WO2020119331A1 - 电压测量方法与装置 - Google Patents

电压测量方法与装置 Download PDF

Info

Publication number
WO2020119331A1
WO2020119331A1 PCT/CN2019/115525 CN2019115525W WO2020119331A1 WO 2020119331 A1 WO2020119331 A1 WO 2020119331A1 CN 2019115525 W CN2019115525 W CN 2019115525W WO 2020119331 A1 WO2020119331 A1 WO 2020119331A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric field
alkali metal
transmission line
laser beam
sensor unit
Prior art date
Application number
PCT/CN2019/115525
Other languages
English (en)
French (fr)
Inventor
彭文鑫
侯兴哲
郑可
胡晓锐
李松浓
陈文礼
叶君
杨芾藜
刘型志
Original Assignee
国网重庆市电力公司电力科学研究院
国家电网有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网重庆市电力公司电力科学研究院, 国家电网有限公司 filed Critical 国网重庆市电力公司电力科学研究院
Priority to US17/041,597 priority Critical patent/US11385273B2/en
Publication of WO2020119331A1 publication Critical patent/WO2020119331A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/12Measuring electrostatic fields or voltage-potential
    • G01R29/14Measuring field distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/144Measuring arrangements for voltage not covered by other subgroups of G01R15/14
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/22Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-emitting devices, e.g. LED, optocouplers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • G01R15/241Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using electro-optical modulators, e.g. electro-absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0084Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring voltage only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0878Sensors; antennas; probes; detectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0972Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/0008Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type the light being emitted at the end of the fibre
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2706Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3616Holders, macro size fixtures for mechanically holding or positioning fibres, e.g. on an optical bench
    • G02B6/3624Fibre head, e.g. fibre probe termination

Definitions

  • This application relates to the technical field of high-voltage power-frequency electric fields, for example, to voltage measurement methods and devices.
  • the Rydberg atom is a highly excited state in which the outermost electron is excited to a large main quantum number. Compared with ground state atoms, Rydberg atoms have many unique properties. Such as long life, small energy level interval, large electric dipole moment, etc. At the same time, the electric field polarizability of the Rydberg atom is very large (proportional to the seventh power of the main quantum number), and it is extremely susceptible to the influence of the external electric field. The atomic energy level of the Rydberg atom will shift in frequency under the action of the applied electric field Or deviation, that is, Stark (Stark) effect.
  • atomic clocks have achieved Accuracy.
  • great progress has been made in measuring the magnetic field using atoms as a standard, and the measurement accuracy can reach fTHz -1/2 .
  • the detectable space electric field is relatively weak, and the use of atomic energy level measurement can achieve accurate detection of the electric field (mV/cm).
  • the electric field detection based on atomic energy level is mainly used for microwave or higher frequency band signal measurement, and has no application for low frequency signals.
  • This application provides a voltage measurement method and device that excites alkali metal atoms to the Rydberg state, uses the Rydberg atoms to generate the Stark effect of energy level splitting under the action of an external electric field, through the degree of atomic level splitting and the strength of the external electric field Measurement of space voltage.
  • This application provides a high-voltage power frequency voltage measurement method, which includes:
  • measuring the electric field intensity value corresponding to the spatial position through m sensors respectively includes:
  • each sensor place the alkali metal atom sample cell of each sensor in the space to be measured corresponding to each sensor, and guide the first laser beam to the alkali metal atom sample cell to make the The alkali metal atom in the alkali metal atom sample cell reaches the first excited state;
  • the second laser beam is directed into the alkali metal atom sample cell, the second laser beam is opposed to the first laser beam and enters collinearly, exciting the alkali metal atoms in the first excited state to the Rydberg state;
  • the absorption spectrum signal of the first laser beam is collected, and the electric field value of the transmission line is calculated according to the emitted laser signal.
  • the first laser uses a first designated wavelength to excite alkali metal atoms to a first excited state
  • the second laser uses a second designated wavelength to excite alkali metals in the first excited state The atom is excited to the Rydberg state.
  • the calculating the average value of the electric field strength according to the obtained m values of the electric field strength includes: calculating the average value of the electric field strength by the following formula:
  • E x is the average value of the electric field intensity at the height x from the ground
  • Es n (x) is the electric field intensity corresponding to the nth sensor at the height x from the ground, and the number of m sensors.
  • calculating the voltage of the transmission line according to the average value of j electric field strengths includes:
  • the expression F(x) of the electric field strength is fitted by the least square method; where, x represents the height value;
  • U line is the voltage of the power transmission line
  • h is the height of the power transmission line.
  • This application also provides a voltage measurement device, including:
  • each sensor unit includes an optical fiber input or output head, a reflection prism, and an alkali metal atom sample cell; the plurality of sensor units are distributed in the high-voltage power frequency electric field space where the Stark effect occurs, and are set to measure Electric field strength values at different spatial positions; wherein, the different spatial positions are for each of the j height values selected in the vertical direction of the transmission line, and the height from the ground is each of the height values and The spatial position below the power transmission line, the number of sensor units is m, and j and m are positive integers;
  • An integrated platform which is connected to each sensor unit through an optical fiber input or output head of each sensor unit; the integrated platform includes a laser group, a signal receiver, and a data analysis unit;
  • the laser group is arranged to collinearly and relatively emit the first laser light and the second laser light to the alkali metal atom sample cell of each sensor unit through the mirror of each sensor unit; wherein, the first beam The wavelengths of the laser and the second laser are different.
  • the first laser is used to bring the alkali metal atoms in the sample cell of the alkali metal atoms of each sensor unit to a first excited state
  • the second laser Used to excite the alkali metal atom in the first excited state to the Rydberg state;
  • the signal receiver is configured to receive the outgoing laser signal of the first laser beam passing through the alkali metal atom sample cell of each sensor unit, and pass the first laser beam through the alkali of each sensor unit The outgoing laser signal after the metal atom sample cell is converted into an electrical signal;
  • the data analysis unit is configured to analyze the converted electrical signal corresponding to each sensor unit to determine whether there is an electric field in the space to be measured corresponding to each sensor unit. When there is an electric field in the space, calculate the electric field intensity value corresponding to each sensor unit according to the emitted laser signal, and obtain the corresponding average value of the electric field intensity according to the m electric field intensity values in the same space to be measured. The average value of m electric field strengths calculates the voltage value of the transmission line.
  • each sensor unit further includes a non-metallic housing, the optical fiber input/output head, reflective prism, and alkali metal atom sample cell are all located in the non-metallic housing, and the lower end of each sensor unit is also A non-metallic base is provided, and the non-metallic base is configured for the optical fiber to connect to the laser group in the integrated platform through the non-metallic base.
  • the device is configured to measure at least one of the following voltages: low-voltage lines, substations, power equipment condition monitoring, and non-contact power transformers based on the principle of electric field measurement.
  • the present application has the following advantages: the present application uses alkali metal atoms excited to the Rydberg state, and uses the Rydberg atoms to generate the Stark effect of energy level splitting under the action of an external electric field. The intensity is measured without distortion of the electric field to be measured, the measurement accuracy is high, and the temperature stability is high.
  • FIG. 1 is a schematic flowchart of a voltage measurement method provided by an embodiment of this application.
  • FIG. 2 is a schematic flowchart of another voltage measurement method provided by an embodiment of the present application.
  • 3a is a schematic diagram of voltage calculation of an electric field sensor provided by an embodiment of the present application.
  • 3b is another schematic diagram of voltage calculation of an electric field sensor provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a sensor unit provided by an embodiment of the present application.
  • FIG. 5 is an overall schematic diagram of a voltage measurement device provided by an embodiment of the present application.
  • FIG. 1 is a schematic flowchart of a voltage measurement method provided by an embodiment of this application. As shown in FIG. 1, the voltage measurement method provided by the embodiment of the present application includes the following steps:
  • FIG. 2 is a schematic flowchart of another voltage measurement method provided by an embodiment of the present application. As shown in FIG. 2, the voltage measurement method provided by the embodiment of the present application includes the following steps:
  • the measurement process of the electric field value in step S10 is as follows:
  • the sample cell filled with the alkali metal atom gas is placed in the space to be measured, and the first laser beam is guided to the sample cell so that the alkali metal atom reaches the first excited state.
  • the second laser beam is guided into the sample cell, and is collinear with the first laser beam, and the second laser beam excites the alkali metal atoms in the excited state to the Rydberg state.
  • S130 Collect the outgoing laser signal after the first laser beam passes through the sample cell, convert the outgoing laser signal into a corresponding electrical signal, and guide it back to the integrated platform.
  • S140 Analyze the converted electrical signal and compare it with the measurement signal when there is no electric field to determine whether there is an electric field in the space to be measured.
  • the measurement signal when there is no electric field in the space to be measured, the measurement signal exhibits a narrow single peak in the frequency spectrum, and in the case of an electric field in the space to be measured, the measurement signal is on the spectrum due to energy level splitting. A double peak appears.
  • a vacuum sealed glass gas chamber is first filled with alkali metal atom vapor.
  • the volume of the vacuum sealed glass gas chamber is a cube with a side length of 5 cm, or a cylinder with a height of 5 cm and a diameter of 5 cm.
  • Atmospheric pressure It is 10-4Pa, and this sample cell is the contact end for space electric field measurement.
  • the sample cell filled with alkali metal atom gas Place the sample cell filled with alkali metal atom gas in the space to be measured, and use the optical fiber to guide the first laser beam to the sample cell.
  • the first incident laser beam causes the alkali metal atoms to reach the first excited state, and the exit laser on the other side is guided back to the integrated platform to be collected by the detector and converted into a display signal of a computer device.
  • An optical fiber is used to guide the second laser beam to the sample cell, incident in a direction opposite to the first laser beam, for eliminating the Doppler effect.
  • This second laser excites the alkali metal atoms to the Rydberg state.
  • the alkali metal atoms in the Rydberg state have strong electric field sensitivity. If there is no electric field in the space, a specific wavelength absorption peak of a single stable first laser will be observed on the computer screen; if there is an electric field in the space, due to the split of the Rydberg atomic level, different values will be observed on the computer screen Absorption peak at zero electric field; if the existing electric field is an alternating electric field, the single peak will vibrate at the frequency of the alternating electric field, and the amplitude of the single peak will be proportional to the field strength within a certain range.
  • This method can be traced back to the basic physical quantity, which can greatly improve the measurement accuracy based on the measurement of the related technology; the measurement end of this method is non-metallic, which will not cause distortion effects on the original electric field, thereby improving the measurement accuracy.
  • the high-voltage power frequency voltage measurement method the sensor is placed under the transmission line, and the distance between each sensor and the ground is equal.
  • the expression F(x) of the electric field E electric field (x) is fitted by the least square method.
  • the selection of the specific function should be based on the actual The measurement result is selected, and the fitting result of F(x) is the result of considering the external environment factors such as specific location, temperature, electromagnetic interference and so on.
  • the voltage of the transmission line is:
  • U line is the voltage of the power transmission line
  • h is the height of the power transmission line.
  • a voltage measurement device provided by an embodiment of the present application includes: a sensor unit, the sensor unit includes an optical fiber input/output head, a reflection prism, and an alkali metal sample cell; the sensor unit It is distributed in the space of the high-voltage power frequency electric field where the Stark effect occurs, and is set to measure the electric field value at different spatial positions.
  • the sensor unit further includes a non-metallic housing, the optical fiber input/output head, reflecting prism, and alkali metal atom sample cell are all located in the non-metallic housing, and the lower end of the sensor unit is also provided with a non-metallic base.
  • the non-metallic base is connected to the laser group.
  • the integrated platform is connected with multiple sensor units; the integrated platform includes a laser group, a signal receiver, and a data analysis unit; after the laser group is split, the laser line is collinear and relatively emits two laser signals of different wavelengths to the alkali In the metal atom sample cell; the signal receiver is set to receive the outgoing laser signal and laser absorption spectrum signal after passing through the alkali metal atom sample cell, and convert the outgoing laser signal into an electric signal; the data analysis unit is set to analyze the converted electric signal And the laser absorbs the spectral signal, and calculates the electric field value and voltage value according to the analysis result.
  • the two laser beams emitted by the laser group respectively use different specific wavelengths to excite the alkali metal atoms to the first excited state and the Rydberg state.
  • This application uses alkali metal atoms excited to the Rydberg state, using the Stark effect of Rydberg atoms to generate energy level splitting under the action of an external electric field. Through the relationship between the degree of atomic level splitting and the strength of the external electric field, the electric field strength in space Take measurements.
  • This application is suitable for high-voltage power frequency measurement of transmission lines and substation environments, and voltage non-contact measurement based on this method.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Therefore, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware. Moreover, the present application may take the form of a computer program product implemented on one or more computer usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program code.
  • computer usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that can guide a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including an instruction device, the instructions
  • the device implements the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and/or block diagrams.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device, so that a series of operating steps are performed on the computer or other programmable device to produce computer-implemented processing, which is executed on the computer or other programmable device
  • the instructions provide steps for implementing the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and/or block diagrams.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种电压测量方法与装置,该方法包括:在输电线路的垂直方向上选取j个高度值,并且依次在距离地面的高度分别为j个高度值的j个空间位置设置m个用于根据斯塔克效应测量对应空间位置的电场强度的传感器,并分别通过m个传感器测量对应空间位置的电场强度值,根据获取的m个电场强度值计算对应空间位置的电场强度平均值(S110);其中,j和m均为正整数,j个空间位置均位于输电线路下;根据j个电场强度平均值计算输电线路的电压(S120)。

Description

电压测量方法与装置
本申请要求在2018年12月12日提交中国专利局、申请号为201811517608.6的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及高压工频电场技术领域,例如涉及电压测量方法与装置。
背景技术
里德堡原子是最外层电子被激发到主量子数很大的高激发态。与基态原子相比,里德堡原子具有很多独特的性质。如寿命长,能级间隔小,电偶极矩大等。同时里德堡原子的电场极化率很大(与主量子数的七次方成正比),极易受到外电场的影响,里德堡原子的原子能级在外加电场的作用下会发生频移或偏离,即斯塔克(Stark)效应。
早在上个世纪,原子由于可再生性,精确性以及高稳定性就已经被广泛用作测量标准。相关技术中,原子钟已经实现了高于
Figure PCTCN2019115525-appb-000001
的精度。近来,利用原子作为标准测量磁场方面也取得了很大的进步,测量精度可达fTHz -1/2。在空间目标识别和全球定位等很多领域,可探测的空间电场比较微弱,利用原子能级的测量可以实现对电场(mV/cm)的精确检测。基于原子能级的电场探测主要用于微波或更高频段的信号测量,对于低频信号并无应用。同时低频测量装置测量结果不够准确,灵敏度不高,且设备体积较大,难以携带。并且相关技术中,专利公开号为CN103616571A的专利申请仅仅公开了对微弱电场的测量,缺少对高压工频电场和电压的测量方法。
发明内容
本申请提供一种电压测量方法与装置,将碱金属原子激发至里德堡态,利用里德堡原子在外部电场作用下产生能级分裂的Stark效应,通过原子能级分裂程度和外部电场强度大小的关系,对空间电压进行测量。
本申请提供一种高压工频电压测量方法,该方法包括:
在输电线路的垂直方向上选取j个高度值,并且依次在距离地面的高度分别为所述j个高度值的j个空间位置设置m个用于根据斯塔克效应测量对应高度的 电场强度的传感器,并分别通过m个传感器测量对应空间位置的电场强度值,根据m个电场强度值计算对应空间位置的电场强度平均值;其中,j和m均为正整数,所述j个空间位置均位于所述输电线路之下;
根据j个电场强度平均值计算输电线路的电压。
在一实施例中,分别通过m个传感器测量对应空间位置的电场强度值包括:
在每个传感器的测量端,将所述每个传感器的碱金属原子样品池置于所述每个传感器对应的待测空间中,将第一束激光引导至该碱金属原子样品池使所述碱金属原子样品池中的碱金属原子达到第一激发态;
将第二束激光引导至所述碱金属原子样品池中,第二激光与第一束激光相对且共线入射,将处于第一激发态的碱金属原子激发至里德堡态;
采集第一束激光经碱金属原子样品池后的出射激光信号,并将出射激光信号转化为相应的电信号;
对转化后的电信号进行分析,与无电场时的测量信号进行比较,判断所述每个传感器对应的待测空间中是否存在电场;
在所述每个传感器对应的待测空间中存在电场的情况下,采集第一束激光的吸收光谱信号,根据所述出射激光信号计算输电线路的电场值。
在一实施例中,所述第一束激光使用第一指定波长将碱金属原子激发至第一激发态,所述第二束激光使用第二指定波长将处于所述第一激发态的碱金属原子激发至里德堡态。
在一实施例中,所述根据获取的m个电场强度值计算电场强度平均值包括:通过如下公式计算电场强度平均值:
Figure PCTCN2019115525-appb-000002
其中,E x为距离地面高度为x处的电场强度平均值,Es n(x)为距离地面高度为x处的第n个传感器对应的电场强度值,m传感器的个数。
在一实施例中,根据j个电场强度平均值计算所述输电线路的电压包括:
根据j个电场强度测量值,通过最小二乘法拟合出电场强度的表达式F(x);其中,x表示高度值;
根据如下公式计算输电线路的电压:
Figure PCTCN2019115525-appb-000003
其中,U线路为所述输电线路的电压,h为所述输电线路的高度。
本申请还提供一种电压测量装置,包括:
多个传感器单元,每个传感器单元包括有光纤输入或输出头、反射棱镜和碱金属原子样品池;所述多个传感器单元分布于发生斯塔克效应的高压工频电场空间内,设置为测量不同空间位置的电场强度值;其中,所述不同空间位置为针对在输电线路的垂直方向上选取的j个高度值中的每个高度值,在距离地面的高度为所述每个高度值且位于所述输电线路之下的空间位置,传感器单元的个数为m,j和m均为正整数;
综合平台,所述综合平台通过每个传感器单元的光纤输入或输出头连接所述每个传感器单元;所述综合平台包括有激光器组、信号接收器和数据分析单元;
所述激光器组设置为通过所述每个传感器单元反射镜共线且相对地发射第一束激光和第二束激光至每个传感器单元的碱金属原子样品池中;其中,所述第一束激光和所述第二束激光的波长不同,所述第一束激光用于使所述每个传感器单元的碱金属原子样品池中的碱金属原子达到第一激发态,所述第二束激光用于将处于所述第一激发态的碱金属原子激发至里德堡态;
所述信号接收器设置为接收所述第一束激光经所述每个传感器单元的碱金属原子样品池后的出射激光信号,并将所述第一束激光经所述每个传感器单元的碱金属原子样品池后的出射激光信号转化为电信号;
所述数据分析单元设置为分析所述每个传感器单元对应的转化后的电信号,判断所述每个传感器单元对应的待测空间中是否存在电场,在所述每个传感器单元对应的待测空间中存在电场的情况下,根据所述出射激光信号计算所述每个传感器单元对应的电场强度值,并根据同一个待测空间内的m个电场强度值获取对应的电场强度平均值,根据m个电场强度平均值计算所述输电线路的电压值。
在一实施例中,每个传感器单元还包括有非金属外壳,所述光纤输入\输出头、反射棱镜和碱金属原子样品池均位于所述非金属外壳内,并且每个传感器单元的下端还设置有非金属底座,所述非金属底座设置为供光纤通过所述非金属底座连接综合平台中的激光器组。
在一实施例中,所述装置设置为测量以下至少之一的电压:低压线路,变电站,电力设备状态监测以及基于电场测量原理的非接触式电力互感器。
由于采用了上述技术方案,本申请具有如下的优点:本申请使用被激发至里德堡态的碱金属原子,利用里德堡原子在外部电场作用下产生能级分裂的 Stark效应,对空间电场强度进行测量,对待测电场不产生畸变,测量精度高,温度稳定性高。
附图说明
图1为本申请实施例提供的一种电压测量方法的流程示意图;
图2为本申请实施例提供的另一种电压测量方法的流程示意图;
图3a为本申请实施例提供的一种电场传感器电压计算示意图;
图3b为本申请实施例提供的另一种电场传感器电压计算示意图;
图4为本申请实施例提供的传感器单元结构示意图;
图5为本申请实施例提供的电压测量装置的整体示意图。
具体实施方式
下面结合附图和实施例对本申请进行说明。
图1为本申请实施例提供的电压测量方法的流程示意图。如图1所示,本申请实施例提供的电压测量方法包括如下步骤:
110、在输电线路的垂直方向上选取j个高度值,并且依次在距离地面的高度分别为所述j个高度值的j个空间位置设置m个用于根据斯塔克效应测量对应空间位置的电场强度的传感器,并分别通过m个传感器测量对应空间位置的电场强度值,根据获取的m个电场强度值计算对应空间位置的电场强度平均值;其中,j和m均为正整数,所述j个空间位置均位于所述输电线路之下。
120、根据j个电场强度平均值计算所述输电线路的电压。
图2为本申请实施例提供的另一种电压测量方法的流程示意图。如图2所示,本申请实施例提供的电压测量方法包括如下步骤:
S10:在距离地面高度为x的处于输电线路以下的空间中设置m个用于根据斯塔克效应测量对应高度的电场强度的传感器,并测量传感器Sn(n=1,2,3…m)相对应的电场值Esn(n=1,2,3…m)。
S20:根据电场值Esn计算电场平均值Ex。
S30:在输电线的垂直方向上选取j个高度值Xi(i=1,2,3…j),重复S10和S20计算不同高度值的电场强度平均值Exi。
S40:根据电场强度平均值Exi计算输电线路的电压。
步骤S10中电场值的测量过程如下:
S110:在传感器Sn的测量端,将充有碱金属原子气体的样品池置于待测空间中,将第一束激光引导至该样品池使碱金属原子达到第一激发态。
S120:将第二束激光引导至样品池中,与第一束激光相对且共线入射,第二束激光将处于激发态的碱金属原子激发至里德堡态。
S130:采集第一束激光经样品池后的出射激光信号,并将出射激光信号转化为相应的电信号,并导回综合平台。
S140:对转化后的电信号进行分析,与无电场时的测量信号进行比较,判断待测空间中是否存在电场。
本实施例中,在待测空间中无电场的情况下,测量信号在频谱上呈现较窄的单峰,而在待测空间中有电场的情况下,由于能级分裂,测量信号在频谱上呈现双峰。
S150:在待测空间中存在电场的情况下,存在的电场导致碱金属原子产生斯塔克效应,即里德堡能级发生分裂,采集第一束激光的吸收光谱信号,根据能级的分裂与电场强度关系计算电场值。
在一实施例中,首先在一个真空密封玻璃气室中充入碱金属原子蒸汽,该真空密封玻璃气室的体积大小为边长5cm的正方体,或高5cm、直径5cm的圆柱体,大气压强为10-4Pa,此样品池为空间电场测量的接触端。
将充有碱金属原子气体的样品池置于待测空间中,使用光纤将第一束激光引 导至该样品池。入射的第一束激光使碱金属原子达到第一激发态,且在另一侧的出射激光导回至综合平台被探测器采集,并转化为计算机设备的显示信号。
使用光纤将第二束激光引导至样品池,以与第一束激光相对的方向入射,用于消除多普勒效应。该第二束激光将碱金属原子激发至里德堡态。
处于里德堡态的碱金属原子具有较强的电场敏感性。如果空间中没有电场,将在计算机屏幕中观察到单一稳定的第一束激光的特定波长吸收峰;如果空间中存在电场,由于里德堡原子能级发生分裂,将在计算机屏幕上观察到数值不同于零电场状态下的吸收峰;如果存在的电场为交变电场,该单峰将以交变电场的频率发生振动,该单峰的振动幅度将与场强大小在一定范围内成正比。
本方法可溯源至基本物理量,可以在相关技术的测量基础上大幅提升测量精度;本方法的测量端为非金属,不会对原有电场造成畸变影响,从而提高测量准确度。
如图3a和图3b所示,高压工频电压测量方法:传感器在输电线下方布点,每个传感器到地面的距离相等。
(1)工作状态下,在距离地面高度为x的处于输电线路以下的空间中设置m个用于根据斯塔克效应测量对应高度的电场强度的传感器,并测量传感器Sn(n=1,2,3…m)相对应的电场值
Figure PCTCN2019115525-appb-000004
(n=1,2,3…m),m个电场值的平均值为:
Figure PCTCN2019115525-appb-000005
(2)在垂直方向上选取j个高度值(x1,x2,....xj),分别进行第1步中的计算,测得一组距离地面(或输电线)不同高度值的电场强度(Ex1,Ex2,.....Exj)。
通过垂直方向上的电场强度测量值(Ex1,Ex2,.....Exj),通过最小二乘法拟 合出电场E 电场(x)的表达式F(x),具体函数的选取需根据实际测量结果选取,F(x)的拟合结果是考虑特定地点,温度,电磁干扰等外界环境因素的结果。
(3)根据电压计算公式,输电线路的电压为:
Figure PCTCN2019115525-appb-000006
其中,U线路为所述输电线路的电压,h为所述输电线路的高度。
如图4和图5所示,本申请实施例提供的一种电压测量装置,包括有:传感器单元,传感器单元包括有光纤输入\输出头、反射棱镜和碱金属原子样品池;所述传感器单元分布于发生斯塔克效应的高压工频电场空间内,设置为测量不同空间位置的电场值。
所述传感器单元还包括有一非金属外壳,所述光纤输入\输出头、反射棱镜和碱金属原子样品池均位于所述非金属外壳内,并且传感器单元的下端还设置有非金属底座,通过所述非金属底座连接激光器组。
综合平台,综合平台连接有多个传感器单元;综合平台包括有激光器组、信号接收器和数据分析单元;激光器组经过分光后通过反射镜共线且相对地发射两束不同波长的激光信号至碱金属原子样品池中;信号接收器设置为接收经碱金属原子样品池后的出射激光信号和激光吸收光谱信号,并将出射激光信号转化为电信号;数据分析单元设置为分析转化后的电信号和激光吸收光谱信号,并根据分析结果计算出电场值和电压值。
激光器组发射的两束激光分别使用不同的特定波长将碱金属原子激发至第一激发态和里德堡态。
本申请使用被激发至里德堡态的碱金属原子,利用里德堡原子在外部电场作用下产生能级分裂的Stark效应,通过原子能级分裂程度和外部电场强度大小 的关系,对空间电场强度进行测量。本申请适用于输电线路与变电站环境的高压工频测量,以及基于该方法的电压非接触式测量。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。

Claims (8)

  1. 一种电压测量方法,包括:
    在输电线路的垂直方向上选取j个高度值,并且依次在距离地面的高度分别为所述j个高度值的j个空间位置设置m个用于根据斯塔克效应测量对应高度的电场强度的传感器,并分别通过m个传感器测量对应空间位置的电场强度值,根据获取的m个电场强度值计算对应空间位置的电场强度平均值;其中,j和m均为正整数,所述j个空间位置均位于所述输电线路之下;
    根据j个电场强度平均值计算所述输电线路的电压。
  2. 如权利要求1所述的方法,其中,所述分别通过m个传感器测量对应空间位置的电场强度值包括:
    在每个传感器的测量端,将所述每个传感器的碱金属原子样品池置于所述每个传感器对应的待测空间中,将第一束激光引导至所述碱金属原子样品池使所述碱金属原子样品池中的碱金属原子达到第一激发态;
    将第二束激光引导至所述碱金属原子样品池中,所述第二束激光与所述第一束激光相对且共线入射,将处于所述第一激发态的碱金属原子激发至里德堡态;
    采集所述第一束激光经所述碱金属原子样品池后的出射激光信号,并将所述出射激光信号转化为相应的电信号;
    对转化后的电信号进行分析,与无电场时的测量信号进行比较,判断所述每个传感器对应的待测空间中是否存在电场;
    在所述每个传感器对应的待测空间中存在电场的情况下,根据所述出射激光信号计算所述每个传感器对应空间位置的电场强度值。
  3. 如权利要求2所述的方法,其中,所述第一束激光使用第一指定波长将所述碱金属原子由基态激发至所述第一激发态,所述第二束激光使用第二指定波长将处于所述第一激发态的碱金属原子激发至里德堡态。
  4. 如权利要求1、2或3所述的方法,其中,所述根据获取的m个电场强度值计算对应空间位置的电场强度平均值包括:通过如下公式计算电场强度平均值:
    Figure PCTCN2019115525-appb-100001
    其中,E x为距离地面高度为x处的电场强度平均值,Es n(x)为距离地面高度为x处的第n个传感器对应的电场强度值,m传感器的个数。
  5. 如权利要求1所述的方法,其中,所述根据j个电场强度平均值计算所述输电线路的电压,包括:
    根据j个电场强度平均值,通过最小二乘法拟合出电场强度的表达式F(x);其中,x表示高度值;
    根据如下公式计算输电线路的电压:
    U 线路=∫ 0 hF(x)dx
    其中,U线路为所述输电线路的电压,h为所述输电线路的高度。
  6. 一种电压测量装置,包括:
    多个传感器单元,每个传感器单元包括有光纤输入或输出头、反射棱镜和碱金属原子样品池;所述多个传感器单元分布于发生斯塔克效应的高压工频电场空间内,设置为测量不同空间位置的电场强度值;其中,所述不同空间位置为针对在输电线路的垂直方向上选取的j个高度值中的每个高度值,在距离地面的高度为所述每个高度值且位于所述输电线路之下的空间位置,传感器单元的个数为m,j和m均为正整数;
    综合平台,所述综合平台通过每个传感器单元的光纤输入或输出头连接所述每个传感器单元;所述综合平台包括有激光器组、信号接收器和数据分析单元;
    所述激光器组设置为通过所述每个传感器单元反射镜共线且相对地发射第一束激光和第二束激光至所述每个传感器单元的碱金属原子样品池中;其中,所述第一束激光和所述第二束激光的波长不同,所述第一束激光用于使所述每个传感器单元的碱金属原子样品池中的碱金属原子达到第一激发态,所述第二束激光用于将处于所述第一激发态的碱金属原子激发至里德堡态;
    所述信号接收器设置为接收所述第一束激光经所述每个传感器单元的碱金属原子样品池后的出射激光信号,并将所述第一束激光经所述每个传感器单元的碱金属原子样品池后的出射激光信号转化为电信号;
    所述数据分析单元设置为分析所述每个传感器单元对应的转化后的电信号,判断所述每个传感器单元对应的待测空间中是否存在电场,在所述每个传感器单元对应的待测空间中存在电场的情况下,根据所述出射激光信号计算所述每个传感器单元对应空间位置的电场强度值,并根据同一个空间位置的m个电场强度值获取对应空间位置的电场强度平均值,根据j个电场强度平均值计算所述输电线路的电压值,其中,j和m均为正整数。
  7. 如权利要求6所述的装置,其中,每个传感器单元还包括有非金属外壳, 所述光纤输入或输出头、所述反射棱镜和所述碱金属原子样品池均位于所述非金属外壳内,并且每个传感器单元的下端还设置有非金属底座,所述非金属底座设置为供光纤通过所述非金属底座连接所述综合平台中的激光器组。
  8. 如权利要求6或7所述的装置,其中,所述装置设置为测量以下至少之一的电压:低压线路,变电站,电力设备状态监测以及基于电场测量原理的非接触式电力互感器。
PCT/CN2019/115525 2018-12-12 2019-11-05 电压测量方法与装置 WO2020119331A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/041,597 US11385273B2 (en) 2018-12-12 2019-11-05 Voltage measurement method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811517608.6 2018-12-12
CN201811517608.6A CN109342838A (zh) 2018-12-12 2018-12-12 一种基于斯塔克效应的高压工频电压测量方法与装置

Publications (1)

Publication Number Publication Date
WO2020119331A1 true WO2020119331A1 (zh) 2020-06-18

Family

ID=65303925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115525 WO2020119331A1 (zh) 2018-12-12 2019-11-05 电压测量方法与装置

Country Status (3)

Country Link
US (1) US11385273B2 (zh)
CN (1) CN109342838A (zh)
WO (1) WO2020119331A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113671325A (zh) * 2021-08-18 2021-11-19 云南电网有限责任公司大理供电局 一种基于高频电场变化的终端局放监测方法及系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109342838A (zh) 2018-12-12 2019-02-15 国网重庆市电力公司电力科学研究院 一种基于斯塔克效应的高压工频电压测量方法与装置
CN110531141A (zh) * 2019-09-24 2019-12-03 国网重庆市电力公司电力科学研究院 一种智能绝缘子电压传感系统
US11977197B1 (en) 2020-08-28 2024-05-07 Earthsystems Technologies, Inc. Thermodynamic housing for a geophysical data acquisition system and method of use
CN113325240B (zh) * 2021-04-21 2023-12-01 中国电力科学研究院有限公司 一种获取交叉跨越高压直流导线起晕场强的方法及系统
CN114487557B (zh) * 2022-04-02 2022-07-12 南方电网数字电网研究院有限公司 非侵入式电压测量装置
CN115808578B (zh) * 2022-12-02 2023-12-12 南方电网数字电网研究院有限公司 电力设备的电压获取方法、装置、设备、存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04359164A (ja) * 1991-06-04 1992-12-11 Tokyo Electric Power Co Inc:The 電界測定方法および電界測定装置
CN101696990A (zh) * 2009-10-20 2010-04-21 重庆大学 一种基于电场测量的特高压输电线验电方法及其系统
CN103616571A (zh) * 2013-12-07 2014-03-05 山西大学 基于里德堡原子斯塔克效应的电场探测方法及装置
CN104020343A (zh) * 2014-06-06 2014-09-03 西安电子科技大学 基于电场强度差分布曲线匹配的高压输电线验电方法
CN106645865A (zh) * 2016-09-19 2017-05-10 中国电力科学研究院 一种对高压输电线路电晕电流进行测量的装置
CN108152602A (zh) * 2016-12-15 2018-06-12 中国计量科学研究院 一种基于量子相干效应的天线增益测量装置
CN108982975A (zh) * 2018-07-17 2018-12-11 北京无线电计量测试研究所 一种电场探测器
CN109342838A (zh) * 2018-12-12 2019-02-15 国网重庆市电力公司电力科学研究院 一种基于斯塔克效应的高压工频电压测量方法与装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036465A (ja) * 1989-06-02 1991-01-11 Japan Radio Co Ltd レーザ光を用いた非接触型電圧測定装置
CN102262179B (zh) * 2011-04-19 2014-12-10 重庆大学 单极式电流电压一体化传感器
CN104880614B (zh) * 2015-06-09 2017-06-20 华南师范大学 基于冷里德堡原子干涉仪的微波电场强度计及其测量方法
CN105866559B (zh) * 2016-04-29 2019-10-18 南方电网科学研究院有限责任公司 长空气间隙雷击放电电场强度的测量系统及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04359164A (ja) * 1991-06-04 1992-12-11 Tokyo Electric Power Co Inc:The 電界測定方法および電界測定装置
CN101696990A (zh) * 2009-10-20 2010-04-21 重庆大学 一种基于电场测量的特高压输电线验电方法及其系统
CN103616571A (zh) * 2013-12-07 2014-03-05 山西大学 基于里德堡原子斯塔克效应的电场探测方法及装置
CN104020343A (zh) * 2014-06-06 2014-09-03 西安电子科技大学 基于电场强度差分布曲线匹配的高压输电线验电方法
CN106645865A (zh) * 2016-09-19 2017-05-10 中国电力科学研究院 一种对高压输电线路电晕电流进行测量的装置
CN108152602A (zh) * 2016-12-15 2018-06-12 中国计量科学研究院 一种基于量子相干效应的天线增益测量装置
CN108982975A (zh) * 2018-07-17 2018-12-11 北京无线电计量测试研究所 一种电场探测器
CN109342838A (zh) * 2018-12-12 2019-02-15 国网重庆市电力公司电力科学研究院 一种基于斯塔克效应的高压工频电压测量方法与装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113671325A (zh) * 2021-08-18 2021-11-19 云南电网有限责任公司大理供电局 一种基于高频电场变化的终端局放监测方法及系统

Also Published As

Publication number Publication date
CN109342838A (zh) 2019-02-15
US11385273B2 (en) 2022-07-12
US20210088571A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
WO2020119331A1 (zh) 电压测量方法与装置
Yarnell et al. Excitations in liquid helium: neutron scattering measurements
Spero et al. Test of the gravitational inverse-square law at laboratory distances
CN103033523B (zh) 一种新型正电子湮没谱仪及其测量方法
Durst et al. Density fluctuation measurements via beam emission spectroscopy
CN107329006A (zh) 一种微波电场强度测量方法及测量装置
CN106662531A (zh) 用于原位测量样本的蚀刻深度的辉光放电光谱方法和系统
WO2013145898A1 (ja) 光検査装置およびその方法
CN106769737B (zh) 一种光纤式粉尘浓度测量装置
WO2018092462A1 (ja) 粒子径分布測定装置及び粒子径分布測定装置用プログラム
US20150116709A1 (en) Sensor and method for turbidity measurement
Mokeddem et al. Excess of lensing amplitude in the Planck CMB power spectrum
CN108489607A (zh) 水体光学衰减系数测量装置及方法
CN115374637A (zh) 一种基于无源效率刻度的核材料滞留量计算方法和终端
CN218584995U (zh) 一种大气污染探测用激光器发散角和指向稳定性测量装置
CN108254079B (zh) 一种双波长辐射测温装置及方法
CN204479045U (zh) 一种输变电设备防腐涂层厚度带电测量装置
Hansen et al. Specular reflection from mercury vapor
CN109901182B (zh) 一种基于二阶强度关联函数的激光测距装置及方法
Fischetti et al. Exploring the use of numerical relativity waveforms in burst analysis of precessing black hole mergers
Choi et al. Remotely measuring the hydrogen gas by using portable Raman lidar system
Beyer et al. Crystal optics for hard-X-ray spectroscopy of highly charged ions
CN117147965B (zh) 基于多光子激励的量子传感器共振频率测评系统及方法
CN109324233A (zh) 基于多光束激光光谱技术的工频电场测量方法和装置
Depierreux et al. Application of Thomson scattering to identify ion acoustic waves stimulated by the Langmuir decay instability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19896715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19896715

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19896715

Country of ref document: EP

Kind code of ref document: A1