WO2020119019A1 - 一种基于顶板岩层水平挤压力监测的锚杆长度确定方法 - Google Patents

一种基于顶板岩层水平挤压力监测的锚杆长度确定方法 Download PDF

Info

Publication number
WO2020119019A1
WO2020119019A1 PCT/CN2019/086734 CN2019086734W WO2020119019A1 WO 2020119019 A1 WO2020119019 A1 WO 2020119019A1 CN 2019086734 W CN2019086734 W CN 2019086734W WO 2020119019 A1 WO2020119019 A1 WO 2020119019A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
squeezing force
length
monitoring
horizontal squeezing
Prior art date
Application number
PCT/CN2019/086734
Other languages
English (en)
French (fr)
Inventor
谭云亮
周凯
于凤海
赵同彬
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Priority to US17/043,778 priority Critical patent/US11067392B2/en
Publication of WO2020119019A1 publication Critical patent/WO2020119019A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/18Special adaptations of signalling or alarm devices
    • E21F17/185Rock-pressure control devices with or without alarm devices; Alarm devices in case of roof subsidence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D21/00Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D21/00Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection
    • E21D21/0093Accessories
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells

Definitions

  • the present invention relates to the technical field of mining engineering, and in particular to a method for determining the length of an anchor rod based on monitoring of horizontal squeezing force of a roof rock layer.
  • a large number of coal roadways are dug every year in my country, and the roadway supported by the bolts accounts for more than 80% of the coal roadways.
  • the parameters of the roadway support must be reasonably determined.
  • the determination of bolt support parameters in coal mines mainly adopts empirical methods, theoretical calculations and dynamic information design methods.
  • the length of bolts is usually determined by empirical methods and theoretical calculation methods.
  • the empirical method is directly determined by reference to similar engineering geological conditions and is accurate Relatively poor.
  • the theoretical calculation method is mainly applied to the end anchor bolt.
  • the length of the anchor rod is generally composed of the length of the anchor section, the length of the free section and the length of the exposed section.
  • the anchor section is determined according to the quantity and length of the medicine roll.
  • the segment is determined by the structure of the pallet and nut, generally 0.2 ⁇ 0.3m, and the length of the free segment depends on the effective support rock layer range of the anchor rod. Using different supporting theories, the value range is also different. The applicability of the support under large conditions is not good. When the anchoring section of the bolt is located in the fractured surrounding rock, the bonding force and the bonding length have a greater influence on the anchoring effect. The unreasonable design of the length of the anchoring section may easily cause the actual anchoring force of the bolt to be less than the designed anchoring force, thereby affecting the anchorage Support effect.
  • the stress testing methods of surrounding rock in coal mines mainly include hydraulic fracturing method and sleeve fracturing method.
  • the hydraulic fracturing method uses a water-stop packer to seal the fracturing point at the designated position, and the wall of the hole is pressurized with a hydraulic pump.
  • the method of cracking measures the stress of surrounding rock, the test instrument is cumbersome, and it is not adaptable to the situation where the surrounding rock is broken.
  • the sleeve cracking method adopts pressure on the rubber sleeve to fracturing the drill hole, and then the surrounding rock is obtained in turn Stress, but it needs to be calculated after the test is completed.
  • the in-situ stress tester cannot directly reflect the stress of the surrounding rock, and the result is not intuitive enough.
  • Surrounding rock stress can also be measured by instruments such as borehole stress gauges.
  • the multi-point stress gauge proposed by Chinese Patent CN 203669931 U can realize multi-point stress real-time testing, but for the monitoring of roof stress, it is more difficult to push and fix the monitoring device It is difficult to meet the requirements of roof stress monitoring begging.
  • the present invention provides a method for determining the length of the anchor rod based on the monitoring of the horizontal squeezing force of the roof rock layer.
  • a method for determining the length of an anchor rod based on monitoring of horizontal squeezing force of a roof rock layer includes the following steps:
  • the borehole depth value is 2 ⁇ 5m, and the borehole diameter value is 70 ⁇ 100mm; in the step (2), a horizontal squeezing force is set above the top plate lm Measuring point, the distance between the measuring points of horizontal extrusion force is less than 0.5m.
  • the horizontal squeezing force monitoring device of the roof rock layer is used to monitor and record the change of the horizontal squeezing force of each horizontal squeezing force measurement point in the borehole with time, the roof rock layer level
  • the squeezing force monitoring device includes a pressure measuring section, a connecting rod, a hydraulic pump, a pressure gauge, a high-pressure oil pipe, a pressure control valve, a tray, a push rod, and a connecting sleeve;
  • the connecting rod is connected to the pressure measuring section, and the front end of the push rod is connected The rod is connected, the rear end of the push rod passes through the tray, and the connecting sleeve is connected to the tray;
  • the high-pressure oil pipe is connected to the hydraulic pump, and the high-pressure oil pipe extends to the pressure measuring section through the inner space of the push rod and the connecting pipe;
  • the pressure measuring section includes The main pipe, hydraulic bladder, fixing ring, barrier plate, outer pillow shell and connecting sleeve; the two
  • each high-pressure oil pipe is divided into multiple sections, and the high-pressure oil pipes are connected by an oil pipe joint, one section is connected to the hydraulic pump, one section is provided in the inner cavity of the push rod and the connecting rod, and another section is provided in In the pressure measuring section;
  • the connecting sleeve is provided with an oil pipe joint;
  • the high pressure oil pipe connected with the hydraulic pump is also provided with a pressure control valve and a pressure gauge;
  • the connecting rod is connected with two or more pressure measuring sections, each Each pressure measurement section is provided with a connected high-pressure oil pipe; the design margin of the length of the high-pressure oil pipe is placed in the connecting sleeve
  • the high-pressure oil pipe and the oil injection port on the main pipe are connected by an oil pipe joint, the inside of the pipe wall at both ends of the main pipe is provided with internal threads and the external thread of the connecting rod, and the outside of the pipe wall at both ends of the main pipe is provided with The external thread cooperates with the internal thread of the barrier plate; the tray is provided with a through hole, and the connecting rod passes through the through hole of the tray; the connecting sleeve is connected with the external thread of the convex portion of the tray; the push rod passes through the connecting sleeve Push connection pipe and pressure measurement section.
  • the outer pillow shell is divided into 4 parts of the same shape, the combination of the outer pillow shell is a cylindrical shell; the outer pillow shell is combined and sleeved on the main pipe in the state of contraction of the hydraulic bladder.
  • the outer pillow shell is divided into four parts to expand; the two ends of the connecting sleeve are tightly attached to the main tube, and the connecting sleeve presses the two ends of the outer pillow shell to contact the main tube.
  • the roof rock layer horizontal squeezing force monitoring device is used to monitor and record the change in the horizontal squeezing pressure in the borehole with time, the steps include:
  • step f repeat step d and step e to pressurize the injection of hydraulic oil to multiple pressure measurement sections;
  • g disassemble the hydraulic pump, monitor and save the monitoring data of the pressure gauge; [0025] h. Open the pressure control valve, release hydraulic oil; connect the connecting sleeve and the push rod, use the push rod to connect and remove the connecting rod and the pressure measurement section from the drill hole.
  • calculating the length of the anchor includes calculating the length of the anchoring section of the anchor L al The length of the free section of the anchor 2 and the total length of the anchor L a , where the The length of the free section is
  • the length of the exposed section of the chain rod is L L taken 0.2 ⁇ 0.3m
  • the present invention provides a method for determining the length of the anchor rod based on the horizontal squeezing force monitoring of the roof rock layer, this method fully utilizes the monitoring results of the horizontal squeezing force to determine the length of the anchoring section of the bolt reasonably,
  • the bolt support length parameters are obtained, which greatly improves the bonding force and bonding length of the anchoring section of the bolt, improves the anchoring performance of the bolt, and enhances the support effect of the roadway.
  • the horizontal squeezing force monitoring device for roof rock provided by the present invention is provided with a hydraulic pump and a pressure measuring section to monitor the horizontal stress in the borehole, and multiple boreholes can be monitored by setting up a borehole Deep horizontal stress, and the monitoring between each pressure measurement section does not interfere with each other;
  • the high-pressure oil pipe is installed in the inner cavity of the push rod and the connecting pipe, so as to protect the safety of the high-pressure oil pipe; and the monitoring device is convenient to disassemble and can be reused.
  • the pressure measurement section of the horizontal squeezing force monitoring device of the roof rock layer adopts a combined outer pillow shell to better contact with the surrounding rock in the borehole, and the pressure measurement accuracy is higher; the use of push rods and connections
  • the combination of rods is convenient for drilling in different depths.
  • the combination of push rods and connecting rods of different lengths expands the monitoring range.
  • a barrier plate is provided between the fixed ring and the outer pillow shell. The barrier plates on both sides effectively prevent the hydraulic bag Inflate in the direction of the supervisor to ensure the accuracy of monitoring.
  • the present invention also has the advantages of less construction, simple method, simple and quick calculation, and strong applicability. Brief description of the drawings
  • FIG. 1 is a schematic diagram of steps of a method for determining a length of a link
  • FIG. 2 is a schematic structural view of a horizontal squeezing force monitoring device for a roof rock layer
  • FIG. 3 is a schematic diagram of the internal and external installation structure of the drill hole
  • FIG. 4 is a schematic structural view of a pressure measuring section
  • FIG. 5 is a schematic diagram of a cross-sectional structure of a pressure measuring section
  • FIG. 6 is a schematic diagram of a cross-sectional structure of a pressure measuring section
  • FIG. 7 is a schematic diagram of the cross-sectional structure of the main pipe
  • FIG. 8 is a schematic diagram of the cross-sectional structure of the main pipe
  • FIG. 9 is a partial structural diagram of an outer pillow shell
  • FIG. 10 is a schematic view of the overall structure of the outer pillow shell
  • FIG. 11 is a schematic diagram of a tray structure
  • FIG. 12 is a schematic diagram of a cross-sectional structure of a tray
  • FIG. 13 is a curve of horizontal squeezing force with time
  • the present invention provides a method for determining the length of an anchor rod based on monitoring of horizontal squeezing force of a roof rock layer, and the specific implementation manner is as follows.
  • the specific steps include:
  • Step (1) Drill a hole in the middle of the roof of the roadway, and determine the fracture range of the surrounding rock by drilling the TV.
  • the vertical roof hole is drilled, the drilling depth is 2 ⁇ 5m, the drilling diameter is 70 ⁇ 100mm, and the drilling depth is The degree and diameter are determined according to the actual roof conditions of the coal mine.
  • Step (2) Select the number and location of the horizontal squeezing force measurement points according to the surrounding rock fracture range. It is mainly to set measuring points in areas with severe rupture. According to the surrounding rock rupture situation, the arrangement distance of the measuring points can be appropriately reduced in the areas with severe rupture. In general, horizontal squeezing force measuring points are set above the lm above the roof. The distance between the pressure measuring points is less than 0.5m.
  • Step (3) Monitor and record the change of the horizontal squeezing force at each measuring point of the horizontal squeezing force in the borehole with time to obtain the variation curve of the horizontal squeezing force with time at different depths of the borehole.
  • the horizontal squeezing force monitoring device of the roof rock layer is used to monitor the change of the horizontal squeezing force with time.
  • the monitoring device of the horizontal squeezing force of the roof rock layer includes a pressure measuring section 1, a connecting rod 2, a hydraulic pump 3, and a pressure Table 4. High-pressure oil pipe 5, pressure control valve 6, tray 7, push rod 8 and connecting sleeve 9.
  • the connecting rod 1 is connected to the pressure measuring section 2, the front end of the push rod 8 is connected to the connecting rod 2, the rear end of the push rod 8 passes through the tray 7, and the connecting sleeve 9 is connected to the tray 7.
  • the high-pressure oil pipe 5 is connected to the hydraulic pump 3, and the high-pressure oil pipe 5 extends to the pressure measuring section through the inner space of the push rod 8 and the connecting rod 2.
  • the pressure measurement section includes the main pipe, hydraulic bladder, fixing ring, barrier plate, outer pillow shell and connecting sleeve.
  • the two ends of the hydraulic bladder are set on the main pipe through a fixed ring, and the main pipe is provided with an oil injection port communicating with the hydraulic bladder.
  • the outer pillow shell is arranged on the main pipe, the outer pillow shell is wrapped with a connecting sleeve, and a barrier plate is arranged between the fixing ring and the outer pillow shell.
  • the steps of the horizontal squeezing force monitoring device of the roof rock layer to monitor the change of the horizontal squeezing force with time include:
  • Step (4) Select the location with the largest horizontal squeezing force as the center of the anchoring section of the anchor rod, and determine the distance between the anchoring center and the top plate as
  • Step (5) Calculate the total length of the anchor rod. Calculating comprises calculating the length of anchor bolt anchoring length L a;, overall length L 2 and the free length of the anchor bolt L a, wherein the free anchor length of segment
  • the length of the exposed section of the chain rod is L L ⁇ taking 0.2 ⁇ 0.3m.
  • the roof rock layer horizontal squeezing force monitoring device used in step (3) the specific structure includes a pressure measuring section 1, a connecting rod 2, a hydraulic pump 3, a pressure gauge 4, a high-pressure oil pipe 5 , Pressure control valve 6, tray 7, push rod 8 and connecting sleeve 9, as shown in Figure 2.
  • the connecting rod 2 and the pressure measuring section 1 are connected by threads, the front end of the push rod 8 is connected to the connecting rod 2, the tray 7 is provided at the rear end of the push rod 8, the connecting sleeve 9 is connected to the tray 7, the high-pressure oil pipe 5 is connected to the hydraulic pump 3,
  • the high-pressure oil pipe 5 extends to the pressure measuring section 1 through the inner space of the push rod 8 and the connecting pipe 9.
  • the combination of connecting rod 2 and pressure measuring section 1 facilitates monitoring of horizontal stress at different depths, and push rod 8 ensures the device It can carry out deep hole monitoring.
  • the pallet 7 and the connecting sleeve 9 facilitate the fixing of the device in the borehole and the placement of the high-pressure oil pipe 5.
  • the combination of the hydraulic pump 3 and the pressure gauge 4 facilitates real-time monitoring. Through the hydraulic pump 3 and the pressure gauge 4 and the pressure
  • the control valve 6 can realize long-term monitoring of horizontal stress. With the device, multiple pressure measurement sections can be set, and a borehole can be set to monitor the horizontal stress of multiple borehole depths, and the monitoring between each pressure measurement section does not interfere with each other.
  • the pressure measurement section specifically includes a main pipe 11, a hydraulic bladder 12, a fixed ring 13, a barrier plate 14, an outer pillow shell 15 and a connecting sleeve 16, as shown in FIGS. 4 to 10, the two ends of the hydraulic bladder 12 pass through the fixed ring 13 sets
  • the main pipe 11 is provided with an oil injection port 111 and a hydraulic bladder 12 communicating with each other.
  • a sealing gasket may also be provided between the fixing ring 13 and the main pipe 11 to ensure the sealing performance of the hydraulic bladder 12.
  • the outer pillow shell 15 is sleeved on the main pipe 11, the outer pillow shell 15 is wrapped with a connecting sleeve 16, and a barrier sheet 14 is provided between the fixing ring 13 and the outer pillow shell 15. Under the action of the outer pillow shell 15 and the barrier plate 14, the hydraulic bladder 12 can only expand in the radial direction of the main tube, and the connecting sleeve 16 ensures that the outer pillow shell 15 can be smoothly reset after use.
  • Each high-pressure oil pipe 5 is divided into multiple sections, the high-pressure oil pipes 5 are connected by an oil pipe joint, one section is connected to the hydraulic pump 3, one section is provided in the inner cavity of the push rod 8 and the connecting rod 2, and another section is provided in Within the pressure measurement section.
  • the high-pressure oil pipe 5 connected to the hydraulic pump 3 is also provided with a pressure control valve 6 and a pressure gauge 4.
  • An oil pipe joint is provided in the connecting sleeve 9 to facilitate the connection of the high-pressure oil pipe.
  • the high-pressure oil pipe 5 is also provided with a pressure control valve 6 and a pressure gauge 4 for monitoring the hydraulic pressure in the pipe.
  • the hydraulic pump closes the pressure control valve 6 after pumping hydraulic oil On the inlet valve.
  • the high-pressure oil pipe 5 and the pressure control valve 6 are used to balance the pressure in the hydraulic bladder and the pressure in the pipe, so that the pressure gauge on the high-pressure oil pipe 5 can accurately measure the horizontal stress of the borehole in the pressure measurement section.
  • the pressure gauge 4 can use a digital display pressure gauge, and has a recording function to record the pressure monitoring data in real time.
  • the hydraulic pump 3 can use a high-pressure pump, which can measure a larger range of horizontal stress.
  • the high-pressure oil pipe 5 and the oil injection port on the main pipe 11 are connected through a pipe joint.
  • the inner wall of the pipe wall at both ends of the main pipe 11 is provided with an internal thread to cooperate with the external thread of the connecting rod 2.
  • the outer wall of the pipe wall at both ends of the main pipe 11 is provided with an external thread and a barrier piece 14 internal thread fit.
  • the connecting rod 2 is connected with two or more pressure measuring segments 1, the number of the pressure measuring segments 1 is selected according to the number and position of the points to be monitored, and a connecting rod of appropriate length is selected according to the location of the measuring point 2. Measure the horizontal stress at the point to be measured.
  • Each pressure measurement section is provided with a connected high-pressure oil pipe 5, and the high-pressure oil pipe 5 is connected to the oil injection port on the main pipe 11, thereby ensuring that different pressure measurement sections can be independently measured.
  • the design margin of the length of the high-pressure oil pipe 5 is placed in the connecting sleeve 9 to ensure monitoring when the drilling depth is large.
  • the outer pillow shell 15 is divided into four or more parts of the same shape, and the assembly of the outer pillow shell 15 is a cylindrical outer shell. As shown in FIGS. 9 and 10, the outer pillow shell 15 is combined and sleeved on the main pipe 11 when the hydraulic bladder 12 is in a contracted state, and the outer pillow shell 15 is divided into four or more parts when the hydraulic bladder 12 is inflated and inflated. After the expansion, the connection sleeve is in close contact with the inner wall of the borehole under the action of expansion to eventually balance the horizontal stress in the borehole. At this time, the hydraulic pressure and the horizontal squeezing force in the hydraulic bladder 12 are equal to achieve the measurement purpose.
  • the outer pillow shell 15 and the connecting sleeve 16 can also be fixed together by point bonding or fixed connection.
  • the two ends of the connecting sleeve 16 are in close contact with the main pipe.
  • the connecting sleeve 16 presses the two ends of the outer pillow shell 15 into contact with the main pipe, so as to protect the hydraulic bladder 12.
  • the tray 7 is provided with a through hole, and the lower portion is further provided with a protrusion, both the connecting rod 2 and the push rod 8 can pass through the through hole of the tray, and the push rod 8 is designed to be hollow to facilitate
  • the length of the push rod 8 can be arbitrarily designed according to the drilling depth. External threads can also be provided outside the push rod to facilitate advancement.
  • the pallet 7 is fixed to the drilling hole of the top plate when in use. When the pressure measuring section 1 and the connecting rod 2 are extended into the borehole, the pallet 7 plays a role in supporting the internal structure of the borehole.
  • the connecting sleeve 9 is connected to the external thread of the convex part of the tray 7, and the push rod 8 pushes the connecting rod 2 and the pressure measuring section 1 through the connecting sleeve 9.
  • the main pipe 11 and the push rod 8 can be made of steel materials to ensure the pushing strength.
  • the hydraulic bladder 12 and the connecting sleeve 16 can be made of flexible rubber materials to ensure the elasticity and durability of the structure.
  • the step of determining the length of the anchor rod is specifically:
  • the vertical roof is drilled with a drilling depth L of 3 m and a drilling diameter D of 79 mm.
  • the borehole TV is used to detect the borehole to obtain the fractured distribution and loosening damage range of the surrounding rock of the borehole: at the borehole depth 1
  • the pressure measurement section should be in the borehole Installation within the depth of 1.2m-2.8m, special, The distance of the monitoring base point should be reduced as much as possible, and the number of installations of the pressure measurement section is determined to be 5, and the depth of the horizontal squeezing force measured respectively is 1.4m, 1.7m, 1.9m, 2.3m and 2.8m.
  • the horizontal squeezing force monitoring device in the roof rock layer is used to monitor the horizontal squeezing force in the borehole to obtain a curve of the horizontal squeezing force with time.
  • connection sleeve 9 According to the position of the horizontal squeezing force measurement point and the depth of the borehole, select a connecting rod of appropriate length, use the connecting rod 2 to connect the 5 pressure measuring segments 1, the connecting rod 2 and the inner cavity of the pressure measuring segment 1. High-pressure oil pipe 5 is connected through a pipe joint, and will fix the tray 7, install the connection sleeve 9;
  • step d and step e to pressurize the 5 pressure measuring sections 1 with hydraulic oil, or use multiple hydraulic pumps 3 to simultaneously inject hydraulic oil into the 5 pressure measuring sections 1;
  • step (3) The data collected in step (3) is sorted and analyzed, and the horizontal squeezing force changes with time as shown in FIG. 13.
  • the surrounding rock has reached the maximum horizontal squeezing force at all depths of the borehole at 68h, and then the horizontal squeezing force tends to be stable.
  • the horizontal squeezing force of the roof crushing zone is the largest.
  • the force value is 9M Pa, so the distance between the anchoring center and the roof is 1.7m.
  • the total length of the final chain link is 2.2m, where the length of the fixed section of the chain link is 0.4m, the length of the free section is 1.5m, and the length of the Xi Bu section is 0.3m.
  • the length of the anchor rod used in the roadway was 2.4m.
  • the pullout test was conducted on the bolts in the designed roadway and the roadway before the coal mine, and it was found that the ultimate breaking force of the designed roadway and the previous roadway were 246kN and 232kN, respectively, and the strength of the bolt was improved compared with the previous roadway, so the full utilization level proposed by the present invention Compared with the previous design method, the method of squeezing force to determine the length of the anchor rod is more reasonable and the anchoring effect is better

Abstract

一种基于顶板岩层水平挤压力监测的锚杆长度确定方法,具体步骤包括:(1)在巷道顶板中部钻孔,通过钻孔电视确定围岩破裂范围;(2)根据围岩破裂范围选择水平挤压力测点的数目和位置;(3)利用顶板岩层水平挤压力监测装置监测并记录钻孔内的水平挤压力大小随时间的变化;(4)选择水平挤压力最大的位置作为锚杆锚固段的中心,确定锚固中心和顶板的距离;(5)计算锚杆的总长度。

Description

一种基于顶板岩层水平挤压力监测的锚杆长度确定方法 技术领域
[0001] 本发明涉及采矿工程技术领域, 尤其是一种基于顶板岩层水平挤压力监测的锚 杆长度确定方法。
背景技术
[0002] 我国每年新掘大量的煤巷, 锚杆支护的巷道占煤巷的 80%以上, 为保证锚杆支 护安全性, 必须合理确定锚杆支护参数。 目前, 煤矿锚杆支护参数的确定主要 采用经验法、 理论计算和动态信息设计等方法, 而锚杆长度常用经验法和理论 计算法来确定, 经验法直接参照相似工程地质条件确定, 精准性相对差。 理论 计算法主要应用于端部锚固锚杆, 锚杆长度一般由锚固段长度、 自由段长度和 外露段长度三部分组成, 其中锚固段根据药卷数量及长度确定, 一般取 0.5m左 右, 外露段由托盘和螺母结构决定, 一般取 0.2~0.3m, 自由段长度取决于锚杆有 效支护岩层范围, 采用不同的支护理论, 其取值范围也不尽相同, 该方法对巷 道范围较大条件下的支护适用性不佳。 当锚杆锚固段位于破裂围岩内, 粘结力 和粘结长度对锚固效果的影响较大, 锚固段长度设计不合理易造成锚杆实际锚 固力小于设计锚固力, 从而影响着锚杆的支护效果。
[0003] 将锚杆锚固段设计在水平压力最大处可以增大锚杆与锚固剂之间的粘结力, 增 强锚固效果, 因此合理确定锚固段位置、 提升锚杆支护效果首先需要测量水平 应力的大小。 煤矿井下围岩应力测试方法主要有水压致裂法和套筒致裂法, 其 中水压致裂法在指定位置采用止水封隔器密闭压裂点, 用液压泵加压将孔壁压 裂的方法测量围岩应力, 测试仪器较笨重, 对于围岩较为破碎的情况适应性不 强; 套筒致裂法采用向橡胶套筒加压使其压裂钻孔, 依次来求得围岩应力, 但 是在测试完成后需进行计算, 使用的地应力测试仪不能直接反应围岩应力大小 , 结果不够直观。 围岩应力还可以通过钻孔应力计等仪器测量, 中国专利 CN 203669931 U提出的多点应力计可以实现多点应力实时测试, 但是对于顶板应力 的监测, 其监测装置的推送和固定难度较大, 因此难以满足顶板应力监测的要 求。
[0004] 为准确测量顶板的水平应力, 准确、 简便的确定围岩应力大小, 并且为锚杆长 度等参数的设计提供依据, 改善锚杆支护效果, 需要对现有的锚杆长度确定方 法做进一步的改进。
发明概述
技术问题
问题的解决方案
技术解决方案
[0005] 为合理的确定锚杆的锚固段位置以及锚杆长度, 本发明提供了一种基于顶板岩 层水平挤压力监测的锚杆长度确定方法, 具体技术方案如下。
[0006] 一种基于顶板岩层水平挤压力监测的锚杆长度确定方法, 步骤包括:
[0007] ( 1) 在巷道顶板中部钻孔, 通过钻孔电视确定围岩破裂范围;
[0008] (2) 根据围岩破裂范围选择水平挤压力测点的数目和位置;
[0009] (3) 监测并记录钻孔内各水平挤压力测点的水平挤压力大小随时间的变化;
[0010] (4) 选择水平挤压力最大的位置作为锚杆锚固段的中心, 确定锚固中心和顶 板的距离;
[0011] (5) 计算锚杆的总长度。
[0012] 优选的是, 步骤 ⑴ 中钻孔深度取值为 2~5m, 钻孔直径的取值为 70~ 100mm ; 所述步骤 (2) 中在距离顶板 lm以上的部分设置水平挤压力测点, 水平挤压力 测点的间距小于 0.5m。
[0013] 优选的是, 步骤 (3) 中利用顶板岩层水平挤压力监测装置监测并记录钻孔内 各水平挤压力测点的水平挤压力大小随时间的变化, 所述顶板岩层水平挤压力 监测装置包括测压段、 连接杆、 液压泵、 压力表、 高压油管、 压力控制阀、 托 盘、 推杆和连接套管; 所述连接杆和测压段相连, 推杆前端和连接杆相连, 推 杆后端穿过托盘, 连接套管和托盘相连; 所述高压油管和液压泵相连, 高压油 管通过推杆和连接管的内腔伸至测压段; 所述测压段包括主管、 液压囊、 固定 圈、 阻隔片、 外枕壳和连接套; 所述液压囊两端通过固定圈套设在主管上, 主 管上设置有注油口和液压囊相通; 所述外枕壳套设在主管上, 外枕壳外侧包裹 有连接套, 固定圈和外枕壳之间设置阻隔片。
[0014] 进一步优选的是, 高压油管每条分为多段, 高压油管之间通过油管接头连接, 其中一段连接在液压泵上, 一段设置在推杆和连接杆的内腔, 还有一段设置在 测压段内; 所述连接套管内设置有油管接头; 所述液压泵连接的高压油管上还 设置有压力控制阀和压力表; 所述连接杆连接有 2个或多个测压段, 每个测压段 均设置一条连通的高压油管; 所述高压油管长度的设计余量放置在连接套管内
[0015] 进一步优选的是, 高压油管和主管上的注油口通过油管接头相连, 所述主管两 端的管壁内侧设置有内螺纹和连接杆的外螺纹配合, 主管两端管壁的外侧设置 有外螺纹和阻隔片的内螺纹配合; 所述托盘设置有通孔, 连接杆穿过托盘的通 孔; 所述连接套管和托盘外凸部位的外螺纹连接; 所述推杆通过连接套管推送 连接管和测压段。
[0016] 进一步优选的是, 外枕壳分为形状相同的 4部分, 外枕壳的组合体为圆柱状外 壳; 所述外枕壳在液压囊收缩状态下组合套设在主管上, 在液压囊充液膨胀状 态下外枕壳分为 4部分胀开; 所述连接套两端和主管紧密贴合, 连接套压紧外枕 壳两端和主管接触。
[0017] 还优选的是, 利用所述顶板岩层水平挤压力监测装置监测并记录钻孔内水平挤 压力大小随时间的变化, 步骤包括:
[0018] a.将连接杆和测压段连接, 连接杆和测压段内腔的高压油管通过油管接头连接
, 固定托盘并安装连接套管;
[0019] b.通过推杆将连接杆和测压段推送进入钻孔, 当托盘和顶板固定后, 拆卸掉连 接套管和推杆;
[0020] c.连接外露的高压油管, 连接液压泵、 压力控制阀和压力表;
[0021] d.打开压力控制阀上的开关, 使用液压泵注油加压, 当压力表读数达到 5~6MPa 后, 停止加压, 液压油回流; 重复本步骤 2~5次, 排空高压油管内的空气;
[0022] e.使用液压泵注油加压, 当压力表读数达到 5~6MPa后, 关闭压力控制阀;
[0023] f.重复步骤 d和步骤 e分别给多个测压段加压注液压油;
[0024] g.拆卸液压泵, 监测并保存压力表的监测数据; [0025] h.打开压力控制阀, 放出液压油; 将连接套管和推杆连接, 利用推杆连接并将 连接杆和测压段从钻孔内取出。
[0026] 还进一步优选的是, 步骤 (5) 中, 计算锚杆长度包括计算锚杆的锚固段长度 L al 锚杆的自由段长度 ^2和锚杆的总长度 L a, 其中锚杆的自由段长度为
Figure imgf000006_0001
链杆的外露段长度为 L L 取 0.2~0.3m
发明的有益效果
有益效果
[0027] 本发明的有益效果包括:
[0028] (1) 本发明提供的一种基于顶板岩层水平挤压力监测的锚杆长度确定方法, 该方法充分的利用了水平挤压力的监测结果, 合理的确定锚杆锚固段长度, 进 而得到锚杆支护长度参数, 大大提高了锚杆锚固段的粘结力和粘结长度, 提升 了锚杆锚固性能, 巷道支护效果得到增强。
[0029] (2) 本发明提供的顶板岩层水平挤压力监测装置, 设置液压泵和测压段对钻 孔内的点进行水平应力的监测, 通过设置一个钻孔即可监测多个钻孔深度的水 平应力, 并且各个测压段之间的监测互不干扰; 高压油管设置在推杆和连接管 的内腔, 从而能够保护高压油管的安全; 并且该监测装置方便拆卸, 能够重复 利用。
[0030] (3) 顶板岩层水平挤压力监测装置的测压段采用组合式的外枕壳更好的和钻 孔内的围岩接触, 压力测量的准确性更高; 使用推杆和连接杆的组合方便在不 同深度的钻孔使用, 不同长度的推杆和连接杆组合从而扩大监测范围; 在固定 圈和外枕壳之间设置阻隔片, 两侧的阻隔片有效的防止了液压囊沿主管的方向 膨胀, 从而保证监测的准确性。 [0031] 另外本发明还具有施工量少, 方法简洁, 计算简单快捷, 适用性强等优点。 对附图的简要说明
附图说明
[0032] 图 1是链杆长度确定方法步骤示意图;
[0033] 图 2是顶板岩层水平挤压力监测装置结构示意图;
[0034] 图 3是钻孔内外安装结构示意图;
[0035] 图 4是测压段结构示意图;
[0036] 图 5是测压段剖面结构示意图;
[0037] 图 6是测压段截面结构示意图;
[0038] 图 7是主管剖面结构示意图;
[0039] 图 8是主管截面结构示意图;
[0040] 图 9是外枕壳部分结构示意图;
[0041] 图 10是外枕壳整体结构示意图;
[0042] 图 11是托盘结构示意图;
[0043] 图 12是托盘截面结构示意图;
[0044] 图 13是水平挤压力的大小随时间变化曲线;
[0045] 图中: 1 -测压段; 11-主管; 111-注油口; 112 -外螺纹; 113 -内螺纹; 12 -液压囊 ; 13 -固定圈; 14 -阻隔片; 15 -外枕壳; 16 -连接套; 2 -连接杆; 3 -液压泵; 4 -压力 表; 5 -高压油管; 6 -压力控制
Figure imgf000007_0001
7 -托盘; 8 -推杆; 9 -连接套管。
发明实施例
本发明的实施方式
[0046] 结合图 1至图 13所示, 本发明提供的一种基于顶板岩层水平挤压力监测的锚杆 长度确定方法, 具体实施方式如下。
[0047] 实施例一
[0048] 一种基于顶板岩层水平挤压力监测的锚杆长度确定方法, 方法流程示意图如图
1所示, 具体的步骤包括:
[0049] 步骤 (1) 在巷道顶板中部钻孔, 通过钻孔电视确定围岩破裂范围。 施工时, 垂直顶板钻孔, 钻孔深度取值为 2~5m, 钻孔直径的取值为 70~100mm, 钻孔的深 度和直径根据煤矿实际顶板情况确定。 利用钻孔电视对钻孔进行观测, 得到钻 孔内围岩破裂展布及松动破坏范围, 从而确定水平挤压力监测的重点区域范围
[0050] 步骤 (2) 根据围岩破裂范围选择水平挤压力测点的数目和位置。 主要是在破 裂严重的区域设置测点, 根据围岩破裂情况在破裂严重的区域可以适当缩小测 点的布置距离, 一般情况下在距离顶板 lm以上的部分设置水平挤压力测点, 水 平挤压力测点的间距小于 0.5m。
[0051] 步骤 (3) 监测并记录钻孔内各水平挤压力测点的水平挤压力大小随时间的变 化, 得到钻孔不同深度位置的水平挤压力随时间的变化曲线。
[0052] 具体是使用顶板岩层水平挤压力监测装置对水平挤压力大小随时间的变化进行 监测, 顶板岩层水平挤压力监测装置包括测压段 1、 连接杆 2、 液压泵 3、 压力表 4、 高压油管 5、 压力控制阀 6、 托盘 7、 推杆 8和连接套管 9。 连接杆 1和测压段 2 相连, 推杆 8前端和连接杆 2相连, 推杆 8后端穿过托盘 7 , 连接套管 9和托盘 7相 连。 高压油管 5和液压泵 3相连, 高压油管 5通过推杆 8和连接杆 2的内腔伸至测压 段。 测压段包括主管、 液压囊、 固定圈、 阻隔片、 外枕壳和连接套。 液压囊两 端通过固定圈套设在主管上, 主管上设置有注油口和液压囊相通。 外枕壳套设 在主管上, 外枕壳外侧包裹有连接套, 固定圈和外枕壳之间设置阻隔片。
[0053] 顶板岩层水平挤压力监测装置对水平挤压力大小随时间的变化进行监测的步骤 包括:
[0054] a.根据水平挤压力测点的位置和钻孔的深度选取合适长度的连接杆 2, 将连接杆
2和测压段 1连接, 连接杆 2和测压段 1内腔的高压油管 5通过油管接头连接, 固定 托盘 7并安装连接套管 9;
[0055] b.通过推杆 8将连接杆 2和测压段 1推送进入钻孔, 当托盘 7与顶板固定后, 测压 段 1安装完毕, 松开螺纹拆卸掉连接套管 9和推杆 8 ;
[0056] c.连接外露的高压油管 5 , 通过油管接头方便高压油管 5的连接, 连接液压泵 3、 压力控制阀 6和压力表 4, 其中先连接压力表 4和压力控制阀 6 , 最后将液压泵 3和 压力控制阀 6相连;
[0057] d.打开压力控制阀 6上的开关, 使用液压泵 3注油加压, 当压力表 4读数达到 5~6 MPa后, 停止加压, 让液压油回流; 重复本步骤 2~5次, 尽量排空高压油管 5内的 空气;
[0058] e.使用液压泵 3注油加压, 当压力表 4读数达到 5~6MPa后, 关闭压力控制阀 6, 拆下液压泵 3 ;
[0059] f.重复步骤 d和步骤 e分别给多个测压段 1加压注液压油, 也可以利用多个液压泵
3同时为多个测压段 1加压注入液压油;
[0060] g.测压段 1全部加注液压油后, 拆卸液压泵 3, 监测并保存压力表的监测数据, 采用带有数据记录功能的数显压力表, 每隔一端时间读取一次监测数据, 从而 方便监测;
[0061] h.打开压力控制阀 6 , 放出液压油, 测压段 1收缩; 将连接套管 9和推杆 8重新连 接, 利用推杆 8连接并将连接杆 2和测压段 1从钻孔内取出, 便于重复利用。
[0062] 步骤 (4) 选择水平挤压力最大的位置作为锚杆锚固段的中心, 确定锚固中心 和顶板的距离记为
[0063] 步骤 (5) 计算锚杆的总长度。 计算锚杆长度包括计算锚杆的锚固段长度 L a;、 锚杆的自由段长度 L 2和锚杆的总长度 L a, 其中锚杆的自由段长度为
Figure imgf000009_0001
, 链杆的外露段长度为 L L ^取 0.2~0.3m。
[0064] 其中具体的是, 在步骤 (3) 中使用的一种顶板岩层水平挤压力监测装置, 具 体结构包括测压段 1、 连接杆 2、 液压泵 3、 压力表 4、 高压油管 5、 压力控制阀 6 、 托盘 7、 推杆 8和连接套管 9 , 如图 2所示。 连接杆 2和测压段 1通过螺纹相连, 推杆 8前端和连接杆 2相连, 托盘 7设置在推杆 8后端, 连接套管 9和托盘 7相连, 高压油管 5和液压泵 3相连, 高压油管 5通过推杆 8和连接管 9的内腔伸至测压段 1 。 连接杆 2和测压段 1的组合方便监测不同深度下的水平应力, 推杆 8保证了装置 能够进行深孔监测, 托盘 7和连接套管 9方便钻孔内装置的固定和高压油管 5的放 置, 液压泵 3和压力表 4的组合方便实时监测, 通过液压泵 3和压力表 4以及压力 控制阀 6可以实现水平应力的长效监测。 利用该装置可以设置多个测压段, 设置 一个钻孔从而监测多个钻孔深度的水平应力, 并且各个测压段之间的监测互不 干扰。
[0065] 测压段具体包括主管 11、 液压囊 12、 固定圈 13、 阻隔片 14、 外枕壳 15和连接套 16 , 如图 4~10所示, 液压囊 12两端通过固定圈 13套设在主管 11上, 主管 11上设 置有注油口 111和液压囊 12相通, 固定圈 13和主管 11之间还可以设置密封垫圈, 保证液压囊 12的密封性。 外枕壳 15套设在主管 11上, 外枕壳 15外侧包裹有连接 套 16 , 固定圈 13和外枕壳 15之间设置阻隔片 14。 在外枕壳 15和阻隔片 14的作用 下, 液压囊 12只能沿主管的径向膨胀, 连接套 16保证了外枕壳 15在使用后能顺 利复位。
[0066] 高压油管 5每条分为多段, 高压油管 5之间通过油管接头连接, 其中一段连接在 液压泵 3上, 一段设置在推杆 8和连接杆 2的内腔, 还有一段设置在测压段内。 液 压泵 3连接的高压油管 5上还设置有压力控制阀 6和压力表 4。 连接套管 9内设置有 油管接头, 方便高压油管的连接, 高压油管 5上还设置有压力控制阀 6和压力表 4 用于监测管内液压大小, 液压泵泵送液压油后关闭压力控制阀 6上的进油阀。 利 用高压油管 5和压力控制阀 6实现液压囊内的压力和管内压力平衡, 从而高压油 管 5上的压力表能够准确的测量测压段位置的钻孔水平应力。 压力表 4可以使用 数显压力表, 并具有记录功能实时记录压力监测数据, 液压泵 3可以采用高压泵 , 从而能够测量更大范围的水平应力。 高压油管 5和主管 11上的注油口通过油管 接头相连, 主管 11两端的管壁内侧设置有内螺纹和连接杆 2的外螺纹配合, 主管 11两端管壁的外侧设置有外螺纹和阻隔片 14的内螺纹配合。
[0067] 如图 3所示, 连接杆 2连接有 2个或多个测压段 1, 根据需要监测的点数和位置选 择测压段 1的数量, 并根据测点位置选择合适长度的连接杆 2, 测量待测点的水 平应力。 每个测压段均设置一条连通的高压油管 5 , 高压油管 5和主管 11上的注 油口相连, 从而保证了不同测压段能够独立测量。 高压油管 5长度的设计余量放 置在连接套管 9内, 从而保证在钻孔深度较大时进行监测。 [0068] 外枕壳 15分为形状相同的 4部分或多个部分, 外枕壳 15的组合体为圆柱状外壳 。 如图 9和图 10所示, 外枕壳 15在液压囊 12收缩状态下组合套设在主管 11上, 在 液压囊 12充液膨胀状态下外枕壳 15分为 4部分或多个部分胀开, 胀开后连接套的 作用下向外和钻孔内壁紧密接触最终和钻孔内的水平应力保持平衡, 此时液压 囊 12内的液压和水平挤压力相等, 达到测量目的。 外枕壳 15和连接套 16之间还 可以通过点粘结或固定连接固定在一起。 连接套 16的两端和主管紧密贴合, 液 压囊 12收缩状态下, 连接套 16压紧外枕壳 15两端和主管接触, 从而达到保护液 压囊 12的目的。
[0069] 如图 11和图 12所示, 托盘 7设置有通孔, 下部还设置有凸起, 连接杆 2和推杆 8 均能够穿过托盘的通孔, 推杆 8设计为中空, 便于保护高压油管, 推杆 8的长度 根据钻孔深度需要任意设计, 推杆外还可以设置外螺纹方便推进。 安装时, 使 用时托盘 7固定在顶板的钻孔孔口, 当测压段 1和连接杆 2组合伸入钻孔后托盘 7 对钻孔内部的结构起到承载的作用。 连接套管 9和托盘 7外凸部位的外螺纹连接 , 推杆 8通过连接套管 9推送连接杆 2和测压段 1。 主管 11和推杆 8可以使用钢材料 制作而成, 保证推送强度, 液压囊 12和连接套 16可以使用柔性橡胶材料制作而 成, 保证结构的伸缩弹性和耐用性。
[0070] 实施例二
[0071] 为对本发明提供的一种基于顶板岩层水平挤压力监测的锚杆长度确定方法作进 一步的说明, 本实施例以某矿为背景作进一步的详细说明, 某矿主采 3-1煤, 煤 层厚度 3.6m, 顶板岩层自下向上依次为 2.5~3.6m砂质泥岩、 4.5~7.3m细砂岩和 11. 2~18.9m粉砂岩, 运输平巷沿底掘进, 断面形状为矩形, 巷道尺寸宽 x高为 5.2x3. 6m。
[0072] 锚杆长度的确定步骤, 具体是:
[0073] ( 1) 在待确定锚杆长度的巷道顶板中部, 垂直顶板钻孔, 钻孔深度 L为 3m, 钻孔直径 D为 79mm。 采用钻孔电视对钻孔进行探测, 得到钻孔围岩破裂展布及 松动破坏范围: 在钻孔深度 1
Figure imgf000011_0001
严重。
[0074] (2) 根据围岩破裂范围选择水平挤压力测点的数目和位置, 测压段应在钻孔 深度 1.2m-2.8m范围内安装, 特别的,
Figure imgf000012_0001
应监测基点距离应尽量为缩小 , 确定测压段的安装的数目为 5个, 分别测量的水平挤压力深度为 1.4m、 1.7m、 1.9m、 2.3m及 2.8m。
[0075] (3) 采用顶板岩层水平挤压力监测装置对钻孔内水平挤压力进行监测, 得到 水平挤压力的大小随时间变化曲线。
[0076] a.根据水平挤压力测点的位置和钻孔的深度选取合适长度的连接杆, 使用连接 杆 2将 5个测压段 1连接, 连接杆 2和测压段 1内腔的高压油管 5通过油管接头连接 , 并将固定托盘 7 , 安装连接套管 9;
[0077] b.通过推杆 8将连接杆 2和测压段 1推送进入钻孔, 当托盘 7与顶板固定后, 测压 段 1安装完毕, 松开螺纹拆卸掉连接套管 9和推杆 8 ;
[0078] c.连接外露的高压油管 5, 通过油管接头方便高压油管 5的连接, 连接液压泵 3、 压力控制阀 6和压力表 4, 其中先连接压力表 4和压力控制阀 6 , 最后将液压泵 3和 压力控制阀 6相连;
[0079] d.打开压力控制阀 6上的开关, 使用液压泵 3注油加压, 当压力表 4读数达到 5~6
MPa后, 停止加压, 让液压油回流; 重复本步骤 3次, 尽量排空高压油管 5内的空 气;
[0080] e.使用液压泵 3注油加压, 当压力表 4读数达到 5~6MPa后, 关闭压力控制阀 6, 拆下液压泵 3 ;
[0081] f.重复步骤 d和步骤 e分别给 5个测压段 1加压注液压油, 也可以利用多个液压泵 3 同时为 5个测压段 1加压注入液压油;
[0082] g.测压段 1全部加注液压油后, 拆卸液压泵 3 , 监测并保存压力表的监测数据, 采用带有数据记录功能的数显压力表, 数显压力表记录并保存 72小时内示数, 每隔 72小时读取一次监测数据;
[0083] h.打开压力控制阀 6 , 放出液压油, 测压段 1收缩; 将连接套管 9和推杆 8重新连 接, 利用推杆 8连接并将连接杆 2和测压段 1从钻孔内取出, 便于重复利用。
[0084] (4) 选择水平挤压力最大的位置作为锚杆锚固段的中心, 确定锚固中心和顶 板的距离。
[0085] 将步骤 (3) 采集的数据进行整理分析, 水平挤压力随时间变化如图 13所示。 围岩在 68h时钻孔各深度水平挤压力均已达到最大, 之后水平挤压力趋于平稳, 当钻孔深度为 1.7m时, 顶板破碎带水平挤压力最大, 此时水平挤压力数值为 9M Pa, 因此确定锚固中心和顶板的距离 1.7m。
[0086] (5) 计算锚杆的总长度。
[0087] 根据药卷个数及长度确定锚杆锚固段的长度, 选择 2个药卷, 单个药卷的长度 为 0.2m, 因此 L a;=0.4m, 此时自由段长度
Figure imgf000013_0001
, 所以 L a2=1.5m, 锚杆外露段长度取 0.3m, 则锚杆总长为长度
Figure imgf000013_0002
, 所以 L a=2.2m。
[0088] 最终链杆全长为 2.2m, 其中链杆链固段长度为 0.4m, 自由段长度为 1.5m, 夕卜露 段长度为 0.3m。 之前巷道使用的锚杆长度为 2.4m。 对所设计巷道及煤矿之前巷 道内的锚杆进行拉拔测试, 发现设计巷道与之前巷道极限破断力分别为 246kN和 232kN, 锚杆强度较之前巷道有所提高, 因此本发明提出的充分利用水平挤压力 确定锚杆长度的方法和之前设计方法相比, 锚杆长度更加合理, 锚固效果更好
[0089] 当然, 上述说明并非是对本发明的限制, 本发明也并不仅限于上述举例, 本技 术领域的技术人员在本发明的实质范围内所做出的变化、 改型、 添加或替换, 也应属于本发明的保护范围。

Claims

权利要求书 [权利要求 1] 一种基于顶板岩层水平挤压力监测的锚杆长度确定方法, 其特征在于 , 步骤包括:
( 1) 在巷道顶板中部钻孔, 通过钻孔电视确定围岩破裂范围;
(2) 根据围岩破裂范围选择水平挤压力测点的数目和位置;
(3) 监测并记录钻孔内各水平挤压力测点的水平挤压力大小随时间 的变化;
(4) 选择水平挤压力最大的位置作为锚杆锚固段的中心, 确定锚固 中心和顶板的距离;
(5) 计算锚杆的总长度。
[权利要求 2] 根据权利要求 1所述的一种基于顶板岩层水平挤压力监测的锚杆长度 确定方法, 其特征在于, 所述步骤 ( 1) 中钻孔深度取值为 2~5m, 钻 孔直径的取值为 70~100mm; 所述步骤 ⑵ 中在距离顶板 lm以上的 部分设置水平挤压力测点, 水平挤压力测点的间距小于 0.5m。
[权利要求 3] 根据权利要求 1所述的一种基于顶板岩层水平挤压力监测的锚杆长度 确定方法, 其特征在于, 所述步骤 (3) 中利用顶板岩层水平挤压力 监测装置监测并记录钻孔内各水平挤压力测点的水平挤压力大小随时 间的变化, 所述顶板岩层水平挤压力监测装置包括测压段、 连接杆、 液压泵、 压力表、 高压油管、 压力控制阀、 托盘、 推杆和连接套管; 所述连接杆和测压段相连, 推杆前端和连接杆相连, 推杆后端穿过托 盘, 连接套管和托盘相连; 所述高压油管和液压泵相连, 高压油管通 过推杆和连接管的内腔伸至测压段; 所述测压段包括主管、 液压囊、 固定圈、 阻隔片、 外枕壳和连接套; 所述液压囊两端通过固定圈套设 在主管上, 主管上设置有注油口和液压囊相通; 所述外枕壳套设在主 管上, 外枕壳外侧包裹有连接套, 固定圈和外枕壳之间设置阻隔片。
[权利要求 4] 根据权利要求 3所述的一种基于顶板岩层水平挤压力监测的锚杆长度 确定方法, 其特征在于, 所述高压油管每条分为多段, 高压油管之间 通过油管接头连接, 其中一段连接在液压泵上, 一段设置在推杆和连 接杆的内腔, 还有一段设置在测压段内; 所述连接套管内设置有油管 接头; 所述液压泵连接的高压油管上还设置有压力控制阀和压力表; 所述连接杆连接有 2个或多个测压段, 每个测压段均设置一条连通的 高压油管; 所述高压油管长度的设计余量放置在连接套管内。
[权利要求 5] 根据权利要求 3所述的一种基于顶板岩层水平挤压力监测的锚杆长度 确定方法, 其特征在于, 所述高压油管和主管上的注油口通过油管接 头相连, 所述主管两端的管壁内侧设置有内螺纹和连接杆的外螺纹配 合, 主管两端管壁的外侧设置有外螺纹和阻隔片的内螺纹配合; 所述 托盘设置有通孔, 连接杆穿过托盘的通孔; 所述连接套管和托盘外凸 部位的外螺纹连接; 所述推杆通过连接套管推送连接管和测压段。
[权利要求 6] 根据权利要求 3所述的一种基于顶板岩层水平挤压力监测的锚杆长度 确定方法, 其特征在于, 所述外枕壳分为形状相同的 4部分, 外枕壳 的组合体为圆柱状外壳; 所述外枕壳在液压囊收缩状态下组合套设在 主管上, 在液压囊充液膨胀状态下外枕壳分为 4部分胀开; 所述连接 套两端和主管紧密贴合, 连接套压紧外枕壳两端和主管接触。
[权利要求 7] 根据权利要求 3至 6任一项所述的一种基于顶板岩层水平挤压力监测的 锚杆长度确定方法, 其特征在于, 利用所述顶板岩层水平挤压力监测 装置监测并记录钻孔内水平挤压力大小随时间的变化, 步骤包括: a.将连接杆和测压段连接, 连接杆和测压段内腔的高压油管通过油管 接头连接, 固定托盘并安装连接套管;
b.通过推杆将连接杆和测压段推送进入钻孔, 当托盘和顶板固定后, 拆卸掉连接套管和推杆;
c.连接外露的高压油管, 连接液压泵、 压力控制阀和压力表; d.打开压力控制阀上的开关, 使用液压泵注油加压, 当压力表读数达 到 5~6MPa后, 停止加压, 液压油回流; 重复本步骤 2~5次, 排空高压 油管内的空气;
e.使用液压泵注油加压, 当压力表读数达到 5~6MPa后, 关闭压力控 制 _ ; f.重复步骤 d和步骤 e分别给多个测压段加压注液压油; g.拆卸液压泵, 监测并保存压力表的监测数据; h.打开压力控制阀, 放出液压油; 将连接套管和推杆连接, 利用推杆 连接并将连接杆和测压段从钻孔内取出。
[权利要求 8] 根据权利要求 1所述的一种基于顶板岩层水平挤压力监测的锚杆长度 确定方法, 其特征在于, 所述步骤 (5) 中, 计算锚杆长度包括计算 锚杆的锚固段长度 L a;、 锚杆的自由段长度 L„2和锚杆的总长度 L a, 其中锚杆的自由段长度为
Figure imgf000016_0001
链杆的外露段长度为 L ^, L ^取 0.2~0.3m。
PCT/CN2019/086734 2018-12-14 2019-05-14 一种基于顶板岩层水平挤压力监测的锚杆长度确定方法 WO2020119019A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/043,778 US11067392B2 (en) 2018-12-14 2019-05-14 Anchor bolt length determination method based on monitoring of roof rock stratum horizontal extrusion force

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811530081.0 2018-12-14
CN201811530081.0A CN109630201B (zh) 2018-12-14 2018-12-14 一种基于顶板岩层水平挤压力监测的锚杆长度确定方法

Publications (1)

Publication Number Publication Date
WO2020119019A1 true WO2020119019A1 (zh) 2020-06-18

Family

ID=66073830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086734 WO2020119019A1 (zh) 2018-12-14 2019-05-14 一种基于顶板岩层水平挤压力监测的锚杆长度确定方法

Country Status (3)

Country Link
US (1) US11067392B2 (zh)
CN (1) CN109630201B (zh)
WO (1) WO2020119019A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109372581B (zh) 2018-12-14 2023-11-14 山东科技大学 一种顶板岩层水平挤压力监测装置及使用方法
CN109630201B (zh) * 2018-12-14 2020-06-30 山东科技大学 一种基于顶板岩层水平挤压力监测的锚杆长度确定方法
CN113588914B (zh) * 2021-06-22 2023-05-19 清华大学 一种隧道硐壁岩体检测装置及岩体扰动状态测试方法
CN114674475B (zh) * 2022-03-11 2024-02-23 重庆地质矿产研究院 一种大型滑坡岩土体内部应力监测装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101694163A (zh) * 2009-10-14 2010-04-14 山东科技大学 深部巷道顶板支护形式和支护深度的确定方法
CN102661144A (zh) * 2012-04-28 2012-09-12 山东科技大学 深部沿空顺槽实体煤侧巷帮锚索锚固深度确定方法
CN104132761A (zh) * 2014-08-04 2014-11-05 中国矿业大学 多点煤岩体应力实时监测装置及方法
CN107133381A (zh) * 2017-04-01 2017-09-05 中国矿业大学 一种巷道支护用锚杆的长度确定方法
JP2017186801A (ja) * 2016-04-06 2017-10-12 株式会社ケー・エフ・シー ロックボルト
CN109372581A (zh) * 2018-12-14 2019-02-22 山东科技大学 一种顶板岩层水平挤压力监测装置及使用方法
CN109630201A (zh) * 2018-12-14 2019-04-16 山东科技大学 一种基于顶板岩层水平挤压力监测的锚杆长度确定方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2268809B (en) * 1992-07-15 1995-06-21 Coal Ind Strata movement indicator
CN102297739B (zh) * 2011-05-27 2012-12-26 杨俊志 预应力锚索锚固力实时监测系统
CN203669931U (zh) * 2013-12-26 2014-06-25 中国矿业大学 一种测试巷道围岩松动圈的多点应力计
CN105784218A (zh) * 2016-04-28 2016-07-20 山西海源阳光科技有限公司 一种矿用锚杆测力计
CN205861031U (zh) * 2016-05-10 2017-01-04 中国电建集团华东勘测设计研究院有限公司 全长粘结型锚杆有效锚固深度无损检测装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101694163A (zh) * 2009-10-14 2010-04-14 山东科技大学 深部巷道顶板支护形式和支护深度的确定方法
CN102661144A (zh) * 2012-04-28 2012-09-12 山东科技大学 深部沿空顺槽实体煤侧巷帮锚索锚固深度确定方法
CN104132761A (zh) * 2014-08-04 2014-11-05 中国矿业大学 多点煤岩体应力实时监测装置及方法
JP2017186801A (ja) * 2016-04-06 2017-10-12 株式会社ケー・エフ・シー ロックボルト
CN107133381A (zh) * 2017-04-01 2017-09-05 中国矿业大学 一种巷道支护用锚杆的长度确定方法
CN109372581A (zh) * 2018-12-14 2019-02-22 山东科技大学 一种顶板岩层水平挤压力监测装置及使用方法
CN109630201A (zh) * 2018-12-14 2019-04-16 山东科技大学 一种基于顶板岩层水平挤压力监测的锚杆长度确定方法

Also Published As

Publication number Publication date
CN109630201A (zh) 2019-04-16
CN109630201B (zh) 2020-06-30
US11067392B2 (en) 2021-07-20
US20210018315A1 (en) 2021-01-21

Similar Documents

Publication Publication Date Title
WO2020119019A1 (zh) 一种基于顶板岩层水平挤压力监测的锚杆长度确定方法
WO2020119018A1 (zh) 一种顶板岩层水平挤压力监测装置及使用方法
CN113622913B (zh) 一种全垮落法开采下井上下一体化隧道围岩变形控制方法
CN106195616A (zh) 一种液体二氧化碳灌装系统
CN203519230U (zh) 煤岩体应力定向监测装置
CN105974084A (zh) 一种本煤层瓦斯抽采实验模拟装置
CN103850678A (zh) 一种全景钻孔窥视仪的水压致裂法地应力测试系统
CN109709308A (zh) 一种采水型地裂缝物理模型试验装置及试验方法
WO2019000906A1 (zh) 围岩应力场裂隙场一体化监测系统及定量确定方法
Zhang et al. The performance of mechanical characteristics and failure mode for tunnel concrete lining structure in water-rich layer
Gouvenot et al. A New Foundation Technique Using Pi les Sealed By Cement Grout Under High Pressure
CN112557279A (zh) 一种风化基岩孔-裂隙垂向渗透性测试装置及方法
CN217681857U (zh) 一种用于煤层顶板岩层变形监测的压水装置
CN110847889A (zh) 水压致裂测试系统及测试方法
CN203204175U (zh) 一种全景钻孔窥视仪的水压致裂法地应力测试系统
CN209244607U (zh) 一种顶板岩层水平挤压力监测装置
CN111877303B (zh) 孔口管封固装置、注浆装置及注浆方法
CN113107564A (zh) 一种用于固定富水岩溶隧道围岩的锚杆结构及其使用方法
Yang et al. Development of a new inflatable controlled anchor system and experimental study of pull-out capacity
CN209560096U (zh) 一种基于定压注浆原理的微震检波器固定装置
Peng et al. Field experiment research of the polycystic aeration bolt: model design and anchorage mechanism
Ng et al. Long-term tunnel settlement mechanisms of Metro Line 2 in Shanghai
CN214894734U (zh) 一种风化基岩孔-裂隙垂向渗透性测试装置
CN215169931U (zh) 一种水压致裂测试装置用压裂段注水管
CN215261690U (zh) 一种分层锚固式多点位移计

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19895999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19895999

Country of ref document: EP

Kind code of ref document: A1