WO2020118913A1 - 一种电压峰值判断装置、断电装置及方法 - Google Patents

一种电压峰值判断装置、断电装置及方法 Download PDF

Info

Publication number
WO2020118913A1
WO2020118913A1 PCT/CN2019/076422 CN2019076422W WO2020118913A1 WO 2020118913 A1 WO2020118913 A1 WO 2020118913A1 CN 2019076422 W CN2019076422 W CN 2019076422W WO 2020118913 A1 WO2020118913 A1 WO 2020118913A1
Authority
WO
WIPO (PCT)
Prior art keywords
zero
power supply
waveform
voltage
detection signal
Prior art date
Application number
PCT/CN2019/076422
Other languages
English (en)
French (fr)
Inventor
孙志伟
刘苏鄂
徐勤耀
孙利民
朱百发
Original Assignee
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2020118913A1 publication Critical patent/WO2020118913A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0084Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring voltage only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/175Indicating the instants of passage of current or voltage through a given value, e.g. passage through zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/021Details concerning the disconnection itself, e.g. at a particular instant, particularly at zero value of current, disconnection in a predetermined order

Definitions

  • the present application relates to the technical field of air conditioning, and in particular to a voltage peak judgment device, a power-off device and a method.
  • Article 22.5 of Part 1 of GB4706.1 and IEC60335.1 safety standards for household and similar electrical appliances stipulates: "Appliances intended to be connected to a power source by means of a plug shall be constructed so that they can be touched in normal use When touching the pins of this plug, there is no danger of electric shock due to overcharged capacitors.”
  • GB4706.1-2005 stipulates that the capacitor with a rated capacity not greater than 0.1 ⁇ F (IEC603351-2016 stipulates that the capacitor with a rated capacity less than 0.1 ⁇ F) is not considered to cause electric shock.
  • Compliance can be determined by the following experiment: supply the appliance with a rated voltage, and then place any one of its switches in the "off" position, so that the appliance is disconnected from the power supply at the peak voltage, and 1s after the disconnection, use An instrument that does not significantly affect the measured value, measures the voltage between the pins on the plug, and the voltage value does not exceed 34V.
  • the experiment requires that the appliance must be disconnected when the voltage is peak, and the current operation mode is realized by manually plugging in and out the power.
  • the application provides a voltage peak judgment device, a power-off device and a method to solve the problems that the existing voltage peak power-off method cannot accurately capture the voltage peak, the efficiency is low, and the safety performance is poor.
  • a brief summary is given below. This summary section is not a general comment, nor is it to determine key/important elements or to describe the scope of protection of these embodiments. Its sole purpose is to present some concepts in a simple form as a preface to the detailed description that follows.
  • a voltage peak judgment device is provided.
  • the voltage peak judgment device includes a power supply device that supplies power to the device under test, and further includes:
  • a zero-crossing detection circuit for detecting the zero-crossing moment of the output voltage of the power supply device and generating a zero-crossing detection signal
  • the timing device is used to count time according to the set duration from the rising or falling edge of the zero-crossing detection signal.
  • a waveform display device is further included for displaying the waveform of the output voltage of the power supply device and the waveform of the zero-crossing detection signal.
  • a voltage peak power-off device is provided.
  • the voltage peak power-off device includes the foregoing voltage peak judgment device, further including:
  • the power switch device is used to control the power supply device and the power supply circuit of the appliance under test to be turned on or off;
  • the controller is used to control the power switch device to cut off the power supply circuit of the power supply device and the device under test at the time when the timing device completes the timing.
  • a waveform display device is further included for displaying the waveform of the output voltage of the power supply device and the waveform of the zero-crossing detection signal.
  • the output voltage of the power supply device is input to the waveform display device for display after passing through the power switch device.
  • a voltage peak judgment method is provided.
  • the voltage peak judgment method includes:
  • timing is performed according to the set duration.
  • a voltage peak power-off method is provided.
  • the voltage peak power-off method includes:
  • the power supply circuit of the power supply device and the device under test is disconnected.
  • the waveform of the output voltage of the power supply device and the waveform of the zero-cross detection signal are displayed.
  • the waveform of the output voltage of the power supply device is a stable waveform
  • the waveform of the zero-crossing detection signal is a stable waveform
  • the method may further include: after the timer passes the set time, displaying the waveform of the output voltage of the power supply device temporarily, and determining whether the position where the waveform is interrupted is a voltage peak.
  • the zero-crossing detection circuit uses the zero-crossing detection circuit to detect the zero-crossing time of the output voltage of the power supply device. From this zero-crossing time, delay the preset fixed time to accurately capture the voltage peak time, providing accurate voltage peak power-off basis.
  • the voltage peak After accurately grasping the peak time, the voltage peak can be accurately powered off through the power switch device.
  • the peak or trough can be accurately captured at a time, and the voltage peak can be powered off, which saves test equipment resources, improves the efficiency of plug voltage testing, and is safe and reliable.
  • Fig. 1 is a block diagram of a circuit structure of a voltage peak judgment device according to an exemplary embodiment.
  • Fig. 2 is a waveform diagram of an output signal of a zero-crossing detection circuit and an output voltage signal of a voltage device according to an exemplary embodiment.
  • Fig. 3 is a block diagram of a circuit structure of a voltage peak power-off device according to an exemplary embodiment.
  • the terms "include”, “include” or any other variant thereof are intended to cover non-exclusive inclusion, so that a structure, device, or device that includes a series of elements includes not only those elements, but also others that are not explicitly listed Elements, or include elements inherent to such structures, devices, or equipment. Without further restrictions, the element defined by the sentence "including one" does not exclude that there are other identical elements in the structure, device or equipment that includes the element.
  • the embodiments in this document are described in a progressive manner. Each embodiment focuses on the differences from other embodiments. The same and similar parts between the embodiments can be referred to each other.
  • connection should be understood in a broad sense, for example, it can be a mechanical connection or an electrical connection, or it can be the communication between two elements, It may be directly connected or indirectly connected through an intermediate medium.
  • connection should be understood in a broad sense, for example, it can be a mechanical connection or an electrical connection, or it can be the communication between two elements, It may be directly connected or indirectly connected through an intermediate medium.
  • connection should be understood in a broad sense, for example, it can be a mechanical connection or an electrical connection, or it can be the communication between two elements, It may be directly connected or indirectly connected through an intermediate medium.
  • the term “plurality” means two or more.
  • A/B means: A or B.
  • a and/or B means: A or B, or A and B.
  • the voltage peak judgment device includes a power supply device 12 that supplies power to the device under test 11, and further includes:
  • a zero-crossing detection circuit 13 is used to detect the zero-crossing moment of the output voltage of the power supply device 12 and generate a zero-crossing detection signal;
  • the timing device 14 is used for timing according to the set duration from the rising or falling edge of the zero-cross detection signal.
  • waveform 1 is the output voltage waveform of the power supply device
  • waveform 2 is the waveform of the zero-cross detection signal.
  • the waveform of the zero-cross detection signal is the rising edge 21.
  • the waveform bit falling edge 22 of the zero-crossing detection signal is the waveform bit falling edge 22 of the zero-crossing detection signal.
  • the time difference between the zero-crossing moment of the output voltage of the power supply device and the subsequent peaks and troughs is known and fixed, and the time difference between the zero-crossing moment from the negative half cycle to the positive half cycle and the adjacent peak It is a quarter of the output voltage cycle of the power supply device, and the time difference between the next trough is a quarter of the power supply device output voltage cycle plus a half cycle, and the time difference between the next peak is the power supply device output.
  • the time difference between the zero-crossing moment converted from the positive half cycle to the negative half cycle and the adjacent trough is a quarter of the output voltage cycle of the power supply device, and the time difference between the next peak is the quarter of the output voltage cycle of the power supply device.
  • the time difference between one plus half cycle and the next trough is one quarter of the output voltage cycle of the power supply device plus one cycle, and so on. Therefore, the set duration can be expressed by the following formula:
  • T is the period of the output voltage of the power supply device, and n is an integer.
  • a zero-crossing detection circuit is used to detect the zero-crossing moment of the output voltage of the power supply device, and from the zero-crossing moment, the voltage peak time can be accurately captured by delaying a preset fixed time period.
  • a waveform display device is further included for displaying the waveform of the output voltage of the power supply device and the waveform of the zero-crossing detection signal.
  • the waveform of the output voltage of the power supply device and the waveform of the zero-cross detection signal are observed through the waveform display device, and after the waveform is stabilized, the process of judging the voltage peak is started, that is, from the zero-cross detection signal After the delay time from the rising edge or the falling edge of the set time, the timing is performed according to the set time.
  • the voltage peak judgment device includes the foregoing voltage peak judgment device, and further includes:
  • the power switch device 15 is used to control the power supply circuit of the power supply device 12 and the device under test 11 to be turned on or off;
  • the controller 16 is used to control the power switch device 15 to disconnect the power supply circuit of the power supply device 12 and the device under test 11 when the timing device 14 completes the time measurement.
  • the controller realizes the automatic disconnection of the power switch device, and accurately realizes the peak voltage power off more efficiently and safely.
  • the set duration is the first time difference between the rising or falling edge of the zero-crossing detection signal and the peak value of the output voltage of the adjacent power supply device.
  • the set duration is the sum of the first time difference and an integer multiple of half the output voltage period of the power supply device.
  • the power switch device is disposed on the fire line of the power device.
  • the live wire is turned on, thereby turning on the power supply; when the power switch device is turned off, the live wire is turned off, thereby turning off the power supply.
  • the power switching device is a relay.
  • a waveform display device is further included for displaying the waveform of the output voltage of the power supply device and the waveform of the zero-crossing detection signal.
  • the waveform of the output voltage of the power supply device and the waveform of the zero-crossing detection signal are observed through the waveform display device, and after the waveform is stabilized, the voltage peak power-off process is started, that is, the voltage peak judgment and then off Turn on the power switch device.
  • the output voltage of the power supply device is input to the waveform display device for display after passing through the power switch device.
  • the display of the output waveform of the power device is also suspended. At this time, it can be determined whether an accurate voltage peak power-off is achieved by observing the position where the waveform is interrupted. If the waveform image is not ideal, the process of voltage peak power off is restarted. If the waveform image is ideal, the voltage between the pins of the device under test can be output when the device is powered off, so that the residual voltage of the device under test can be effectively and accurately detected.
  • a voltage peak judgment method including:
  • timing is performed according to the set duration.
  • a voltage peak power-off method including:
  • the power supply circuit of the power supply device and the device under test is disconnected.
  • the voltage peak can be accurately powered off.
  • the voltage peak power-off method further includes: displaying a waveform of the output voltage of the power supply device and a waveform of the zero-crossing detection signal.
  • the waveform of the output voltage of the power supply device is a stable waveform
  • the waveform of the zero-crossing detection signal is a stable waveform
  • the display of the waveform of the output voltage of the power supply device is suspended to determine whether the location where the waveform is interrupted is a peak voltage.
  • the set duration is the first time difference between the initial time of the zero-cross detection signal and the peak value of the output voltage of the adjacent power supply device.
  • the set duration is the sum of the first time difference and an integer multiple of half the output voltage period of the power supply device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

本申请属于电气检测技术领域,公开了一种电压峰值判断装置,包括对被测器具供电的电源装置,过零检测电路,用于检测所述电源装置输出电压的过零位时刻,产生过零检测信号;计时装置,用于自过零检测信号的上升沿或下降沿起,根据设定时长进行计时。本申请利用过零检测电路检测电源装置输出电压的过零位时刻,自该过零位时刻起,延时预先设置的固定时长,即可准确抓取电压峰值时刻。本申请还公开了一种电压峰值断电装置及方法。

Description

一种电压峰值判断装置、断电装置及方法
本申请基于申请号为201811535485.9、申请日为2018.12.14的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及空调技术领域,特别涉及一种电压峰值判断装置、断电装置及方法。
背景技术
GB4706.1以及IEC60335.1等家用和类似用途电器安全标准的第1部分第22.5条规定:“打算通过一个插头的手段来与电源连接的器具,其结构应能使其在正常使用中当触碰该插头的插脚时,不会因充过电的电容器而引起电击危险”。GB4706.1-2005规定额定电容量不大于0.1μF的电容器(IEC603351-2016规定额定电容量小于0.1μF的电容器),不认为会引起电击危险。可通过下述实验确定是否合格:给器具一额定电压供电,然后将其任何一个开关置于“断开”位置,使器具在电压峰值时从电源断开,在断开后的1s时,用一个不会对测量值产生明显影响的仪器,测量插头上各插脚间的电压,该电压值不超过34V。该实验要求器具必须在电压峰值时断开,而目前的操作方式为人工插拔电源来实现,电压峰值的抓取存在较大的偶然性,即使是经验丰富的实验人员也需要多次的插拔才能实现一次并不是精确的电源峰值断电,不能准确地抓取峰值,效率低,而且对电源插头次的插拔,反复断电操作,影响设备的使用寿命,增加了测试人员的安全隐患,还会对所测器具和实验仪器产生潜在的危害。
发明内容
本申请提供了一种电压峰值判断装置、断电装置及方法,以解决现有的电压峰值断电手段不能准确抓取电压峰值、效率低、安全性能差的问题。为了对披露的实施例的一些方面有一个基本的理解,下面给出了简单的概括。该概括部分不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围。其唯一目的是用简单的形式呈现一些概念,以此作为后面的详细说明的序言。
根据本申请的第一方面,提供了一种电压峰值判断装置。
在一些可选实施例中,所述电压峰值判断装置包括对被测器具供电的电源装置,还包括:
过零检测电路,用于检测所述电源装置输出电压的过零位时刻,产生过零检测信号;
计时装置,用于自过零检测信号的上升沿或下降沿起,根据设定时长进行计时。
在一些可选实施例中,还包括波形显示装置,用于显示所述电源装置输出电压的波形和所述过零检测信号的波形。
根据本申请的第二方面,提供了一种电压峰值断电装置。
在一些可选实施例中,所述电压峰值断电装置包括前述电压峰值判断装置,还包括:
电源开关装置,用于控制电源装置与被测器具的供电电路的接通或断开;
控制器,用于在所述计时装置完成计时的时刻,控制电源开关装置断开电源装置与被测器具的供电电路。
在一些可选实施例中,还包括波形显示装置,用于显示所述电源装置输出电压的波形和所述过零检测信号的波形。
在一些可选实施例中,所述电源装置输出电压经过电源开关装置后输入所述波形显示装置进行显示。
根据本申请的第三方面,提供了一种电压峰值判断方法。
在一些可选实施例中,所述电压峰值判断方法包括:
检测电源装置输出电压的过零位时刻,产生过零位时刻检测信号;
自所述过零检测信号的上升沿或下降沿起延时设定时长后,根据设定时长进行计时。
根据本申请的第四方面,提供了一种电压峰值断电方法。
在一些可选实施例中,所述电压峰值断电方法包括:
检测电源装置输出电压的过零位时刻,产生过零检测信号;
自所述过零检测信号的上升沿或下降沿起开始计时;
计时经过设定时长后,断开电源装置与被测器具的供电电路。
在一些可选实施例中,显示所述电源装置输出电压的波形和所述过零检测信号的波形。
在一些可选实施例中,所述电源装置输出电压的波形为稳定波形,所述过零检测信号的波形为稳定波形。
在一些可选实施例中,还包括:计时经过设定时长后,暂停显示所述电源装置输出电压的波形,判断波形中断的位置是否为电压峰值。
本申请提供的技术方案可以包括以下有益效果:
利用过零检测电路检测电源装置输出电压的过零位时刻,自该过零位时刻起,延时预先设置的固定时长,即可准确抓取电压峰值时刻,为实现精确地电压峰值断电提供基础。
在准确抓取峰值时刻后,通过电源开关装置即可实现精准地电压峰值断电。
通过本申请的电压峰值判断装置和电压峰值断电装置,一次即可准确抓取波峰或波谷,实现电压峰值断电,节约了测试设备资源,提高了插头电压测试的效率,安全可靠。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
图1是根据一示例性实施例示出的一种电压峰值判断装置的电路结构框图。
图2是根据一示例性实施例示出的过零检测电路的输出信号与电压装置输出电压信号的波形示意图。
图3是根据一示例性实施例示出的一种电压峰值断电装置的电路结构框图。
具体实施方式
以下描述和附图充分地示出本文的具体实施方案,以使本领域的技术人员能够实践它们。一些实施方案的部分和特征可以被包括在或替换其他实施方案的部分和特征。本文的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。本文中,术语“第一”、“第二”等仅被用来将一个元素与另一个元素区分开来,而不要求或者暗示这些元素之间存在任何实际的关系或者顺序。实际上第一元素也能够被称为第二元素,反之亦然。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的结构、装置或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种结构、装置或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的结构、装置或者设备中还存在另外的相同要素。本文中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本文中的术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本文和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。在本文的描述中,除非另有规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
本文中,除非另有说明,术语“多个”表示两个或两个以上。
本文中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
本文中,术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
根据本申请实施例的第一方面,提供了一种电压峰值判断装置,如图1所示,所述电压峰值判断装置包括对被测器具11供电的电源装置12,还包括:
过零检测电路13,用于检测所述电源装置12输出电压的过零位时刻,产生过零检测信号;
计时装置14,用于自过零检测信号的上升沿或下降沿起,根据设定时长进行计时。
如图2所示,波形1为电源装置输出电压波形,波形2为过零检测信号的波形。当电源装置输出电压由负半周向正半周转换,经过零位开始上升时,过零检测信号的波形为上升沿21。当电源装置输出电压由正半周向负半周转换,经过零位开始下降时,过零检测信号的波形位下降沿22。
由图可知,电源装置输出电压的过零位时刻与后续各个波峰、波谷之间的时间差是已知且固定的,由负半周向正半周转换的过零位时刻与相邻波峰之间的时间差为电源装置输出电压周期的四分之一,与下一个波谷之间的时间差为电源装置输出电压周期的四分之一加上半个周期,与再下一个波峰之间的时间差为电源装置输出电压周期的四分之一加上一个周期,以此类推。由正半周向负半周转换的过零位时刻与相邻波 谷之间的时间差为电源装置输出电压周期的四分之一,与下一个波峰之间的时间差为电源装置输出电压周期的四分之一加上半个周期,与再下一个波谷之间的时间差为电源装置输出电压周期的四分之一加上一个周期,以此类推。因此,设定时长可以用如下公式表达:
Figure PCTCN2019076422-appb-000001
其中,T为电源装置输出电压的周期,n为整数。
因此,采用本技术方案,利用过零检测电路检测电源装置输出电压的过零位时刻,自该过零位时刻起,延时预先设置的固定时长,即可准确抓取电压峰值时刻。
在一些可选实施例中,还包括波形显示装置,用于显示所述电源装置输出电压的波形和所述过零检测信号的波形。
采用本技术方案,通过波形显示装置观察电源装置输出电压的波形和所述过零检测信号的波形,待所述波形稳定后,再开始电压峰值判断的工序,即:自所述过零检测信号的上升沿或下降沿起延时设定时长后,根据设定时长进行计时。
根据本申请实施例的第二方面,提供了一种电压峰值断电装置,如图3所示,所述电压峰值判断装置包括前述电压峰值判断装置,还包括:
电源开关装置15,用于控制电源装置12与被测器具11的供电电路的接通或断开;
控制器16,用于在所述计时装置14完成计时的时刻,控制电源开关装置15断开电源装置12与被测器具11的供电电路。
采用本技术方案,在确定电压峰值时刻后,通过控制器实现了自动断开电源开关装置,准确地实现电压峰值断电更加高效、安全。
在一些可选实施例中,所述设定时长为所述过零检测信号上升沿或下降沿与相邻的所述电源装置输出电压峰值之间的第一时间差。
在一些可选实施例中,所述设定时长为所述第一时间差与所述电源装置输出电压周期的一半的整数倍之和。
在一些可选实施例中,所述电源开关装置设置在电源装置的火线上。当电源开关装置闭合时,接通火线,从而接通电源;当电源开关装置断开时,断开火线,从而断开电源。
在一些可选实施例中,所述电源开关装置为继电器。
在一些可选实施例中,还包括波形显示装置,用于显示所述电源装置输出电压的波形和所述过零检测信号的波形。
采用本技术方案,通过波形显示装置观察电源装置输出电压的波形和所述过零检测信号的波形,待所述波形稳定后,再开始电压峰值断电的工序,即:电压峰值判断,而后断开电源开关装置。
在一些可选实施例中,所述电源装置输出电压经过电源开关装置后输入所述波形显示装置进行显示。
采用本技术方案,断开电源开关装置的同时,也暂停了电源装置输出波形的显示,此时可以通过观察波形中断的位置确定是否实现了精准的电压峰值断电。若波形图像不理想,则重新启动电压峰值断电的工序,若波形图像理想,则可输出被测器具断电时各插脚间的电压,实现被测器具剩余电压的有效、准确检测。
根据本申请实施例的第三方面,提供了一种电压峰值判断方法,包括:
检测电源装置输出电压的过零位时刻,产生过零检测信号;
自所述过零检测信号的上升沿或下降沿起,根据设定时长进行计时。
采用本技术方案,由于过零检测信号的上升沿或下降沿与各个电压峰值的时间差是已知且固定的,因此,自上升沿或下降沿起,延时预先设置的固定时长,即可准确抓取电压峰值时刻。
根据本申请实施例的第四方面,提供了一种电压峰值断电方法,包括:
检测电源装置输出电压的过零位时刻,产生过零检测信号;
自所述过零检测信号的上升沿或下降沿起开始计时;
计时经过设定时长后,断开电源装置与被测器具的供电电路。
采用本技术方案,在确定电压峰值时刻后,实现精准地电压峰值断电。
在一些可选实施例中,所述电压峰值断电方法还包括:显示所述电源装置输出电压的波形和所述过零检测信号的波形。
在一些可选实施例中,所述电源装置输出电压的波形为稳定波形,所述过零检测信号的波形为稳定波形。
在一些可选实施例中,计时经过设定时长后,暂停显示所述电源装置输出电压的波形,判断波形中断的位置是否为电压峰值。
在一些可选实施例中,所述设定时长为所述过零检测信号初始时刻与相邻的所述电源装置输出电压峰值之间的第一时间差。
在一些可选实施例中,所述设定时长为所述第一时间差与所述电源装置输出电压周期的一半的整数倍之和。
本申请并不局限于上面已经描述并在附图中示出的结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (10)

  1. 一种电压峰值判断装置,包括对被测器具供电的电源装置,其特征在于,还包括:
    过零检测电路,用于检测所述电源装置输出电压的过零位时刻,产生过零检测信号;
    计时装置,用于自所述过零检测信号的上升沿或下降沿起,根据设定时长进行计时。
  2. 根据权利要求1所述的电压峰值判断装置,其特征在于,还包括波形显示装置,用于显示所述电源装置输出电压的波形和所述过零检测信号的波形。
  3. 一种电压峰值断电装置,包括如权利要求1所述的电压峰值判断装置,其特征在于,还包括:
    电源开关装置,用于控制所述电源装置与所述被测器具的供电电路的接通或断开;
    控制器,用于在所述计时装置完成计时的时刻,控制所述电源开关装置断开所述电源装置与所述被测器具的供电电路。
  4. 根据权利要求3所述的电压峰值断电装置,其特征在于,还包括:
    波形显示装置,用于显示所述电源装置输出电压的波形和所述过零检测信号的波形。
  5. 根据权利要求4所述的电压峰值断电装置,其特征在于,所述电源装置输出电压经过所述电源开关装置后输入所述波形显示装置进行显示。
  6. 一种电压峰值判断方法,其特征在于,包括:
    检测电源装置输出电压的过零位时刻,产生过零检测信号;
    自所述过零检测信号的上升沿或下降沿起,根据设定时长进行计时。
  7. 一种电压峰值断电方法,其特征在于,包括:
    检测电源装置输出电压的过零位时刻,产生过零检测信号;
    自所述过零检测信号的上升沿或下降沿起开始计时;
    计时经过设定时长时,断开所述电源装置与所述被测器具的供电电路。
  8. 根据权利要求7所述的电压峰值断电方法,其特征在于,显示所述电源装置输出电压的波形和所述过零检测信号的波形。
  9. 根据权利要求8所述的电压峰值断电方法,其特征在于,所述电源装置输出电压的波形为稳定波形,所述过零检测信号的波形为稳定波形。
  10. 根据权利要求8或9所述的电压峰值断电方法,其特征在于,还包括:计时经过设定时长时,暂停显示所述电源装置输出电压的波形,判断波形中断的位置是否为电压峰值。
PCT/CN2019/076422 2018-12-14 2019-02-28 一种电压峰值判断装置、断电装置及方法 WO2020118913A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811535485.9 2018-12-14
CN201811535485.9A CN111323633A (zh) 2018-12-14 2018-12-14 一种电压峰值判断装置、断电装置及方法

Publications (1)

Publication Number Publication Date
WO2020118913A1 true WO2020118913A1 (zh) 2020-06-18

Family

ID=71077103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076422 WO2020118913A1 (zh) 2018-12-14 2019-02-28 一种电压峰值判断装置、断电装置及方法

Country Status (2)

Country Link
CN (1) CN111323633A (zh)
WO (1) WO2020118913A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6198403B1 (en) * 1999-04-07 2001-03-06 Michael L. Dorrough Power line meter/monitor with LED display
CN103575989A (zh) * 2012-07-26 2014-02-12 南京邮电大学 一种交流电的相位差的精确测量方法
CN104409279A (zh) * 2014-11-27 2015-03-11 广东美的厨房电器制造有限公司 继电器驱动装置
CN105759157A (zh) * 2016-05-13 2016-07-13 魏德米勒电联接(上海)有限公司 交直流信号检测系统及交流信号有效值的测量方法
CN108037348A (zh) * 2017-11-27 2018-05-15 深圳市锐钜科技有限公司 单相交流电过零检测方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100265629A1 (en) * 2009-04-16 2010-10-21 Howard Beckerman Relay Coil Drive Circuit
CN102879626B (zh) * 2012-02-28 2015-09-30 中国计量学院 自动检测电器负载特性的剩余电压测量方法
CN104281070A (zh) * 2013-07-03 2015-01-14 珠海格力电器股份有限公司 一种基于正弦波电压的电气设备控制系统及控制方法
CN104423292B (zh) * 2013-08-23 2018-03-20 苏州三星电子有限公司 一种x电容泄放控制方法和电路
CN204177884U (zh) * 2014-10-09 2015-02-25 中国家用电器研究院 峰值断电开关装置
CN107453359A (zh) * 2017-09-29 2017-12-08 夏季真 一种供电零间断的电力负荷换相电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6198403B1 (en) * 1999-04-07 2001-03-06 Michael L. Dorrough Power line meter/monitor with LED display
CN103575989A (zh) * 2012-07-26 2014-02-12 南京邮电大学 一种交流电的相位差的精确测量方法
CN104409279A (zh) * 2014-11-27 2015-03-11 广东美的厨房电器制造有限公司 继电器驱动装置
CN105759157A (zh) * 2016-05-13 2016-07-13 魏德米勒电联接(上海)有限公司 交直流信号检测系统及交流信号有效值的测量方法
CN108037348A (zh) * 2017-11-27 2018-05-15 深圳市锐钜科技有限公司 单相交流电过零检测方法

Also Published As

Publication number Publication date
CN111323633A (zh) 2020-06-23

Similar Documents

Publication Publication Date Title
CA2809053C (en) Enhanced auto-monitoring circuit and method for an electrical device
TW201630294A (zh) 應用於交流電源的保護電路及其相關保護方法
CN205562769U (zh) 一种电池短路保护试验装置
CN104502665A (zh) 残余电压测试装置及其测试方法
CN203745608U (zh) 一种便携式继电器检测装置
JP2015533075A5 (zh)
TW201135248A (en) AC voltage phase discriminator for circuit breaker locators
WO2020118913A1 (zh) 一种电压峰值判断装置、断电装置及方法
US10554058B2 (en) Systems and methods for monitoring an operating status of a connector
WO2020052393A1 (zh) 充电装置与充电系统
CN203133226U (zh) 电流互感器回路极性测试仪
US20130163141A1 (en) Input circuit for alternating current signal, and motor starter including the same
JP2016039742A (ja) 充電装置
CN101191807A (zh) 一种继电器检测装置及方法
CN204177884U (zh) 峰值断电开关装置
TW201222920A (en) Battery capacitance detecting system
CN203287424U (zh) 一种浪涌电流测试装置
CN103247919B (zh) 一种基于机器视觉的自动断电装置
CN105841776A (zh) 水位检测电路及其自检方法和烹饪器具
CN207752116U (zh) 一种继电器寿命测试仪
TWI635689B (zh) 充電控制系統及其智慧型短路電流保護方法
TW201324103A (zh) 開關機測試裝置
CN109444477A (zh) 一种电压测试盒及其鳄鱼夹
CN203772358U (zh) 一种镉镍烧结碱性开口蓄电池电液液位探测仪
CN207559661U (zh) 锂电池充电保护装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19896447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19896447

Country of ref document: EP

Kind code of ref document: A1