WO2020119358A1 - 一种逻辑信道调度、配置信息生成方法及装置 - Google Patents

一种逻辑信道调度、配置信息生成方法及装置 Download PDF

Info

Publication number
WO2020119358A1
WO2020119358A1 PCT/CN2019/117124 CN2019117124W WO2020119358A1 WO 2020119358 A1 WO2020119358 A1 WO 2020119358A1 CN 2019117124 W CN2019117124 W CN 2019117124W WO 2020119358 A1 WO2020119358 A1 WO 2020119358A1
Authority
WO
WIPO (PCT)
Prior art keywords
logical channel
configuration information
information
service
coverage
Prior art date
Application number
PCT/CN2019/117124
Other languages
English (en)
French (fr)
Inventor
范慧芳
韩立锋
顾祥新
Original Assignee
北京展讯高科通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京展讯高科通信技术有限公司 filed Critical 北京展讯高科通信技术有限公司
Priority to US17/420,423 priority Critical patent/US11950274B2/en
Priority to EP19896717.6A priority patent/EP3897052A4/en
Publication of WO2020119358A1 publication Critical patent/WO2020119358A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/543Allocation or scheduling criteria for wireless resources based on quality criteria based on requested quality, e.g. QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present disclosure relates to the field of wireless communication, and in particular to a method and device for logical channel scheduling and configuration information generation.
  • the MAC (Media Access Control) layer is responsible for multiplexing multiple logical channels into Logical channel scheduling is implemented on the same transmission channel.
  • the MAC layer can combine different logical channels into transmission blocks based on the logical channel priority and other information, and submit them to the physical layer for transmission, thereby improving communication efficiency.
  • 3GPP 3rd Generation Partnership Project
  • NR New Radio
  • V2X Vehicle to Everything
  • the UE User Equipment
  • the communication distance of the direct communication between the UEs puts forward requirements.
  • the management mechanism related to the QoS (Quality of Service) of the direct communication between the UEs or the communication between the UE and the base station has not considered the distance requirements.
  • V2X how to introduce the distance requirement of the UE into the wireless communication process of the UE has become an urgent problem to be solved.
  • the present disclosure proposes a method and device for logical channel scheduling and configuration information generation, which can configure adapted coverage for different logical channels, thereby filtering out logical channels with inappropriate ranges in logical channel scheduling and improving Scheduling performance.
  • a logical channel scheduling method is provided.
  • the method is applied to user equipment.
  • the method includes: determining coverage of each logical channel according to configuration information of the logical channel, the configuration information including Coverage information of each logical channel; according to the transmission distance of the granted grant, select the logical channel whose coverage and transmission distance match; allocate resources to the selected logical channel to complete the scheduling.
  • selecting a logical channel whose coverage range matches the transmission distance includes: according to the transmission distance of the grant, selecting a coverage area within the transmission distance of the grant Logical channel.
  • the method further includes: acquiring configuration information according to service quality of service information, the configuration information includes coverage information of each logical channel; and performing logical channel based on the configuration information Configuration.
  • obtaining configuration information according to service quality of service information includes receiving configuration information transmitted by a base station, and the configuration information is generated by the base station according to service quality of service information.
  • obtaining configuration information according to service quality information of a business includes: generating configuration information according to service quality information of a business.
  • generating configuration information according to service quality of service information includes: mapping services with different service quality requirements to logical channels; according to the corresponding result, mapping data packets in the service to corresponding In the logical channel of; obtain the configuration information according to the quality of service information in the data packet.
  • a method for generating logical channel configuration information is provided.
  • the method is applied to a base station.
  • the method includes: generating configuration information according to service quality of service information, and the configuration information includes each logic Channel coverage information; send the configuration information to user equipment.
  • generating configuration information according to service quality information of a business includes: obtaining service quality information of the business; according to the working mode of the user equipment, converting the obtained result into corresponding configuration information.
  • the method for acquiring service quality of service information includes: acquiring according to a non-access layer message of a core network or acquiring quality of service information reported by the user equipment.
  • converting the obtained result into corresponding configuration information according to the working mode of the user equipment includes: when the user equipment works in the direct configuration mode, converting the obtained result into Directly configurable configuration information; when the user equipment works in a pre-configuration mode, the obtained result is converted into pre-configurable configuration information.
  • a logical channel scheduling apparatus including: a coverage determination unit for determining the coverage of each logical channel according to configuration information of the logical channel, the configuration information including the Coverage information; logical channel selection unit, used to select the logical channel whose coverage and transmission distance match according to the authorized grant transmission distance; logical channel scheduling unit, used to allocate resources for the selected logical channel and complete the scheduling.
  • the logical channel selection unit is configured to: according to the transmission distance of the grant, select a logical channel with a coverage within the transmission distance of the grant.
  • the device further includes: a configuration information acquisition unit, configured to acquire configuration information according to service quality of service information, the configuration information includes coverage information of each logical channel; logical channel configuration The unit is configured to configure the logical channel according to the configuration information.
  • the configuration information acquiring unit is configured to receive configuration information transmitted by a base station, and the configuration information is generated by the base station according to service quality of service information.
  • the configuration information acquiring unit is configured to generate configuration information according to service quality of service information.
  • generating configuration information according to service quality of service information includes: mapping services with different service quality requirements to logical channels; according to the corresponding result, mapping data packets in the service to corresponding In the logical channel of; generating the configuration information according to the quality of service information in the data packet.
  • a logical channel configuration information generating apparatus including: a configuration information generating unit for generating configuration information according to service quality of service information, the configuration information including coverage of each logical channel Scope information; configuration information sending unit, used to send the configuration information to the user equipment.
  • the configuration information generation unit is used to: obtain service quality information of the service; according to the working mode of the user equipment, convert the obtained result into corresponding configuration information.
  • converting the obtained result into corresponding configuration information according to the working mode of the user equipment includes: when the user equipment works in the direct configuration mode, converting the obtained result into Directly configurable configuration information; when the user equipment works in a pre-configuration mode, the obtained result is converted into pre-configurable configuration information.
  • a logical channel scheduling apparatus including: a processor; a memory for storing processor executable instructions; wherein the processor is configured to perform the method of the first aspect described above.
  • a logical channel configuration information generating apparatus including: a processor; a memory for storing processor executable instructions; wherein, the processor is configured to perform the above-mentioned second aspect method.
  • a non-volatile computer-readable storage medium having computer program instructions stored thereon, the computer program instructions implementing the method of the first aspect when executed by a processor.
  • a non-volatile computer-readable storage medium having computer program instructions stored thereon, the computer program instructions implementing the method of the second aspect when executed by a processor.
  • the method and apparatus for generating logical channel configuration information can The direct communication distance requirement between the UEs is converted into the coverage of the logical channel, which solves the problem that the prior art cannot consider the communication distance requirement between the UEs.
  • the coverage of each logical channel is determined according to the coverage information, and the logical channel whose coverage and transmission distance match is selected according to the transmission distance of the authorized grant is the selected Logical channels allocate resources and complete scheduling.
  • the logical channel scheduling method and apparatus can filter out logical channels that are out of range in the scheduling process of logical channels, improve scheduling efficiency and performance, and thus improve Communication efficiency.
  • FIG. 1 shows a flowchart of a logical channel scheduling method according to an embodiment of the present disclosure.
  • FIG. 2 shows a flowchart of a logical channel scheduling method according to an embodiment of the present disclosure.
  • FIG. 3 shows a flowchart of a logical channel scheduling method according to an embodiment of the present disclosure.
  • FIG. 4 shows a flowchart of a logical channel scheduling method according to an embodiment of the present disclosure.
  • FIG. 5 shows a flowchart of a logical channel scheduling method according to an embodiment of the present disclosure.
  • FIG. 6 shows a flowchart of a logical channel scheduling method according to an embodiment of the present disclosure.
  • FIG. 7 shows a flowchart of a method for generating logical channel configuration information according to an embodiment of the present disclosure.
  • FIG. 8 shows a flowchart of a method for generating logical channel configuration information according to an embodiment of the present disclosure.
  • FIG. 9 shows a flowchart of a method for generating logical channel configuration information according to an embodiment of the present disclosure.
  • FIG. 10 shows a block diagram of a logical channel scheduling apparatus according to an embodiment of the present disclosure.
  • FIG. 11 shows a block diagram of an apparatus for generating logical channel configuration information according to an embodiment of the present disclosure.
  • FIG. 12 shows a schematic diagram of an application example according to the present disclosure.
  • FIG. 13 shows a block diagram of a logical channel scheduling apparatus according to an embodiment of the present disclosure.
  • FIG. 1 shows a flowchart of a logical channel scheduling method according to an embodiment of the present disclosure. This method can be executed by the user equipment, for example, by the MAC (Media Access Control) layer of the user equipment. As shown in FIG. 1, the method may include:
  • Step S11 Determine the coverage of each logical channel according to the configuration information of the logical channel, where the configuration information includes coverage information of each logical channel.
  • Step S12 according to the transmission distance of the authorized grant, select a logical channel whose coverage range matches the transmission distance;
  • Step S13 Assign resources to the selected logical channel to complete scheduling.
  • the quality of service information in this disclosure refers to the general name of the quality of service information of the business. It includes QoS information, and may also include service coverage information independent of QoS information. This disclosure does not limit this.
  • the quality of service information in this disclosure refers to a general term describing service-related quality of service information.
  • the coverage information may be specific coverage data, such as the transmission distance of the logical channel, or may be a rough coverage parameter, such as the coverage level of the logical channel.
  • the coverage information of the logical channel is It is embodied in the form of the minimum transmission distance. In one example, the coverage information of the logical channel is embodied in the form of the coverage level of the logical channel.
  • the MAC (Media Access Control) layer implements scheduling for logical channels.
  • the scheduling is based on the configuration information contained in the logical channels.
  • UE User Equipment
  • the configuration information in this implementation mode includes the coverage information of each logical channel, so the MAC layer is scheduling logical channels.
  • the selected logical channel whose coverage area matches the transmission distance may be a logical channel whose coverage area is within the transmission distance of the grant according to the transmission distance of the grant.
  • LCH Logical Channel
  • the minimum transmission distance is 500m of LCH2 and the shortest transmission distance of 1000m of LCH3, according to the shortest communication transmission distance index corresponding to grant, filter out the logical channels that meet the conditions.
  • the shortest communication transmission distance index corresponding to grant is 500m, as above It is stated that the shortest transmission distances required by LCH1 and LCH2 are 50m and 500m, respectively, which are within the transmission distance index of grant, so grant can meet the transmission distance requirements of LCH1 and LCH2, while LCH3 has a minimum transmission distance of 1000m greater than 500m, grant The transmission distance of may not meet the minimum transmission distance requirement of LCH3, so when selecting the logical channel, you need to exclude LCH3, and finally select the two logical channels LCH1 and LCH2.
  • the logical channels to be selected are the same as those in the previous example, that is, the shortest communication transmission distances are 50m, 500m, and 1000m for LCH1, LCH2, and LCH3, but the shortest communication transmission distance corresponding to grant The index is 400m, so at this time, only the shortest transmission distance of 50m of LCH1 is within the transmission distance index of grant. Both LCH2 and LCH3 exceed the transmission distance of grant, so the logical channel finally selected is only LCH1.
  • the transmission distance of 500 ⁇ 1000m, the shortest communication transmission distance index corresponding to grant is 400m, so the transmission distance of LCHA is within the transmission distance index of grant, and the transmission distance of LCHB exceeds the transmission distance of grant, so it is finally selected
  • the logical channel is only LCHA.
  • the subsequent implementation is not limited here. Among them, one possible implementation is as follows:
  • the configuration information of the logical channel may include one or any combination of the following parameters: the priority of each logical channel, PBR (Prioritised Bit Rate), and BSD (Bucket Size (Duration, bucket size duration) information, where the UE maintains a variable Bj for each logical channel j, which indicates the amount of data to be transmitted in the current logical channel.
  • FIG. 2 shows a flowchart of an optional logical channel scheduling method according to an embodiment of the present disclosure. As shown in FIG. 2, step S13 may include:
  • Step S1311 In accordance with the priority of the selected logical channel from high to low, allocate the resources required for the guaranteed minimum data rate PBR (Prioritised Bit Rate) of this scheduling for each logical channel in turn, And multiplex the logical channel into MAC PDU (Protocol Data Unit, protocol data unit).
  • PBR Primary Bit Rate
  • Step S1312 Bj minus the size of all MAC SDUs (Service Data Unit, Service Data Unit) multiplexed into MAC PDU by logical channel j in step 1.
  • Step S1313 If the remaining resources are executed after the above steps are performed, the remaining resources are allocated to each logical channel in the order of decreasing priority of the logical channel until there is no remaining resource, and the scheduling is completed.
  • the subsequent implementation manners are not limited here. Among them, one possible implementation manner is as follows:
  • the logical channel configuration information may contain the priority of each logical channel.
  • FIG. 3 shows a flowchart of an optional logical channel scheduling method according to an embodiment of the present disclosure. As shown in FIG. 3, step S13 may include:
  • Step S1321 Among the selected logical channels, the target address corresponding to the logical channel with the highest priority is selected.
  • Step S1322 Select the appropriate logical channel from the logical channel belonging to the same target address as above according to the priority and Bj of each logical channel and multiplex it on the MAC PDU.
  • Step S1323 Bj minus the size of all MAC SDUs of the logical channel j multiplexed into the MAC PDU in the previous step.
  • Step S1324 If there are still uplink resources left, then the remaining resources are allocated to each logical channel with the same target address in the order of decreasing priority of the logical channels until there are no remaining resources, and this scheduling is completed.
  • the logical channel may have other configuration parameters and configuration restrictions, which are described as follows:
  • the configuration information may include configuration parameters and configuration mapping restrictions.
  • the configuration parameters may be configured by the RRC (Radio Resource Control) layer of the base station for the logical channel, which is not limited here, and the configured parameters may include one or any combination of the following parameters: priority Priority, priority bit rate (PBR, priority_Bit_Rate) and bucket size duration (BSD, Bucket_Size_Duration).
  • the configuration mapping restriction condition is the restriction on the logical channel by the RRC layer, which may include one or any combination of the following parameters: per logical channel allowed subcarrier spacing SCS list, maximum physical uplink shared channel PUSCH duration, allowed configuration grant type configured grant1 and allowed serving cell.
  • Step S122 may be to match the coverage range with the transmission distance according to the configured mapping restriction condition For further screening.
  • FIG. 4 shows a flowchart of a logical channel scheduling method according to an embodiment of the present disclosure.
  • step S122 may include:
  • S1221 If the allowed SCS (Subcarrier Spacing) list is configured for the logical channel, select the allowed SCS list to include the SCS logical channel associated with the grant;
  • S1224 If the logical channel is configured with an allowed serving cell, select the logical channel containing the information of the cell associated with the uplink in the allowed serving cell.
  • the above steps S1221-S1224 can be added or deleted according to the mapping restriction conditions configured by the base station to ensure that they correspond to the configured mapping restriction conditions. Subsequently, by determining the coverage of each logical channel according to the coverage information in the logical channel configuration information, logical channels that do not match the coverage and the grant transmission distance can be directly filtered out during the scheduling process, which improves the communication efficiency. It should be noted that the coverage range conditions of the logical channels configured above and the mapping restriction conditions listed above do not limit the order in which the logical channels are filtered.
  • FIG. 5 shows a flowchart of a logical channel scheduling method according to an embodiment of the present disclosure. As shown in FIG. 5, in a possible implementation manner, the method may further include:
  • S21 Obtain configuration information according to service quality of service information, and the configuration information includes coverage information of each logical channel;
  • the service quality of service information can be the service quality of service information parameter (QoS parameter), or the coverage parameter corresponding to the service set separately from the QoS parameters/indicators.
  • the service quality information parameter can be 5QI, in a
  • the quality of service information parameter is in the form of PPPP/PPPR.
  • the service quality information may be not only service quality information parameters, but also service quality indicators (QoS indicators).
  • a possible implementation manner there may be multiple implementation manners for obtaining configuration information according to service quality of service information, which is not limited herein, and the possible manner may be: one way may be to receive configuration information transmitted by a base station The configuration information is generated by the base station according to the service quality information of the service. Another method may directly generate configuration information for the user equipment according to the service quality information of the service.
  • FIG. 6 shows a flowchart of a logical channel scheduling method according to an embodiment of the present disclosure.
  • the user equipment generating configuration information according to service quality of service information may include:
  • S2121 User equipment maps services and logical channels with different service quality requirements
  • S2123 Generate configuration information according to the service quality information in the data packet.
  • the UE first obtains the service quality information in the service, and maps the services required by the different service quality information to the logical channels. After the correspondence is completed, the UE will configure the relevant content of the logical channel according to the service quality information.
  • the relevant content can be the transmission distance of the logical channel, or the priority of the logical channel, and so on.
  • the UE maps the data packets to different logical channels according to the QoS parameters carried in the data packets in the service. This mapping may be based on the logical channels matched by the QoS parameters carried in the data packets, and The logical channels are matched. Different logical channels configure different transmission ranges for logical channels according to the QoS parameters in the data packet.
  • the minimum transmission distance required by the QoS parameters in the data packet corresponding to logical channel LCH1 is X1m Therefore, based on this information, the UE configures the minimum transmission distance of LCH1 as X1m.
  • FIG. 7 shows a flowchart of a method for generating logical channel configuration information according to an embodiment of the present disclosure.
  • the method may be executed by a base station. As shown in FIG. 7, the method may include:
  • S31 Generate configuration information according to service quality of service information, where the configuration information includes coverage information of each logical channel.
  • FIG. 8 shows a flowchart of a method for generating logical channel configuration information according to an embodiment of the present disclosure.
  • generating configuration information according to service quality of service information may include:
  • the base station may obtain the service quality information of the service, which is not limited here, and the possible implementation method may be to obtain the service quality information according to the non-access layer NAS message of the core network, or it may be a service reported through the user equipment Quality information.
  • the configuration information can include:
  • mode1 is a direct configuration mode.
  • the base station converts the obtained result into directly configurable configuration information, so the UE passes After receiving the directly configurable configuration information passed from the base station, you can directly configure the relevant content of the logical channel.
  • a possible implementation method is to achieve it through LogicalChannelConfigIE.
  • the UE works in mode 2 since the conversion result at this time is the pre-configurable configuration information, the UE adopts the pre-configuration method at this time to configure the relevant content of the logical channel according to the configuration information.
  • the base station acquires a QoS parameter that requires the minimum transmission distance of one of the logical channels LCH1 to be X1.
  • mode1 that is, direct configuration mode
  • the base station directly sends the logical channel configuration to the UE through RRC signaling Parameter, the minimum transmission distance of LCH1 of the UE is directly set to X1m.
  • the direct configuration mode refers to that the base station participates in the communication process of the UE, that is, the base station can directly control the communication of the UE and deliver configuration information for the UE.
  • the base station acquires a QoS parameter that requires the minimum transmission distance of one of the logical channels LCH1 to be X1.
  • the base station configures the logical channel of the UE by pre-configuration
  • the minimum transmission distance of LCH1 is preset to X1m.
  • the pre-configuration refers to that the UE delivers the configuration information to the UE in advance.
  • the base station obtains three corresponding services in the QoS parameters. Therefore, three logical channels are configured as LCH1, LCH2, and LCH3, and the corresponding minimum transmission distances are X1, X2, and X3, respectively.
  • Mode1 is the direct configuration mode, so the UE sets the minimum transmission distance of LCH1, LCH2, and LCH3 to X1m, X2m, and X3m, respectively.
  • corresponding configuration information can be generated to configure the logical channel.
  • pass Generating the corresponding configuration information can introduce the communication distance information into the configuration of the logical channel, which provides a basis for the subsequent logical channel scheduling, guarantees the transmission distance requirements in the service, and then guarantees the service quality of the service.
  • FIG. 10 shows a block diagram of a logical channel scheduling apparatus according to an embodiment of the present disclosure.
  • the apparatus 40 includes:
  • the coverage determination unit 41 is configured to determine the coverage of each logical channel according to the configuration information of the logical channel, and the configuration information includes coverage information of each logical channel;
  • the logical channel selection unit 42 is used to select a logical channel whose coverage and transmission distance match according to the transmission distance of the granted grant;
  • the logical channel scheduling unit 43 is used to allocate resources to the selected logical channel to complete scheduling.
  • the logical channel selection unit is used to: according to the transmission distance of the grant, select a logical channel with a coverage within the transmission distance of the grant.
  • the device 40 further includes:
  • the configuration information obtaining unit 44 is configured to obtain configuration information according to service quality of service information, and the configuration information includes coverage information of each logical channel;
  • the logical channel configuration unit 45 is configured to configure the logical channel according to the configuration information.
  • the configuration information acquiring unit is configured to receive configuration information transmitted by the base station, and the configuration information is generated by the base station according to service quality of service information.
  • the configuration information acquisition unit is used to generate configuration information according to service quality of service information.
  • generating configuration information according to the service quality information of the service includes: mapping services with different service quality requirements and logical channels; according to the corresponding results, mapping the data packets in the service to the corresponding logic In the channel; according to the quality of service information in the data packet, generate configuration information.
  • FIG. 11 shows a block diagram of an apparatus for generating logical channel configuration information according to an embodiment of the present disclosure.
  • the apparatus 50 includes:
  • the configuration information generating unit 51 is configured to generate configuration information according to service quality of service information, and the configuration information includes coverage information of each logical channel;
  • the configuration information sending unit 52 is used to send the configuration information to the user equipment.
  • the configuration information generation unit is used to: obtain service quality information of the service; according to the working mode of the user equipment, convert the obtained result into corresponding configuration information.
  • the obtained result is converted into corresponding configuration information, including: when the user equipment works in the direct configuration mode, the obtained result is converted into a directly configurable Configuration information; when the user equipment works in the pre-configuration mode, the obtained result is converted into pre-configurable configuration information.
  • FIG. 12 shows a schematic diagram of an application example of the present disclosure.
  • the application example is only for facilitating understanding of the embodiments of the present disclosure, and does not limit the embodiments of the present disclosure.
  • the first layer is the physical layer 4, and the second layer is the medium access control MAC layer 2.
  • the third layer is radio resource control RRC layer 3, and logical channel 5 is located between MAC layer 2 and RRC layer 3.
  • RRC layer 3 will first configure each logical channel 5 in UE1.
  • the corresponding configuration information is generated, and the MAC layer 2 receives the configuration information generated by the RRC layer 3, and schedules each logical channel 5 according to the content of the configuration information.
  • the communication target may be a base station or other UEs.
  • the communication process there is a communication distance between UE1 and the base station or other UEs, so in the service quality information of the V2X service , The distance information between UE1 and the communication partner is increased.
  • the RRC layer 3 will add corresponding coverage information to the configuration information during the configuration of the logical channel 5, in this embodiment, In order to configure the coverage of the logical channel 5, UE1 can make the RRC layer 3 receive the QoS parameters in the V2X service. After receiving the parameters, the RRC layer 3 firstly corresponds the services with different QoS requirements to the logical channels. After the correspondence is completed, the transmission distance of the logical channel 5 is configured according to the parameter requirements of the corresponding logical channel 5 required in the QoS parameters. For example, in this example, the minimum transmission distance required by the QoS parameter corresponding to a logical channel is 500m. Therefore, RRC layer 3 configures the minimum transmission distance of the logical channel to 500m.
  • the MAC layer 2 schedules the logical channel. Since the logical channel contains configuration information, during the scheduling process, the MAC layer 2 according to the coverage information contained therein To determine the coverage of each logical channel. During scheduling, the MAC layer 2 selects the logical channel whose coverage matches the grant's transmission distance according to the authorized grant transmission distance. The coverage of the selected logical channel may be located at The logical channels within the transmission distance of grant. For these selected logical channels, the MAC layer 2 further performs further screening based on other information in the configuration content. The screening method is not unique. It may be that the allowed SCS list contains grant.
  • the associated SCS logical channel may also be a logical channel that selects the maximum physical uplink shared channel duration to be not less than the grant-related physical uplink shared channel transmission duration.
  • the MAC layer 2 allocates resources to the logical channel according to the relevant content in the configuration information, which may be based on the priority of the logical channel in the configuration information from high to low Allocate resources, etc.
  • Fig. 13 is a block diagram of a logical channel scheduling apparatus 1300 according to an exemplary embodiment.
  • a logical channel configuration information generating apparatus is also proposed, and the structure may also participate in the apparatus 1300 in Fig. 13.
  • the device 1300 may be provided as a server.
  • the device 1300 includes a processing component 1322, which further includes one or more processors, and memory resources represented by the memory 1332, for storing instructions executable by the processing component 1322, such as application programs.
  • the application program stored in the memory 1332 may include one or more modules each corresponding to a set of instructions.
  • the processing component 1322 is configured to execute instructions to perform the above method.
  • the device 1300 may also include a power component 1326 configured to perform power management of the device 1300, a wired or wireless network interface 1350 configured to connect the device 1300 to the network, and an input output (I/O) interface 1358.
  • the device 1300 can operate based on an operating system stored in the memory 1332, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • a non-volatile computer-readable storage medium such as a memory 1332 including computer program instructions, which can be executed by the processing component 1322 of the device 1300 to complete the above method, is also provided.
  • the present disclosure may be a system, method, and/or computer program product.
  • the computer program product may include a computer-readable storage medium loaded with computer-readable program instructions for causing the processor to implement various aspects of the present disclosure.
  • the computer-readable storage medium may be a tangible device that can hold and store instructions used by the instruction execution device.
  • the computer-readable storage medium may be, but is not limited to, an electrical storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing.
  • Computer-readable storage media include: portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), and erasable programmable read only memory (EPROM Or flash memory), static random access memory (SRAM), portable compact disk read-only memory (CD-ROM), digital versatile disk (DVD), memory stick, floppy disk, mechanical coding device, such as a computer on which instructions are stored
  • RAM random access memory
  • ROM read only memory
  • EPROM Or flash memory erasable programmable read only memory
  • SRAM static random access memory
  • CD-ROM compact disk read-only memory
  • DVD digital versatile disk
  • memory stick floppy disk
  • mechanical coding device such as a computer on which instructions are stored
  • the convex structure in the hole card or the groove and any suitable combination of the above.
  • the computer-readable storage medium used herein is not to be interpreted as a transient signal itself, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through waveguides or other transmission media (for example, optical pulses through fiber optic cables), or through wires The transmitted electrical signal.
  • the computer-readable program instructions described herein can be downloaded from a computer-readable storage medium to various computing/processing devices, or to an external computer or external storage device through a network, such as the Internet, a local area network, a wide area network, and/or a wireless network.
  • the network may include copper transmission cables, fiber optic transmission, wireless transmission, routers, firewalls, switches, gateway computers, and/or edge servers.
  • the network adapter card or network interface in each computing/processing device receives computer-readable program instructions from the network and forwards the computer-readable program instructions for storage in the computer-readable storage medium in each computing/processing device .
  • Computer program instructions for performing the operations of the present disclosure may be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or in one or more programming languages Source code or object code written in any combination.
  • the programming languages include object-oriented programming languages such as Smalltalk, C++, etc., and conventional procedural programming languages such as "C" language or similar programming languages.
  • Computer readable program instructions can be executed entirely on the user's computer, partly on the user's computer, as an independent software package, partly on the user's computer and partly on a remote computer, or completely on the remote computer or server carried out.
  • the remote computer may be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (eg, using an Internet service provider to pass the Internet connection).
  • electronic circuits such as programmable logic circuits, field programmable gate arrays (FPGAs) or programmable logic arrays (PLA), can be personalized by utilizing the status information of computer-readable program instructions, which can be Computer-readable program instructions are executed to implement various aspects of the present disclosure.
  • These computer-readable program instructions can be provided to the processor of a general-purpose computer, special-purpose computer, or other programmable data processing device, thereby producing a machine that causes these instructions to be executed by the processor of a computer or other programmable data processing device A device that implements the functions/actions specified in one or more blocks in the flowchart and/or block diagram is generated.
  • the computer-readable program instructions may also be stored in a computer-readable storage medium. These instructions enable the computer, programmable data processing apparatus, and/or other devices to work in a specific manner. Therefore, the computer-readable medium storing the instructions includes An article of manufacture that includes instructions to implement various aspects of the functions/acts specified in one or more blocks in the flowchart and/or block diagram.
  • the computer-readable program instructions can also be loaded onto a computer, other programmable data processing apparatus, or other equipment, so that a series of operating steps are performed on the computer, other programmable data processing apparatus, or other equipment to produce a computer-implemented process , So that the instructions executed on the computer, other programmable data processing device, or other equipment implement the functions/acts specified in one or more blocks in the flowchart and/or block diagram.
  • each block in the flowchart or block diagram may represent a module, program segment, or part of an instruction, and the module, program segment, or part of an instruction contains one or more Executable instructions.
  • the functions marked in the blocks may also occur in an order different from that marked in the drawings. For example, two consecutive blocks can actually be executed substantially in parallel, and sometimes they can also be executed in reverse order, depending on the functions involved.
  • each block in the block diagrams and/or flowcharts, and combinations of blocks in the block diagrams and/or flowcharts can be implemented with dedicated hardware-based systems that perform specified functions or actions Or, it can be realized by a combination of dedicated hardware and computer instructions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及一种逻辑信道调度、配置信息生成方法及装置,调度方法包括:根据逻辑信道的配置信息,确定各个逻辑信道的覆盖范围,配置信息包括各个逻辑信道的覆盖范围信息;根据授权grant的传输距离,选定覆盖范围与传输距离匹配的逻辑信道;为选定的逻辑信道分配资源,完成调度;配置信息生成方法包括:根据业务的服务质量信息,生成配置信息,配置信息包括各个逻辑信道的覆盖范围信息;将所述配置信息发送至用户设备。通过生成包含覆盖范围信息的逻辑信道配置信息,并依据这一配置信息对逻辑信道进行调度,根据本公开实施例的逻辑信道调度、配置信息生成方法及装置,能够保障通信过程中传输距离的要求,提高通信性能。

Description

一种逻辑信道调度、配置信息生成方法及装置 技术领域
本公开涉及无线通信领域,尤其涉及一种逻辑信道调度、配置信息生成方法及装置。
背景技术
目前,在3G,LTE(Long Term Evolution,长期演进)或者5G NR(New Radio,新无线电通信)无线通信过程中,MAC(Media Access Control,媒体访问控制)层负责将多个逻辑信道复用到同一个传输信道上,实现逻辑信道调度。
上述的逻辑信道调度过程中,MAC层可以依据逻辑信道的优先级等信息将不同逻辑信道组成传输块,并提交到物理层发送,从而提高通信效率。然而在3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)NR(New Radio,新无线电通信)V2X(Vehicle to Everything,车对外界的信息交换)的研究中,对UE(User Equipment,用户设备)间的直接通信的通信距离提出了要求,目前UE间的直接通信或UE与基站间的通信的QoS(Quality of Service,服务质量)相关的管理机制还未考虑距离要求,因此,在对NR V2X的研究中,如何将UE的距离要求引入到UE的无线通信过程中,成为了一个亟待解决的问题。
发明内容
有鉴于此,本公开提出了一种逻辑信道调度、配置信息生成方法及装置,能够为不同的逻辑信道配置适配的覆盖范围,从而在逻辑信道调度中过滤掉范围不合适的逻辑信道,提高调度性能。
根据本公开的第一方面,提供了一种逻辑信道调度方法,所述方法应用于用户设备,所述方法包括:根据逻辑信道的配置信息,确定各个逻辑信道 的覆盖范围,所述配置信息包括各个逻辑信道的覆盖范围信息;根据授权grant的传输距离,选定覆盖范围与传输距离匹配的逻辑信道;为选定的逻辑信道分配资源,完成调度。
在一种可能的实现方式中,根据授权grant的传输距离,选定覆盖范围与传输距离匹配的逻辑信道,包括:根据grant的传输距离,选定覆盖范围在所述的grant的传输距离以内的逻辑信道。
在一种可能的实现方式中,所述方法还包括:根据业务的服务质量信息,获取配置信息,所述的配置信息包括各个逻辑信道的覆盖范围信息;根据所述的配置信息对逻辑信道进行配置。
在一种可能的实现方式中,根据业务的服务质量信息,获取配置信息,包括:接收基站传输的配置信息,所述配置信息由基站根据业务的服务质量信息生成。
在一种可能的实现方式中,根据业务的服务质量信息,获取配置信息,包括:根据业务的服务质量信息,生成配置信息。
在一种可能的实现方式中,根据业务的服务质量信息,生成配置信息,包括:将不同服务质量要求的业务和逻辑信道进行对应;根据对应结果,将所述业务中的数据包映射到对应的逻辑信道中;根据所述数据包内的服务质量信息,得到所述配置信息。
根据本公开的第二方面,提供了一种逻辑信道配置信息生成方法,所述方法应用于基站,所述方法包括:根据业务的服务质量信息,生成配置信息,所述的配置信息包括各个逻辑信道的覆盖范围信息;将所述配置信息发送至用户设备。
在一种可能的实现方式中,根据业务的服务质量信息,生成配置信息,包括:获取业务的服务质量信息;根据所述用户设备的工作模式,将获取的结果转化为对应的配置信息。
在一种可能的实现方式中,获取业务的服务质量信息的方式包括:根据核心网的非接入层消息获取或根据所述用户设备上报的服务质量信息获取。
在一种可能的实现方式中,根据所述用户设备的工作模式,将获取的结果转化为对应的配置信息,包括:当所述用户设备工作在直接配置模式下时,将获取的结果转化为可直接配置的配置信息;当所述用户设备工作在预配置模式下时,将获取的结果转化为可预配置的配置信息。
根据本公开的第三方面,提供了一种逻辑信道调度装置,包括:覆盖范围确定单元,用于根据逻辑信道的配置信息,确定各个逻辑信道的覆盖范围,所述配置信息包括各个逻辑信道的覆盖范围信息;逻辑信道选定单元,用于根据授权grant的传输距离,选定覆盖范围与传输距离匹配的逻辑信道;逻辑信道调度单元,用于为选定的逻辑信道分配资源,完成调度。
在一种可能的实现方式中,所述逻辑信道选定单元用于:根据grant的传输距离,选定覆盖范围在所述的grant的传输距离以内的逻辑信道。
在一种可能的实现方式中,所述装置还包括:配置信息获取单元,用于根据业务的服务质量信息,获取配置信息,所述的配置信息包括各个逻辑信道的覆盖范围信息;逻辑信道配置单元,用于根据所述的配置信息对逻辑信道进行配置。
在一种可能的实现方式中,所述配置信息获取单元用于:接收基站传输的配置信息,所述配置信息由基站根据业务的服务质量信息生成。
在一种可能的实现方式中,所述配置信息获取单元用于:根据业务的服务质量信息,生成配置信息。
在一种可能的实现方式中,根据业务的服务质量信息,生成配置信息,包括:将不同服务质量要求的业务和逻辑信道进行对应;根据对应结果,将所述业务中的数据包映射到对应的逻辑信道中;根据所述数据包内的服务质量信息,生成所述配置信息。
根据本公开的第四方面,提供了一种逻辑信道配置信息生成装置,包括:配置信息生成单元,用于根据业务的服务质量信息,生成配置信息,所述的配置信息包括各个逻辑信道的覆盖范围信息;配置信息发送单元,用于将所述配置信息发送至用户设备。
在一种可能的实现方式中,所述配置信息生成单元用于:获取业务的服务质量信息;根据所述用户设备的工作模式,将获取的结果转化为对应的配置信息。
在一种可能的实现方式中,根据所述用户设备的工作模式,将获取的结果转化为对应的配置信息,包括:当所述用户设备工作在直接配置模式下时,将获取的结果转化为可直接配置的配置信息;当所述用户设备工作在预配置模式下时,将获取的结果转化为可预配置的配置信息。
根据本公开的第五方面,提供了一种逻辑信道调度装置,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为执行上述第一方面的方法。
根据本公开的第六方面,提供了一种逻辑信道配置信息生成装置,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为执行上述第二方面的方法。
根据本公开的第七方面,提供了一种非易失性计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现上述第一方面的方法。
根据本公开的第八方面,提供了一种非易失性计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现上述第二方面的方法。
通过根据业务的服务质量信息,生成配置信息,其中配置信息包括各个逻辑信道的覆盖范围信息;将配置信息发送至用户设备,根据本公开各方面实施例的逻辑信道配置信息生成方法及装置,能够将UE之间的直接通信距离要求转化到逻辑信道的覆盖范围上,解决了现有技术无法考虑UE间的通信距离要求的问题。
通过包含逻辑信道各个逻辑信道的覆盖范围信息的配置信息,根据覆盖范围信息确定各个逻辑信道的覆盖范围,根据授权grant的传输距离,选定覆盖范围与传输距离匹配的逻辑信道,为选定的逻辑信道分配资源,完成调度, 根据本公开的各方面实施例的逻辑信道调度方法及装置,能够在逻辑信道的调度过程中,过滤掉范围不合适的逻辑信道,提高调度效率和性能,从而提高通信效率。
根据下面参考附图对示例性实施例的详细说明,本公开的其它特征及方面将变得清楚。
附图说明
包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了本公开的示例性实施例、特征和方面,并且用于解释本公开的原理。
图1示出根据本公开一实施例的逻辑信道调度方法的流程图。
图2示出根据本公开一实施例的逻辑信道调度方法的流程图。
图3示出根据本公开一实施例的逻辑信道调度方法的流程图。
图4示出根据本公开一实施例的逻辑信道调度方法的流程图。
图5示出根据本公开一实施例的逻辑信道调度方法的流程图。
图6示出根据本公开一实施例的逻辑信道调度方法的流程图。
图7示出根据本公开一实施例的逻辑信道配置信息生成方法的流程图。
图8示出根据本公开一实施例的逻辑信道配置信息生成方法的流程图。
图9示出根据本公开一实施例的逻辑信道配置信息生成方法的流程图。
图10示出根据本公开一实施例的逻辑信道调度装置的框图。
图11示出根据本公开一实施例的逻辑信道配置信息生成装置的框图。
图12示出根据本公开一应用示例的示意图。
图13示出根据本公开一实施例的逻辑信道调度装置的框图。
具体实施方式
以下将参考附图详细说明本公开的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本公开,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本公开同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本公开的主旨。
图1示出根据本公开一实施例的逻辑信道调度方法的流程图。该方法可由用户设备执行,例如由用户设备的MAC(Media Access Control,媒体访问控制)层执行。如图1所示,该方法可以包括:
步骤S11,根据逻辑信道的配置信息,确定各个逻辑信道的覆盖范围,所述配置信息包括各个逻辑信道的覆盖范围信息。
步骤S12,根据授权grant的传输距离,选定覆盖范围与传输距离匹配的逻辑信道;
步骤S13,为选定的逻辑信道分配资源,完成调度。
在5G中,业务的覆盖范围信息是否作为服务质量(QoS,quality of service)信息的其中一个指标还没有确定,因此,本公开中的服务质量信息指的是业务的服务质量信息的统称,可以包括QoS信息,也可以包含独立于QoS信息以外的业务覆盖范围信息,本公开对此不作限定,为简化起见,本公开中服务质量信息指的是描述业务相关的服务质量信息的统称。
覆盖范围信息可以是具体的覆盖范围数据,如逻辑信道的传输距离,也可以是一个大致的覆盖范围参数,如逻辑信道的覆盖等级,在一个示例中,逻辑信道的覆盖范围信息以逻辑信道的最小传输距离的形式体现,在一个示例中,逻辑信道的覆盖范围信息以逻辑信道的覆盖范围等级的形式体现。
在一种可能的实现方式中,MAC(Media Access Control,媒体访问控制)层对逻辑信道实现调度,调度的依据来自于逻辑信道中包含的配置信息,为了将UE(User Equipment,用户设备)在通信过程中的距离要求引入到UE的QoS(Quality of Service,服务质量)管理机制中,本实现方式中的配置信 息中包含了各个逻辑信道的覆盖范围信息,因此MAC层在进行逻辑信道的调度过程中,可以依据覆盖范围信息确定逻辑信道覆盖范围,并根据授权grant的传输距离,筛选覆盖范围与该传输距离匹配的逻辑信道,并为筛选得到的逻辑信道分配相应的资源,完成逻辑信道的调度。
在一种可能的实现方式中,根据授权grant的传输距离,选定覆盖范围与传输距离匹配的逻辑信道可以是根据grant的传输距离,选定覆盖范围在grant的传输距离以内的逻辑信道。在可能的一个示例中,UE的MAC层在进行逻辑信道选择时,可供选择的逻辑信道有3个,分别为最短传输距离为50m的LCH(Logical Channel,逻辑信道)1,最短传输距离为500m的LCH2和最短传输距离为1000m的LCH3,在选择时,根据grant对应的最短通信传输距离指标,过滤出满足条件的逻辑信道,本示例中grant对应的最短通信传输距离指标为500m,如上所述,LCH1和LCH2要求的最短传输距离分别为50m和500m,均位于grant的传输距离指标以内,因此grant可以满足LCH1和LCH2的传输距离要求,而LCH3由于要求的最短传输距离1000m大于500m,grant的传输距离可能无法满足LCH3的最短传输距离要求,因此在进行逻辑信道的选择时需要排除掉LCH3,最终选定LCH1和LCH2这两个逻辑信道。在可能的一个示例中,可供选择的逻辑信道与上一个示例中的逻辑信道相同,即最短通信传输距离分别为50m、500m和1000m的LCH1、LCH2和LCH3,但是grant对应的最短通信传输距离指标则为400m,因此此时只有LCH1的最短传输距离50m在grant的传输距离指标内,LCH2和LCH3均超过了grant的传输距离,因此最终选定的逻辑信道只有LCH1。在一个示例中,可供选择的逻辑信道有2个,分别为覆盖范围等级为A的LCHA、覆盖范围等级为B的LCHB,其中覆盖范围等级A的传输距离为50~500m,覆盖范围等级B的传输距离为500~1000m,grant对应的最短通信传输距离指标为400m,因此此时LCHA的传输距离在grant的传输距离指标内,而LCHB的传输距离超过了grant的传输距离,因此最终选定的逻辑信道只有LCHA。
通过逻辑信道的覆盖范围信息将符合条件的逻辑信道筛选出后,后续的 实现方式在此不作限定,其中,一种可能的实现方式如下:
在一种可能的实现方式中,逻辑信道的配置信息中可能包含以下参数的一个或任意多个的组合:各个逻辑信道的优先级,PBR(Prioritised Bit Rate,优先比特率),和BSD(Bucket Size Duration,桶大小持续时间)信息,其中,UE为每个逻辑信道j维护一个变量Bj,该变量指示当前逻辑信道待传输的数据量。图2示出根据本公开一实施例的可选的逻辑信道调度方法的流程图,如图2所示,步骤S13可以包括:
步骤S1311:按照选定的逻辑信道的优先级从高到低的顺序,依次为每个逻辑信道分配在本次调度的保证最小数据速率PBR(Prioritised Bit Rate,优先比特率)所需的资源,并将逻辑信道复用到MAC PDU(Protocol Data Unit,协议数据单元)中。
步骤S1312:Bj减去逻辑信道j在步骤1里复用到MAC PDU的所有MAC SDUs(Service Data Unit,服务数据单元)的大小。
步骤S1313:如果上述步骤执行完还剩余资源,则按照逻辑信道的优先级递减的顺序为各个逻辑信道分配所述剩余资源,直至不存在剩余资源,完成本次调度。
通过逻辑信道的覆盖范围信息将符合条件的逻辑信道筛选出后,后续的实现方式在此不作限定,其中,一种可能的实现方式如下:
在一种可能的实现方式中,逻辑信道的配置信息中可能包含了各个逻辑信道的优先级。图3示出根据本公开一实施例的可选的逻辑信道调度方法的流程图,如图3所示,步骤S13可以包括:
步骤S1321:在选定的逻辑信道中,选择优先级最高的逻辑信道对应的目标地址。
步骤S1322:在属于和上述相同目标地址的逻辑信道中根据优先级和每个逻辑信道的Bj选择合适的逻辑信道复用到MAC PDU上。
步骤S1323:Bj减去逻辑信道j在上一步里复用到MAC PDU的所有MAC SDU的大小。
步骤S1324:如果仍有剩有上行资源的话,则按照逻辑信道的优先级递减的顺序为具有上述相同目标地址的各个逻辑信道分配所述剩余资源,直至不存在剩余资源,完成本次调度。
另外,逻辑信道除了配置覆盖范围信息之外,可能存在其他配置参数和配置限制条件,具体描述如下:
在一种可能的实现方式中,配置信息可以包括配置参数和配置映射限制条件。在一个示例中,配置参数可以由基站的RRC(Radio Resource Control,无线资源控制)层对逻辑信道进行的配置,在此不作限制,配置的参数可能包含以下一个或任意多个参数的组合:优先级(priority)、优先比特速率(PBR,prioritised_Bit_Rate)和桶大小持续时间(BSD,Bucket_Size_Duration)。在一个示例中,配置映射限制条件是由RRC层对逻辑信道进行的限制,可能包含以下参数的一个或任意多个的组合:每个逻辑信道允许的子载波间隔SCS列表、最大物理上行共享信道PUSCH持续时间、允许的配置授权类型configured grant type1和允许的服务小区。
在一种可能的实现方式中,根据授权grant的传输距离,选定覆盖范围与传输距离匹配的逻辑信道,还包括步骤S122,步骤S122可以为根据配置映射限制条件,对覆盖范围与传输距离匹配的逻辑信道进行进一步的筛选。
图4示出根据本公开一实施例的逻辑信道调度方法的流程图,如图4所示,在一种可能的实现方式中,步骤S122可以包括:
S1221:如果逻辑信道配置了允许的SCS(Subcarrier Spacing,子载波间隔)列表,选定允许的SCS列表中包含grant关联的SCS逻辑信道;
S1222:如果逻辑信道配置了最大物理上行共享信道持续时间,选定最大物理上行共享信道持续时间不小于grant(授权)关联的物理上行共享信道传输持续时间的逻辑信道;
S1223:如果grant配置了配置授权类型1,选定配置了允许的配置授权类型1的逻辑信道;
S1224:如果逻辑信道配置了允许的服务小区,选定允许的服务小区中 包含上行关联的小区信息的逻辑信道。
上述S1221-S1224步骤可根据基站配置的映射限制条件进行增加或删除,保证和所配置的映射限制条件对应。后续再通过根据逻辑信道配置信息中的覆盖范围信息对各个逻辑信道的覆盖范围进行确定,可以将覆盖范围与grant传输距离不匹配的逻辑信道在调度过程中直接过滤掉,提高了通信的效率。需要注意的是,上述所配置的各个逻辑信道的覆盖范围条件和上述所列的各个映射限制条件对逻辑信道进行过滤的先后顺序不进行限制。
图5示出根据本公开一实施例的逻辑信道调度方法的流程图,如图5所示,在一种可能的实现方式中,该方法还可以包括:
S21:根据业务的服务质量信息,获取配置信息,配置信息包括各个逻辑信道的覆盖范围信息;S22:根据配置信息对逻辑信道进行配置。
步骤S21至S22中的覆盖范围信息和配置信息可以参照步骤S11至S14中的覆盖范围信息,这里不再赘述。需要注意的是,逻辑信道的配置不限制实现方式,S21-S22只是列出一种可能的实现方式。业务可以是V2X(Vehicle to Everything,车对外界的信息交换)业务,也可以是其他业务。
业务的服务质量信息可以是业务的服务质量信息参数(QoS参数),或单独于QoS参数/指标所设置的业务对应的覆盖范围参数,在一个示例中,服务质量信息参数可以是5QI,在一个示例中,服务质量信息参数是PPPP/PPPR等形式。服务质量信息除了可以是服务质量信息参数,也可以是服务质量指标(QoS指标)。
在一种可能的实现方式中,根据业务的服务质量信息,获取配置信息的实现方式可以有多种,在此不作限制,其中可能的方式可以是:一种方式可以为接收基站传输的配置信息,该配置信息由基站根据业务的服务质量信息生成,另一种方式可以为用户设备根据业务的服务质量信息直接生成配置信息。
图6示出根据本公开一实施例的逻辑信道调度方法的流程图,如图6所示,在一种可能的实现方式中,用户设备根据业务的服务质量信息生成配置信息, 可以包括:
S2121:用户设备将不同服务质量要求的业务和逻辑信道进行对应;
S2122:根据对应结果,将业务中的数据包映射到对应的逻辑信道中;
S2123:根据数据包内的服务质量信息,生成配置信息。
在一个示例中,UE首先获取业务中的服务质量信息,并将不同服务质量信息要求的业务分别与逻辑信道进行对应,在对应完成后,UE会根据服务质量信息对逻辑信道的相关内容进行配置,这里的相关内容可以是逻辑信道的传输距离,也可以是逻辑信道的优先级等等。在一个示例中,UE根据业务中数据包携带的QoS参数,将数据包映射到不同的逻辑信道上,这种映射可以是根据数据包携带的QoS参数所匹配的逻辑信道,将数据包与相应的逻辑信道进行匹配,不同的逻辑信道根据数据包中的QoS参数为逻辑信道配置不同的传输范围,在一个示例中,对应到逻辑信道LCH1的数据包内的QoS参数要求的最小传输距离为X1m,因此UE根据此信息,将LCH1的最小传输距离配置为X1m。
图7示出根据本公开一实施例的逻辑信道配置信息生成方法的流程图,该方法可由基站执行。如图7所示,该方法可以包括:
S31:根据业务的服务质量信息,生成配置信息,配置信息包括各个逻辑信道的覆盖范围信息。
S32:将配置信息发送至用户设备。
图8示出根据本公开一实施例的逻辑信道配置信息生成方法的流程图,如图8所示,在一种可能的实现方式中,根据业务的服务质量信息,生成配置信息,可以包括:
S311:获取业务的服务质量信息。
S312:根据用户设备的工作模式,将获取的结果转化为对应的配置信息。
基站获取业务的服务质量信息的方式有多种,在此不作限制,其中可能的实现方式可以是根据核心网的非接入层NAS消息来获取服务质量信息,也可以是通过用户设备上报的服务质量信息的方式来获取。
图9示出根据本公开一实施例的逻辑信道配置信息生成方法的流程图,如图9所示,在一种可能的实现方式中,根据用户设备的工作模式,将获取的结果转化为对应的配置信息可以包括:
S3121:当用户设备工作在直接配置模式下时,基站将获取的结果转化为可直接配置的配置信息。
S3122:当用户设备工作在预配置模式下时,基站将获取的结果转化为预配置的配置信息。
在一个示例中,UE的工作模式有两种,分别为mode1和mode2,mode1为直接配置模式,当UE工作在mode1时,由于基站将获取的结果转化为可直接配置的配置信息,因此UE通过接收基站传递过来的可直接配置的配置信息后,可以对逻辑信道的相关内容进行直接配置,具体实现方式有多种,在此不作限制,可能的一种实现方式为通过LogicalChannelConfig IE来实现。当UE工作在mode2时,由于此时转化的结果是可预配置的配置信息,因此UE此时采用预配置的方式,根据配置信息,对逻辑信道的相关内容进行配置。在可能的一个示例中,基站获取到QoS参数中要求了其中一个逻辑信道LCH1的最小传输距离为X1,如果UE工作在mode1即直接配置模式下,基站直接通过RRC信令为UE发送逻辑信道配置参数,将UE的LCH1的最小传输距离直接设置为X1m。其中,直接配置模式指的是UE的通信过程有基站参与,即基站可以直接控制UE的通信,为UE下发配置信息。在一个示例中,基站获取到QoS参数中要求了其中一个逻辑信道LCH1的最小传输距离为X1,如果UE工作在mode2即预配置模式下,基站通过预配置来配置UE的逻辑信道,将UE的LCH1的最小传输距离预配置为X1m。其中,预配置指的是UE提前将配置信息下发到UE处。在一个示例中,基站获取到QoS参数中对应的业务为3个,因此,配置3个逻辑信道为LCH1、LCH2和LCH3,分别对应的最小传输距离为X1、X2和X3,此时UE工作在mode1即直接配置模式下,因此UE将LCH1、LCH2和LCH3的最小传输距离分别直接设置为X1m、X2m和X3m。
这样,根据业务的服务质量信息,可以生成对应的配置信息从而对逻辑 信道进行配置,在服务质量信息或业务的其他相关参数中增加了UE与基站或其他UE之间的通信距离信息时,通过生成对应的配置信息,可以将通信距离信息引入到逻辑信道的配置中,为后续的逻辑信道调度提供了依据,保证了业务中传输距离的要求,继而保证了业务的服务质量。
图10示出了根据本公开一实施例的逻辑信道调度装置的框图,如图10所示,该装置40包括:
覆盖范围确定单元41,用于根据逻辑信道的配置信息,确定各个逻辑信道的覆盖范围,配置信息包括各个逻辑信道的覆盖范围信息;
逻辑信道选定单元42,用于根据授权grant的传输距离,选定覆盖范围与传输距离匹配的逻辑信道;
逻辑信道调度单元43,用于为选定的逻辑信道分配资源,完成调度。
在一种可能的实现方式中,逻辑信道选定单元用于:根据grant的传输距离,选定覆盖范围在所述的grant的传输距离以内的逻辑信道。
在一种可能的实现方式中,装置40还包括:
配置信息获取单元44,用于根据业务的服务质量信息,获取配置信息,配置信息包括各个逻辑信道的覆盖范围信息;
逻辑信道配置单元45,用于根据所述的配置信息对逻辑信道进行配置。
在一种可能的实现方式中,配置信息获取单元用于:接收基站传输的配置信息,所述配置信息由基站根据业务的服务质量信息生成。
在一种可能的实现方式中,配置信息获取单元用于:根据业务的服务质量信息,生成配置信息。
在一种可能的实现方式中,根据业务的服务质量信息,生成配置信息,包括:将不同服务质量要求的业务和逻辑信道进行对应;根据对应结果,将业务中的数据包映射到对应的逻辑信道中;根据数据包内的服务质量信息,生成配置信息。
图11示出根据本公开一实施例的逻辑信道配置信息生成装置的框图,如图11所示,该装置50包括:
配置信息生成单元51,用于根据业务的服务质量信息,生成配置信息,配置信息包括各个逻辑信道的覆盖范围信息;
配置信息发送单元52,用于将配置信息发送至用户设备。
在一种可能的实现方式中,配置信息生成单元用于:获取业务的服务质量信息;根据用户设备的工作模式,将获取的结果转化为对应的配置信息。
在一种可能的实现方式中,根据用户设备的工作模式,将获取的结果转化为对应的配置信息,包括:当用户设备工作在直接配置模式下时,将获取的结果转化为可直接配置的配置信息;当用户设备工作在预配置模式下时,将获取的结果转化为可预配置的配置信息。
图12示出了本公开一应用实例的示意图,该应用示例仅为便于理解本公开实施例,不对本公开实施例进行限制。
如图12所示,用户设备UE1在进行通信过程中,内部之间的信息在各层之间进行相互传递,其中第一层是物理层4,第二层是媒介访问控制MAC层2,第三层是无线资源控制RRC层3,而逻辑信道5则位于MAC层2和RRC层3之间,在信息的传输过程中,RRC层3会首先对UE1内存在的各个逻辑信道5进行配置,生成对应的配置信息,而MAC层2则会接收RRC层3生成的配置信息,并依据配置信息的内容对各个逻辑信道5进行调度。
UE1在进行通信的过程中,通信的对象可以是基站,也可以是其他的UE,在通信过程中,由于UE1和基站或其他UE之间存在着通信距离,因此在V2X业务的服务质量信息中,增加了UE1与通信对象之间的距离信息。
为了保证通信的质量,在服务质量信息中增加了上述的距离信息后,RRC层3在对逻辑信道5进行配置的过程中,会在配置信息中增加相应的覆盖范围信息,本实施例中,UE1为了对逻辑信道5的覆盖范围进行配置,可以令RRC层3接收V2X业务中的QoS参数,RRC层3在接收了参数之后,首先将不同的QoS要求的业务和逻辑信道之间进行对应,在对应完成后,根据QoS参数中要求的对应的逻辑信道5的参数要求,对逻辑信道5的传输距离进行配置,如本示例中某条逻辑信道对应的QoS参数要求的最小传输距离为500m, 因此RRC层3将该逻辑信道的最小传输距离配置为500m。
RRC层3在对逻辑信道5的覆盖范围完成配置后,MAC层2会对逻辑信道进行调度,由于逻辑信道中包含有配置信息,因此在调度过程中,MAC层2根据其中包含的覆盖范围信息,确定各个逻辑信道的覆盖范围,在调度时,MAC层2根据授权grant的传输距离,选定覆盖范围与grant的传输距离相匹配的逻辑信道,选定后的逻辑信道的覆盖范围可以是位于grant的传输距离以内的逻辑信道,对于这些选定后的逻辑信道,MAC层2进一步根据配置内容中的其他信息进行进一步的筛选,筛选的方式不唯一,可以是筛选允许的SCS列表中包含grant关联的SCS逻辑信道,也可以是筛选最大物理上行共享信道持续时间不小于grant关联的物理上行共享信道传输持续时间的逻辑信道等。在进一步的筛选后,对于选定的逻辑信道,MAC层2根据配置信息中的相关内容对逻辑信道进行资源分配,可以是根据配置信息中的逻辑信道优先级从高到低的顺序对逻辑信道分配资源等。
图13是根据一示例性实施例示出的一种逻辑信道调度装置1300的框图,本示例中也提出了一种逻辑信道配置信息生成装置,结构也可参加图13中的装置1300。例如,装置1300可以被提供为一服务器。参照图13,装置1300包括处理组件1322,其进一步包括一个或多个处理器,以及由存储器1332所代表的存储器资源,用于存储可由处理组件1322的执行的指令,例如应用程序。存储器1332中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件1322被配置为执行指令,以执行上述方法。
装置1300还可以包括一个电源组件1326被配置为执行装置1300的电源管理,一个有线或无线网络接口1350被配置为将装置1300连接到网络,和一个输入输出(I/O)接口1358。装置1300可以操作基于存储在存储器1332的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
在示例性实施例中,还提供了一种非易失性计算机可读存储介质,例如包括计算机程序指令的存储器1332,上述计算机程序指令可由装置1300的处 理组件1322执行以完成上述方法。
本公开可以是系统、方法和/或计算机程序产品。计算机程序产品可以包括计算机可读存储介质,其上载有用于使处理器实现本公开的各个方面的计算机可读程序指令。
计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是――但不限于――电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、静态随机存取存储器(SRAM)、便携式压缩盘只读存储器(CD-ROM)、数字多功能盘(DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。这里所使用的计算机可读存储介质不被解释为瞬时信号本身,诸如无线电波或者其他自由传播的电磁波、通过波导或其他传输媒介传播的电磁波(例如,通过光纤电缆的光脉冲)、或者通过电线传输的电信号。
这里所描述的计算机可读程序指令可以从计算机可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广域网和/或无线网下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计算机可读存储介质中。
用于执行本公开操作的计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,所述编程语言包括面向对象的编程语言—诸如Smalltalk、C++等,以及常规的过 程式编程语言—诸如“C”语言或类似的编程语言。计算机可读程序指令可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络—包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(FPGA)或可编程逻辑阵列(PLA),该电子电路可以执行计算机可读程序指令,从而实现本公开的各个方面。
这里参照根据本公开实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本公开的各个方面。应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机可读程序指令实现。
这些计算机可读程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有指令的计算机可读介质则包括一个制造品,其包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的各个方面的指令。
也可以把计算机可读程序指令加载到计算机、其它可编程数据处理装置、或其它设备上,使得在计算机、其它可编程数据处理装置或其它设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的指令实现流程图和/或框图中的一个或多个方框中规定的功能/动作。
附图中的流程图和框图显示了根据本公开的多个实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (23)

  1. 一种逻辑信道调度方法,其特征在于,所述方法应用于用户设备,所述方法包括:
    根据逻辑信道的配置信息,确定各个逻辑信道的覆盖范围,所述配置信息包括各个逻辑信道的覆盖范围信息;
    根据授权grant的传输距离,选定覆盖范围与传输距离匹配的逻辑信道;
    为选定的逻辑信道分配资源,完成调度。
  2. 根据权利要求1所述的逻辑信道调度方法,其特征在于,根据授权grant的传输距离,选定覆盖范围与传输距离匹配的逻辑信道,包括:
    根据grant的传输距离,选定覆盖范围在所述的grant的传输距离以内的逻辑信道。
  3. 根据权利要求1所述的逻辑信道调度方法,其特征在于,所述方法还包括:
    根据业务的服务质量信息,获取配置信息,所述的配置信息包括各个逻辑信道的覆盖范围信息;
    根据所述的配置信息对逻辑信道进行配置。
  4. 根据权利要求3所述的逻辑信道调度方法,其特征在于,根据业务的服务质量信息,获取配置信息,包括:接收基站传输的配置信息,所述配置信息由基站根据业务的服务质量信息生成。
  5. 根据权利要求3所述的逻辑信道调度方法,其特征在于,根据业务的服务质量信息,获取配置信息,包括:根据业务的服务质量信息,生成配置信息。
  6. 根据权利要求5所述的逻辑信道调度方法,其特征在于,根据业务的服务质量信息,生成配置信息,包括:
    将不同服务质量要求的业务和逻辑信道进行对应;
    根据对应结果,将所述业务中的数据包映射到对应的逻辑信道中;
    根据所述数据包内的服务质量信息,生成所述配置信息。
  7. 一种逻辑信道配置信息生成方法,其特征在于,所述方法应用于基 站,所述方法包括:
    根据业务的服务质量信息,生成配置信息,所述的配置信息包括各个逻辑信道的覆盖范围信息;
    将所述配置信息发送至用户设备。
  8. 根据权利要求7所述的逻辑信道配置信息生成方法,其特征在于,根据业务的服务质量信息,生成配置信息,包括:
    获取业务的服务质量信息;
    根据所述用户设备的工作模式,将获取的结果转化为对应的配置信息。
  9. 根据权利要求8所述的逻辑信道配置信息生成方法,其特征在于,获取业务的服务质量信息的方式包括:根据核心网的非接入层消息获取或根据所述用户设备上报的服务质量信息获取。
  10. 根据权利要求8所述的逻辑信道配置信息生成方法,其特征在于,根据所述用户设备的工作模式,将获取的结果转化为对应的配置信息,包括:
    当所述用户设备工作在直接配置模式下时,将获取的结果转化为可直接配置的配置信息;
    当所述用户设备工作在预配置模式下时,将获取的结果转化为可预配置的配置信息。
  11. 一种逻辑信道调度装置,其特征在于,包括:
    覆盖范围确定单元,用于根据逻辑信道的配置信息,确定各个逻辑信道的覆盖范围,所述配置信息包括各个逻辑信道的覆盖范围信息;
    逻辑信道选定单元,用于根据授权grant的传输距离,选定覆盖范围与传输距离匹配的逻辑信道;
    逻辑信道调度单元,用于为选定的逻辑信道分配资源,完成调度。
  12. 根据权利要求11所述的逻辑信道调度装置,其特征在于,所述逻辑信道选定单元用于:
    根据grant的传输距离,选定覆盖范围在所述的grant的传输距离以内的逻辑信道。
  13. 根据权利要求11所述的逻辑信道调度装置,其特征在于,所述装置还包括:
    配置信息获取单元,用于根据业务的服务质量信息,获取配置信息,所述的配置信息包括各个逻辑信道的覆盖范围信息;
    逻辑信道配置单元,用于根据所述的配置信息对逻辑信道进行配置。
  14. 根据权利要求13所述的逻辑信道调度装置,其特征在于,所述配置信息获取单元用于:接收基站传输的配置信息,所述配置信息由基站根据业务的服务质量信息生成。
  15. 根据权利要求13所述的逻辑信道调度装置,其特征在于,所述配置信息获取单元用于:根据业务的服务质量信息,生成配置信息。
  16. 根据权利要求15所述的逻辑信道调度装置,其特征在于,根据业务的服务质量信息,生成配置信息,包括:
    将不同服务质量要求的业务和逻辑信道进行对应;
    根据对应结果,将所述业务中的数据包映射到对应的逻辑信道中;
    根据所述数据包内的服务质量信息,生成所述配置信息。
  17. 一种逻辑信道配置信息生成装置,其特征在于,包括:
    配置信息生成单元,用于根据业务的服务质量信息,生成配置信息,所述的配置信息包括各个逻辑信道的覆盖范围信息;
    配置信息发送单元,用于将所述配置信息发送至用户设备。
  18. 根据权利要求17所述的逻辑信道配置信息生成装置,其特征在于,所述配置信息生成单元用于:
    获取业务的服务质量信息;
    根据所述用户设备的工作模式,将获取的结果转化为对应的配置信息。
  19. 根据权利要求18所述的逻辑信道配置信息生成装置,其特征在于,根据所述用户设备的工作模式,将获取的结果转化为对应的配置信息,包括:
    当所述用户设备工作在直接配置模式下时,将获取的结果转化为可直接配置的配置信息;
    当所述用户设备工作在预配置模式下时,将获取的结果转化为可预配置的配置信息。
  20. 一种逻辑信道调度装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为执行权利要求1-6任一项所述的方法。
  21. 一种逻辑信道配置信息生成装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为执行权利要求7-10任一项所述的方法。
  22. 一种非易失性计算机可读存储介质,其上存储有计算机程序指令,其特征在于,所述计算机程序指令被处理器执行时实现权利要求1至6中任意一项所述的方法。
  23. 一种非易失性计算机可读存储介质,其上存储有计算机程序指令,其特征在于,所述计算机程序指令被处理器执行时实现权利要求7至10中任意一项所述的方法。
PCT/CN2019/117124 2018-12-11 2019-11-11 一种逻辑信道调度、配置信息生成方法及装置 WO2020119358A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/420,423 US11950274B2 (en) 2018-12-11 2019-11-11 Method for scheduling logical channel, method for generating configuration information, and device
EP19896717.6A EP3897052A4 (en) 2018-12-11 2019-11-11 METHOD OF PLANNING A LOGICAL CHANNEL, METHOD OF GENERATION OF CONFIGURATION INFORMATION AND DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811511538.3 2018-12-11
CN201811511538.3A CN111294932B (zh) 2018-12-11 2018-12-11 一种逻辑信道调度、配置信息生成方法及装置

Publications (1)

Publication Number Publication Date
WO2020119358A1 true WO2020119358A1 (zh) 2020-06-18

Family

ID=71025010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117124 WO2020119358A1 (zh) 2018-12-11 2019-11-11 一种逻辑信道调度、配置信息生成方法及装置

Country Status (4)

Country Link
US (1) US11950274B2 (zh)
EP (1) EP3897052A4 (zh)
CN (1) CN111294932B (zh)
WO (1) WO2020119358A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061438A1 (en) * 2016-09-30 2018-04-05 Panasonic Intellectual Property Corporation Of America Improved uplink resource allocation among different ofdm numerology schemes
CN107920390A (zh) * 2016-10-10 2018-04-17 展讯通信(上海)有限公司 上行逻辑信道调度方法、装置及用户设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100051245A (ko) * 2008-11-07 2010-05-17 삼성전자주식회사 무선 센서 네트워크에서 논리적 채널 할당 방법
GB2493784B (en) * 2011-08-19 2016-04-20 Sca Ipla Holdings Inc Wireless communications system and method
US8732801B2 (en) * 2011-12-09 2014-05-20 Verizon Patent And Licensing Inc. Wireless connection method and device
CN103580778B (zh) * 2012-07-20 2016-12-21 华为技术有限公司 一种数据传输方法、装置及通信系统
EP3244680B1 (en) * 2015-01-29 2019-12-04 Huawei Technologies Co., Ltd. Data transmission method and device
US10374762B2 (en) * 2017-02-28 2019-08-06 At&T Intellectual Property I, L.P. Use of underutilized bandwidth via radio access resource sharing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061438A1 (en) * 2016-09-30 2018-04-05 Panasonic Intellectual Property Corporation Of America Improved uplink resource allocation among different ofdm numerology schemes
CN107920390A (zh) * 2016-10-10 2018-04-17 展讯通信(上海)有限公司 上行逻辑信道调度方法、装置及用户设备

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
3GPP: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Medium Access Control (MAC) protocol specification(Release 15)", 3GPP TS 38.321 V15.3.0 (2018-09), 25 September 2018 (2018-09-25), XP051477629 *
HUAWEI ET AL.: "QoS support for NR V2X", 3GPP TSG-RAN WG2 MEETING #103-BIS R2-1813935, 28 September 2018 (2018-09-28), XP051523404 *
See also references of EP3897052A4 *
SPREADTRUM COMMUNICATIONS: "Logical channel prioritization Consideration", 3GPP TSG-RAN WG2 MEETING #106 R2-1905680, 30 April 2019 (2019-04-30), XP051710035 *
VIVO: "Discussion on resource allocation mechanism for NR sidelink", 3GPP TSG-RAN WG2 MEETING #104 R2-1817109, 2 November 2018 (2018-11-02), XP051481029 *

Also Published As

Publication number Publication date
EP3897052A1 (en) 2021-10-20
CN111294932A (zh) 2020-06-16
EP3897052A4 (en) 2022-01-26
US20220086859A1 (en) 2022-03-17
US11950274B2 (en) 2024-04-02
CN111294932B (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
US11297525B2 (en) Allocation of data radio bearers for quality of service flows
WO2020007202A1 (zh) 一种数据传输方法、装置及系统
EP2802163B1 (en) Data transmission method and device
WO2018201630A1 (zh) 一种通信方法及相关装置
WO2020052605A1 (zh) 一种网络切片的选择方法及装置
US10873950B2 (en) Network slice selection based on requested service
KR102318019B1 (ko) 기기 간(d2d) 통신을 처리하는 방법 및 시스템
US10178129B2 (en) Network security method and device
WO2019062498A1 (zh) 获取特征参数的方法和装置
JP2018523332A (ja) 複数のネットワーク機能インスタンス化にわたるマルチセキュリティレベル/トラフィック管理
WO2017045117A1 (zh) D2d的资源分配方法、设备及系统
WO2021063356A1 (zh) 通信方法和通信装置
WO2019100356A1 (zh) 载波选取的方法和设备、终端设备
WO2019084926A1 (zh) D2d通信中资源池共享的方法、终端设备和网络设备
WO2019024114A1 (zh) 数据传输的方法、终端设备和网络设备
US20220263879A1 (en) Multicast session establishment method and network device
CN109756986B (zh) 一种上行数据包资源分配方法和用户终端
CN113453284A (zh) 一种服务质量Qos控制方法、设备及存储介质
WO2019028848A1 (zh) 资源分配方法、装置、系统及计算机可读存储介质
WO2020119358A1 (zh) 一种逻辑信道调度、配置信息生成方法及装置
US9894659B1 (en) Assigning physical-layer cell identities to base stations
WO2017219734A1 (zh) 一种s1ap信令传输方法及装置
CN114514772A (zh) 包括具有优先值的mac ce的逻辑信道的优先级化的方法和装置
WO2023116355A1 (zh) 通信方法、装置、相关设备及存储介质
WO2019033416A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19896717

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019896717

Country of ref document: EP

Effective date: 20210712