diagram of the prior art TOF Lidar distance measuring device
  • Figure 1 is the working waveform and receiving principle diagram of the prior art TOF Lidar ranging device
  • Figure 3 is the working waveform and receiving principle diagram of the multi-depth sensor in the TOF Lidar ranging device
  • Figure 2 is a schematic diagram of single pixel interference of two depth sensors in the TOF Lidar ranging device
  • FIG. 5 is a schematic diagram of the sampling principle of the photoelectric sensor unit of the surface array depth sensor photosensitive chip in the TOF Lidar distance measuring device;
  • FIG. 6 is a schematic diagram of interference of a two-depth-sensing multi-pixel area array depth sensor in a TOF Lidar ranging device
  • FIG. 7 is a schematic diagram of interference of a three-depth sensing multi-pixel area array depth sensor in a TOF Lidar ranging device.
  • FIG. 1 shows the working principle of the prior art TOF Lidar distance measuring device.
  • the existing TOF Lidar distance measuring device generally uses a depth sensor and performs distance measurement based on the TOF principle.
  • the TOF Lidar distance measuring device has a depth sensor, which includes a transmitting module 1, a receiving module 2, a signal processing and control module 3, and the receiving module 2 has a photosensitive unit.
  • the transmitting module 1 continuously emits infrared light waves with a certain waveform, and the light waves are reflected when they encounter obstacles (such as people, trees, etc. shown in Figure 1) Back, the reflected light is received and sensed by the photosensitive unit of the receiving module 2, and the signal processing and control module 3 processes the optical signal into an electrical signal.
  • the distance traveled by the light can be calculated according to the time difference ⁇ from the light wave to the received light. Based on this distance, the actual distance Distance between the TOF Lidar distance measuring device and the obstacle can be calculated.
  • the calculation formula is as follows:
  • the calculation method generally adopts the four-step phase method, and the time difference is obtained indirectly through the phase difference, that is, four samplings are performed in the entire period, and the accumulation of the four samplings finally obtains the phase difference between the received signal and the transmitted signal, thereby solving the TOF Distance between Lidar distance measuring device and obstacle.
  • Fig. 2 is a working waveform and receiving principle diagram of a prior art TOF Lidar ranging device.
  • the waveform signal with the period T MOD modulated by the transmitting module 1 is sampled in four time periods of phase 90°, 180°, 270°, and 0°, respectively, to obtain four sampling signals S1.
  • the amplitude of each sampled signal S1, S2, S3, and S4 is affected by the waveform and can reflect different amplitude values.
  • the delay phase of the received signal relative to the transmitted signal can be calculated Then use the delayed phase
  • the actual distance Distance can be calculated, and the calculation formula is as follows:
  • T MOD 1/f MOD .
  • FIG. 3 shows the working waveform and receiving principle diagram of the multi-depth sensor in the TOF Lidar ranging device.
  • the signals received by module 1 include reflection signal 1 of module 1 and reflection signal 4 of module 2
  • the signal received by group 2 includes the reflected signal 3 of module 2 and the reflected signal 2 of module 1;
  • the signal received by module 1 includes the signal directly from the module 2 Signal 2 transmitted.
  • the signal received by module 2 includes signal 1 directly transmitted from module 1.
  • module 1 and module 2 will affect each other, resulting in abnormal output data of each module, and ultimately resulting in inaccurate distance information.
  • the frequency control is to ensure that the operating frequency of each depth sensor differs by a certain percentage.
  • the normal modulation frequency of a depth sensor is 12MHz, then the modulation frequency of the depth sensor can be adjusted to 11.95MHz or 12.05MHz, and so on.
  • the use of frequency difference modulation frequency also has a certain degree of influence on the accuracy of the degree sensor.
  • the random delay is to use the short time of the depth sensor's luminous time in each ranging process. Different delay mechanisms are used for different depth sensors.
  • the luminous time of different depth sensors can be staggered as much as possible to avoid
  • the mutual interference between signals reduces the ratio of abnormal distance measurement data.
  • the key point of whether random delay can better avoid mutual interference between signals is to accurately determine when the depth sensor emits light, which is quite difficult.
  • the four sampling processes of the four-step phase method can be controlled to be completed in a very small time range, so as far as possible to determine which sampling process is affected, so that through fixed delay sampling or random delay sampling mechanism To a large extent, the mutual interference between the light signals of the multiple depth sensors is avoided.
  • the embodiments of the present invention provide a TOF Lidar multi-machine anti-interference working method, which specifically includes two feasible solutions: one, a single Optimization method of pixel interference; 2. Interference optimization method of multi-pixel area array depth sensor.
  • each phase in the four-step phase method meets Relationship: 1)
  • the sampling signal S1 and the sampling signal S3 are a group of related phase signals; 2)
  • the sampling signal S2 and the sampling signal S4 are a group of related phase signals.
  • the sampled fourth-order signals S1, S2, S3, and S4 can be determined as follows:
  • the first embodiment of the present invention provides a TOF Lidar multi-machine anti-interference working method, which is suitable for a single pixel scene.
  • Fig. 4 shows a single pixel interference diagram of two depth sensors in a TOF Lidar ranging device. As shown in FIG. 4, there are exemplarily two depth sensors working at the same time, namely module 1 and module 2, both of which have a photosensitive unit.
  • the above 1 and 2 do not need to be performed at the same time. In the embodiments, only the operation of the above 1 or 2 can be achieved without interference between the module 1 and the module 2; but understandable Yes, in an alternative embodiment, by performing the above 1 and 2 at the same time, it is also possible to achieve no interference between the module 1 and the module 2.
  • the above anti-jamming working method has a better implementation effect in a scenario where two modules work simultaneously.
  • the above anti-jamming work methods cannot effectively use the affected data, and the number of samples still needs to be increased to make up for the lack of data.
  • the above anti-interference working method can filter out abnormal distance measurement data to a certain extent, but when the obstacle is in a moving state, the speed of movement will affect the sampling regularity, resulting in sampling signals S1, S2, S3
  • the data rule of S4 is not as expected. Therefore, it is necessary to consider the use of new ways to choose to identify and filter interference data.
  • the second embodiment of the present invention provides a TOF Lidar multi-machine anti-interference working method, which is suitable for a multi-pixel area array depth sensor scenario and is used to effectively solve the anti-interference problem of a multi-pixel area array depth sensor.
  • the distance measuring device of multi-pixel area array depth sensor when a depth sensor with sufficient resolution is adopted, the mutual relationship between the multi-pixel area array depth sensor is considered, which can be used as a standard for interference to a certain extent.
  • This method is based on depth
  • the photosensitive chip of the sensor can be sampled in a given way.
  • Fig. 5 shows the principle diagram of the photoelectric sensor unit sampling of the surface array depth sensor photosensitive chip in the TOF Lidar distance measuring device.
  • the photosensitive chip of the area array depth sensor has an entire frame of M rows and N columns of photosensitive cells.
  • the M rows and N columns of photosensitive cells are divided into two types. Among them, the sampling sequence corresponding to the odd rows is phase 0°, 90°, 180°, 270°, the sampling signals corresponding to odd rows are S4, S1, S2, S3, and the sampling sequence corresponding to even columns is phase 180°, 270°, 0°, 90°, then the sampling signals corresponding to even rows
  • the numbers are S2, S3, S4, S1.
  • Fig. 6 shows a schematic diagram of interference between two depth sensing multi-pixel area array depth sensors in a TOF Lidar ranging device. As shown in FIG. 6, there are two depth sensors, namely two modules, module 1 and module 2, and each module has two photosensitive units Unit 1 and Unit 2 adjacent to each other.
  • phase calculation formula can be expressed as or
  • sampling signals S3 and S4 of the photosensitive unit Unit1 of the module 1 and the sampling signals S1 and S2 of the photosensitive unit Unit 2 are passed through the formula Calculate the phase
  • FIG. 7 shows a schematic diagram of interference of a three-depth sensing multi-pixel area array depth sensor in a TOF Lidar ranging device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种TOF Lidar多机抗干扰工作方法,用于TOF Lidar测距装置,TOF Lidar测距装置包括至少两个深度传感器,深度传感器具有感光单元,感光单元能够接收分别对应于相位90°、180°、270°、0°的四个采样信号,其幅值分别为S1、S2、S3、S4,该四个采样信号满足关系:S1与S3之和为常数且S2与S4之和为常数;当TOF Lidar测距装置的深度传感器接收的四个采样信号中的至少一个受到干扰而无法满足S1与S3之和为常数或S2与S4之和为常数时,则增加或减小下次采样的时间间隔,或使用未被干扰的信号计算延时相位。该方法尤其能在多深度传感器同时工作时,有效避免信号间的相互干扰,保证最终输出的测距信息准确可靠。

Description

一种TOF Lidar多机抗干扰工作方法
本申请要求于2018年12月12日提交中国专利局、申请号为201811520024.4,发明名称为“一种TOF Lidar多机抗干扰工作方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于传感器及雷达通讯技术领域,具体涉及一种TOF Lidar多机抗干扰工作方法。
背景技术
随着自动化驾驶技术的推进,各种传感器的需求量与日俱增,系统中多个传感器工作时相互干扰的情形时有发生,虽然多个图像传感器相互影响的仅仅是图像质量的降低,系统仍能在一定程度上进行图像分析,但多个深度传感器相互影响时,往往会造成大量异常数据帧的产生,这将严重影响无人驾驶的安全性。针对多个深度传感器同时工作时相互干扰的现象,现行解决方案主要有如下三种:
1、通过调制频率的微调:采用调制频率的微调时,不同深度传感器装置采用不同的调制频率时往往会造成各深度传感器出现不同程度的测距误差,影响其性能,并且由于基频附近的差频量是有限的,因此仍存在同频率深度传感器相互影响的可能。
2、通过随机延时:采用随机延时,需要对不同深度传感器是否相互影响有一定判断,但目前的判断条件并不能被有效检测到,从而有时会造成多台深度传感器随机延时后仍然存在相互影响的可能。
3、通过时钟控制:采用时钟控制时,需要保证各深度传感器在同一时钟下,但对于深度传感器大规模使用的场景,这种方式是不现实的,而且受总线时钟和装置发射信号时间的影响,同一时钟下的深度传感器总量限制会有明确规定,因此很难适用于实际场景。
因此,如何有效解决多深度传感器同时使用时出现的相互干扰现象,防止因传感器干扰而造成无人驾驶安全事故的产生,是本发明需要解决的课题。
发明内容
本发明的实施例旨提供一种TOF Lidar多机抗干扰工作方法,该方法能够通过数据分析,从原理上判定深度传感器所接收的数据是否受其他深度传感器的影响,并以一定的规律避免异常测距。
本发明实施例中的TOF Lidar多机抗干扰工作方法尤其在多感光单元的深度传感器同时工作时能有效检测出深度传感器是否被影响,并采取一定措施,避免各深度传感器间的相互 干扰,保证最终输出的测距信息准确可靠。
对于单像素点场景来说,TOF Lidar测距装置包括至少两个深度传感器,至少两个深度传感器的每一个均具有一个感光单元,感光单元能够接收分别对应于相位90°、180°、270°、0°的四个采样信号,其幅值分别为S1、S2、S3、S4,该四个采样信号满足关系:S1与S3之和为常数且S2与S4之和为常数。
为抗干扰的目的,本发明提供了一种TOF Lidar多机抗干扰工作方法,该方法包括调整采样时间间隔的调整步骤,当至少两个深度传感器中的一个深度传感器的四个采样信号中的至少一个受到干扰而无法满足S1与S3之和为常数或S2与S4之和为常数时,调整步骤改变下次采样的时间间隔,使得四个采样信号重新满足S1与S3之和为常数且S2与S4之和为常数。
对于多像素面阵深度传感器来说,TOF Lidar测距装置包括具有至少两个深度传感器的深度传感器面阵,深度传感器具有上下相邻的两个感光单元,以使得深度传感器面阵具有M行N列感光单元,当M为奇数时,第M行感光单元能够接收分别对应于相位0°、90°、180°、270°的四个采样信号,其幅值分别为S4、S1、S2、S3,当M为偶数时,第M行感光单元能够接收分别对应于相位180°、270°、0°、90°的四个采样信号,其幅值分别为S2、S3、S4、S1;其中四个采样信号满足关系:S1与S3之和为常数且S2与S4之和为常数。
为抗干扰的目的,本发明实施例还提供了另一种TOF Lidar多机抗干扰工作方法,当四个采样信号中的至少一个受到干扰而无法满足S1与S3之和为常数或S2与S4之和为常数时,该方法使用未被干扰的信号计算延时相位
Figure PCTCN2019120419-appb-000001
本发明实施例所提供的TOF Lidar多机抗干扰工作方法能有效检测出深度传感器是否被影响,并采取一定措施,避免深度传感器间相互干扰,保证最终输出的测距信息准确可靠。
附图说明
图1是现有技术的TOF Lidar测距装置的工作原理图;
图1是现有技术的TOF Lidar测距装置的工作波形及接收原理图;
图3是TOF Lidar测距装置中多深度传感器的工作波形及接收原理图;
图2是TOF Lidar测距装置中两深度传感器的单像素点干扰示意图;
图5是TOF Lidar测距装置中面阵深度传感器感光芯片的光电传感器单元采样原理图;
图6是TOF Lidar测距装置中两深度传感多像素面阵深度传感器干扰示意图;
图7是TOF Lidar测距装置中三深度传感多像素面阵深度传感器干扰示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本发明做进一步详细说明。应当理解,此处所描述的具体实施例仅仅用于解释本发明,而不能理解为对本发明的限制。
图1示出了现有技术的TOF Lidar测距装置的工作原理,现有的TOF Lidar测距装置一般采用深度传感器,并基于TOF原理进行测距。图1中,TOF Lidar测距装置具有一深度传感器,其包括发射模块1、接收模块2、信号处理及控制模块3,接收模块2具有感光单元。
实际工作时,当TOF Lidar测距装置接到工作指令后,发射模块1持续发出具有一定波形的红外光波,当光波遇到障碍物(如图1中所示的人、树等)后被反射回来,反射光被接收模块2的感光单元接收并感应,信号处理及控制模块3将光信号处理为电信号。
根据光波从发射到被接收的时间差τ可以计算出光飞行的距离,基于该距离即可算出TOF Lidar测距装置与障碍物之间的实际距离Distance,计算公式如下:
Distance=c*τ/2
其中,c为光速,τ为时间差。
目前,计算方法一般采用四步相位法,通过相位差间接得到时间差,即在整个周期中进行四次采样,通过四次采样的积累,最终得到接收信号与发射信号的相位差,从而解算出TOF Lidar测距装置与障碍物之间的实际距离Distance。
图2是现有技术的TOF Lidar测距装置的工作波形及接收原理图。如图2所示,对经过发射模块1调制出的周期为T MOD的波形信号分别在相位90°、180°、270°、0°四个时间段内进行采样,得到四个采样信号S1、S2、S3、S4的,各采样信号S1、S2、S3、S4的幅度受波形影响,能反映出不同的幅度值。
具体地,根据公式
Figure PCTCN2019120419-appb-000002
可以计算出接收信号相对于发射信号的延时相位
Figure PCTCN2019120419-appb-000003
然后利用该延时相位
Figure PCTCN2019120419-appb-000004
可计算得到上述实际距离Distance,计算公式如下:
Figure PCTCN2019120419-appb-000005
其中,c为光速,周期T MOD可通过调制波形的频率f MOD计算得到,即T MOD=1/f MOD
针对静态障碍物,四步相位法基本不存在偏差,即使有,也只是一些微弱噪声的影响,不妨碍最终结果的准确性。针对动态障碍物,虽然障碍物移动会在一定程度上影响测距的准度,但障碍物运动速度相对光速而言,基本可以视为静止状态,因此该四步相位法对常见速度范围内的障碍物测距仍然适用,基本不存在较大偏差,同样不妨碍最终结果的准确性。
从发射信号到接收信号,测距过程中信号是否能保持原始状态,在一定程度上决定了测距装置的准确度。实际应用中,由于TOF Lidar测距装置中的多个深度传感器之间相互干扰 或其他信号源的干扰,经常会导致接收到的信号不能保持原始状态,致使最终结果的准确度往往不能满足需求。
具体地,图3示出了TOF Lidar测距装置中多深度传感器的工作波形及接收原理图。这里,示例性地有两个深度传感器同时工作,即模组1和模组2。如图3所示,(a)当模组1和模组2同时探测障碍物距离信息时,模组1接收到的信号包括模组1的反射信号1和模组2的反射信号4,模组2接收到的信号包括模组2的反射信号3和模组1的反射信号2;(b)当模组1和模组2对射时,模组1接收到的信号包含直接从模组2发射的信号2,同理,模组2接收到的信号包含直接从模组1发射的信号1。
公知地,模组1和模组2接收到的信号都会相互影响,造成各模组的输出数据异常,最终导致获得的距离信息不准确。
为避免多深度传感器之间的相互干扰,目前可行的优化方法包括频率控制和随机延时。其中,频率控制是保证各深度传感器的工作频率相差一定比例,如一深度传感器的正常调制频率为12MHz,那么可将该深度传感器的调制频率调整为11.95MHz或12.05MHz,诸如此类。但在实际应用时,往往很难保证同一区域内的所有深度传感器均能够采用不同的调制频率,另外使用频差调制频率对度传感器的准确度也有一定程度的影响。此外,随机延时是利用深度传感器的发光时间在每次测距过程中的时间较短,对不同深度传感器采用不同的延时机制,这样做可尽可能地错开不同深度传感器的发光时间,避免信号间的相互干扰,从而减少异常测距数据的产生比例,随机延时是否能较好避开信号间相互干扰的关键点在于准确判断深度传感器何时发光,这是相当有难度的事情。
根据上述原理,四步相位法的四次采样过程均能控制在很小的时间范围内完成,因此尽可能地判断出哪些采样过程被影响,从而通过固定延时采样或随机延时采样机制可在很大程度上避免多深度传感器的发光信号之间的相互干扰。
由此,为解决现有技术中基于四步相位法的多深度传感器之间的信号干扰问题,本发明实施例提供TOF Lidar多机抗干扰工作方法,具体包括两种可行的方案:一、单像素点干扰优化方法;二、多像素面阵深度传感器干扰优化方法。
方案一中,基于上述现有技术中的TOF Lidar测距装置,从原理上讲,如图2所示,在同一个激光雷达模组的同一个感光单元中,四步相位法中各相位满足关系:1)采样信号S1和采样信号S3为一组相关相位信号;2)采样信号S2和采样信号S4为一组相关相位信号。在同一个激光雷达模组的同一个感光单元中,在考虑到不同信号强度、不同材质的障碍物、不同波形调制频率、不同温度、不同室外环境光、不同距离等因素下均可以得到变量关系:S1+S3=Constant、S2+S4=Constant。
因此,在同一个激光雷达模组中,对采样得到的四次信号S1、S2、S3、S4,可以有如下判定方式:
1)当S1与S3的上述变量关系异常而S2与S4的上述变量关系正常时,可以判定为S1受干扰严重,在采用采样延时机制时,可以考虑增加下次采样的时间间隔;
2)当S1与S3的上述变量关系正常而S2和S4的上述变量关系异常时,可以判定为S4受干扰严重,在采用采样延时机制时,可以考虑减小下次采样的时间间隔;
3)当S1与S3的上述变量关系异常且S2与S4变的上述量关系也异常时,可以判定为S1与S2受干扰严重、S3与S4受干扰严重或S1、S2、S3和S4均受干扰严重等多种情况。
第一实施方式
为优化的目的,本发明第一实施例提供了一种TOF Lidar多机抗干扰工作方法,适用于单像素场景。图4示出了TOF Lidar测距装置中两深度传感器的单像素点干扰示意图。如图4所示,示例性地有两个深度传感器同时工作,即模组1和模组2,模组1和模组2均具有一个感光单元。
其中,①当模组1进行信号采样S4时,会受到模组2的信号干扰,从而导致模组1中S2与S4的变量关系异常,而模组1中S3和S1的变量关系正常,为减少干扰,采取如此优化措施:减小下一次进行信号采样的帧间隔,即减小模组1中T1对应的时间间隔,满足关系T1<T3;②当模组2进行信号采样S1时,同样会受到模组1的信号干扰,从而导致模组1中S1和S3的变量关系异常,而模组2中S2和S4的变量关系正常,为减少干扰,采取如此优化措施:增加下一次进行信号采样的帧间隔,即增加T2对应的时间间隔,满足关系T2>T4。
需要说明的是,上述①和②并不需要同时进行,在其中的实施例中,只进行上述①或者②的操作就能够实现模组1和模组2之间不产生干扰;但可以理解的是,在可选的实施例中,通过同时进行上述①和②同样可以实现模组1和模组2之间不产生干扰。
仍需要说明的是,在上述减小下一次进行信号采样的帧间隔操作中,只是对下一次的整体信号采样S1、S2、S3、S4的时间进行提前,当进行该一次的操作后,模组1进行正常的距离探测操作,其调制频率f MOD以及邻近的两次S1之间的间隔与调整前相同,即继续以正常的T3工作,其中T3为模组1正常工作时S4与下一个S1之间的时间间隔;同样地,在上述增加下一次进行信号采样的帧间隔操作中,只是对下一次的整体信号采样S1、S2、S3、S4的时间进行延迟,当进行该一次的操作后,模组2进行正常的距离探测操作,其调制频率f MOD以及邻近的两次S1之间的间隔与调整前相同,即继续以正常的T4工作,其中T4为模组2正常工作时S4与下一个S1之间的时间间隔。并且,在正常的工作下,模组1和模组2的调制频率f MOD,以及模组1和模组2中各自的相邻的两次S1之间的时间间隔相同,即T3=T4。
这样一来,经过上述工作方法的调整,可以明显的降低串扰比例,上述抗干扰工作方法对两个模组同时工作的场景具有较好的实施效果。
明显地,上述抗干扰工作方法针对受影响的数据无法进行有效利用,仍需增加采样次数来弥补数据缺失的问题。对于静止障碍物,上述抗干扰工作方法能在一定程度上过滤掉异常测距数据,但当障碍物处于运动状态时,由于运动速度的快慢会影响采样规律性,造成采样信号S1、S2、S3、S4的数据规律并非如预期那样。因此,有必要考虑使用新的方式去选择识别并过滤干扰数据。
第二实施方式
为进一步优化的目的,本发明第二实施例提供了一种TOF Lidar多机抗干扰工作方法,适用于多像素面阵深度传感器场景,用于有效解决多像素面阵深度传感器的抗干扰问题。
针对多像素面阵深度传感器测距装置,当采用分辨率足够的深度传感器时,考虑多像素面阵深度传感器之间的相互关系,可以在一定程度上作为是否被干扰的标准,此方法基于深度传感器的感光芯片能按照给定的方式进行采样。
图5示出了TOF Lidar测距装置中面阵深度传感器感光芯片的光电传感器单元采样原理图。如图5所示,面阵深度传感器感光芯片具有整帧M行N列感光单元,将M行N列感光单元分为两类,其中,奇数行对应的采样顺序为相位0°、90°、180°、270°,则奇数行对应的采样信号编号为S4、S1、S2、S3,偶数列对应的采样顺序为相位180°、270°、0°、90°,则偶数行对应的采样信号编号为S2、S3、S4、S1。
这样做的目的是保证上下相邻的两个感光单元能够同时进行采样且采样相差180°,当上下相邻的两个感光单元接收的信号来自相同障碍物的同一部分区域时,在同一个激光雷达模组的上下行相邻的两个感光单元中,它们的采样信号S4与S2或S1与S3即满足变量关系:S4+S2=Constant 1、S1+S3=Constant 2
因为无论障碍物是处于动态,还是静态,上下相邻的两个感光单元在同一障碍物的采样信号类似于单个感光单元的接收信号。因此,当上下相邻的两个感光单元同时工作时,基于此原理可以得到如下判定方法:
(1)第一种情况,当上下相邻的两个感光单元的四次采样信号S4、S1、S2、S3均比较接近时,判定为测距正常,无相互干扰,若同一个感光单元的采样信号S4与S2或S1与S3相关性不是很清晰时,说明障碍物处于运动状态,可以利用此原理,上下相邻的两个感光单元相互计算校正,得到更为准确的测距数据。
(2)第二种情况,当上下相邻的两个感光单元的四次采样信号中的采样信号S4或者S3被其他模组的光信号干扰时,此时仍然能判定出采样信号S1、S2是正常的,则仍然可以考虑 采用二步相位法进行测距计算,即
Figure PCTCN2019120419-appb-000006
Figure PCTCN2019120419-appb-000007
Figure PCTCN2019120419-appb-000008
通过此计算仍能得到有效距离数据,减少因为干扰造成的数据错误输出或延时。其中,在同一个激光雷达模组的上下行相邻的两个感光单元中,它们的采样信号S4与S2或S1与S3即满足变量关系:S4+S2=Constant 1、S1+S3=Constant 2,即例如第3行某一感光单元的采样信号S4与其相邻第4行感光单元的采样信号S2之和为常数Constant 1;第3行某一感光单元的采样信号S1与其相邻第4行感光单元的采样信号S3之和为常数Constant 2,Constant 1和Constant 2为经过数据统计的经验数值。
(3)第三种情况,当上下相邻的两个感光单元的四次采样信号中的采样信号S1与S4或者S2与S3被其他模组的光信号干扰,此时利用判定正常的采样信号S2与S3或S4与S1进行距离计算,得到有效测距数据,同上述第二种情况的计算原理。
(4)当上下两个感光单元的四次采样信号中有三个采样信号被干扰时,即S4、S1和S2,或者S1、S2和S3被干扰时,可采取和方法1中相同的策略,降低或增加当前帧与下一帧的帧间隔来降低不同模组信号相互干扰比例。
(5)当上下两个相邻的感光单元的四次采样信号S4、S1、S2和S3均有明显异常时,可以采用随机延时,错开两个模组的发光时间,降低相互干扰的时间,通过多次判断,找到合适的避免干扰的发光时间,从而得到稳定的不受干扰的测距数据的输出。
图6示出了TOF Lidar测距装置中两深度传感多像素面阵深度传感器干扰示意图。如图6所示,存在两个深度传感,即两个模组,模组1和模组2,每个模组均具有上下相邻的两个感光单元Unit 1和Unit 2。
当两个模组1和2都处于正常工作状态时,可以看到模组1的前两个采样信号被模组2干扰,其中模组1的相邻两个感光单元Unit 1和Unit 2的各自对应被干扰的采样信号分别为Unit 1:S1、S2和Unit 2:S3、S4,此时Unit 1:S1、S2和Unit 2:S3、S4很难满足关系:S1+S3=S2+S4(此条件在干扰情况下基本不存在),而对于未被模组2干扰的模组1的感光单元Unit1的采样信号S3、S4以及感光单元Unit 2的采样信号S1、S2,正常情况下可以得到关系S3+S4=S1+S2(针对未被干扰的信号,此关系基本恒定存在)。
此时,针对模组1的感光单元Unit 1,其相位计算公式可表示为
Figure PCTCN2019120419-appb-000009
Figure PCTCN2019120419-appb-000010
Figure PCTCN2019120419-appb-000011
而针对模组1的感光单元Unit 2,其相位计算公式可表示为
Figure PCTCN2019120419-appb-000012
Figure PCTCN2019120419-appb-000013
另外,在可能的一种实现方式中,通过模组1的感光单元Unit1的采样信号S3、S4以及感光单元Unit 2的采样信号S1、S2,通过公式
Figure PCTCN2019120419-appb-000014
算出相位
Figure PCTCN2019120419-appb-000015
上述式中,相比于通过两个信号采样的计算方式,通过四个信号采样计算得到的结果会相对更准确。
同理,针对模组2的上下相邻的两个感光单元Unit 1和Unit 2,其未被相邻的模组1干扰的采样信号分别为Unit 1:S1、S2和Unit 2:S3、S4,采用上述相同的计算思路,可以得到模组2的各个感光单元的相位计算公式,在此不再赘述。
进一步地,图7示出了TOF Lidar测距装置中三深度传感多像素面阵深度传感器干扰示意图。如图7所示,存在三个深度传感,即三个模组,模组1、模组2和模组3,每个模组均具有上下相邻的两个感光单元Unit 1和Unit 2。
图7中,对于模组2而言,其感光单元Unit1的采样信号S1和S4以及感光单元Unit2的采样信号S2和S3分别被不同深度传感模组干扰时,仍能利用中间两个采样信号进行计算,得到较为准确的深度数据。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种TOF Lidar多机抗干扰工作方法,该方法用于TOF Lidar测距装置,所述TOF Lidar测距装置包括至少两个深度传感器,所述至少两个深度传感器的每一个均具有一个感光单元,所述感光单元能够接收分别对应于相位90°、180°、270°、0°的四个采样信号,其幅值分别为S1、S2、S3、S4,该四个采样信号满足关系:S1与S3之和为常数且S2与S4之和为常数;其特征在于,所述方法包括调整采样时间间隔的调整步骤,当所述至少两个深度传感器中的一个深度传感器的所述四个采样信号中的至少一个受到干扰而无法满足S1与S3之和为常数或S2与S4之和为常数时,所述调整步骤改变下次采样的时间间隔,使得所述四个采样信号重新满足S1与S3之和为常数且S2与S4之和为常数。
  2. 根据权利要求1所述的一种TOF Lidar多机抗干扰工作方法,其特征在于,当幅值为S4的采样信号受到干扰时,所述调整步骤改变下次采样的时间间隔具体为减小下次采样的时间间隔。
  3. 根据权利要求1所述的一种TOF Lidar多机抗干扰工作方法,其特征在于,当幅值为S1的采样信号受到干扰时,所述调整步骤改变下次采样的时间间隔具体为增大下次采样的时间间隔。
  4. 根据权利要求1-3中任意一项所述的一种TOF Lidar多机抗干扰工作方法,其特征在于,所述深度传感器包括发射模块,所述发射模块发出周期为T MOD的光波,该光波被物体反射回来后由所述感光单元获取所述四个采样信号,其中延时相位
    Figure PCTCN2019120419-appb-100001
    所述TOF Lidar测距装置与所述物体之间的距离Distance为:
    Figure PCTCN2019120419-appb-100002
    式中:c为光速。
  5. 一种TOF Lidar多机抗干扰工作方法,该方法用于TOF Lidar测距装置,所述TOF Lidar测距装置包括具有至少两个深度传感器的深度传感器面阵,所述深度传感器具有上下相邻的两个感光单元,以使得所述深度传感器面阵具有M行N列感光单元,当M为奇数时,第M行感光单元能够接收分别对应于相位0°、90°、180°、270°的四个采样信号,其幅值分别为S4、S1、S2、S3,当M为偶数时,第M行感光单元能够接收分别对应于相位180°、270°、0°、90°的四个采样信号,其幅值分别为S2、S3、S4、S1;其中,所述四个采样 信号满足关系:S1与S3之和为常数且S2与S4之和为常数;其特征在于,当所述四个采样信号中的至少一个受到干扰而无法满足S1与S3之和为常数或S2与S4之和为常数时,所述方法使用未被干扰的信号计算延时相位
    Figure PCTCN2019120419-appb-100003
  6. 根据权利要求5所述的一种TOF Lidar多机抗干扰工作方法,其特征在于,所述方法使用未被干扰的信号基于下述公式(1)或(2)计算延时相位
    Figure PCTCN2019120419-appb-100004
    Figure PCTCN2019120419-appb-100005
    Figure PCTCN2019120419-appb-100006
    Figure PCTCN2019120419-appb-100007
    Figure PCTCN2019120419-appb-100008
    式中:Constant 1、Constant 2为常数,是经过数据统计的经验数值。
  7. 根据权利要求6所述的一种TOF Lidar多机抗干扰工作方法,其特征在于,当幅值为S1和/或S2的采样信号受到干扰且幅值为S3和S4的采样信号正常时,所述方法基于公式(1)计算延时相位
    Figure PCTCN2019120419-appb-100009
  8. 根据权利要求6所述的一种TOF Lidar多机抗干扰工作方法,其特征在于,当幅值为S3和/或S4的采样信号受到干扰且幅值为S1和S2的采样信号正常时,所述方法基于公式(2)计算延时相位
    Figure PCTCN2019120419-appb-100010
  9. 根据权利要求5所述的一种TOF Lidar多机抗干扰工作方法,其特征在于,当所述上下相邻的两个感光单元中的一个感光单元的幅值分别为S3、S4的采样信号未被干扰且另一个感光单元的幅值分别为S1、S2的采样信号未被干扰时,所述方法使用未被干扰的信号基于下述公式计算延时相位
    Figure PCTCN2019120419-appb-100011
    Figure PCTCN2019120419-appb-100012
  10. 根据权利要求5所述的一种TOF Lidar多机抗干扰工作方法,其特征在于,当所述上下相邻的两个感光单元中的一个感光单元的幅值分别为S1、S2的采样信号未被干扰且另一个感光单元的幅值分别为S3、S4的采样信号未被干扰时,所述方法使用未被干扰的信号基于下述公式计算延时相位
    Figure PCTCN2019120419-appb-100013
    Figure PCTCN2019120419-appb-100014
PCT/CN2019/120419 2018-12-12 2019-11-22 一种TOF Lidar多机抗干扰工作方法 WO2020119427A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811520024.4A CN109613517B (zh) 2018-12-12 2018-12-12 一种TOF Lidar多机抗干扰工作方法
CN201811520024.4 2018-12-12

Publications (1)

Publication Number Publication Date
WO2020119427A1 true WO2020119427A1 (zh) 2020-06-18

Family

ID=66009170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120419 WO2020119427A1 (zh) 2018-12-12 2019-11-22 一种TOF Lidar多机抗干扰工作方法

Country Status (2)

Country Link
CN (1) CN109613517B (zh)
WO (1) WO2020119427A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109613517B (zh) * 2018-12-12 2021-01-15 北醒(北京)光子科技有限公司 一种TOF Lidar多机抗干扰工作方法
CN110095780B (zh) * 2019-05-06 2024-04-09 歌尔光学科技有限公司 基于tof相机模组的抗干扰方法及设备
CN110187355B (zh) * 2019-05-21 2023-07-04 奥比中光科技集团股份有限公司 一种距离测量方法及深度相机
CN110636183B (zh) * 2019-09-27 2021-11-30 浙江光珀智能科技有限公司 一种抗干扰方法、系统及存储介质
WO2021119903A1 (zh) * 2019-12-16 2021-06-24 南昌欧菲生物识别技术有限公司 Tof模组的防干扰调制方法、装置、计算机设备和介质
CN111366945B (zh) * 2020-05-27 2020-10-16 深圳市汇顶科技股份有限公司 基于飞行时间的测距方法和相关测距系统
CN112051586B (zh) * 2020-09-16 2023-04-28 青岛维感科技有限公司 一种多台tof相机联合工作防干扰方法、tof相机及电子设备
CN112098979A (zh) * 2020-09-16 2020-12-18 青岛维感科技有限公司 一种多台tof相机联合工作防干扰方法、tof相机及电子设备
CN115047436A (zh) * 2022-08-16 2022-09-13 武汉极动智能科技有限公司 抗干扰方法、装置、系统及存储介质
CN116184364B (zh) * 2023-04-27 2023-07-07 上海杰茗科技有限公司 一种iToF相机的多机干扰检测与去除方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160139266A1 (en) * 2014-11-14 2016-05-19 Juan C. Montoya Methods and apparatus for phased array imaging
CN106772414A (zh) * 2016-10-14 2017-05-31 北醒(北京)光子科技有限公司 一种提高tof相位法测距雷达测距精度的方法
US20170293021A1 (en) * 2016-04-12 2017-10-12 Sick Ag Sensor and method for distance measurement
CN107356929A (zh) * 2016-08-29 2017-11-17 北醒(北京)光子科技有限公司 一种快速扫描探测方法
CN108345000A (zh) * 2017-01-24 2018-07-31 北醒(北京)光子科技有限公司 一种具有面阵光电传感器的探测方法
CN108957470A (zh) * 2018-08-22 2018-12-07 上海炬佑智能科技有限公司 飞行时间测距传感器及其测距方法
CN109613517A (zh) * 2018-12-12 2019-04-12 北醒(北京)光子科技有限公司 一种TOF Lidar多机抗干扰工作方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0522528A (ja) * 1991-06-21 1993-01-29 Konica Corp 画像コントロール信号発生装置
CN102638271B (zh) * 2012-04-18 2015-08-19 重庆邮电大学 一种抗高重频干扰的激光编码系统及方法
CN103559711B (zh) * 2013-11-05 2016-04-27 余洪山 基于三维视觉系统图像特征和三维信息的运动估计方法
CN105572695A (zh) * 2014-11-07 2016-05-11 航天恒星科技有限公司 抗干扰方法及系统
EP3486681A4 (en) * 2016-07-12 2020-01-29 Pioneer Corporation INFORMATION PROCESSING DEVICE, OPTICAL DEVICE, CONTROL METHOD, PROGRAM AND STORAGE MEDIUM
CN108196264B (zh) * 2016-12-08 2020-06-23 北京万集科技股份有限公司 一种激光测距方法、装置及系统
CN107219496B (zh) * 2017-06-16 2019-06-11 中国电子科技集团公司第二十八研究所 一种改进的相关干涉仪鉴相方法
CN108802746B (zh) * 2017-11-30 2024-02-13 北醒(北京)光子科技有限公司 一种抗干扰的测距方法及装置
CN108919273A (zh) * 2018-03-28 2018-11-30 成都国恒空间技术工程有限公司 一种距离检测系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160139266A1 (en) * 2014-11-14 2016-05-19 Juan C. Montoya Methods and apparatus for phased array imaging
US20170293021A1 (en) * 2016-04-12 2017-10-12 Sick Ag Sensor and method for distance measurement
CN107356929A (zh) * 2016-08-29 2017-11-17 北醒(北京)光子科技有限公司 一种快速扫描探测方法
CN106772414A (zh) * 2016-10-14 2017-05-31 北醒(北京)光子科技有限公司 一种提高tof相位法测距雷达测距精度的方法
CN108345000A (zh) * 2017-01-24 2018-07-31 北醒(北京)光子科技有限公司 一种具有面阵光电传感器的探测方法
CN108957470A (zh) * 2018-08-22 2018-12-07 上海炬佑智能科技有限公司 飞行时间测距传感器及其测距方法
CN109613517A (zh) * 2018-12-12 2019-04-12 北醒(北京)光子科技有限公司 一种TOF Lidar多机抗干扰工作方法

Also Published As

Publication number Publication date
CN109613517A (zh) 2019-04-12
CN109613517B (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
WO2020119427A1 (zh) 一种TOF Lidar多机抗干扰工作方法
US8471705B2 (en) Method and apparatus for detecting presence of a target object via continuous laser and range of the target object via laser pulse
US20180275310A1 (en) Optoelectronic Sensor and Method for Detecting Objects
US20220196810A1 (en) Time of flight ranging system and ranging method thereof
CN110456369B (zh) 飞行时间传感系统及其测距方法
CN112346069A (zh) 激光雷达的回波处理方法及装置、测距方法及装置和激光雷达系统
US11226414B2 (en) Combining laser pulse transmissions in LiDAR
CN108802746B (zh) 一种抗干扰的测距方法及装置
CN102279973A (zh) 基于高梯度关键点的海天线检测方法
CN103235302B (zh) 基于激光扫描和双探测器的距离与速度测量装置及方法
CN108169752B (zh) 一种基于无线通信的超声波测距方法及系统
CN104486550A (zh) 航空相机图像检焦装置及方法
CN110673152A (zh) 飞行时间传感器及其测距方法
CN104808057A (zh) 一种基于异步探测的声光实时信号分析仪
CN104216016B (zh) 一种纵波约束扫描的转换波动校正方法以及系统
CN110221172B (zh) 一种输电线路分布式故障诊断自动化算法
CN102721956A (zh) 一种光束瞄准系统中回波信号采集和传输方法
US20160299221A1 (en) Methods and apparatus to determine relative positioning between moving platforms
US20220043116A1 (en) Time-of-flight sensor and method of measuring distance using the same
US5999249A (en) Position detecting element and range sensor
CN105699984A (zh) 一种异步控制消除水下距离选通激光雷达盲区方法
Yu et al. Multiple ping sonar accuracy improvement using robust motion estimation and ping fusion
SE1830149A1 (en) Radar transponder detection
CN218567610U (zh) 一种基于光反馈半导体激光器动力学的激光测距系统
CN112241011B (zh) 一种雨雾霾环境下激光雷达测距方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01/10/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19897340

Country of ref document: EP

Kind code of ref document: A1