WO2020119261A1 - 工程应用中光模块的性能状态检测方法、装置及电子设备 - Google Patents

工程应用中光模块的性能状态检测方法、装置及电子设备 Download PDF

Info

Publication number
WO2020119261A1
WO2020119261A1 PCT/CN2019/112606 CN2019112606W WO2020119261A1 WO 2020119261 A1 WO2020119261 A1 WO 2020119261A1 CN 2019112606 W CN2019112606 W CN 2019112606W WO 2020119261 A1 WO2020119261 A1 WO 2020119261A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
optical module
difference
optical power
theoretical
Prior art date
Application number
PCT/CN2019/112606
Other languages
English (en)
French (fr)
Inventor
张彪
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP19895734.2A priority Critical patent/EP3896420A4/en
Publication of WO2020119261A1 publication Critical patent/WO2020119261A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers

Definitions

  • the embodiments of the present invention relate to the field of optoelectronic communication technology, and in particular, to a method, device, and electronic device for detecting the performance status of optical modules in engineering applications.
  • An optical module is a device composed of optoelectronic devices, functional circuits, and optical interfaces.
  • the optoelectronic device includes two parts: transmitting and receiving.
  • the optical module is a key device in the communication optical link. It converts the information at both ends of the system to photoelectric conversion.
  • the transmitting end converts the electrical signal into an optical signal. After transmission through the optical fiber, the receiving end converts the optical signal into an electrical signal. It is the entire system.
  • the key transit hub However, in actual engineering applications, the hub is often a black box, and the performance status of the optical module cannot be detected, and the field operation quality of the optical module cannot be monitored.
  • Embodiments of the present invention provide a method, device, and electronic device for detecting the performance status of an optical module in engineering applications, to solve the problem of difficult performance detection of optical modules in engineering applications.
  • the embodiments of the present application provide a method for detecting the performance status of an optical module in an engineering application, including: acquiring the theoretical and actual values of key parameters of the optical module at a set temperature value; The difference between the theoretical value and the actual value of the key parameter; based on the correspondence between the pre-built difference and the performance state, the performance state of the optical module is determined according to the difference.
  • an embodiment of the present application further provides a device for detecting the performance status of an optical module in an engineering application, including: a parameter acquisition module for acquiring theoretical and actual values of key parameters of the optical module at a set temperature value; The difference calculation module is used to calculate the difference between the theoretical value and the actual value of the key parameter; the state determination module is used to determine the light according to the difference based on the pre-built correspondence between the difference and the performance state The performance status of the module.
  • an embodiment of the present application further provides an electronic device, including a processor and a memory for storing a computer program that can be run on the processor; wherein, when the processor is used to run the computer program, the first In one aspect, the method.
  • an embodiment of the present application further provides a non-transitory computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are used to execute the above Aspect of the method.
  • an embodiment of the present application further provides a computer program product, the computer program product includes a computer program stored on a non-transitory computer-readable storage medium, and the computer program includes program instructions, when the program When the instructions are executed by a computer, the computer is caused to perform the methods described in the above aspects.
  • FIG. 1 is a flowchart of a method for detecting the performance status of an optical module in an engineering application provided by an embodiment of this application;
  • FIG. 2 is a flowchart of a method for determining the theoretical value of the operating current of the optical module at a set temperature according to an embodiment of the present application
  • FIG. 3 is a flowchart of a method for determining the theoretical value of the transmitted optical power of the optical module at a set temperature according to an embodiment of the present application
  • FIG. 4 is a flowchart of a method for determining a theoretical value of received optical power of a light module at a set temperature value according to an embodiment of the present application
  • FIG. 5 is a flowchart of a method for judging the performance status of the optical module through a degradation equation according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of a device for detecting the performance status of an optical module in an engineering application provided by an embodiment of the present application;
  • FIG. 7 is a schematic diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 1 is a flowchart of a method for detecting the performance status of an optical module in an engineering application according to an embodiment of the present application. As shown in FIG. 1, the method includes:
  • the set temperature value is a temperature value set according to specific conditions, which may be Any temperature value.
  • the theoretical value of the key parameter can be calculated according to a preset calculation formula, or can be obtained by searching a preset key parameter configuration table; the actual value of the key parameter is the actual operating value of the optical module collected in real time in the engineering application.
  • the foregoing S1-S3 are continuously repeated to perform real-time detection on the performance status of the optical module.
  • S1 includes: acquiring the theoretical value and the actual value of the operating current of the optical module at the set temperature value; acquiring the theoretical value and the actual value of the emitted optical power of the optical module at the set temperature value Value; Obtain the theoretical and actual value of the received optical power of the optical module at the set temperature value.
  • the method for acquiring the theoretical value of the operating current of the optical module at the set temperature value includes: S110. Acquire multiple temperature values and the optical module in the multiple The measured working current value at each temperature value; S111. According to the plurality of temperature values and the corresponding measured working current value, the relationship between the temperature of the optical module and the working current is obtained; for example, the relationship between the temperature and the working current is The basic polynomial of the Nth power equation can be corrected by actual data.
  • I(T) represents the temperature T
  • A, B, C are coefficients
  • D is a constant term
  • Method 2 Bring at least two measured operating current values of the optical module and temperature values corresponding to the at least two measured operating current values into the relational expression, and correct the parameters of the relational expression.
  • the maximum impact coefficient of the expression of temperature and working current can be accurately calculated according to the factory data of the optical module.
  • the factory data of the optical module has two groups, which are the measured operating current value of the optical module at 25 degrees Celsius and 25 degrees Celsius.
  • I H means light at 85 degrees Celsius
  • the measured working current value of the module, I R represents the measured working current value of the optical module at 25 degrees Celsius, T H represents 85 degrees Celsius, and T R represents 25 degrees Celsius.
  • you obtain more measured data (temperature and working current) you can Realize to revise all parameters of polynom
  • the operating current value corresponding to the set temperature value may also be obtained as the theoretical operating current value of the optical module by searching a preset operating current configuration table of the optical module.
  • the working current configuration table of the optical module is as follows:
  • the method for obtaining the theoretical value of the optical transmit power of the optical module at the set temperature value includes: S120.
  • S121. Determine whether the emitted optical power collected for the first time is within the preset emitted optical power range; specifically, in the embodiment of the present application, the preset emitted light
  • the power range is: greater than the minimum transmit optical power required by the optical module specifications, and less than the maximum transmit optical power required by the optical module specifications.
  • the emission optical power of the optical module collected at the set temperature value for the first time is used as the theoretical emission optical power value.
  • the theoretical value of the transmitted optical power of the optical module at the set temperature value can also be obtained by the following method:
  • the theoretical value of the transmitted optical power of the optical module is calculated as follows:
  • Power(T) represents the theoretical value of the optical power emitted by the optical module at temperature T
  • I(T) represents the theoretical operating current value of the optical module at temperature T
  • SE(T) represents the internal of the optical module at temperature T
  • the relationship between the slope efficiency function of a laser is a multi-term function of slope efficiency and temperature distribution.
  • SE (T) mT + n
  • m and n are coefficients
  • Pth represents a constant term, through this functional relationship can be obtained at any temperature of the emitted light power Theoretical value.
  • the method for obtaining the theoretical value of the received optical power of the optical module at the set temperature value includes: S130. When the installation of the project is completed, collect the optical module The received optical power at the set temperature value; S131. Determine whether the received optical power collected for the first time is within the preset received optical power range; specifically, in the embodiment of the present application, the preset received optical power The power range is: greater than the theoretical value of the optical power emitted by the optical module + the typical fiber loss value + the typical LC insertion loss.
  • the typical fiber loss value and the typical LC insertion loss are known parameters.
  • the received optical power at the set temperature value of the optical module collected for the first time is used as the theoretical received optical power value.
  • the method for obtaining the actual value of the working current of the optical module at the set temperature value includes: acquiring the actual value of the working current through the internal monitoring of the optical module at the set temperature value;
  • the method for obtaining the actual value of the transmitted optical power of the optical module at the set temperature value includes: collecting the actual value of the transmitted optical power of the optical module at the set temperature value in a round-robin manner, and reaching the set temperature for the second time Value, record the transmitted optical power value at this time in a buffer area, and also wait for the third time to cover the second time value, and so on, and always store the transmitted optical power of the optical module at the last set temperature value.
  • the last collected optical power value is taken as the actual value of the transmitted optical power; specifically, in the embodiment of the present application, the method for obtaining the actual value of the received optical power of the optical module at the set temperature includes: collecting in a round-robin manner The actual value of the received optical power of the optical module at the set temperature value.
  • the received optical power value at this time is recorded in a buffer area, and the same value is waited for the third time to cover the second value, and so on , Always stores the received optical power of the optical module at the last set temperature value, and uses the most recently collected received optical power value as the actual received optical power value.
  • S2 includes: S210. Determine the difference between the theoretical value of the working current and the actual value of the working current of the optical module at the set temperature value, and record the difference to the corresponding difference storage unit ; S220. Determine the difference between the theoretical value of the transmitted optical power and the actual value of the transmitted optical power of the optical module at the set temperature value, and record the difference to the corresponding difference storage unit; S230. Determine the optical module at the set temperature The difference between the theoretical value of the received optical power and the actual value of the received optical power under the value, and record the difference to the corresponding difference storage unit.
  • the performance status of the optical module is defined as four types according to the magnitude of the difference change: health, sub-health, risk observation, and failure. The severity of these four states increases in turn, but the four states do not have to go through each level.
  • S3 includes: S310. Determine whether the difference between the theoretical value of the operating current of the optical module and the actual value of the operating current at the set temperature value is greater than a first threshold value and less than a second threshold value; S320. Determine the setting Whether the difference between the theoretical value of the transmitted optical power of the optical module and the actual value of the transmitted optical power is greater than the third threshold value and less than the fourth threshold value at a fixed temperature value; S330.
  • the performance state of the optical module is judged by the degradation equation in S340, as shown in FIG. 5, including: S341.
  • S341. Obtaining the set temperature value, the theoretical value of the operating current and n
  • Repeat S341-S342 Set the number of times t, for example, when t is 3, repeat S341-S342 three times; S344. Determine whether the number of times the quadratic coefficients of the quadratic function fitting relationship obtained is continuously greater than 0 is not less than the first threshold a, if it is Determine that the performance of the optical module is in a fault state, if not, execute S345; for example, if a is 3, repeat S341-S342 three times to obtain the quadratic coefficients of the quadratic function fitting relationship are all greater than 0, then determine The performance of the optical module is a failure state; S345.
  • m is any positive integer value set according to the specific situation.
  • S340 may further include: calculating the remaining life of the optical module according to a quadratic function fitting relationship.
  • the method for detecting the performance state of the optical module in the engineering application further includes: judging the number of consecutive occurrences of the sub-health performance, failure state, and risk observation state of the optical module, when a certain state When the number of consecutive occurrences reaches the preset number, an alarm is output.
  • the application provides a method for detecting the performance status of an optical module in an engineering application, which is suitable for the optical module to measure its own monitoring, and is also suitable for the system to monitor the optical module. All allocation units in this application serve as cache units.
  • the coefficient allocation unit needs to be mapped to a protected readable and writable area.
  • the difference storage unit the last multiple data of the round-robin sampling values of the transmitted optical power and the received optical power need to be mapped to the user-readable area.
  • This application provides an optical module performance status detection method in engineering applications.
  • optical module self-monitoring it can automatically clear all cache information after continuous operation or re-power on its corresponding standard status bit; the cache area data is in accordance with It needs to be mapped to the open readable area of the optical module. The data in the readable area needs to be saved and can only be overwritten in an iterative manner.
  • serial number of the corresponding optical module changes, all records are cleared and the monitoring method is restarted.
  • An embodiment of the present application provides a method for detecting the performance status of an optical module in engineering applications, which calculates the theoretical value of the key parameter of the optical module at the set temperature value, and monitors the key of the optical module at the set temperature value in real time in engineering applications
  • the actual value of the parameter by calculating the difference between the theoretical value and the actual value of the key parameter, and through the correspondence between the pre-built difference between the key parameter and the performance health state of the optical module, the performance health state of the optical module is automatically determined to ensure the performance of the optical module Monitorability and real-time updates and predictability of its performance health status.
  • This application uses a simplified, monitorable, and predictable alarm method to facilitate the application of optical modules in the project.
  • the self-test of optical power and working current status of the optical module makes the alarm direction more clear, the optical module is smarter, and the applicability is stronger. .
  • This application uses online monitoring of key parameter information changes of optical modules through actual engineering applications and obtains the relationship between operating current and temperature and degradation function for internal calculations, and actual monitoring of key parameters and calculated key parameter difference changes and degree of degradation trends , And then report different health alarms to ensure that the quality and performance of the background optical module can be monitored and the real-time update and predictability of its alarm status.
  • the application provides a method for detecting the performance status of optical modules in engineering applications, which can be widely applied and monitor the working health status and quality performance of existing optical modules, which improves the accuracy of outfield fault location and reduces maintenance costs incurred by engineering applications. .
  • FIG. 6 is a schematic diagram of a device for detecting the performance status of an optical module in an engineering application according to an embodiment of the present application.
  • the device may be implemented by software and/or hardware, and may generally be integrated in an electronic device, such as an optical module or a system
  • the detection device can detect the performance status of the optical module by executing the performance status detection method of the optical module in the engineering application.
  • the detection device includes: a parameter acquisition module for acquiring the theoretical and actual values of key parameters of the optical module at a set temperature value; a difference calculation module for calculating the difference between the theoretical and actual values of the key parameters Value; a state determination module, configured to determine the performance state of the optical module according to the difference based on the pre-built correspondence between the difference and the performance state.
  • the parameter acquisition module is used to acquire the theoretical and actual values of the operating current of the optical module at the set temperature value, the theoretical and actual values of the transmitted optical power, and the theoretical and actual values of the received optical power.
  • the state determination module determines the performance state of the optical module by: determining whether the difference between the theoretical value of the operating current of the optical module and the actual value of the operating current at the set temperature value is greater than the first threshold and less than the second Threshold; determine whether the difference between the theoretical value of the transmitted optical power of the optical module and the actual value of the transmitted optical power at the set temperature is greater than a third threshold and less than a fourth threshold; determine the optical module at the set temperature Whether the difference between the theoretical value of the received optical power and the actual value of the received optical power is greater than the fifth threshold and less than the sixth threshold; if the difference between the theoretical value of the operating current and the actual value of the operating current is not greater than the first threshold, the emission The difference between the theoretical optical power value and the actual value of the transmitted optical power is not greater than the third threshold, and the difference between the theoretical value of the received optical power and the actual value of the received optical power is not greater than the fifth threshold, then the performance of the optical module is determined It is healthy; if the difference between the theoretical value
  • Determining the performance state of the optical module through the degradation equation includes: obtaining the difference between the theoretical value of the working current and the actual value of the working current collected at multiple set time points at the set temperature value; Fit to get the quadratic function fitting relationship of the difference and the set time point corresponding to the difference; repeat the above two steps to set the number of times; the quadratic coefficient of the quadratic function fitting relationship obtained by the judgment is continuously greater than Whether the frequency of 0 is not less than the first threshold, if it is, it is determined that the performance of the optical module is in a fault state, if not, it is judged whether the number of times the quadratic coefficient of the quadratic function fitting relationship is continuously greater than 0 is less than The first threshold is not less than the second threshold, if it is, the performance of the optical module is determined to be a risk observation state, if not, the performance of the optical module is determined to be sub-healthy; the first threshold is not greater than the The set number of times, the second threshold is less than the first threshold.
  • the electronic device includes a processor and a memory for storing a computer program that can run on the processor; wherein, the processor is used to run a computer
  • the program perform the following methods: Obtain the theoretical and actual values of the key parameters of the optical module at the set temperature value; calculate the difference between the theoretical and actual values of the key parameters; based on the pre-built difference and performance According to the corresponding relationship of the states, the performance state of the optical module is determined according to the difference.
  • the disclosed device may be implemented in other ways.
  • the device embodiments described above are only schematics.
  • the above-mentioned module division is only a logical function division.
  • there may be another division manner for example, multiple modules or components may be combined or integrated. To another system, or some features can be ignored, or not implemented.
  • modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical modules, that is, they may be located in one place, or may be distributed on multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional module in each embodiment of the present invention may be integrated into one processing module, or each module may exist alone physically, or two or more modules may be integrated into one module.
  • the above integrated modules may be implemented in the form of hardware or software function modules.
  • the above integrated modules are implemented in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable memory.
  • the technical solution of the present invention essentially or part of the contribution to the existing technology or all or part of the technical solution can be embodied in the form of a software product, the computer software product is stored in a memory, Several instructions are included to enable a computer device (which may be a personal computer, server, network device, etc.) to perform all or part of the steps of the above methods of various embodiments of the present invention.
  • the aforementioned memory includes: U disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk and other media that can store program codes.
  • the program may be stored in a computer-readable memory, and the memory may include: a flash disk , Read-Only Memory (English: Read-Only Memory, abbreviation: ROM), Random Access Device (English: Random Access Memory, abbreviation: RAM), magnetic disk or optical disk, etc.
  • ROM Read-Only Memory
  • RAM Random Access Device
  • magnetic disk or optical disk etc.
  • Embodiments of the present application provide a non-transitory (non-volatile) computer storage medium, where the computer storage medium stores computer-executable instructions, and the computer-executable instructions can execute the method in any of the foregoing method embodiments.
  • An embodiment of the present application provides a computer program product.
  • the computer program product includes a computer program stored on a non-transitory computer-readable storage medium.
  • the computer program includes program instructions. When the program instructions are executed by a computer To make the computer execute the method in any of the above method embodiments.

Abstract

本发明提供的一种工程应用中光模块的性能状态检测方法、装置及电子设备,获取光模块在设定温度值下的关键参数的理论值和实际值,计算关键参数的理论值与实际值的差值,通过预先构建的关键参数的差值与光模块性能健康状态的对应关系,自动确定光模块的性能健康状态。

Description

工程应用中光模块的性能状态检测方法、装置及电子设备
交叉引用
本发明要求在2018年12月12日提交至中国专利局、申请号为201811519527.X、发明名称为“工程应用中光模块的性能状态检测方法、装置及电子设备”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本发明实施例涉及光电子通讯技术领域,具体涉及一种工程应用中光模块的性能状态检测方法、装置及电子设备。
背景技术
光模块(optical transceiver)是由光电子器件、功能电路和光接口等组成的器件,光电子器件包括发射和接收两部分。
光模块在通讯光链路中属于关键器件,将系统两端信息进行光电转换,发送端把电信号转换成光信号,通过光纤传送后,接收端再把光信号转换成电信号,是整个系统中关键的中转枢纽。但实际工程应用中该枢纽往往是一个黑盒子,无法检测光模块的性能状态,光模块的外场运行质量也无法监控。
发明内容
本发明实施例提供了一种工程应用中光模块的性能状态检测方法、装置及电子设备,以解决工程应用中光模块的性能检测困难的问题。
有鉴于此,第一方面,本申请实施例提供一种工程应用中光模块的性能状态检测方法,包括:获取光模块在设定温度值下的关键参数的理论值和实际值;计算所述关键参数的理论值与实际值的差值;基于预先构建的差值与性能状态的对应关系,根据所述差值确定所述光模块的性能状态。
第二方面,本申请实施例还提供一种工程应用中光模块的性能状态检测装置,包括:参数获取模块,用于获取光模块在设定温度值下的关键参数的理论值和实际值;差值计算模块,用于计算所述关键参数的理论值与实际值的差值;状态确定模块,用于基于预先构建的差值与性能状态的对应关系,根据所述差值确定所述光模块的性能状态。
第三方面,本申请实施例还提供一种电子设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器;其中,所述处理器用于运行所述计算机程序时,执行第一方面所述方法。
第四方面,本申请实施例还提供了一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于执行以上各个方面所述的方法。
第五方面,本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行以上各个方面所述的方法。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种工程应用中光模块的性能状态检测方法流程图;
图2为本申请实施例确定光模块在设定温度值下的工作电流理论值的方法流程图;
图3为本申请实施例确定光模块在设定温度值下的发射光功率理论值的方法流程图;
图4为本申请实施例确定光模块在设定温度值下的接收光功率理论值的方法流程图;
图5为本申请实施例通过退化方程判断所述光模块的性能状态的方法流程图;
图6为本申请实施例提供的一种工程应用中光模块的性能状态检测装置示意图;
图7为本申请实施例提供的一种电子设备示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例一
图1为本申请实施例提供的一种工程应用中光模块的性能状态检测方法流程图,如图1所示,所述方法包括:
S1.获取光模块在设定温度值下的关键参数的理论值和实际值;具体的,在本申请实施例中,所述设定温度值为根据具体情况自行设定的温度值,可以为任意温度值。
所述关键参数的理论值可以根据预设的计算公式计算,也可以通过查找预设的关键参数配置表获取;所述关键参数的实际值为工程应用中实时采集的光模块的实际运行值。
S2.计算所述关键参数的理论值与实际值的差值;
S3.基于预先构建的差值与性能状态的对应关系,根据所述差值确定所述光模块的性能状态。
具体的,在本申请实施例中,不断重复上述S1-S3,对光模块的性能状态进行实时检测。
具体的,在本申请实施例中,S1包括:获取光模块在设定温度值下的工作电流的理论值和实际值;获取光模块在设定温度值下的发射光功率的理论值和实际值;获取光模块在设定温度值下的接收光功率的理论值和实际值。
具体的,在本申请实施例中,如图2所示,获取光模块在设定温度值下的工作电流理论值的方法包括:S110.获取多个温度值和所述光模块在所述多个温度值下的实测工作电流值;S111.根据所述多个温度值和对应的实测工作电流值得到所述光模块的温度与工作电流的关系式;例如,温度与工作电流的关系式为可以通过实际数据修正系数的N次方方程基础多项式,以3次多项式I(T)=A*T^3+B*T^2+C*T+D为例,I(T)代表温度T下的电流值;A,B,C为系数,D为常数项;S112.对所述关系式进行修正;进而将获取的精准温度与工作电流关系式的系数存入相应的系数分配单元;具体的,对关系式进行修正可以采用下述两种方式的任一一种,但不限于下述两种方式:
方式1:对获取的所述多个温度值进行分区,得到温度区间,例如,将获取 的多个温度值根据常温、高温和低温三个温度点划分为两个温度区间;计算各个温度区间各自对应的电流随温度的变化率K,K可以根据同一温度区间的两个端点温度点下工作电流差值δI和两个端点温度点的温度差值δT计算,如K=δI/δT;将各个温度区间各自对应的电流随温度的变化率分别与所述关系式相乘,得到各个温度区间各自对应的温度与工作电流关系式。
方式2:将所述光模块的至少两个实测工作电流值和与所述至少两个实测工作电流值分别对应的温度值带入所述关系式,对所述关系式的参数进行修正。
例如:可以根据光模块的出厂数据对温度和工作电流的表达式的最大影响系数进行精确计算,如光模块的出厂数据有两组,分别为25摄氏度和25摄氏度下光模块的实测工作电流值,和85摄氏度和85摄氏度下光模块的实测工作电流值,将两组出厂数据带入多项式I(T)=A*T^3+B*T^2+C*T+D,从而推算出系数C=[I H-I R-A*(T H-T R)^3-B*(T H-T R)^2]/(T H-T R);I H表示85摄氏度下光模块的实测工作电流值,I R表示25摄氏度下光模块的实测工作电流值,T H表示85摄氏度,T R表示25摄氏度,同理如果获取更多的实测数据(温度和工作电流),可以实现对多项式的所有的参数都进行修正。
S113.根据所述修正后的关系式,计算所述光模块在设定温度值下的工作电流理论值。
具体的,在本申请实施例中,还可以通过查找预设的光模块的工作电流配置表,获取与所述设定温度值对应的工作电流值作为所述光模块的工作电流理论值。
例如:光模块的工作电流配置表如下所示:
温度值(℃) 工作电流值(mA) 温度值(℃) 工作电流值(mA)
-44 35.62674904 31 42.96387993
-39 35.93094271 36 42.61262694
-34 37.15564126 41 48.56783027
-29 38.46670215 46 45.65774787
-24 36.19888782 51 46.82508765
-19 37.46822781 56 48.96397644
-14 37.89169671 61 47.75447679
-9 38.2807614 66 49.4552448
-4 38.3162014 71 53.03963525
1 38.43198085 76 51.3992
6 38.86738141 81 59.4517968
11 41.64279328 86 63.11399117
16 41.04516679 91 69.13894832
21 39.81680438 96 69.56130848
26 43.20503984    
当设定温度值为36℃时,通过查找上表,确定对应的工作电流理论值为42.61262694mA。
具体的,在本申请实施例中,如图3所示,获取光模块在设定温度值下的发射光功率理论值的方法包括:S120.在工程安装完成的情况下,采集所述光模块在所述设定温度值下的发射光功率;S121.判断第一次采集的所述发射光功率是否在预设发射光功率范围内;具体的,在本申请实施例中,预设发射光功率范围为:大于光模块规格书要求的最小发射光功率,小于光模块规格书要求最大发射光功率。
S122.若在,则以第一次采集的所述光模块在所述设定温度值下的发射光功率作为发射光功率理论值。
S122,.若不在,则确定所述光模块的性能为故障状态。
具体的,在本申请实施例中,还可以通过下述方法获取光模块在设定温度值下的发射光功率理论值:按下式计算所述光模块的发射光功率理论值:
Power(T)=I(T)*SE(T)+Pth
式中,Power(T)表示光模块在温度T下的发射光功率理论值,I(T)表示光模块在温度T下的理论工作电流值;SE(T)表示在温度T下光模块内部激光器的斜效率函数关系式,是斜效率与温度分布的多次项函数。此处以一次项举例(也可是二次项和三次项)SE(T)=mT+n;m和n为系数;Pth表示常数项,通过该函数关系式可以获取到任意温度下的发射光功率理论值。
具体的,在本申请实施例中,如图4所示,获取光模块在设定温度值下的接收光功率理论值的方法包括:S130.在工程安装完成的情况下,采集所述光模块在所述设定温度值下的接收光功率;S131.判断第一次采集的所述接收光功率是否在预设接收光功率范围内;具体的,在本申请实施例中,预设接收光功率范围为:大于光模块发射光功率理论值+典型光纤损耗值+典型LC插损,典型光纤损耗值和典型LC插损为已知参数。
S132.若在,则以第一次采集的所述光模块在所述设定温度值下的接收光功率作为接收光功率理论值。
S132.若不在,则确定所述光模块的性能为故障状态。
具体的,在本申请实施例中,获取光模块在设定温度值下的工作电流实际值的方法包括:在设定温度值下通过光模块内部监控获取工作电流实际值;具体的,在本申请实施例中,获取光模块在设定温度值下的发射光功率实际值的方法包括:采用轮循的方式采集设定温度值下光模块发射光功率实际值,第二次达到设定温度值时,将此时发射光功率值记录到一个缓存区域,同样等待第三次覆盖第二次的值,依次类推,始终存储的是最近一次设定温度值下光模块的发射光功率,将最近一次采集的发射光功率值作为发射光功率实际值;具体的,在本申请实施例中,获取光模块在设定温度值下的接收光功率实际值的方法包括:采用轮循的方式采集设定温度值下光模块接收光功率实际值,第二次达到设定温度值时,将此时接收光功率值记录到一个缓存区域,同样等待第三次覆盖第二次的值,依次类推,始终存储的是最近一次设定温度值下光模块的接收光功率,将最近一次采集的接收光功率值作为接收光功率实际值。
具体的,在本申请实施例中,S2包括:S210.确定光模块在设定温度值下的工作电流理论值与工作电流实际值的差值,并将差值记录到相应的差值存放单元;S220.确定光模块在设定温度值下的发射光功率理论值与发射光功率实际值的差值,并将差值记录到相应的差值存放单元;S230.确定光模块在设定温度值下的接收光功率理论值与接收光功率实际值的差值,并将差值记录到相应的差值存放单元。
具体的,在本申请实施例中,按照差值变化量大小趋势将光模块的性能状态定义为四种:健康,亚健康,风险观察,故障。这四种状态故障严重程度依次增加,但是四种状态不是必须经过每一级。具体的,S3包括:S310.判断所述设定温度值下所述光模块的工作电流理论值与工作电流实际值的差值是否大于第一阈值并小于第二阈值;S320.判断所述设定温度值下所述光模块的发射光功 率理论值与发射光功率实际值的差值是否大于第三阈值并小于第四阈值;S330.判断所述设定温度值下所述光模块的接收光功率理论值与接收光功率实际值的差值是否大于第五阈值并小于第六阈值;S340.若所述工作电流理论值与工作电流实际值的差值不大于第一阈值、所述发射光功率理论值与发射光功率实际值的差值不大于第三阈值,且所述接收光功率理论值与接收光功率实际值的差值不大于第五阈值,则确定所述光模块的性能为健康状态;若所述工作电流理论值与工作电流实际值的差值不小于第二阈值、所述发射光功率理论值与发射光功率实际值的差值不小于第四阈值,或所述接收光功率理论值与接收光功率实际值的差值不小于第刘阈值,则确定所述光模块的性能为故障状态;否则,通过退化方程判断所述光模块的性能状态。
具体的,在本申请实施例中,S340中通过退化方程判断所述光模块的性能状态,如图5所示,包括:S341.获取设定温度值下,所述工作电流理论值与n个设定时间点采集的工作电流实际值的差值,例如,n为4,设定时间点的单位为周;S342.对获取的差值进行拟合,得到差值与差值对应的设定时间点的二次函数拟合关系式,例如差值变化量(t)=A*差值对应设定时间点^2+B*差值对应设定时间点+D;S343.重复S341-S342设定次数t,例如t为3,则重复S341-S342三次;S344.判断得到的二次函数拟合关系式的二次项系数连续大于0的次数是否不小于第一阈值a,若是,则确定所述光模块的性能为故障状态,若否,则执行S345;例如,a为3,则重复S341-S342三次得到二次函数拟合关系式的二次项系数均大于0,则确定所述光模块的性能为故障状态;S345.判断得到的二次函数拟合关系式的二次项系数连续大于0的次数是否小于第一阈值a且不小于第二阈值b,若是,则确定所述光模块的性能为风险观察状态,若否,则确定所述光模块的性能为亚健康状态;例如,b为2,重复S341-S342三次,若连续的两次(第一次和第二次或第二次和第三次)得到二次函数拟合关系式的二次项系数均大于0,则确定所述光模块的性能为风险观察状态,否则确定所述光模块的性能为亚健康状态;所述第一阈值a不大于所述设定次数t,所述第二阈值b小于第一阈值a。
重复上述S341-S345m次,对光模块的性能状态进行实时检测,m为根据具体情况设定的任意正整数值。
具体的,在本申请实施例中,S340还可以包括:根据二次函数拟合关系式计算光模块剩余寿命。
具体的,在本申请实施例中,所述工程应用中光模块的性能状态检测方法, 还包括:判断光模块的亚健康性能、故障状态、风险观察状态连续出现的次数,当某一种状态连续出现的次数达到预设次数时,输出告警。
本申请提供的一种工程应用中光模块的性能状态检测方法适用于光模块测自身监测,也适用于系统对光模块进行监测。本申请中所有的分配单元均作为缓存单元。其中系数分配单元需要映射到有保护的可读写区域。差值存放单元,发射光功率和接收光功率的轮循采样值最后多次数据需要映射到用户可读区域。
本申请提供的一种工程应用中光模块的性能状态检测方法在光模块自身监测的应用,可在其相应标状态位连续进行操作或重新上电后,自动清除所有缓存信息;缓存区域数据按照需要映射到光模块开放的可读区域。可读区域数据需保存,且只能采用迭代方式进行覆盖。在用于系统对光模块进行监测时,在相应光模块序列号发生变化后,清除所有记录,重新开始该监测方法。
本申请实施例提出的一种工程应用中光模块的性能状态检测方法,计算光模块在设定温度值下的关键参数理论值,在工程应用中实时监测光模块在设定温度值下的关键参数实际值,通过计算关键参数理论值和实际值的差值,通过预先构建的关键参数的差值与光模块性能健康状态的对应关系,自动确定光模块的性能健康状态,保证了光模块性能的可监控性以及其性能健康状态的实时更新和可预测性。
本申请采用了简化、可监控、可预知的告警方式,方便光模块在工程上应用,通过光模块光功率和工作电流状态自检使其告警指向更明确,光模块更智能,适用性更强。
本申请通过实际工程应用在线监控光模块关键参数信息变化量和前期得到工作电流与温度的关系式以及退化函数进行内部计算,通过实际监控关键参数和计算的关键参数差值变化量以及退化趋势程度,进而上报不同健康告警,保证后台光模块质量和性能可监控以及其告警状态的实时更新和可预测性。
本申请提供的一种工程应用中光模块的性能状态检测方法可以广泛应用和监控现网光模块工作健康状态和质量表现,提高了外场故障定位的准确性,同时减少了工程应用产生的维护费用。
图6是本申请实施例还提供一种工程应用中光模块的性能状态检测装置示意图,该装置可由软件和/或硬件实现,一般可集成在电子设备中,例如集成在光模块中或系统中,该检测装置可通过执行工程应用中光模块的性能状态检测方法来对光模块的性能状态进行检测。该检测装置包括:参数获取模块,用于 获取光模块在设定温度值下的关键参数的理论值和实际值;差值计算模块,用于计算所述关键参数的理论值与实际值的差值;状态确定模块,用于基于预先构建的差值与性能状态的对应关系,根据所述差值确定所述光模块的性能状态。
所述参数获取模块用于获取光模块在设定温度值下的工作电流的理论值和实际值、发射光功率的理论值和实际值以及接收光功率的理论值和实际值。
所述状态确定模块通过下述方法确定光模块的性能状态:判断所述设定温度值下所述光模块的工作电流理论值与工作电流实际值的差值是否大于第一阈值并小于第二阈值;判断所述设定温度下所述光模块的发射光功率理论值与发射光功率实际值的差值是否大于第三阈值并小于第四阈值;判断所述设定温度下所述光模块的接收光功率理论值与接收光功率实际值的差值是否大于第五阈值并小于第六阈值;若所述工作电流理论值与工作电流实际值的差值不大于第一阈值、所述发射光功率理论值与发射光功率实际值的差值不大于第三阈值,且所述接收光功率理论值与接收光功率实际值的差值不大于第五阈值,则确定所述光模块的性能为健康状态;若所述工作电流理论值与工作电流实际值的差值不小于第二阈值、所述发射光功率理论值与发射光功率实际值的差值不小于第四阈值,或所述接收光功率理论值与接收光功率实际值的差值不小于第刘阈值,则确定所述光模块的性能为故障状态;否则,通过退化方程判断所述光模块的性能状态。
通过退化方程判断所述光模块的性能状态,包括:获取设定温度值下,所述工作电流理论值与多个设定时间点采集的工作电流实际值的差值;对获取的差值进行拟合,得到差值与差值对应的设定时间点的二次函数拟合关系式;重复上上述两步设定次数;判断得到的二次函数拟合关系式的二次项系数连续大于0的次数是否不小于第一阈值,若是,则确定所述光模块的性能为故障状态,若否,则判断得到的二次函数拟合关系式的二次项系数连续大于0的次数是否小于第一阈值且不小于第二阈值,若是,则确定所述光模块的性能为风险观察状态,若否,则确定所述光模块的性能为亚健康状态;所述第一阈值不大于所述设定次数,所述第二阈值小于第一阈值。
图7为本申请实施例提供的一种电子设备示意图,如图7所示,该电子设备包括处理器和用于存储能够在处理器上运行的计算机程序的存储器;其中,处理器用于运行计算机程序时,执行下述方法:获取光模块在设定温度值下的关键参数的理论值和实际值;计算所述关键参数的理论值与实际值的差值;基于预先构建的差值与性能状态的对应关系,根据所述差值确定所述光模块的性 能状态。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如上述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
上述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
上述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储器中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例上述方法的全部或部分步骤。而前述的存储器包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储器中,存储器可以包括:闪存盘、只读存储器(英文:Read-Only Memory,简称:ROM)、随机存取器(英文:Random Access Memory,简称:RAM)、磁盘或光盘等。
实施例二
本申请实施例提供了一种非暂态(非易失性)计算机存储介质,所述计算机存储介质存储有计算机可执行指令,该计算机可执行指令可执行上述任意方 法实施例中的方法。
实施例三
本申请实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述任意方法实施例中的方法。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到本申请各个实施例所述的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法或者实施例的某些部分所述的方法。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (15)

  1. 一种工程应用中光模块的性能状态检测方法,其中,包括:
    获取光模块在设定温度值下的关键参数的理论值和实际值;
    计算所述关键参数的理论值与实际值的差值;
    基于预先构建的差值与性能状态的对应关系,根据所述差值确定所述光模块的性能状态。
  2. 根据权利要求1所述的性能状态检测方法,其中,获取光模块在设定温度值下的关键参数的理论值和实际值,包括:
    获取光模块在设定温度值下的工作电流的理论值和实际值;
    获取光模块在设定温度值下的发射光功率的理论值和实际值;
    获取光模块在设定温度值下的接收光功率的理论值和实际值。
  3. 根据权利要求2所述的性能状态检测方法,其中,获取光模块在设定温度值下的工作电流的理论值,包括:
    获取多个温度值和所述光模块在所述多个温度值下的实测工作电流值;
    根据所述多个温度值和对应的实测工作电流值得到所述光模块的温度与工作电流的关系式;
    对所述关系式进行修正;
    根据所述修正后的关系式,计算所述光模块在设定温度值下的工作电流理论值。
  4. 根据权利要求3所述的性能状态检测方法,其中,所述对所述关系式进行修正,包括:
    对获取的所述多个温度值进行分区,得到温度区间;
    计算各个温度区间对应的电流随温度的变化率;
    将各个温度区间对应的电流随温度的变化率分别与所述关系式相乘,得到各个温度区间各自对应的温度与工作电流关系式。
  5. 根据权利要求4所述的性能状态检测方法,其中,计算各个温度区间对应 的电流随温度的变化率,包括:
    将同一个温度区间的最大温度值与最小温度值做差得到温度差值;
    将与所述最大温度值对应的实测工作电流值和与所述最小温度值对应的实测工作电流值做差得到电流差值;
    用所述电流差值除以所述温度差值得到与温度区间对应的电流随温度的变化率。
  6. 根据权利要求3所述的性能状态检测方法,其中,所述对所述关系式进行修正,包括:
    将所述光模块的至少两个实测工作电流值和与所述至少两个实测工作电流值分别对应的温度值带入所述关系式,对所述关系式的参数进行修正。
  7. 根据权利要求2所述的性能状态检测方法,其中,获取光模块在设定温度值下的工作电流的理论值,包括:
    查找预设的光模块的工作电流配置表,确定与所述设定温度值对应的工作电流值作为所述光模块的工作电流理论值。
  8. 根据权利要求2所述的性能状态检测方法,其中,获取光模块在设定温度值下的发射光功率的理论值,包括:
    在工程安装完成的情况下,采集所述光模块在所述设定温度值下的发射光功率;
    判断第一次采集的所述发射光功率是否在预设发射光功率范围内;
    若在,则以第一次采集的所述光模块在所述设定温度值下的发射光功率作为发射光功率理论值。
  9. 根据权利要求2所述的性能状态检测方法,其中,获取光模块在设定温度值下的发射光功率的理论值,包括:
    按下式计算所述光模块的发射光功率理论值:
    Power(T)=I(T)*SE(T)+Pth
    式中,Power(T)表示光模块在温度T下的发射光功率理论值,I(T)表示光模块在温度T下的理论工作电流值;SE(T)表示在温度T下光模块内部激光 器的斜效率函数关系式,是斜效率与温度分布的多次项函数。此处以一次项举例(也可是二次项和三次项)SE(T)=mT+n;m和n为系数;Pth表示常数项。
  10. 根据权利要求2所述的性能状态检测方法,其中,获取光模块在设定温度值下的接收光功率的理论值,包括:
    在工程安装完成的情况下,采集所述光模块在所述设定温度值下的接收光功率;
    判断第一次采集的所述接收光功率是否在预设接收光功率范围内;
    若在,则以第一次采集的所述光模块在所述设定温度值下的接收光功率作为接收光功率理论值。
  11. 根据权利要求8或10所述的性能状态检测方法,其中,还包括:
    若第一次采集所述光模块在所述设定温度值下的发射光功率不在预设发射光功率范围内,和/或,第一次采集所述光模块在所述设定温度值下的接收光功率不在预设接收光功率范围内,则确定所述光模块的性能为故障状态。
  12. 根据权利要求2所述的性能状态检测方法,其中,基于预先构建的差值与性能状态的对应关系,根据所述差值确定所述光模块的性能状态,包括:
    判断所述设定温度值下所述光模块的工作电流理论值与工作电流实际值的差值是否大于第一阈值并小于第二阈值;
    判断所述设定温度下所述光模块的发射光功率理论值与发射光功率实际值的差值是否大于第三阈值并小于第四阈值;
    判断所述设定温度下所述光模块的接收光功率理论值与接收光功率实际值的差值是否大于第五阈值并小于第六阈值;
    若所述工作电流理论值与工作电流实际值的差值不大于第一阈值、所述发射光功率理论值与发射光功率实际值的差值不大于第三阈值,且所述接收光功率理论值与接收光功率实际值的差值不大于第五阈值,则确定所述光模块的性能为健康状态;
    若所述工作电流理论值与工作电流实际值的差值不小于第二阈值、所述发射光功率理论值与发射光功率实际值的差值不小于第四阈值,或所述接收光功率理论值与接收光功率实际值的差值不小于第刘阈值,则确定所述光模块的性 能为故障状态;
    否则,通过退化方程判断所述光模块的性能状态。
  13. 根据权利要求12所述的性能状态检测方法,其中,通过退化方程判断所述光模块的性能状态,包括:
    S341.获取设定温度值下,所述工作电流理论值与多个设定时间点采集的工作电流实际值的差值;
    S342.对获取的差值进行拟合,得到差值与差值对应的设定时间点的二次函数拟合关系式;
    S343.重复S341-S342设定次数;
    S344.判断得到的二次函数拟合关系式的二次项系数连续大于0的次数是否不小于第一阈值,若是,则确定所述光模块的性能为故障状态,若否,则执行S345;
    S345.判断得到的二次函数拟合关系式的二次项系数连续大于0的次数是否小于第一阈值且不小于第二阈值,若是,则确定所述光模块的性能为风险观察状态,若否,则确定所述光模块的性能为亚健康状态;
    所述第一阈值不大于所述设定次数,所述第二阈值小于第一阈值。
  14. 一种工程应用中光模块的性能状态检测装置,其中,包括:
    参数获取模块,用于获取光模块在设定温度值下的关键参数的理论值和实际值;
    差值计算模块,用于计算所述关键参数的理论值与实际值的差值;
    状态确定模块,用于基于预先构建的差值与性能状态的对应关系,根据所述差值确定所述光模块的性能状态。
  15. 一种电子设备,其中,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器;其中,所述处理器用于运行所述计算机程序时,执行权利要求1至13中任一项所述方法。
PCT/CN2019/112606 2018-12-04 2019-10-22 工程应用中光模块的性能状态检测方法、装置及电子设备 WO2020119261A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19895734.2A EP3896420A4 (en) 2018-12-04 2019-10-22 METHOD, DEVICE AND ELECTRONIC DEVICE FOR DETECTING THE PERFORMANCE STATUS OF AN OPTICAL MODULE IN AN ENGINEERING APPLICATION

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201811474713 2018-12-04
CN201811519527.XA CN111277332B (zh) 2018-12-04 2018-12-12 工程应用中光模块的性能状态检测方法、装置及电子设备
CN201811519527.X 2018-12-12

Publications (1)

Publication Number Publication Date
WO2020119261A1 true WO2020119261A1 (zh) 2020-06-18

Family

ID=71001363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112606 WO2020119261A1 (zh) 2018-12-04 2019-10-22 工程应用中光模块的性能状态检测方法、装置及电子设备

Country Status (3)

Country Link
EP (1) EP3896420A4 (zh)
CN (1) CN111277332B (zh)
WO (1) WO2020119261A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114302069A (zh) * 2021-11-18 2022-04-08 北京旷视科技有限公司 光圈控制方法、控制装置、存储介质及计算机程序产品
CN115021807A (zh) * 2022-05-27 2022-09-06 中国电信股份有限公司 分光器的监测方法及分光监测系统
US20230063898A1 (en) * 2021-08-24 2023-03-02 Triple Win Technology(Shenzhen) Co.Ltd. Method for testing electronic products, electronic device, and storage medium
CN117310352A (zh) * 2023-11-30 2023-12-29 长春电子科技学院 一种用于光电设备监测的大数据分析系统及方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114079502A (zh) * 2020-08-13 2022-02-22 中兴通讯股份有限公司 一种光模块健康状态检测方法和检测装置
CN112436888B (zh) * 2020-11-13 2022-04-26 锐捷网络股份有限公司 光模块的选定关键属性的值调整方法、装置、设备及介质
CN112781189A (zh) * 2020-12-31 2021-05-11 格力电器(武汉)有限公司 一种空调检测方法、控制系统和空调检测装置
CN113959492B (zh) * 2021-10-22 2023-01-10 苏州森峰智能装备有限公司 一种自适应阈值的光路保护监控系统
CN113839712B (zh) * 2021-11-29 2022-04-01 深圳市飞思卓科技有限公司 基于光模块的信号传输监测方法、设备、存储介质及装置
CN114184275B (zh) * 2021-12-18 2024-02-13 杭州视洞科技有限公司 一种软硬光敏结合的判断白天夜晚的方法
CN116405150B (zh) * 2023-06-06 2023-09-12 深圳市迅特通信技术股份有限公司 提高光模块调谐性能的方法、光模块及可读存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014166121A (ja) * 2013-02-28 2014-09-08 Hitachi Ltd 光モジュール寿命予測システム、光モジュール寿命予測装置、光モジュール寿命予測方法及び光モジュール寿命予測プログラム
JP2015088806A (ja) * 2013-10-29 2015-05-07 住友電工デバイス・イノベーション株式会社 光機器温度特性測定方法
CN105628218A (zh) * 2015-12-23 2016-06-01 索尔思光电(成都)有限公司 一种光模块芯片温度校准方法
CN106130657A (zh) * 2016-06-17 2016-11-16 青岛海信宽带多媒体技术有限公司 一种光功率控制方法及装置
CN106330296A (zh) * 2016-08-31 2017-01-11 无锡市电子仪表工业有限公司 一种光模块参数校准、补偿和自修正的方法
CN107483111A (zh) * 2017-06-27 2017-12-15 青岛海信宽带多媒体技术有限公司 一种基于温度的光模块发射光功率的校准方法和装置
CN109000889A (zh) * 2018-06-21 2018-12-14 青岛海信宽带多媒体技术有限公司 一种光模块劣化的检测方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7881615B2 (en) * 2007-07-26 2011-02-01 Finisar Corporation Dynamic digital diagnostic alerts
CN102323505B (zh) * 2011-08-16 2013-09-25 成都新易盛通信技术股份有限公司 一种支持光器件寿命预测和失效原因分析的装置和方法
US8934779B2 (en) * 2012-02-10 2015-01-13 Source Photonics, Inc. Operational status indicators in an optical transceiver using dynamic thresholds
CN106330299A (zh) * 2015-06-16 2017-01-11 中兴通讯股份有限公司 一种光端口状态判断方法及装置、光通信系统
CN107222254A (zh) * 2016-03-21 2017-09-29 中兴通讯股份有限公司 一种光纤状态的检测方法及装置
CN108494496A (zh) * 2018-04-19 2018-09-04 青岛海信宽带多媒体技术有限公司 光功率值调整方法、系统及光模块

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014166121A (ja) * 2013-02-28 2014-09-08 Hitachi Ltd 光モジュール寿命予測システム、光モジュール寿命予測装置、光モジュール寿命予測方法及び光モジュール寿命予測プログラム
JP2015088806A (ja) * 2013-10-29 2015-05-07 住友電工デバイス・イノベーション株式会社 光機器温度特性測定方法
CN105628218A (zh) * 2015-12-23 2016-06-01 索尔思光电(成都)有限公司 一种光模块芯片温度校准方法
CN106130657A (zh) * 2016-06-17 2016-11-16 青岛海信宽带多媒体技术有限公司 一种光功率控制方法及装置
CN106330296A (zh) * 2016-08-31 2017-01-11 无锡市电子仪表工业有限公司 一种光模块参数校准、补偿和自修正的方法
CN107483111A (zh) * 2017-06-27 2017-12-15 青岛海信宽带多媒体技术有限公司 一种基于温度的光模块发射光功率的校准方法和装置
CN109000889A (zh) * 2018-06-21 2018-12-14 青岛海信宽带多媒体技术有限公司 一种光模块劣化的检测方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3896420A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230063898A1 (en) * 2021-08-24 2023-03-02 Triple Win Technology(Shenzhen) Co.Ltd. Method for testing electronic products, electronic device, and storage medium
US11892923B2 (en) * 2021-08-24 2024-02-06 Triple Win Technology (Shenzhen) Co. Ltd. Testing electronic products for determining abnormality
CN114302069A (zh) * 2021-11-18 2022-04-08 北京旷视科技有限公司 光圈控制方法、控制装置、存储介质及计算机程序产品
CN114302069B (zh) * 2021-11-18 2023-09-01 北京旷视科技有限公司 光圈控制方法、控制装置、存储介质及计算机程序产品
CN115021807A (zh) * 2022-05-27 2022-09-06 中国电信股份有限公司 分光器的监测方法及分光监测系统
CN117310352A (zh) * 2023-11-30 2023-12-29 长春电子科技学院 一种用于光电设备监测的大数据分析系统及方法
CN117310352B (zh) * 2023-11-30 2024-02-06 长春电子科技学院 一种用于光电设备监测的大数据分析系统及方法

Also Published As

Publication number Publication date
CN111277332A (zh) 2020-06-12
EP3896420A4 (en) 2022-01-26
EP3896420A1 (en) 2021-10-20
CN111277332B (zh) 2022-10-21

Similar Documents

Publication Publication Date Title
WO2020119261A1 (zh) 工程应用中光模块的性能状态检测方法、装置及电子设备
JP7174832B2 (ja) Odn論理トポロジ情報を取得するための方法および装置、デバイス、ならびに記憶媒体
CN107864063B (zh) 一种异常监控方法、装置及电子设备
JP2021533702A (ja) 光リンク障害識別方法、装置およびシステム
JP6097889B2 (ja) 監視システム、監視装置、および検査装置
CN108418710B (zh) 一种分布式监控系统、方法及装置
EP3667952B1 (en) Method, device, and storage medium for locating failure cause
CN101741991A (zh) 告警处理方法、装置及系统
CN108964976A (zh) 一种基于光模块的告警提示方法及告警提示装置
CN114338372B (zh) 网络信息安全监控方法及系统
WO2018066041A1 (ja) 性能異常検出装置、性能異常検出方法、及び性能異常検出プログラム
CN116634469B (zh) 一种基于多LoRa节点的数据传输管理系统及方法
CN114095965A (zh) 指标检测模型获取及故障定位方法、装置、设备及存储介质
CN114598506B (zh) 工控网络安全风险溯源方法、装置、电子设备及存储介质
CN113590429A (zh) 一种服务器故障诊断方法、装置及电子设备
Karthik et al. Data trust model for event detection in wireless sensor networks using data correlation techniques
CN102820995A (zh) 告警处理方法、装置及系统
CN109347553B (zh) 一种光纤衰减值的测量方法及装置
CN116389304A (zh) 基于sg-tms的网络运行状态趋势分析系统
KR20220070706A (ko) 에너지 스마트팜 센싱 데이터 오류 식별방법
Giatrakos et al. Pao: power-efficient attribution of outliers in wireless sensor networks
CN114095401A (zh) 超融合系统的网络状态监控方法、装置、设备及存储介质
US20110093585A1 (en) Method of detecting measurements in service level agreement based systems
JP2014103516A (ja) パケット転送遅延計測装置及び方法及びプログラム
US9311210B1 (en) Methods and apparatus for fault detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19895734

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019895734

Country of ref document: EP

Effective date: 20210712