WO2020119007A1 - 空调器的控制方法 - Google Patents

空调器的控制方法 Download PDF

Info

Publication number
WO2020119007A1
WO2020119007A1 PCT/CN2019/084190 CN2019084190W WO2020119007A1 WO 2020119007 A1 WO2020119007 A1 WO 2020119007A1 CN 2019084190 W CN2019084190 W CN 2019084190W WO 2020119007 A1 WO2020119007 A1 WO 2020119007A1
Authority
WO
WIPO (PCT)
Prior art keywords
fresh air
unit
air conditioner
carbon dioxide
dioxide concentration
Prior art date
Application number
PCT/CN2019/084190
Other languages
English (en)
French (fr)
Inventor
鞠龙家
张飞
Original Assignee
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2020119007A1 publication Critical patent/WO2020119007A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • This application relates to the technical field of air conditioning, for example, to a control method of an air conditioner.
  • an air conditioner with a fresh air function has appeared on the market. It adds a fresh air function to the normal working mode of the air conditioner, so as to introduce outdoor fresh air into the room, reduce the indoor carbon dioxide concentration, and improve the indoor The freshness of the air.
  • most of the control methods of this air conditioner are to embed the fresh air function into several working modes of the air conditioner.
  • the fresh air function is running, it is no longer possible to perform cooling and heating at the same time, which leads to the introduction of outdoor fresh air. Changes in the indoor temperature are too large, which reduces the indoor comfort and seriously affects the user experience.
  • the present disclosure provides a control method for an air conditioner including temperature adjustment Unit and fresh air unit, the temperature adjustment unit includes an indoor fan, the fresh air unit includes a fresh air fan, and the control method includes:
  • the temperature adjustment unit and/or the fresh air unit are selectively controlled to operate.
  • the selectively controlling the operation of the temperature adjustment unit and/or the fresh air unit based on the obtained result includes:
  • the temperature adjustment unit and/or the fresh air unit are selectively controlled to operate.
  • the selectively controlling the operation of the temperature adjustment unit and/or the fresh air unit based on the detection result includes:
  • the operation of the temperature adjustment unit and the fresh air unit are controlled based on the indoor ambient temperature and the carbon dioxide concentration, respectively, to simultaneously adjust the indoor carbon dioxide concentration and temperature;
  • the air conditioner is controlled to issue an alarm message.
  • the selectively controlling the operation of the temperature adjustment unit and/or the fresh air unit based on the detection result includes:
  • the air conditioner is controlled to issue an alarm message.
  • the selectively controlling the operation of the temperature adjustment unit and/or the fresh air unit based on the detection result to adjust the indoor carbon dioxide concentration and temperature simultaneously includes:
  • the operation of the fresh air unit is controlled based on the carbon dioxide concentration, and at the same time, the air guide plate corresponding to the fresh air unit is controlled to send air upward.
  • the selectively controlling the operation of the temperature adjustment unit and/or the fresh air unit based on the detection result includes:
  • the operation of the fresh air unit is selectively controlled.
  • the selectively controlling the operation of the fresh air unit based on the detection result includes:
  • the air conditioner is controlled to issue an alarm message.
  • control method further includes:
  • the wind speed of the fresh air fan and/or the wind speed of the indoor fan are controlled based on the carbon dioxide concentration.
  • control method further includes:
  • the fresh air fan is controlled to continue to operate at the set wind speed for a set time.
  • control method further includes:
  • the air conditioner is controlled to display the current carbon dioxide concentration or send the current carbon dioxide concentration to the terminal device.
  • the air conditioner includes a temperature adjustment unit and a fresh air unit
  • the temperature adjustment unit includes an indoor fan
  • the fresh air unit includes a fresh air fan
  • the control method includes: obtaining the indoor carbon dioxide concentration; When the carbon dioxide concentration is greater than the first preset value, the operating state of the air conditioner is acquired; based on the acquired result, the temperature adjustment unit and/or the fresh air unit are selectively controlled to operate.
  • the control method of the air conditioner of the present disclosure can jointly control the temperature adjustment unit and the fresh air unit when the indoor carbon dioxide concentration is too high, thereby improving indoor comfort and improving user experience.
  • the indoor carbon dioxide concentration is greater than the first preset value, it proves that the indoor air quality is poor at this time, and outdoor fresh air needs to be introduced to improve the air quality.
  • the introduction of outdoor fresh air will inevitably affect the temperature of indoor air, resulting in excessive changes in indoor temperature and reducing indoor comfort.
  • the indoor temperature and carbon dioxide concentration can be adjusted at the same time, while improving indoor comfort, Reduce indoor carbon dioxide concentration, improve indoor air freshness and user experience.
  • FIG. 1 is a flowchart of a control method of an air conditioner of the present disclosure
  • FIG. 2 is a logic diagram of a control method of an air conditioner in a possible implementation manner of the present disclosure.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a It is a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected, or it can be indirectly connected through an intermediate medium, or it can be the connection between two components.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a It is a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected, or it can be indirectly connected through an intermediate medium, or it can be the connection between two components.
  • FIG. 1 is a flowchart of a control method of an air conditioner of the present disclosure.
  • the air conditioner includes a temperature adjustment unit and a fresh air unit, and the temperature adjustment
  • the unit includes a compressor, a condenser, an expansion valve, an evaporator, an outdoor fan and an indoor fan
  • the fresh air unit includes a fresh air fan and a fresh air pipe communicating with the outdoor.
  • the fresh air unit may be a system independent of the air conditioner, for example, the fresh air unit and the temperature adjustment unit are provided with air outlets; the fresh air unit may also be a system formed on the air conditioner, for example, the fresh air unit and the temperature adjustment unit share a common
  • the specific form of the air outlet is not limited in this embodiment.
  • the control methods of air conditioners mainly include:
  • the indoor carbon dioxide concentration for example, the carbon dioxide sensor installed in the air inlet or outlet of the air conditioner to obtain the indoor carbon dioxide concentration, or the carbon dioxide sensor installed anywhere in the room and communicate with the air conditioner through wired or wireless communication Carbon dioxide concentration;
  • the control method of the air conditioner of the present disclosure can jointly control the temperature adjustment unit and the fresh air unit to improve indoor comfort and enhance the user experience.
  • the indoor carbon dioxide concentration is greater than the first preset value, it proves that the indoor air quality is poor at this time, and outdoor fresh air needs to be introduced to improve the air quality.
  • the introduction of outdoor fresh air will inevitably affect the temperature of indoor air, resulting in excessive changes in indoor temperature and reducing indoor comfort.
  • the indoor temperature and carbon dioxide concentration can be adjusted at the same time, while improving indoor comfort, Reduce indoor carbon dioxide concentration, improve indoor air freshness and user experience.
  • step S300 includes:
  • the operating state of the air conditioner When the operating state of the air conditioner is off, detect whether the shutdown fresh air mode is turned on; when the shutdown fresh air mode is not turned on, control the air conditioner to issue an alarm message; when the shutdown fresh air mode is turned on, based on the indoor ambient temperature and carbon dioxide concentration, respectively control
  • the temperature adjustment unit and the fresh air unit operate to simultaneously adjust the indoor carbon dioxide concentration and temperature. Specifically, when the operating state of the air conditioner is off, it proves that the temperature control unit of the air conditioner is not working at this time, and the indoor carbon dioxide concentration is too high, which will affect the indoor air quality.
  • the shutdown fresh air mode is turned on, and when it is not turned on, an alarm message is issued, for example, by pushing the indoor air quality information to the APP installed on the user's terminal device to remind the user that the shutdown fresh air function needs to be turned on, or through the air conditioner Acousto-optic components remind users that the air quality is poor at this time.
  • the user receives the information, he can manually turn off the fresh air mode, of course, he can also set the shutdown fresh air mode to automatically turn on through the remote control or the mobile phone APP.
  • the shutdown fresh air mode is turned on, the operation of the temperature adjustment unit is controlled based on the indoor ambient temperature, and the operation of the fresh air unit is controlled based on the carbon dioxide concentration.
  • the air conditioner when the air conditioner obtains that the indoor temperature is less than 18°C, the air conditioner enters the fresh air heating mode, that is, the temperature adjustment unit operates in the heating mode, and the fresh air unit operates normally to Introduce fresh air while adjusting the indoor temperature to avoid the indoor temperature being too low and affecting the comfort; when the indoor temperature obtained by the air conditioner is between 18°C and 30°C, the air conditioner enters the fresh air supply mode, that is, the temperature adjustment unit does not Operation, the fresh air unit operates normally to introduce fresh air; when the air conditioner acquires a room temperature greater than 30°C, the air conditioner enters the fresh air cooling mode, that is, the temperature adjustment unit operates in the cooling mode, and the fresh air unit operates normally to introduce fresh air At the same time adjust the indoor temperature to avoid the indoor temperature is too high and affect the comfort.
  • the temperature adjustment unit can also be controlled to switch operation in different modes. For example, when the air conditioner is operating in the fresh air heating mode, the air conditioner obtains a room temperature of 25°C. At this time, the air conditioner is switched to the fresh air supply mode, that is, the operating state of the fresh air unit remains unchanged, and the temperature adjustment unit stops. .
  • the principle of switching between other modes is similar to this and will not be repeated here.
  • the control method of the air conditioner of the present disclosure can introduce outdoor fresh air, and use the temperature adjustment module to switch between modes to dynamically adjust the indoor temperature, thereby improving indoor comfort and freshness of the air. Moreover, whether to dynamically adjust the selection is the indoor temperature, which is more direct and accurate for the user and improves the user experience.
  • the indoor temperature which is more direct and accurate for the user and improves the user experience.
  • By issuing an alarm message when the shutdown fresh air mode is not turned on it can also convey air quality information to the user in time to remind the user to turn on the shutdown fresh air mode in time to improve the user experience.
  • the user can also freely decide the usage time of the fresh air function, to avoid the noise caused by the fresh air function from affecting the rest.
  • the shutdown mode when the shutdown mode is turned on, it is further possible to detect whether the temperature compensation function is turned on. If the temperature compensation function is turned on, it proves that the user wants to increase the comfort of the indoor environment while introducing fresh air Degrees, the temperature adjustment unit and the fresh air unit are controlled at the same time; if the temperature compensation function is not turned on, it proves that the user only wants to introduce fresh air at this time, then the fresh air unit is controlled at this time, and the air guide plate of the fresh air unit is also controlled to send the air upward To avoid the fresh wind blowing directly on the human body.
  • the wind deflector is a wind deflector installed at the air outlet of the fresh air unit, and when the fresh air unit and the air conditioner are integrated, the wind deflector is a deflector installed at the air outlet of the air conditioner Wind board.
  • step S300 further includes:
  • the operating state of the air conditioner When the operating state of the air conditioner is the power-on state, it is detected whether the automatic fresh air mode is turned on; when the automatic fresh air mode is not turned on, the air conditioner is controlled to issue an alarm message; when the automatic fresh air mode is turned on, the operation of the fresh air unit is controlled based on the carbon dioxide concentration. Specifically, when the operating state of the air conditioner is turned on, it is proved that the temperature control unit of the air conditioner is adjusting the indoor temperature. At this time, the indoor carbon dioxide concentration is too high, which will affect the indoor air quality.
  • the operation of the temperature adjustment unit is controlled based on the indoor ambient temperature, and the operation of the fresh air unit is controlled based on the carbon dioxide concentration. If the indoor carbon dioxide concentration is too high, the fresh air fan of the fresh air unit can be controlled to run at high speed to quickly reduce the indoor carbon dioxide concentration, and the air conditioning unit automatically selects the corresponding working mode and indoor fan wind speed according to the indoor temperature. Match to improve the comfort of the indoor environment.
  • the control method of the air conditioner of the present disclosure can introduce outdoor fresh air on the premise of improving indoor comfort, reduce the indoor carbon dioxide concentration, improve the freshness of the air, and the temperature adjustment unit and the fresh air unit can be independent of each other Work without affecting each other.
  • the automatic fresh air mode By issuing an alarm message when the automatic fresh air mode is not turned on, it can also convey air quality information to the user in time, reminding the user to turn on the automatic fresh air mode in time to improve the user experience.
  • control method of the air conditioner further includes: when the fresh air unit and/or the temperature adjustment unit is in operation, controlling the wind speed of the fresh air fan and/or the wind speed of the indoor fan based on the carbon dioxide concentration. For example, as shown in Table 1 below, when the carbon dioxide concentration is greater than 1500 ppm, a large amount of outdoor fresh air needs to be introduced to quickly reduce the indoor carbon dioxide concentration.
  • the wind speed of the fresh air fan is high, and to increase the stability of the indoor temperature, the indoor fan
  • the wind speed is also high; for another example, when the carbon dioxide concentration is less than 800pm, it proves that the indoor carbon dioxide concentration is now within the normal range, and the fresh air fan can be turned off at this time, but the internal fan speed can be operated at a silent wind speed to avoid disturbing the user Normal work and rest.
  • control method of the air conditioner of the present disclosure can be flexibly controlled based on the specific conditions of the room, and the indoor air can be efficiently adjusted on the premise of improving indoor comfort and freshness of the air.
  • control method of the air conditioner further includes: when the fresh air unit is operating, comparing the indoor carbon dioxide concentration with a second preset value; when the carbon dioxide concentration is less than the second preset value, controlling The fresh air fan continues to run at the set wind speed for the set time.
  • the second preset value may be 1000 ppm.
  • Time such as controlling the fresh air fan to run at a low speed for 30 minutes or 1 hour, not only can the indoor carbon dioxide concentration be further reduced to a more excellent level without substantially producing noise, but also can prevent the fresh air fan from reaching the shutdown threshold After stopping operation, the indoor air quality immediately increases and the phenomenon of frequent start and stop of fresh air fans appears, improving the user experience.
  • control method of the air conditioner further includes: when the fresh air unit is running, controlling the air conditioner to display the current carbon dioxide concentration or send the current carbon dioxide concentration to the terminal device.
  • the fresh air unit when the fresh air unit is running, it proves that the indoor carbon dioxide concentration is high at this time, and outdoor fresh air needs to be introduced.
  • the remote control or the user's mobile phone APP can achieve the effect of visually displaying the current air quality to the user, further improving the user experience.
  • the first preset value and the second preset value are not fixed, and those skilled in the art can adjust it to adapt it to a more specific application scenario.
  • the first preset value and the second preset value may be set to 900 ppm, 1100 ppm, etc. at the same time, or may be set to different values, for example, the first preset value is set to 1200 ppm, and the second preset value is set to 800 ppm.
  • the sequence relationship between the above steps is not unchanged, and those skilled in the art can adjust it in accordance with specific application scenarios. For example, after the step of obtaining the indoor carbon dioxide concentration is adjusted to obtain the operating state of the air conditioner, or when the carbon dioxide concentration value is greater than the first preset value, an alarm message is issued first, and then whether the fresh air mode of the air conditioner is turned off is detected.
  • FIG. 2 is a logic diagram of a control method of an air conditioner in a possible implementation manner of the present disclosure.
  • the air conditioner first obtains the indoor carbon dioxide concentration, and judges whether the concentration is greater than 1000 ppm ⁇ if the concentration is less than 1000 ppm, returns to continue to obtain; if the concentration is greater than 1000 ppm, then Obtain the operating status of the air conditioner: (1) When the air conditioner is turned on, determine whether the automatic fresh air mode is turned on ⁇ if it is not turned on, push the alarm information to the mobile phone APP, if it is turned on, control the operation of the fresh air fan ⁇ during the operation Continue to judge whether the concentration of carbon dioxide is less than 1000ppm ⁇ if the concentration is not less than 1000ppm, control the fresh air fan to continue to operate; if the concentration is less than 1000ppm, control the fresh air fan to stop running after 1 hour of low wind operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)
  • Ventilation (AREA)

Abstract

本申请涉及空气调节技术领域,涉及一种空调器的控制方法。本公开旨在解决现有的带有新风功能的空调器存在的用户体验差的问题。为此目的,本发明的空调器的控制方法包括:获取室内的二氧化碳浓度;在二氧化碳浓度大于第一预设值时,获取空调器的运行状态;基于获取结果,选择性地控制温度调节单元和/或新风单元运行。通过上述控制方式,本发明的空调器的控制方法能够在室内二氧化碳浓度过高时,对温度调节单元和新风单元进行联合控制,提高室内舒适度,提升用户体验。

Description

空调器的控制方法
本申请基于申请号为201811527244.X、申请日为2018.12.13的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及空气调节技术领域,例如涉及一种空调器的控制方法。
背景技术
近年来,随着生活水平的提高,人们对生活质量的追求也越来越高。例如,越来越多的人们选择在家中安装新风机,以改善室内的空气质量。但是,新风机的安装不仅占用很大一部分室内面积,而且安装过程困难、麻烦,安装完毕后还影响室内的美观。
为解决上述问题,市场上出现了一种带有新风功能的空调器,其在空调的正常工作模式上,还添加了新风功能,以便将室外的新风引入室内,降低室内的二氧化碳浓度,改善室内空气的新鲜度。但是,目前这种空调器的控制方式大多是将新风功能嵌入到空调的几种工作模式中,当运行新风功能时,便无法再同时进行制冷制热,进而导致了在引入室外新风的同时,室内温度的变化过大,使得室内的舒适性下降,严重影响了用户体验。
相应地,本领域需要一种新的空调器的控制方法来解决上述问题。
公开内容
为了解决现有技术中的上述问题,即为了解决现有的带有新风功能的空调器存在的用户体验差的问题,本公开提供了一种空调器的控制方法,所述空调器包括温度调节单元和新风单元,所述温度调节单元包括室内风机,所述新风单元包括新风风机,所述控制方法包括:
获取室内的二氧化碳浓度;
在所述二氧化碳浓度大于第一预设值时,获取所述空调器的运行状态;
基于获取结果,选择性地控制所述温度调节单元和/或所述新风单元运行。
在一些可选实施例中,所述基于获取结果,选择性地控制所述温度调节单元和/或所述新风单元运行,包括:
在所述空调器的运行状态为关机状态时,检测关机新风模式是否开启;
基于检测结果,选择性地控制所述温度调节单元和/或所述新风单元运行。
在一些可选实施例中,所述基于检测结果,选择性地控制所述温度调节单元和/或所述新风单元运行,包括:
在所述关机新风模式开启时,基于室内环境温度和所述二氧化碳浓度,分别控制所述温度调节单元和所述新风单元运行,以同时调节室内的二氧化碳浓度和温度;
否则,在所述关机新风模式未开启时,控制所述空调器发出报警信息。
在一些可选实施例中,所述基于检测结果,选择性地控制所述温度调节单元和/或所述新风单元运行,包括:
在所述关机新风模式开启时,进一步检测温度补偿功能是否开启;
基于检测结果,选择性地控制所述温度调节单元和/或所述新风单元运行,以同时调节室内的二氧化碳浓度和温度;
否则,在所述关机新风模式未开启时,控制所述空调器发出报警信息。
在一些可选实施例中,所述基于检测结果,选择性地控制所述温度调节单元和/或所述新风单元运行,以同时调节室内的二氧化碳浓度和温度,包括:
在所述温度补偿功能开启式,基于室内环境温度和所述二氧化碳浓度,分别控制所述温度调节单元和所述新风单元运行;
否则,在所述温度补偿功能未开启时,基于所述二氧化碳浓度,控制所述新风单元运行,同时控制与所述新风单元对应的导风板向上送风。
在一些可选实施例中,所述基于检测结果,选择性地控制所述温度调节单元和/或所述新风单元运行,包括:
在所述空调器的运行状态为开机状态时,检测自动新风模式是否开启;
基于检测结果,选择性地控制所述新风单元运行。
在一些可选实施例中,所述基于检测结果,选择性地控制所述新风单元运行,包括:
在所述自动新风模式开启时,基于所述二氧化碳浓度控制所述新风单元运行;
否则,在所述自动新风模式未开启时,控制所述空调器发出报警信息。
在一些可选实施例中,所述控制方法还包括:
在所述新风单元和/或所述温度调节单元运行时,基于所述二氧化碳浓度,控制所述新风风机的风速和/或所述室内风机的风速。
在一些可选实施例中,所述控制方法还包括:
在所述新风单元运行时,比较室内的二氧化碳浓度与第二预设值的大小;
在所述二氧化碳浓度小于所述第二预设值时,控制所述新风风机以设定的风速继续运行设定的时间。
在一些可选实施例中,所述控制方法还包括:
在所述新风单元运行时,控制所述空调器显示当前的二氧化碳浓度或将当前的二氧化碳浓度发送至终端设备。
本领域技术人员能够理解的是,在本公开的技术方案中,空调器包括温度调节单元和新风单元,温度调节单元包括室内风机,新风单元包括新风风机,控制方法包括:获取室内的二氧化碳浓度;在二氧化碳浓度大于第一预设值时,获取空调器的运行状态;基于获取结果,选择性地控制温度调节单元和/或新风单元运行。
通过上述控制方式,本公开的空调器的控制方法能够在室内二氧化碳浓度过高时,对温度调节单元和新风单元进行联合控制,提高室内舒适度,提升用户体验。具体而言,在室内的二氧化碳浓度大于第一预设值时,证明此时室内空气质量较差,需要引入室外新风以改善空气质量。但是引入室外新风势必会对室内空气的温度产生影响,导致室内温度变化过大,降低室内舒适度。此时,通过获取空调器的运行状态,并且根据运行状态的不同选择性地控制温度调节单元和/或新风单元运行,能够对室内的温度和二氧化碳浓度同时进行调整,提高室内舒适度的同时,降低室内二氧化碳浓 度,提高室内空气新鲜度和用户体验。
附图说明
下面参照附图来描述本公开的空调器的控制方法。附图中:
图1为本公开的空调器的控制方法的流程图;
图2为本公开的一种可能的实施方式中空调器的控制方法的逻辑图。
具体实施方式
下面参照附图来描述本公开的实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本公开的技术原理,并非旨在限制本公开的保护范围。
需要说明的是,在本公开的描述中,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本公开的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本公开中的具体含义。
首先参照图1,对本公开的空调器的控制方法进行介绍。其中,图1为本公开的空调器的控制方法的流程图。
如图1所示,为解决现有的带有新风功能的空调器存在的用户体验差的问题,本公开提供了一种空调器的控制方法,空调器包括温度调节单元和新风单元,温度调节单元包括压缩机、冷凝器、膨胀阀、蒸发器以及室外风机和室内风机,新风单元包括新风风机以及与室外连通的新风管路。其中,新风单元可以是与空调器相互独立的一个系统,如新风单元与温度调节单元各设置有出风口;新风单元也可以是形成在空调器上的系统,如新风单元与温度调节单元共用一个出风口,其具体形式本实施方式不作限制。空调器的控制方法主要包括:
S100、获取室内的二氧化碳浓度,如通过设置于空调器进风口或出风口的二氧化碳传感器来获取室内的二氧化碳浓度,或者通过设置于室内任意位置且与空调器通过有线或无线通信的二氧化碳传感器获取室内的二氧化碳浓度;
S200、在二氧化碳浓度大于第一预设值时,获取空调器的运行状态,如在二氧化碳浓度大于1000ppm时,证明此时室内二氧化碳浓度偏高,需要进行调节,此时首先获取空调器的运行状态,再根据运行状态决定调节方式,其中,空调器的运行状态可以是开机状态或关机状态,二者的区别在于温度调节单元是否正在工作;
S300、基于获取结果,选择性地控制温度调节单元和/或新风单元运行,如在空调器的运行状态为开机状态时,证明温度调节单元已经在工作,此时控制新风单元运行,以同时调节室内的温度和二氧化碳浓度,提供室内的舒适度和空气新鲜度;再如, 在空调器的运行状态为关机状态时,证明温度调节单元未工作,此时可以通过同时启动温度调节单元和新风单元,以同时调节室内的温度和二氧化碳浓度,提高室内的舒适度和空气新鲜度。
从上述描述可以看出,本公开的空调器的控制方法能够在室内二氧化碳浓度过高时,通过对温度调节单元和新风单元进行联合控制,提高室内舒适度,提升用户体验。具体而言,在室内的二氧化碳浓度大于第一预设值时,证明此时室内空气质量较差,需要引入室外新风以改善空气质量。但是引入室外新风势必会对室内空气的温度产生影响,导致室内温度变化过大,降低室内舒适度。此时,通过获取空调器的运行状态,并且根据运行状态的不同选择性地控制温度调节单元和/或新风单元运行,能够对室内的温度和二氧化碳浓度同时进行调整,提高室内舒适度的同时,降低室内二氧化碳浓度,提高室内空气新鲜度和用户体验。
在一种可能的实施方式中,步骤S300包括:
在空调器的运行状态为关机状态时,检测关机新风模式是否开启;在关机新风模式未开启时,控制空调器发出报警信息;在关机新风模式开启时,基于室内环境温度和二氧化碳浓度,分别控制温度调节单元和新风单元运行,以同时调节室内的二氧化碳浓度和温度。具体而言,在空调器的运行状态为关机状态时,证明此时空调器的温度控制单元并未工作,此时室内二氧化碳浓度过高,会影响室内的空气质量。此时检测关机新风模式是否开启,在没开启时,发出警报信息,如通过向用户的终端设备上安装的APP推送室内空气质量信息的方式提醒用户需要开启关机新风功能,或者通过空调器上的声光元器件提示用户此时的空气质量较差。而用户接收到该信息时,可以通过手动的方式开启关机新风模式,当然也可以通过遥控器或手机APP等将关机新风模式设置为自动开启。在关机新风模式开启时,基于室内环境温度控制温度调节单元的运行,基于二氧化碳浓度控制新风单元的运行。
例如,在一种可能的实施方式中,当空调器获取到室内的温度小于18℃时,则空调器进入新风制热模式,即温度调节单元以制热模式运行,新风单元正常运行,以在引入新风的同时调节室内温度,避免室内温度过低而影响舒适度;当空调器获取到的室内的温度在18℃到30℃之间,则空调器进入新风送风模式,即温度调节单元不运行,新风单元正常运行,以引入新风;当空调器获取到室内的温度大于30℃时,则空调器进入新风制冷模式,即温度调节单元以制冷模式运行,新风单元正常运行,以在引入新风的同时调节室内温度,避免室内温度过高而影响舒适度。进一步地,在运行过程中,基于室内温度的变化,还可以控制温度调节单元在不同的模式下切换运行。如当空调器以新风制热模式运行时,空调器获取到室内的温度为25℃,此时空调器切换为新风送风模式运行,即保持新风单元的运行状态不变,温度调节单元停止运行。其他模式之间的切换原理与此类似,在此不再赘述。
通过上述控制方式,本公开的空调器的控制方法能够在引入室外新风的同时,利用温度调节模块在模式之间切换对室内温度进行动态调节,提高室内的舒适度和空气的新鲜度。并且,是否进行动态调节选择的是室内的温度,对于用户来说更加直接准确,提升用户体验。通过在关机新风模式未开启时,发出报警信息,还能够及时向用户传达空气质量信息,提醒用户及时开启关机新风模式,提升用户体验。通过让用户选择是否开启关机新风模式,还可以使得用户自由决定该新风功能的使用时间,避免由于新风功能产生的噪音影响休息。
在一种可能的实施方式中,为了进一步提升用户体验,在关机模式开启时,还可以进一步检测温度补偿功能是否开启,如果温度补偿功能开启,证明用户想在引入新风的同时提高室内环境的舒适度,则此时同时控制温度调节单元和新风单元运行;如果温度补偿功能未开启,证明此时用户只想引入新风,那么此时控制新风单元运行,同时控制新风单元的导风板向上送风,以避免新风对人体直吹。其中,在新风单元与空调器单独设置时,该导风板为新风单元的出风口设置的导风板,在新风单元与空调器一体设置时,导风板为空调器的出风口设置的导风板。
在另一种可能的实施方式中,步骤S300还包括:
在空调器的运行状态为开机状态时,检测自动新风模式是否开启;在自动新风模式未开启时,控制空调器发出报警信息;在自动新风模式开启时,基于二氧化碳浓度控制新风单元运行。具体而言,在空调器的运行状态为开机状态时,证明此时空调器的温度控制单元正在对室内温度进行调节,此时室内二氧化碳浓度过高,会影响室内的空气质量。此时检测自动新风模式是否开启,在没开启时,发出警报信息;如上述的通过向用户的终端设备上安装的APP推送室内空气质量信息的方式提醒用户需要开启关机新风功能,或者通过空调器上的声光元器件提示用户此时的空气质量较差。而用户接收到该信息时,可以通过手动的方式开启自动新风模式,当然也可以通过遥控器或手机APP等将自动新风模式设置为自动开启。在自动新风模式开启时,基于室内环境温度控制温度调节单元的运行,基于二氧化碳浓度控制新风单元的运行。如在室内的二氧化碳浓度过大时,可以控制新风单元的新风风机高速运行,以快速降低室内的二氧化碳浓度,而空气调节单元则根据室内的温度,自动选择对应的工作模式和室内风机的风速进行匹配,提高室内环境的舒适度。
通过上述控制方式,本公开的空调器的控制方法能够在提高室内的舒适度的前提下,引入室外新风,降低室内的二氧化碳浓度,提高空气的新鲜度,并且温度调节单元与新风单元能够各自独立工作,互不影响。通过在自动新风模式未开启时,发出报警信息,还能够及时向用户传达空气质量信息,提醒用户及时开启自动新风模式,提升用户体验。
在另一种可能的实施方式中,空调器的控制方法还包括:在新风单元和/或温度调节单元运行时,基于二氧化碳浓度,控制新风风机的风速和/或室内风机的风速。例如,如下表1所示,在二氧化碳浓度大于1500ppm时,需要大量引入室外新风,以快速降低室内二氧化碳浓度,此时新风风机的风速为高风,而为了提高室内温度的稳定,此时室内风机的风速也为高风;再如,在二氧化碳浓度小于800pm时,证明此时室内二氧化碳浓度已经处于正常范围内,此时新风风机可以关闭,而是内风机风速可以运行在静音风速,以免打扰用户的正常工作和休息。
表1 二氧化碳浓度与风速对照表
二氧化碳浓度 >1500 1000-1500 800-1000 <800
室内风机风速 高风 中风 低风 静音
新风风机风速 高风 高风 低风 关闭
通过上述控制方式,本公开的空调器的控制方法能够基于室内的具体情况进行灵活控制,在提高室内舒适度和空气新鲜度的前提下,高效地完成对室内空气的调节。
在另一种可能的实施方式中,空调器的控制方法还包括:在新风单元运行时,比 较室内的二氧化碳浓度与第二预设值的大小;在二氧化碳浓度小于第二预设值时,控制新风风机以设定的风速继续运行设定的时间。具体而言,第二预设值可以为1000ppm,在室内二氧化碳浓度小于1000ppm时,证明此时室内空气质量已经得到改善并符合停机标准,此时控制新风风机以设定的风速继续运行设定的时间,如控制新风风机以低速运行30分钟或1小时,不仅能够在基本不产生噪音的前提下,使室内的二氧化碳浓度进一步降低至更加优秀的水平,而且还能够避免新风风机在达到停机阈值时停止运行后室内空气质量立即升高而导致的新风风机频繁启停的现象出现,提升用户体验。
在另一种可能的实施方式中,空调器的控制方法还包括:在新风单元运行时,控制空调器显示当前的二氧化碳浓度或将当前的二氧化碳浓度发送至终端设备。具体而言,在新风单元运行时,证明此时室内二氧化碳浓度偏高,需要引入室外新风。在新风风机工作过程中,通过将二氧化碳浓度显示在空调器上或实时发送至终端设备上,如通过数字或更改指示灯颜色的方式显示在空调器的显示面板上,或将二氧化碳浓度发送至空调遥控器或者用户的手机APP上,能够达到给用户直观显示当前空气质量的效果,进一步提升用户体验。
需要说明的是,上述的实施方式仅仅用于阐述本公开的原理,并非旨在于限制本公开的保护范围。在不偏离本公开原理的前提下,本领域技术人员可以对上述设置方式进行调整,以便本公开能够适用于更加具体的应用场景。
例如,在一种可替换的实施方式中,第一预设值和第二预设值并非一成不变,本领域技术人员可以对其进行调整,以便其适应更加具体的应用场景。如第一预设值和第二预设值可以同时设置为900ppm、1100ppm等,也可以分别设置成不同的数值,如第一预设值设置为1200ppm,第二预设值设置为800ppm。
再如,在另一种可替换的实施方式中,上述各个步骤之间的先后关系并非不变,本领域技术人员可以结合具体的应用场景进行调整。如可以将获取室内二氧化碳浓度的步骤调整至获取空调器的运行状态之后,或者在二氧化碳浓度值大于第一预设值时,先发出报警信息,再检测空调器的关机新风模式是否开启等。
下面结合图2对本公开的空调器的控制流程进行简要说明。其中,图2为本公开的一种可能的实施方式中空调器的控制方法的逻辑图。
如图2所示,在一种可能的实施方式中,首先空调器获取室内的二氧化碳浓度,并判断该浓度是否大于1000ppm→如果该浓度小于1000ppm,则返回继续获取;如果该浓度大于1000ppm,则获取空调器的运行状态:(1)在空调器处于开机状态时,判断自动新风模式是否开启→如果没有开启,则向手机APP推送报警信息,如果已经开启,则控制新风风机运行→运行过程中持续判断二氧化碳浓度是否小于1000ppm→如果该浓度不小于1000ppm,则控制新风风机继续运行;如果该浓度小于1000ppm,则控制新风风机以低风运行1小时后停止运行。(2)在空调器处于关机状态时,判断关机新风模式是否开启→如果没有开启,则向手机APP推送报警信息,如果已经开启,则进一步判断温度补偿功能是否开启→如果温度补偿功能未开启,则控制新风风机单独运行;如果温度补偿功能开启,则控制新风单元和温度控制单元同时运行。
至此,已经结合附图所示的实施方式描述了本公开的技术方案,但是,本领域技术人员容易理解的是,本公开的保护范围显然不局限于这些具体实施方式。在不偏离本公开的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替 换,这些更改或替换之后的技术方案都将落入本公开的保护范围之内。

Claims (10)

  1. 一种空调器的控制方法,所述空调器包括温度调节单元和新风单元,所述温度调节单元包括室内风机,所述新风单元包括新风风机,其特征在于,所述控制方法包括:
    获取室内的二氧化碳浓度;
    在所述二氧化碳浓度大于第一预设值时,获取所述空调器的运行状态;
    基于获取结果,选择性地控制所述温度调节单元和/或所述新风单元运行。
  2. 根据权利要求1所述的空调器的控制方法,其特征在于,所述基于获取结果,选择性地控制所述温度调节单元和/或所述新风单元运行,包括:
    在所述空调器的运行状态为关机状态时,检测关机新风模式是否开启;
    基于检测结果,选择性地控制所述温度调节单元和/或所述新风单元运行。
  3. 根据权利要求2所述的空调器的控制方法,其特征在于,所述基于检测结果,选择性地控制所述温度调节单元和/或所述新风单元运行,包括:
    在所述关机新风模式开启时,基于室内环境温度和所述二氧化碳浓度,分别控制所述温度调节单元和所述新风单元运行,以同时调节室内的二氧化碳浓度和温度;
    否则,在所述关机新风模式未开启时,控制所述空调器发出报警信息。
  4. 根据权利要求2所述的空调器的控制方法,其特征在于,所述基于检测结果,选择性地控制所述温度调节单元和/或所述新风单元运行,包括:
    在所述关机新风模式开启时,检测温度补偿功能是否开启;
    基于检测结果,选择性地控制所述温度调节单元和/或所述新风单元运行,以同时调节室内的二氧化碳浓度和温度;
    否则,在所述关机新风模式未开启时,控制所述空调器发出报警信息。
  5. 根据权利要求4所述的空调器的控制方法,其特征在于,所述基于检测结果,选择性地控制所述温度调节单元和/或所述新风单元运行,以同时调节室内的二氧化碳浓度和温度,包括:
    在所述温度补偿功能开启式,基于室内环境温度和所述二氧化碳浓度,分别控制所述温度调节单元和所述新风单元运行;
    否则,在所述温度补偿功能未开启时,基于所述二氧化碳浓度,控制所述新风单元运行,同时控制与所述新风单元对应的导风板向上送风。
  6. 根据权利要求1所述的空调器的控制方法,其特征在于,所述基于检测结果,选择性地控制所述温度调节单元和/或所述新风单元运行,包括:
    在所述空调器的运行状态为开机状态时,检测自动新风模式是否开启;
    基于检测结果,选择性地控制所述新风单元运行。
  7. 根据权利要求6所述的空调器的控制方法,其特征在于,所述基于检测结果,选择性地控制所述新风单元运行,包括:
    在所述自动新风模式开启时,基于所述二氧化碳浓度控制所述新风单元运行;
    否则,在所述自动新风模式未开启时,控制所述空调器发出报警信息。
  8. 根据权利要求1至7中任一项所述的空调器的控制方法,其特征在于,所述控制方法还包括:
    在所述新风单元和/或所述温度调节单元运行时,基于所述二氧化碳浓度,控制所 述新风风机的风速和/或所述室内风机的风速。
  9. 根据权利要求1至7中任一项所述的空调器的控制方法,其特征在于,所述控制方法还包括:
    在所述新风单元运行时,比较室内的二氧化碳浓度与第二预设值的大小;
    在所述二氧化碳浓度小于所述第二预设值时,控制所述新风风机以设定的风速继续运行设定的时间。
  10. 根据权利要求1至7中任一项所述的空调器的控制方法,其特征在于,所述控制方法还包括:
    在所述新风单元运行时,控制所述空调器显示当前的二氧化碳浓度或将当前的二氧化碳浓度发送至终端设备。
PCT/CN2019/084190 2018-12-13 2019-04-25 空调器的控制方法 WO2020119007A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811527244.X 2018-12-13
CN201811527244.XA CN109724226B (zh) 2018-12-13 2018-12-13 空调器的控制方法

Publications (1)

Publication Number Publication Date
WO2020119007A1 true WO2020119007A1 (zh) 2020-06-18

Family

ID=66295922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084190 WO2020119007A1 (zh) 2018-12-13 2019-04-25 空调器的控制方法

Country Status (2)

Country Link
CN (1) CN109724226B (zh)
WO (1) WO2020119007A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112050440B (zh) * 2019-06-06 2022-07-19 重庆海尔空调器有限公司 新风空调的控制方法
CN112050447B (zh) * 2019-06-06 2022-07-19 重庆海尔空调器有限公司 新风空调的控制方法
CN112050439B (zh) * 2019-06-06 2022-07-15 重庆海尔空调器有限公司 新风空调的控制方法
CN112050442B (zh) * 2019-06-06 2022-07-15 重庆海尔空调器有限公司 新风空调的净化控制方法
CN112050445B (zh) * 2019-06-06 2022-07-15 重庆海尔空调器有限公司 新风空调的净化控制方法
CN112050390B (zh) * 2019-06-06 2022-07-19 重庆海尔空调器有限公司 新风空调的控制方法
CN112050446B (zh) * 2019-06-06 2022-07-19 重庆海尔空调器有限公司 新风空调的控制方法
CN112050441B (zh) * 2019-06-06 2022-07-15 重庆海尔空调器有限公司 新风空调的净化控制方法
CN112050444B (zh) * 2019-06-06 2022-07-19 重庆海尔空调器有限公司 新风空调的净化控制方法
CN112050443B (zh) * 2019-06-06 2022-07-19 重庆海尔空调器有限公司 新风空调的净化控制方法
CN111780335B (zh) * 2020-06-01 2021-08-31 宁波奥克斯电气股份有限公司 一种新风系统控制方法、装置及空调器
CN114076387B (zh) * 2020-08-14 2023-06-09 海信空调有限公司 一种空调及空调新风风量控制方法
CN111895632B (zh) * 2020-08-21 2021-12-17 河北棣烨信息技术有限公司 被动房新风机控制方法、系统及终端设备
CN112283896B (zh) * 2020-09-17 2022-03-01 海信(山东)空调有限公司 一种空调器和新风模块自启动噪声的控制方法
CN112283895B (zh) * 2020-09-17 2022-03-01 海信(山东)空调有限公司 一种空调器和净化器自启动噪声的控制方法
CN113467261A (zh) * 2021-07-06 2021-10-01 青岛海尔空调器有限总公司 设备联动方法和系统
CN113587241A (zh) * 2021-07-06 2021-11-02 重庆海尔空调器有限公司 一种空调器的新风控制方法及装置
CN113639400A (zh) * 2021-08-25 2021-11-12 宁波奥克斯电气股份有限公司 一种空调器、新风控制方法及装置
CN114061080B (zh) * 2021-10-28 2023-06-23 青岛海尔空调器有限总公司 新风控制方法、装置、电子设备以及存储介质
CN114061084B (zh) * 2021-10-29 2023-11-21 青岛海尔空调器有限总公司 空调器的控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104456735A (zh) * 2014-12-12 2015-03-25 珠海格力电器股份有限公司 一种具有新风功能的空调器及其控制方法和控制系统
CN105241019A (zh) * 2015-10-29 2016-01-13 青岛海尔空调器有限总公司 换新风控制方法
CN106225147A (zh) * 2016-07-25 2016-12-14 珠海格力电器股份有限公司 新风系统空调器的控制方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151363A1 (ja) * 2014-03-31 2015-10-08 三菱電機株式会社 空調システム、及び、空調設備の制御方法
CN106500270B (zh) * 2016-11-09 2019-02-12 珠海格力电器股份有限公司 新风空调的控制方法、装置和新风空调

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104456735A (zh) * 2014-12-12 2015-03-25 珠海格力电器股份有限公司 一种具有新风功能的空调器及其控制方法和控制系统
CN105241019A (zh) * 2015-10-29 2016-01-13 青岛海尔空调器有限总公司 换新风控制方法
CN106225147A (zh) * 2016-07-25 2016-12-14 珠海格力电器股份有限公司 新风系统空调器的控制方法及装置

Also Published As

Publication number Publication date
CN109724226A (zh) 2019-05-07
CN109724226B (zh) 2021-05-25

Similar Documents

Publication Publication Date Title
WO2020119007A1 (zh) 空调器的控制方法
WO2018126755A1 (zh) 空调器控制方法及装置
CN105333562B (zh) 空调器及其自动运转模式的控制方法
WO2020077808A1 (zh) 设备控制方法和装置
WO2018191703A1 (en) Thermostat with preemptive heating, cooling, and ventilation in response to elevated occupancy detection via proxy
CN104930652B (zh) 空调遥控器及其工作方法
CN108489009A (zh) 空调器控制方法、装置及可读存储介质、空调器
WO2020133845A1 (zh) 空调器及其控制方法
CN110887175B (zh) 空调器的控制方法及空调器
CN114061080B (zh) 新风控制方法、装置、电子设备以及存储介质
CN111425944B (zh) 一种新风空调系统及其控制方法
CN111397124A (zh) 一种新风空调控制方法和装置
CN108759002A (zh) 空调器的控制方法、空调器和计算机可读存储介质
CN112923440B (zh) 新风空调系统及其在夏季夜间的控制方法
WO2019227851A1 (zh) 一种水系统空调控制方法
WO2022242108A1 (zh) 用于空调器的杀菌控制方法及空调器
WO2018233146A1 (zh) 新风机及其的控制方法和装置
CN106322634A (zh) 一种空调新风机的节能控制装置及其控制方法
WO2023024633A1 (zh) 一种空调器控制方法及空调器
CN204574266U (zh) 空调系统
WO2021219034A1 (zh) 一种富氧空调及用于富氧空调的控制方法
CN104296327A (zh) 空调器的控制方法及控制装置、空调器
CN105822535A (zh) 压缩机的控制方法、装置及空调器
CN113932415A (zh) 一种空调器控制方法及空调器
CN114427735B (zh) 空调器控制方法、控制装置和非易失性存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19895402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19895402

Country of ref document: EP

Kind code of ref document: A1