WO2020118589A1 - 一种垃圾焚烧发电厂炉内sncr脱硝的喷枪控制方法 - Google Patents

一种垃圾焚烧发电厂炉内sncr脱硝的喷枪控制方法 Download PDF

Info

Publication number
WO2020118589A1
WO2020118589A1 PCT/CN2018/120752 CN2018120752W WO2020118589A1 WO 2020118589 A1 WO2020118589 A1 WO 2020118589A1 CN 2018120752 W CN2018120752 W CN 2018120752W WO 2020118589 A1 WO2020118589 A1 WO 2020118589A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
spray gun
elevation
furnace
equation
Prior art date
Application number
PCT/CN2018/120752
Other languages
English (en)
French (fr)
Inventor
吴浩
梁增英
刘国辉
孔华
Original Assignee
深圳市能源环保有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市能源环保有限公司 filed Critical 深圳市能源环保有限公司
Priority to PCT/CN2018/120752 priority Critical patent/WO2020118589A1/zh
Publication of WO2020118589A1 publication Critical patent/WO2020118589A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/79Injecting reactants

Definitions

  • the invention relates to the field of denitration systems in furnaces of waste incineration power plants, in particular to a spray gun control method for SNCR denitration in furnaces of waste incineration power plants.
  • Selective non-catalytic reduction denitration is to spray ammonia liquid or urea denitration agent into the flue at a flue gas temperature of 850-1100°C under the coexistence of O 2 to reduce nitrogen oxides into nitrogen and water. method.
  • SNCR denitration technology Compared with the SCR system, SNCR denitration technology has the characteristics of low one-time investment cost and convenient transformation, and is widely used in the waste incineration industry.
  • the optimal reaction temperature range is 900-950°C.
  • ammonia gas NH 3
  • NO X nitrogen oxides
  • the emission concentration increases; when the temperature is lower than 900°C, the reaction is incomplete, which will cause the so-called “ammonia penetration”, the ammonia escape rate is high, and new pollution will be caused.
  • the SNCR process of the waste incineration industry is to open a hole in the front wall of the first channel of the waste incineration boiler, and arrange one or more sets of fixed spray guns (such as patent literature: efficient SNCR point-to-point injection system CN201410593561) to spray reducing agent into the flue gas
  • the operating conditions fluctuate frequently, and this method is not always sprayed within the optimal reaction temperature window of the reducing agent (900-950°C), resulting in low denitration efficiency and increased ammonia escape.
  • thermocouple for waste incineration boiler of waste power plant 201420717390.X
  • the main problem is: this temperature measurement method
  • the waste incineration flue gas is highly corrosive (acidic corrosive gas, salt, ash, etc.), the molten ash in the flue gas has high adhesion, and the time is long so that the probe is wrapped and the temperature measurement is accurate If the degree drops, the probe is prone to corrosion and damage, which affects the service life.
  • the temperature measured by the thermocouple is the temperature of the flue gas near the thermocouple, and the measurement of the center temperature of the flue is not accurate, and there is a phenomenon of distortion. The temperature measurement of the large flue is particularly obvious.
  • thermocouples With a fixed spray gun, it is necessary to arrange multiple layers of temperature measurement elements, such as a multi-layer arrangement of sonic temperature measurement system (patent 201711493881.5 scheme), in order to achieve accurate measurement of furnace temperature, there is a problem of large investment and difficulty in implementation. Multiple layers of temperature-measuring thermocouples are arranged in multiple layers along the direction of the flue, which has the problems of thermocouple service life and accuracy.
  • a lance control method for SNCR denitration in a furnace of a waste incineration power plant includes a control system, a flue gas analysis system, and a temperature measurement system. Temperature device and high-temperature temperature measuring device are set in the high-temperature area of the furnace. According to the linear relationship between elevation and temperature, by measuring the temperature inside the top of the flue and the temperature in the high temperature zone in the furnace, the elevation of the optimal reaction area is calculated, so that the reducing agent is ejected in this area.
  • the system After a time gap, when the operating conditions change, the temperature inside the top of the flue and the temperature in the high temperature zone of the furnace change, and the system recalculates the new elevation of the optimal reaction area and ensures that the reducing agent is in the new optimal
  • the regional spraying enhances the mixing effect of the reducing agent and the flue gas, thereby improving the denitration efficiency, reducing ammonia slip, and saving operating costs.
  • the solution provided by the present invention to solve the technical problem is that the present invention proposes a spray gun control method for SNCR denitration in the furnace of a waste incineration power plant, which includes a control system, a flue gas analysis system, a temperature measurement system, and is vertically installed in the smoke controlled by the system.
  • the temperature measurement system includes a temperature measurement device provided on the inside of the top of the flue of the incinerator and a high temperature temperature measurement device in the high temperature area of the flue in the furnace.
  • the position sensor is used to measure and control the real-time elevation of the spray gun, and also includes a calculation method of the elevation of the optimal SNCR denitration reaction area.
  • the calculation method includes the following steps:
  • Step 1 Measure the temperature T 1 in the high temperature area and the temperature T 0 at the top of the flue;
  • the temperature in the high temperature zone is T 1 (corresponding to the elevation H 1 );
  • the temperature in the furnace of the spray gun height H 1 to H 0 shows a linear change, and the relationship between the height and the temperature is as follows:
  • H a (H 0 ⁇ T 1 -H 1 ⁇ T 0 )/(T 1 -T 0 )+(H 1 -H 0 ) ⁇ T a /(T 1 -T 0 ) (Equation 7),
  • the data of H 0 and H 1 are known, T 0 and T 1 can be measured, and the temperature Ta of the optimal reaction area is 950°C; therefore, from T 0 , H 0 , T 1 , H 1 can compute the optimum reaction time of the temperature elevation zone H a; at this time, under the control of the system, the elevation of the gun is moved to the discharge position H a and the reducing agent.
  • H ax (H 0 ⁇ T 1x -H 1 ⁇ T 0x )/(T 1x -T 0x )+(H 1 -H 0 ) ⁇ T a /(T 1x -T 0x ) (Equation 8),
  • the spray gun is moved to the height position of H ax and the reducing agent is sprayed.
  • the time gap ⁇ x is 2 minutes.
  • the position of the gun during the movement can be directly read and controlled by the gun position sensor.
  • the spray gun When in the fault and maintenance state, the spray gun returns to the initial position H 0 after receiving the control command.
  • the spray gun Under normal operating conditions, 850°C ⁇ T 1 ⁇ 950°C, the spray gun is in real-time tracking state.
  • a spray gun control method for SNCR denitrification in a furnace of a waste incineration power plant which includes a control system, a flue gas analysis system, a temperature measurement system, and a number of horizontally fixed spray guns controlled by the system.
  • the lance is mounted in a vertically layered 1, Ha 2, Ha i until the n-Ha, the different layers constituting the lance gun Ha layers having different elevations
  • the temperature inside the system comprises a top temperature incinerator flue
  • the device and a high-temperature temperature measurement device in the high-temperature zone of the flue in the furnace are characterized in that it also includes a calculation method for the elevation of the optimal SNCR denitration reaction zone.
  • the calculation method includes the following steps: Step 1: measuring the temperature T 1 in the high-temperature zone and The temperature inside the top of the flue T 0 ;
  • the temperature T 0 on the inside of the top of the flue corresponds to the elevation H 0 ; at this position, the spray gun stops working or the maintenance position, H 0 is inside the top of the flue (initial position);
  • the temperature in the high temperature zone is T 1 , which corresponds to the elevation H 1 ;
  • the temperature in the furnace of the spray gun height H 1 to H 0 shows a linear change, and the relationship between the height and the temperature is as follows:
  • the elevation of the best reaction temperature area is:
  • H a (H 0 ⁇ T 1 -H 1 ⁇ T 0 )/(T 1 -T 0 )+(H 1 -H 0 ) ⁇ T a /(T 1 -T 0 ) (Equation 7),
  • the data of H 0 and H 1 are known, T 0 and T 1 can be measured, and the temperature Ta of the optimal reaction area is 950°C; thus, from a time T 0 , H 0 , T 1 , H 1 to calculate the optimal value of the reaction zone the temperature elevation time H a; at this time, under the control of the system, the value closest to the elevation of the lance gun elevation H a layer of reducing agent discharged.
  • H ax (H 0 ⁇ T 1x -H 1 ⁇ T 0x )/(T 1x -T 0x )+(H 1 -H 0 ) ⁇ T a /(T 1x -T 0x ) (Equation 8),
  • the spray gun at the spray gun layer closest to the elevation value of the height Hax ejects the reducing agent.
  • the time gap ⁇ x is 2 minutes.
  • a spray gun control method for SNCR denitration in a furnace of a waste incineration power plant including a control system, a flue gas analysis system, and a temperature measurement system
  • the temperature measurement system includes setting a temperature measurement inside the top of the flue of the incinerator
  • the device and a high-temperature temperature measuring device are set in the high-temperature area of the furnace. According to the linear relationship between elevation and temperature, by measuring the temperature inside the top of the flue and the temperature in the high temperature zone in the furnace, the elevation of the optimal reaction area is calculated, so that the reducing agent is ejected in this area.
  • Figures 1-3 are schematic diagrams of the structure and principle of the first embodiment of the present invention.
  • Figure 1 is a structural layout of the spray gun in the furnace flue
  • Figure 2 is a linear diagram of temperature and elevation
  • Figure 3 is a schematic diagram of the principle of spray gun elevation control.
  • FIG. 4 to 5 are schematic structural diagrams of the second embodiment of the present invention.
  • FIG. 4 is a structural layout diagram of a spray gun in a furnace flue
  • FIG. 5 is a schematic diagram of a spray gun layer control principle.
  • a first layer lance Ha 1 A first layer lance Ha 1
  • Figures 1-3 are schematic diagrams of the structure and principle of the first embodiment of the present invention.
  • Figure 1 is the structure layout of the spray gun in the furnace flue
  • Figure 2 is the linear diagram of temperature and elevation
  • Figure 3 is the schematic diagram of the spray gun elevation control.
  • a spray gun control method for SNCR denitration in a furnace of a waste incineration power plant includes a control system, a flue gas analysis system, and a temperature measurement system.
  • the system is vertically installed on the top of the flue and can be controlled in the vertical direction.
  • the temperature measurement system includes a temperature measurement device on the inside of the top of the flue of the incinerator and a high temperature temperature measurement device on the high temperature zone of the flue in the furnace. It is characterized by a position sensor 3 for measuring and controlling the spray gun.
  • the real-time elevation also includes the calculation method of the optimal SNCR denitration reaction zone elevation, the calculation method includes the following steps:
  • Step 1 Measure the temperature T 1 in the high temperature area and the temperature T 0 at the top of the flue;
  • the temperature T 0 on the inside of the top of the flue corresponds to the elevation H 0 and the elevation line is 1.20; at this position, the spray gun stops working or the maintenance position, H 0 is inside the top of the flue (initial position);
  • the temperature in the high temperature zone is T 1 , corresponding to the elevation H 1 , and the elevation line is 1.21;
  • the temperature in the furnace of the spray gun height H 1 to H 0 shows a linear change, and the relationship between the height and the temperature is as follows:
  • H a (H 0 ⁇ T 1 -H 1 ⁇ T 0 )/(T 1 -T 0 )+(H 1 -H 0 ) ⁇ T a /(T 1 -T 0 ) (Equation 7),
  • the data of H 0 and H 1 are known, T 0 and T 1 can be measured, and the temperature of the optimal reaction area T a is 950°C; thus, through a certain moment of T 0 , H 0 , T 1 , H 1 can compute the optimum reaction time of the temperature elevation zone H a; at this time, under the control of the system, the elevation of the gun is moved to the discharge position H a and the reducing agent.
  • H ax (H 0 ⁇ T 1x -H 1 ⁇ T 0x )/(T 1x -T 0x )+(H 1 -H 0 ) ⁇ T a /(T 1x -T 0x ) (Equation 8),
  • the spray gun is moved to the height position of H ax and the reducing agent is sprayed.
  • the present invention suggests that the time gap ⁇ x can be selected for 2 minutes.
  • the position when the spray gun moves can be directly read and controlled by the spray gun position sensor 3.
  • the spray gun When in the fault and maintenance state, the spray gun returns to the initial position H 0 after receiving the control command.
  • the gun Under normal operating conditions, 850°C ⁇ T 1 ⁇ 950°C, the gun will automatically track the best position every other ⁇ x time.
  • FIG. 4 to 5 are schematic structural diagrams of the second embodiment of the present invention.
  • FIG. 4 is a structural layout of the spray gun in the furnace flue
  • FIG. 5 is a schematic diagram of the spray gun layer control.
  • a spray gun control method for SNCR denitrification in a furnace of a waste incineration power plant includes a control system, a flue gas analysis system, a temperature measurement system, and several horizontally fixed spray guns controlled by the system.
  • the first spray gun layer Ha 1 , the second spray gun layer Ha 2 , the third spray gun layer Ha 3 , and the three different spray gun layers have different elevations.
  • the temperature measurement system is included in the incinerator
  • a temperature measuring device is provided inside the top of the flue and a high temperature temperature measuring device is provided in the high temperature zone of the flue in the furnace, which is characterized in that it also includes a calculation method for the elevation of the optimal SNCR denitration reaction area.
  • the calculation method includes the following steps:
  • Step 1 Measure the temperature T 1 in the high temperature area and the temperature T 0 at the top of the flue;
  • the temperature T 0 on the inside of the top of the flue corresponds to the elevation H 0 ; at this position, the spray gun stops working or the maintenance position, H 0 is inside the top of the flue;
  • the temperature in the high temperature zone is T 1 , which corresponds to the elevation H 1 ;
  • the optimal temperature in the reaction zone is T a , which corresponds to the elevation H a ;
  • the temperature in the furnace of the spray gun height H 1 to H 0 shows a linear change, and the relationship between the height and the temperature is as follows:
  • H a (H 0 ⁇ T 1 -H 1 ⁇ T 0 )/(T 1 -T 0 )+(H 1 -H 0 ) ⁇ T a /(T 1 -T 0 ) (Equation 7),
  • the data of H 0 and H 1 are known, T 0 and T 1 can be measured, and the temperature of the optimal reaction area T a is 950°C; thus, through a certain moment of T 0 , H 0 , T 1 , the value can be calculated.
  • 1 H optimal reaction time of the temperature elevation zone H a in this case, under the control of the system, three layers lance Ha 1, Ha 2, Ha 3 closest elevation is the elevation H
  • the spray gun of a 's spray gun sprays reducing agent is the elevation H The spray gun of a 's spray gun sprays reducing agent.
  • H ax (H 0 ⁇ T 1x -H 1 ⁇ T 0x )/(T 1x -T 0x )+(H 1 -H 0 ) ⁇ T a /(T 1x -T 0x ) (Equation 8),
  • the time gap ⁇ x can be selected for 2 minutes.
  • the spray gun When in the fault and maintenance state, the spray gun returns to the initial position H 0 after receiving the control command.
  • the system automatically adjusts the best spray gun position every other ⁇ x time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Incineration Of Waste (AREA)
  • Chimneys And Flues (AREA)

Abstract

一种垃圾焚烧发电厂炉内SNCR脱硝的喷枪控制方法,包括控制系统,烟气分析系统,测温系统,所述测温系统包括在焚烧炉烟道顶部内侧设置测温装置以及在炉内高温区设置高温测温装置。根据标高与温度的线性存在关系,通过测量烟道顶部内侧的温度以及炉内高温区的温度,计算出最佳反应区域的标高,从而使还原剂在该区域喷出。经过一个时间间隙之后,当工况发生变化时,烟道顶部内侧的温度以及炉内高温区的温度发生变化,系统再重新计算出最佳反应区域的新标高并确保还原剂在新的最佳区域喷出,加强了还原剂与烟气的混合效果,从而提高了脱硝效率,减少了氨逃逸,节约了运行成本。

Description

一种垃圾焚烧发电厂炉内SNCR脱硝的喷枪控制方法 技术领域
本发明涉及垃圾焚烧发电厂炉内脱硝系统领域,尤其涉及一种垃圾焚烧发电厂炉内SNCR脱硝的喷枪控制方法。
背景技术
选择性非催化还原法脱硝(SNCR)是在烟气温度850-1100℃,在O 2共存条件下,向烟道喷入氨液或尿素等脱硝剂,将氮氧化物还原成为氮气和水的方法。相对于SCR系统,SNCR脱硝技术具有一次性投资成本低和改造方便等特点,在垃圾焚烧行业得到了广泛应用。
温度对SNCR的还原反应的影响最大,其最佳反应温度区间为900-950℃当温度高于1100℃时,氨气(NH 3)会被氧化成NO,反而造成氮氧化物(NO X)排放浓度增大;而温度低于900℃时,反应不完全,会造成所谓的“氨穿透”,氨逃逸率高,造成新的污染。
目前,垃圾焚烧行业SNCR工艺是在垃圾焚烧锅炉第一通道前墙开孔,布置一组或多组固定式喷枪(如专利文献:高效SNCR点对点喷射系统CN201410593561),向烟气中喷入还原剂,对于垃圾焚烧锅炉而言,工况波动频繁,该方式并非时时在还原剂最佳反应温度窗口(900-950℃)内喷射,导致脱硝效率不高,并增加了氨逃逸。
由于目前垃圾焚烧SNCR脱硝测温系统多采用炉壁固定式热电偶方式(如专利:一种垃圾发电厂焚烧锅炉专用热电偶201420717390.X)进行测温,存在的主要问题是:该测温方式为直接测温,而垃圾焚烧烟气具有较强的腐蚀性(酸性腐蚀气体、盐分、灰分等),烟气中的熔灰具有较高的黏附性,时间长了使得探头包裹,测温准确度下降,探头容易出现腐蚀损坏等情况,影响使用寿命。并且,热电偶测量得到的温度为热电偶附近烟气温度,对于烟道中心温度的测定也并不准确,存在失真的现象,大型烟道的温度测量尤其明显。
采用固定式喷枪,需要布置多层测温元件,如多层布置声波测温系统(专利201711493881.5方案),才能实现炉温的精确测量,存在投资大,实施困难的问题。沿烟道方向多层布置多组测温热电偶,就存在热电偶使用寿命和精准度的问题。
因此,针对SNCR炉内脱硝需要精准匹配最佳反应温度窗口。问题是,现有技术对温度窗口难以实现准确、连续定位。需要找到一种简单易行,精准、可靠并实现最佳反应温度窗口追踪的控制技术,以便实现SNCR喷射器的喷射位置追踪,减少还原剂的用量,提高脱硝效率。
发明内容
为了解决现有技术问题,一种垃圾焚烧发电厂炉内SNCR脱硝的喷枪控制方法,包括控制系统,烟气分析系统,测温系统,所述测温系统包括在焚烧炉烟道顶部内侧设置测温装置以及在炉内高温区设置高温测温装置。根据标高与温度的线性存在关系,通过测量烟道顶部内侧的温度以及炉内高温区的温度,计算出 最佳反应区域的标高,从而使还原剂在该区域喷出。经过一个时间间隙之后,当工况发生变化时,烟道顶部内侧的温度以及炉内高温区的温度发生变化,系统再重新计算出最佳反应区域的新标高并确保还原剂在新的最佳区域喷出,加强了还原剂与烟气的混合效果,从而提高了脱硝效率,减少了氨逃逸,节约了运行成本。
本发明解决技术问题所提供方案是,本发明提出一种垃圾焚烧发电厂炉内SNCR脱硝的喷枪控制方法,包括控制系统,烟气分析系统,测温系统,由系统控制的竖直安装在烟道顶部并且可以在竖直方向上移动的喷枪,所述测温系统包括在焚烧炉烟道顶部内侧设置测温装置以及在炉内烟道高温区设置高温测温装置,其特征是,还设置位置传感器用于测控喷枪的实时标高,还包括最佳SNCR脱硝反应区域标高的计算方法,所述计算方法包括以下步骤:
步骤1:测量高温区温度T 1及烟道顶部内侧温度T 0
烟道顶部内侧温度T 0(对应标高H 0);此位置喷枪停止工作或检修位,H 0在烟道顶内侧;
高温区温度为T 1(对应标高H 1);
设定最佳反应区温度为T a(对应标高H a);
正常工况必须满足两个条件:T 1>850℃,T 1>T 0  (式1);
当焚烧炉处于焚烧工况时,喷枪标高H 1到H 0的炉内温度呈现线性变化,标高与温度的关系式如下:
H a=a+b×T a  (式2)
H 1=a+b×T 1  (式3)
H 0=a+b×T 0  (式4)
由此推出:
a=(H 0×T 1-H 1×T 0)/(T 1-T 0)  (式5)
b=(H 1-H 0)/(T 1-T 0)  (式6)
则在最佳反应温度区域的标高为:
H a=(H 0×T 1-H 1×T 0)/(T 1-T 0)+(H 1-H 0)×T a/(T 1-T 0)  (式7),
式中,H 0、H 1数据为已知,T 0、T 1可以测量,最佳反应区域的温度Ta则为950℃;由此,由某一个时刻的T 0、H 0、T 1、H 1值即可计算出该时刻的最佳反应温度区域的标高H a;此时,在系统的控制下,将喷枪移动至标高位置为H a并喷出还原剂。
在经过一个时间间隙△x之后,由于工况发生变化,此时,烟道顶部内侧温度变为T 0x、高温区温度变为T 1x,最佳反应温度区域的标高变为H ax:
H ax=(H 0×T 1x-H 1×T 0x)/(T 1x-T 0x)+(H 1-H 0)×T a/(T 1x-T 0x)  (式8),
此时,在系统的控制下,将喷枪移动至标高位置为H ax并喷出还原剂。
本发明的优选方案:时间间隙△x为2分钟。
喷枪移动时的位置可以通过喷枪位置传感器直接读取和控制。
当处于故障和检修状态下,喷枪收到控制指令传回退到初始位置H 0
当T 1<850℃,喷枪位置自动回退至初始位置H 0
当正常工况下,850℃<T 1<950℃,喷枪处于实时追踪状态。
本发明解决问题提供另一个技术方案是,一种垃圾焚烧发电厂炉内SNCR脱硝的喷枪控制方法,包括控制系统,烟气分析系统,测温系统,由系统控制的若干水平安装固定的喷枪,所述喷枪在竖直方向分层安装构成喷枪层Ha 1、Ha 2、Ha i直至Ha n,不同的喷枪层具有不同的标高,所述测温系统包括在焚烧炉烟道顶部内侧设置测温装置以及在炉内烟道高温区设置高温测温装置,其特征是,还包括最佳SNCR脱硝反应区域标高的计算方法,所述计算方法包括以下步骤:步骤1:测量高温区温度T 1及烟道顶部内侧温度T 0
烟道顶部内侧温度T 0,对应标高H 0;此位置喷枪停止工作或检修位,H 0在烟道顶内侧(初始位置);
高温区温度为T 1,对应标高H 1
设定最佳反应区温度为T a,对应标高H a
正常工况必须满足两个条件:T 1>850℃,T 1>T 0  (式1);
当焚烧炉处于焚烧工况时,喷枪标高H 1到H 0的炉内温度呈现线性变化,标高与温度的关系式如下:
H a=a+b×T a  (式2)
H 1=a+b×T 1  (式3)
H 0=a+b×T 0  (式4)
由此推出:
a=(H 0×T 1-H 1×T 0)/(T 1-T 0)  (式5)
b=(H 1-H 0)/(T 1-T 0)  (式6)
则最佳反应温度区域的标高为:
H a=(H 0×T 1-H 1×T 0)/(T 1-T 0)+(H 1-H 0)×T a/(T 1-T 0)  (式7),
式中,H 0、H 1数据为已知,T 0、T 1可以测量,最佳反应区域的温度Ta则为950℃;由此,由一个时刻的T 0、H 0、T 1、H 1值即可计算出该时刻的最佳反应温度区域的标高H a;此时,在系统的控制下,最接近标高值为标高H a的喷枪层喷枪喷出还原剂。
在经过一个时间间隙△x之后,由于工况发生变化,此时,烟道顶部内侧温度变为T 0x、高温区温度变为T 1x,最佳反应温度区域的标高变为H ax:
H ax=(H 0×T 1x-H 1×T 0x)/(T 1x-T 0x)+(H 1-H 0)×T a/(T 1x-T 0x)  (式8),
此时,在系统的控制下,最接近标高值为标高H ax的喷枪层喷枪喷出还原剂。
本发明的优选方案:时间间隙△x为2分钟。
本发明的有益效果:一种垃圾焚烧发电厂炉内SNCR脱硝的喷枪控制方法,包括控制系统,烟气分析系 统,测温系统,所述测温系统包括在焚烧炉烟道顶部内侧设置测温装置以及在炉内高温区设置高温测温装置。根据标高与温度的线性存在关系,通过测量烟道顶部内侧的温度以及炉内高温区的温度,计算出最佳反应区域的标高,从而使还原剂在该区域喷出。经过一个时间间隙之后,当工况发生变化时,烟道顶部内侧的温度以及炉内高温区的温度发生变化,系统再重新计算出最佳反应区域的新标高并确保还原剂在新的最佳区域喷出,加强了还原剂与烟气的混合效果,从而提高了脱硝效率,减少了氨逃逸,节约了运行成本。
附图说明
图1-图3为本发明第一个实施例的结构及原理示意图。其中图1为喷枪在炉膛烟道中的结构布置图,图2为温度与标高线性图,图3为喷枪标高控制原理示意图。
图4-图5为本发明第二个实施例的结构原理示意图。其中图4为喷枪在炉膛烟道中的结构布置图,图图5为喷枪层控制原理示意图。
图中:
1.1炉膛,
1.2烟道,
1.20烟道顶标高线,
1.21烟道高温区域标高线,
1.2a最佳反应区域标高线,
2喷枪
3位置传感器
Ha 1第一喷枪层,
Ha 2第二喷枪层,
Ha 3第三喷枪层。
具体实施方式
图1-图3为本发明第一个实施例的结构及原理示意图。其中图1为喷枪在炉膛烟道中的结构布置图,图2为温度与标高线性图,图3为喷枪标高控制示意图。
本例中,一种垃圾焚烧发电厂炉内SNCR脱硝的喷枪控制方法,包括控制系统,烟气分析系统,测温系统,由系统控制的竖直安装在烟道顶部并且可以在竖直方向上移动的喷枪2,所述测温系统包括在焚烧炉烟道顶部内侧设置测温装置以及在炉内烟道高温区设置高温测温装置,其特征是,还设置位置传感器3用于测控喷枪的实时标高,还包括最佳SNCR脱硝反应区域标高的计算方法,所述计算方法包括以下步骤:
步骤1:测量高温区温度T 1及烟道顶部内侧温度T 0
烟道顶部内侧温度T 0,对应标高H 0,标高线为1.20;此位置喷枪停止工作或检修位,H 0在烟道顶内侧(初始位置);
高温区温度为T 1,对应标高H 1,标高线为1.21;
最佳反应区温度为T a,对应标高H a,标高线为1.2a;
正常工况必须满足两个条件:T 1>850℃,T 1>T 0  (式1);
当焚烧炉处于焚烧工况时,喷枪标高H 1到H 0的炉内温度呈现线性变化,标高与温度的关系式如下:
H a=a+b×T a  (式2)
H 1=a+b×T 1  (式3)
H 0=a+b×T 0  (式4)
由此推出:
a=(H 0×T 1-H 1×T 0)/(T 1-T 0)  (式5)
b=(H 1-H 0)/(T 1-T 0)  (式6)
则在最佳反应温度区域的标高为:
H a=(H 0×T 1-H 1×T 0)/(T 1-T 0)+(H 1-H 0)×T a/(T 1-T 0)  (式7),
式中,H 0、H 1数据为已知,T 0、T 1可以测量,最佳反应区域的温度T a则为950℃;由此,通过某一个时刻的T 0、H 0、T 1、H 1值即可计算出该时刻的最佳反应温度区域的标高H a;此时,在系统的控制下,将喷枪移动至标高位置为H a并喷出还原剂。
在经过一个时间间隙△x之后,由于工况发生变化,此时,烟道顶部内侧温度变为T 0x、高温区温度变为T 1x,最佳反应温度区域的标高变为H ax:
H ax=(H 0×T 1x-H 1×T 0x)/(T 1x-T 0x)+(H 1-H 0)×T a/(T 1x-T 0x)  (式8),
此时,在系统的控制下,将喷枪移动至标高位置为H ax并喷出还原剂。
本发明提示,时间间隙△x可以选取2分钟。
喷枪移动时的位置可以通过喷枪位置传感器3直接读取和控制。
当处于故障和检修状态下,喷枪收到控制指令传回退到初始位置H 0
当T 1<850℃,喷枪位置自动回退至初始位置H 0
当正常工况下,850℃<T 1<950℃,每隔一个△x时间,喷枪即自动追踪一次最佳位置。
图4-图5为本发明第二个实施例的结构原理示意图。其中图4为喷枪在炉膛烟道中的结构布置图,图图5为喷枪层控制示意图。图中显示,本例中,一种垃圾焚烧发电厂炉内SNCR脱硝的喷枪控制方法,包括控制系统,烟气分析系统,测温系统,由系统控制的若干水平安装固定的喷枪,所述喷枪在竖直方向分三层安装构成第一喷枪层Ha 1,第二喷枪层Ha 2,第三喷枪层Ha 3,三个不同的喷枪层具有不同的标高,所述测温系统包括在焚烧炉烟道顶部内侧设置测温装置以及在炉内烟道高温区设置高温测温装置,其特征是,还包括最佳SNCR脱硝反应区域标高的计算方法,所述计算方法包括以下步骤:
步骤1:测量高温区温度T 1及烟道顶部内侧温度T 0
烟道顶部内侧温度T 0,对应标高H 0;此位置喷枪停止工作或检修位,H 0在烟道顶内侧;
高温区温度为T 1,对应标高H 1
最佳反应区温度为T a,对应标高H a
正常工况必须满足两个条件:T 1>850℃,T 1>T 0  (式1);
当焚烧炉处于焚烧工况时,喷枪标高H 1到H 0的炉内温度呈现线性变化,标高与温度的关系式如下:
H a=a+b×T a  (式2)
H 1=a+b×T 1  (式3)
H 0=a+b×T 0  (式4)
由此推出:
a=(H 0×T 1-H 1×T 0)/(T 1-T 0)  (式5)
b=(H 1-H 0)/(T 1-T 0)  (式6)
则在最佳反应温度区域的标高为:
H a=(H 0×T 1-H 1×T 0)/(T 1-T 0)+(H 1-H 0)×T a/(T 1-T 0)  (式7),
式中,H 0、H 1数据为已知,T 0、T 1可测量,最佳反应区域的温度T a则为950℃;由此,通过某一个时刻的T 0、H 0、T 1、H 1值即可计算出该时刻的最佳反应温度区域的标高H a;此时,在系统的控制下,三个喷枪层Ha 1、Ha 2、Ha 3中最接近标高值为标高H a的喷枪层喷枪喷出还原剂。
在经过一个时间间隙△x之后,由于工况发生变化,此时,烟道顶部内侧温度变为T 0x、高温区温度变为T 1x,最佳反应温度区域的标高变为H ax:
H ax=(H 0×T 1x-H 1×T 0x)/(T 1x-T 0x)+(H 1-H 0)×T a/(T 1x-T 0x)  (式8),
此时,在系统的控制下,三个喷枪层Ha 1、Ha 2、Ha 3中最接近标高值为标高H ax的喷枪层喷枪喷出还原剂。
本例中,时间间隙△x可以选取2分钟。
当处于故障和检修状态下,喷枪收到控制指令传回退到初始位置H 0
当T 1<850℃,喷枪位置自动回退至初始位置H 0
当正常工况下,850℃<T 1<950℃,每隔一个△x时间,系统自动调整一次最佳喷枪层位置。

Claims (8)

  1. 一种垃圾焚烧发电厂炉内SNCR脱硝的喷枪控制方法,包括控制系统,烟气分析系统,测温系统,由系统控制的竖直安装在烟道顶部并且可以在竖直方向上移动的喷枪,所述测温系统包括在焚烧炉烟道顶部内侧设置测温装置以及在炉内烟道高温区设置高温测温装置,其特征是,还设置位置传感器用于测控喷枪的实时标高,还包括最佳SNCR脱硝反应区域标高的计算方法,所述计算方法包括以下步骤:
    步骤1:测量高温区温度T 1及烟道顶部内侧温度T 0
    设定最佳反应区温度为T a,对应标高H a
    正常工况必须满足两个条件:T 1>850℃,T 1>T 0 (式1);
    当焚烧炉处于焚烧工况时,喷枪标高H 1到H 0的炉内温度呈现线性变化,标高与温度的关系式如下:
    H a=a+b×T a (式2)
    H 1=a+b×T 1 (式3)
    H 0=a+b×T 0 (式4)
    由此推出:
    a=(H 0×T 1-H 1×T 0)/(T 1-T 0) (式5)
    b=(H 1-H 0)/(T 1-T 0) (式6)
    则最佳反应温度区域的标高为:
    H a=(H 0×T 1-H 1×T 0)/(T 1-T 0)+(H 1-H 0)×T a/(T 1-T 0) (式7),
    式中,T 0、H 0、T 1、H 1数据是可测量或可知,最佳反应区域的温度T a则为950℃;由此,由某一个时刻的T 0、H 0、T 1、H 1值即可计算出该时刻的最佳反应温度区域的标高H a;此时,在系统的控制下,将喷枪移动至标高位置为H a并喷出还原剂。
    在经过一个时间间隙△x之后,由于工况发生变化,此时,烟道顶部内侧温度变为T 0x、高温区温度变为T 1x,最佳反应温度区域的标高变为H ax:
    H ax=(H 0×T 1x-H 1×T 0x)/(T 1x-T 0x)+(H 1-H 0)×T a/(T 1x-T 0x) (式8),
    此时,在系统的控制下,将喷枪移动至标高位置为H ax并喷出还原剂。
  2. 根据权利要求所述的一种垃圾焚烧发电厂炉内SNCR脱硝的喷枪控制方法,其特征是,所述△x为2分钟。
  3. 根据权利要求所述的一种垃圾焚烧发电厂炉内SNCR脱硝的喷枪控制方法,其特征是,喷枪移动时的位置通过喷枪位置传感器直接读取和控制。
  4. 根据权利要求1所述的一种垃圾焚烧发电厂炉内SNCR脱硝的喷枪控制方法,其特征是,当处于故障和检修状态下,喷枪收到控制指令传回退到初始位置H 0
  5. 根据权利要求1所述的一种垃圾焚烧发电厂炉内SNCR脱硝的喷枪控制方法,其特征是,当T 1<850℃,喷枪位置自动回退至初始位置H 0
  6. 根据权利要求1所述的一种垃圾焚烧发电厂炉内SNCR脱硝的喷枪控制方法,其特征是,当850℃<T 1<950℃,喷枪处于实时追踪状态。
  7. 一种垃圾焚烧发电厂炉内SNCR脱硝的喷枪控制方法,包括控制系统,烟气分析系统,测温系统,由系统控制的若干水平安装固定的喷枪,所述喷枪在竖直方向分层安装构成喷枪层Ha 1、Ha 2、Ha i直至Ha n,不同的喷枪层具有不同的标高,所述测温系统包括在焚烧炉烟道顶部内侧设置测温装置以及在炉内烟道高温区设置高温测温装置,其特征是,还包括最佳SNCR脱硝反应区域标高的计算方法,所述计算方法包括以下步骤:
    步骤1:测量高温区温度T 1及烟道顶部内侧温度T 0;
    正常工况必须满足两个条件:T 1>850℃,T 1>T 0 (式1);
    当焚烧炉处于焚烧工况时,喷枪标高H 1到H 0的炉内温度呈现线性变化,标高与温度的关系式如下:
    H a=a+b×T a (式2)
    H 1=a+b×T 1 (式3)
    H 0=a+b×T 0 (式4)
    由此推出:
    a=(H 0×T 1-H 1×T 0)/(T 1-T 0) (式5)
    b=(H 1-H 0)/(T 1-T 0) (式6)
    则最佳反应温度区域的标高为:
    H a=(H 0×T 1-H 1×T 0)/(T 1-T 0)+(H 1-H 0)×T a/(T 1-T 0) (式7),
    式中,T 0、H 0、T 1、H 1数据是可测量或可知,最佳反应区域的温度T a则为950℃;由此,由一个时刻的T 0、H 0、T 1、H 1值即可计算出该时刻的最佳反应温度区域的标高H a;此时,在系统的控制下,最接近标高值为标高H a的喷枪层喷枪喷出还原剂。
    在经过一个时间间隙△x之后,由于工况发生变化,此时,烟道顶部内侧温度变为T 0x、高温区温度变为T 1x,最佳反应温度区域的标高变为H ax:
    H ax=(H 0×T 1x-H 1×T 0x)/(T 1x-T 0x)+(H 1-H 0)×T a/(T 1x-T 0x) (式8),
    此时,在系统的控制下,最接近标高值为标高H ax的喷枪层喷枪喷出还原剂。
  8. 根据权利要求7所述的一种垃圾焚烧发电厂炉内SNCR脱硝的喷枪控制方法,其特征是,所述时间间隙△x为2分钟。
PCT/CN2018/120752 2018-12-12 2018-12-12 一种垃圾焚烧发电厂炉内sncr脱硝的喷枪控制方法 WO2020118589A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/120752 WO2020118589A1 (zh) 2018-12-12 2018-12-12 一种垃圾焚烧发电厂炉内sncr脱硝的喷枪控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/120752 WO2020118589A1 (zh) 2018-12-12 2018-12-12 一种垃圾焚烧发电厂炉内sncr脱硝的喷枪控制方法

Publications (1)

Publication Number Publication Date
WO2020118589A1 true WO2020118589A1 (zh) 2020-06-18

Family

ID=71075826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120752 WO2020118589A1 (zh) 2018-12-12 2018-12-12 一种垃圾焚烧发电厂炉内sncr脱硝的喷枪控制方法

Country Status (1)

Country Link
WO (1) WO2020118589A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114028927A (zh) * 2021-09-23 2022-02-11 华能国际电力股份有限公司大连电厂 一种自动发电量控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104117279A (zh) * 2014-07-17 2014-10-29 中国华能集团公司 一种电站锅炉sncr脱硝控制系统及其控制方法
CN105289233A (zh) * 2015-11-11 2016-02-03 中国华能集团公司 一种燃煤锅炉sncr和scr联合脱硝系统及方法
WO2016173730A1 (de) * 2015-04-30 2016-11-03 Mehldau & Steinfath Umwelttechnik Gmbh Verfahren und vorrichtung zur dynamischen abgasbehandlung
CN106362561A (zh) * 2016-11-09 2017-02-01 山西华仁通电力科技有限公司 一种基于炉内流场的集群sncr控制方法
CN108151006A (zh) * 2017-12-28 2018-06-12 中国计量大学 一种用于链条炉的sncr和烟气再循环耦合脱硝系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104117279A (zh) * 2014-07-17 2014-10-29 中国华能集团公司 一种电站锅炉sncr脱硝控制系统及其控制方法
WO2016173730A1 (de) * 2015-04-30 2016-11-03 Mehldau & Steinfath Umwelttechnik Gmbh Verfahren und vorrichtung zur dynamischen abgasbehandlung
CN105289233A (zh) * 2015-11-11 2016-02-03 中国华能集团公司 一种燃煤锅炉sncr和scr联合脱硝系统及方法
CN106362561A (zh) * 2016-11-09 2017-02-01 山西华仁通电力科技有限公司 一种基于炉内流场的集群sncr控制方法
CN108151006A (zh) * 2017-12-28 2018-06-12 中国计量大学 一种用于链条炉的sncr和烟气再循环耦合脱硝系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114028927A (zh) * 2021-09-23 2022-02-11 华能国际电力股份有限公司大连电厂 一种自动发电量控制系统

Similar Documents

Publication Publication Date Title
CN109464900B (zh) 一种垃圾焚烧发电厂炉内sncr脱硝的喷枪控制方法
CN103728994B (zh) 一种水泥厂scr脱硝效率监测控制方法
CN102103047B (zh) 一种用于烟气脱硝催化剂活性检测的方法和装置
US5286458A (en) Injection type non-catalyst denitrogen oxide process control system
CN105404145B (zh) 基于指数预测和时滞预估补偿的脱硝新型串级控制方法
CN203673364U (zh) 一种水泥厂scr脱硝效率监测控制系统
CN104226110A (zh) 一种燃煤锅炉scr脱硝控制方法与控制系统
CN105920997B (zh) 一种燃尽风与sncr耦合的燃煤锅炉脱硝系统及方法
CN102806003B (zh) 用于水泥回转窑的sncr脱硝装置和方法
CN104001420A (zh) 一种烟气sncr脱硝控制装置及其使用的控制方法
CN102759931A (zh) 烟气脱硝的控制方法和装置
WO2020118589A1 (zh) 一种垃圾焚烧发电厂炉内sncr脱硝的喷枪控制方法
CN111967206A (zh) 一种余热锅炉立体三维温度场构建方法、系统及应用
CN103471720B (zh) 用于喷雾热处理的红外实时测温系统及方法
CN204996327U (zh) 一种基于氨氮摩尔比检测及调控的sncr-scr联合脱硝系统
CN214233498U (zh) 一种双pid的循环流化床锅炉sncr控制系统
CN207478283U (zh) 一种火电机组脱硝实时控制装置
CN104897291A (zh) 一种尿素热解炉沉积物的监测的方法及系统
CN106526064B (zh) 一种动态检测scr脱硝过程中催化剂活性的方法
CN114964380A (zh) 一种管材高温腐蚀状态监测方法、装置及系统
CN208136277U (zh) 用于处理转炉喷溅的系统
CN204735116U (zh) 一种适用于低含尘烟气条件下的scr脱硝系统
KR100501420B1 (ko) 질소산화물저감용 환원제주입기의 자동 승강 장치
CN207042228U (zh) 一种单通道玻璃窑炉烟气脱硝装置
EP3431167A1 (en) Method and installation of selective, non-catalytic reduction of nitrogen oxides in grate boilers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 16-11-21)

122 Ep: pct application non-entry in european phase

Ref document number: 18943011

Country of ref document: EP

Kind code of ref document: A1