WO2020116990A1 - Graphene composite for electron microscopic observation and method for manufacturing specimen substrate - Google Patents

Graphene composite for electron microscopic observation and method for manufacturing specimen substrate Download PDF

Info

Publication number
WO2020116990A1
WO2020116990A1 PCT/KR2019/017192 KR2019017192W WO2020116990A1 WO 2020116990 A1 WO2020116990 A1 WO 2020116990A1 KR 2019017192 W KR2019017192 W KR 2019017192W WO 2020116990 A1 WO2020116990 A1 WO 2020116990A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
sample
layer
microscope
support layer
Prior art date
Application number
PCT/KR2019/017192
Other languages
French (fr)
Korean (ko)
Inventor
이정오
정두원
황준연
이경은
Original Assignee
한국화학연구원
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원, 한국과학기술연구원 filed Critical 한국화학연구원
Publication of WO2020116990A1 publication Critical patent/WO2020116990A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/26Stages; Adjusting means therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support

Definitions

  • the present invention relates to a graphene complex for electron microscopy that can observe a sample to be observed clearly and accurately.
  • the crystalline phase of a specific material allows the characteristics of the material to be grasped in more detail, and the material made of the crystalline phase has superior physical and chemical properties compared to the amorphous material.
  • a very high temperature is required to form a crystalline phase of a material, or it is performed in a solution phase, because it undergoes a process of reassembling the constituent molecules of the material.
  • a solution phase it is relatively easy to produce a single crystal of a soluble material, because crystal growth is made by homogeneous nucleation, and in the case of heterogeneous nucleation that forms crystals on a solid substrate, there is a problem that it is difficult to greatly increase the crystal size. do.
  • graphene having a large sheet shape composed of hybridized SP 2 bonds of carbon atoms is a perfectly flat and defect-free material. Therefore, since the discovery of graphene, it has attracted attention as the best template material for epitaxial growth of various 2D materials.
  • An object of the present invention is to provide a graphene complex for electron microscope observation that can observe a sample to be observed clearly and accurately.
  • Graphene complex for electron microscopic observation including a graphene layer and a support layer located on one surface of the graphene layer.
  • the graphene complex is a graphene complex in which the sample to be observed is located on the other surface of the graphene layer.
  • the sample to be observed is at least one graphene complex selected from the group consisting of oligonucleotides, proteins, polypeptides, cells, organelles, protozoa, viruses, metals, polymers and semiconductors.
  • the support layer is a graphene composite made of an amorphous material.
  • the support layer is a graphene composite made of a crystalline material.
  • the crystalline material is at least one selected from the group consisting of metal, silica, quartz, ceramic, paper, plastic, polymer, cloth and composites thereof Graphene composite.
  • the microscope is a graphene complex selected from the group consisting of transmission electron microscope, scanning electron microscope, scanning probe microscope, scanning tunneling microscope, confocal microscope, X-ray microscope, optical microscope and tomography microscope. .
  • a method of manufacturing an electron microscope sample substrate comprising forming a crystalline sample on the other surface of the graphene layer of the composite of 5 above.
  • the crystalline sample is at least one selected from the group consisting of oligonucleotides, proteins, polypeptides, cells, organelles in the cell, protozoa, viruses, metals, polymers, and semiconductors.
  • a sample to be observed can be accurately and clearly observed.
  • a sample to be observed in the case of a graphene composite supported by a support layer made of a crystalline material, a sample to be observed can be crystallinely formed, and in the case of a graphene composite supported by a support layer made of an amorphous material, an insulating bio sample The back can be accurately and clearly observed, and even in the case of a sample that could not be placed on a single graphene layer, it has the advantage of being stably placed due to the chemical transparency of graphene.
  • FIG. 1 is a SEM sample obtained by placing a section sample on a Kapton film without carbon coating (A), a SEM observation by coating the sample surface with carbon (B), and a graphene layer positioned on top using a Kapton film as a support layer. It shows the SEM observation result (C) by placing a target section sample on the graphene composite of the invention.
  • FIG. 2 and 3 are the results of imaging each of the cases in which the present invention graphene complex was used (FIG. 2) and the kapton film alone was not used (FIG. 3).
  • 5 to 7 shows the growth pattern of gold crystals over time after PECVD as a support layer (copper foil, SiO 2 /Si), as a result of observation under a microscope by growing gold crystals using the graphene composite of the present invention.
  • the thickness of the gold thin film was grown to 1 nm, 3 nm, 3.4 nm, 4.5 nm, 5 nm, and 7 nm, and the current resistance exhibited by the thin film was measured as 145 ⁇ for 3 nm and 75 ⁇ for 5 nm.
  • FIG. 8 shows an atomic force microscope (AFM) picture of the gold crystal film formed on the graphene of FIG. 6.
  • FIG. 9 shows that a crystal film having a thickness of about 3 nm was formed as a result of showing the thickness according to the position (horizontal) of the gold crystal film of FIG.
  • 11 shows the UV/VIS spectrum of the gold single crystal layer formed on the graphene layer supported on the quartz support layer to evaluate the optical properties of the gold crystal film. 11, the transmittance decreases as the gold crystal layer deposition thickness increases.
  • 12 and 13 are electron microscope images showing the growth of an indium single crystal formed on a graphene layer supported on a copper foil support layer, which is formed at 277K and 100K, respectively.
  • FIG. 14 shows an AFM image of crystals after transferring the indium single crystal layer of FIG. 12 to a silicon substrate with PMMA.
  • 15 is a graph showing the thickness according to the position (horizontal) of the indium single crystal layer of FIG. 14, and it can be seen that 10-30 nm thick crystals were grown.
  • 16 is an electron microscope image showing single crystal growth of tin formed on a graphene layer supported on a copper foil support layer.
  • 17 to 19 are electron microscopic images showing the growth of Pd, Pt, and Co single crystals formed on the graphene layers supported on the copper foil support layers, respectively.
  • the present invention provides a graphene complex for electron microscopic observation, including a graphene layer and a support layer located on one surface of the graphene layer.
  • the graphene composite is a sample supporting substrate for electron microscopy observation, and the sample to be observed can be clearly and precisely observed due to the excellent conductivity and chemical transparency of the graphene layer made of carbon, and the bio sample having insulating properties is also clearly observed. It has the advantage that it is possible.
  • the sample to be observed may be located on the upper surface, the lower surface, and both sides of the graphene complex in a range capable of observing the electron microscope, but specifically, the other surface of the graphene layer That is, it may be located on a surface that is not supported as a support layer among both surfaces of the graphene layer.
  • oligonucleotides, proteins, polypeptides, cells, organelles, protozoa, viruses, metals, polymers, organic molecules and semiconductors It may be at least one selected from the group consisting of.
  • the support layer can be used without limitation as long as it is used as a sample support layer for an electron microscope in the prior art, and can be varied depending on the type of electron microscope or the nature of the sample to be observed. It may be a crystalline support layer made of a material or an amorphous support layer made of a material that is not crystalline.
  • a material constituting the crystalline support layer may be at least one selected from the group consisting of metal, silica, quartz, ceramic, paper, plastic, polymer, cloth, and composites thereof. , It is not particularly limited.
  • a sample that has already been prepared may be placed on the graphene layer, but it may be observed by forming a crystalline sample on the graphene layer.
  • the crystallinity of the crystalline sample can be further improved to more clearly observe the internal structure such as the crystal structure.
  • a sample substrate in the case of using a crystalline support layer as an embodiment of the present invention may be prepared by including a step of forming a crystalline sample on the graphene layer of the present invention graphene composite.
  • the crystalline sample may be at least one selected from the group consisting of oligonucleotides, proteins, polypeptides, cells, intracellular organelles, protozoa, viruses, metals, polymers, organic molecules and semiconductors, but is not limited thereto, and crystallinity Any sample to be observed can be freely selected and formed on the graphene layer.
  • the crystalline sample can be applied without any particular limitation on the method of forming the sample as an observation subject of an electron microscope.
  • a chemical vapor deposition method, sputtering, etc. may be mentioned, but an appropriate method may be applied depending on the material.
  • a material constituting the amorphous support layer may be at least one selected from the group consisting of amorphous polymers, amorphous inorganic materials and composites thereof, but is not particularly limited thereto.
  • the graphene layer included in the graphene composite may be a single graphene layer, a double graphene layer, or multiple graphene layers, but is preferably a single graphene layer or a thin graphene layer in terms of forming a thin graphene composite for microscopic observation.
  • the graphene layer is located on one surface of the support layer, and is not limited to a specific surface such as upper, lower, or both sides of the support layer, but considering the aspect of placing the target material on the graphene layer during electron microscope observation , It is preferably located on the upper portion of the support layer.
  • the graphene layer is located on one surface of the support layer by at least one method from the group consisting of chemical vapor deposition, vapor deposition, molecular beam deposition, vacuum deposition, activation reaction deposition, mechanical separation, fluid collision separation, and chemical separation. It may be, but is not limited thereto, and any method known in the art can be freely selected as long as it can effectively position the graphene layer on the support layer.
  • the graphene composite is a graphene composite for electron microscope observation, and has no particular limitation on its thickness, and may be set in various ranges depending on the type of electron microscope and the nature of the support layer, but has a thinner thickness to improve electron permeability, etc. To obtain the effect of, for example, it may be 5 to 70, 6 to 65, 7 to 60, 8 to 55, 9 to 55, 10 to 50 mm 2, preferably 10 to 50 mm thick.
  • the graphene composite is a graphene composite for electron microscopic observation, and is based on chemical transparency of graphene and conductivity of a carbon-based material. Therefore, as a kind of microscope, TEM (transmission electron microscope), SEM (scanning electron microscope), AFM (scanning probe microscope), STM (scanning tunneling microscope), confocal microscope (confocal microscope), X-ray microscope, optical microscope and It may be one selected from the group consisting of a tomographic microscope (tomography microscope), but is not limited thereto.
  • Example 1 Observation of a bio sample using a graphene complex supported on a flexible support layer
  • the graphene material is grown for about 1 hour in a methane and hydrogen atmosphere at 1000° C. using a copper foil cleaned with a nickel etchant in a hot wall furnace as a catalyst. More specifically, graphene was manufactured on a 4.8 ⁇ m thick copper thin film (Alfa Aesar) by low pressure chemical vapor deposition (CVD). Prior to synthesis, the copper film was immersed in a nickel etchant (transene, TFB) and washed.
  • the specific growth conditions are as follows.
  • a copper thin film was put in a reactor, and the pressure was reduced, followed by heating to 1000° C. and annealing for 20 minutes under 100 sccm H 2 conditions. 30 sccm CH 4 and 30 sccm H 2 were introduced for 40 minutes to promote graphene growth.
  • the furnace was cooled to room temperature.
  • the graphene material grown on the copper foil as described above can be used as an electron microscope substrate capable of growing crystals without additional treatment, but when optical transparency is required, the graphene grown on the copper foil is transferred to a transparent substrate. use.
  • the image of the biosample of the present invention was used by transferring a graphene sample grown on a copper foil onto a kapton foil via PMMA or by transferring a graphene sample onto a kapton foil using an electrostatic film.
  • Cell sections are made by staining cell membranes with osmium, uranium, lead, etc., and forming thin sections of tens of nanometers in flexible membranes (Kapton films, etc.) with clean surfaces using ultra-thin sectioning machines using biothin tissue embedded in resin. It was used in experiments to observe the microstructure of.
  • the graphene material grown on the copper foil on the glass substrate was transferred and used as a substrate for growing the lysozyme protein.
  • the structure of the target sample can be confirmed by reducing the charging phenomenon, but carbon on the sample
  • the result of reducing the resolution of the observed image is somewhat reduced, resulting in a difference in the image resolution of each sample according to the degree of sample coating, and additional experiments such as immunostaining after imaging cannot be additionally performed. This exists.
  • a sample of a target fragment is placed on the graphene complex of the present invention in which a graphene layer is positioned on a Kapton film as a support layer, and the results observed by SEM can be confirmed.
  • the charging phenomenon has been eliminated, and the resolution of the image is very high enough to clearly identify the structure.
  • additional experimental processes such as immunostaining after imaging.
  • FIG. 2 shows that when using the graphene composite of the present invention, the microstructure of biological tissues, such as cell membranes, is well shown in various sample thicknesses and various acceleration voltages, it can be utilized regardless of sample thickness and acceleration voltage.
  • Figure 3 shows the effect of improving the conductivity of the graphene coating at the boundary coated with the graphene composite of the present invention on the surface.
  • the conductivity is increased compared to the case where it is not, so the charging phenomenon does not appear, and the effect of improving the conductivity is to remove the excess electrons accumulated in the biological tissue sample having insulating characteristics, thereby removing the sample.
  • the charging phenomenon clear observation of the microstructure is possible.
  • the lysozyme protein crystal is grown using a graphene complex and the results observed under a microscope can be confirmed.
  • nucleation is easier than in the case where it is not. It can be seen that the crystal growth is fast and large.
  • Example 2 Growth and observation of a metal single crystal using a graphene composite supported on a crystalline support layer
  • Graphene was prepared on a 4.8 ⁇ m thick copper thin film (Alfa Aesar) by low pressure chemical vapor deposition (CVD). Prior to synthesis, the copper film was immersed in a nickel etchant (transene, TFB) and washed.
  • TFB nickel etchant
  • a copper thin film was put in a reactor, and the pressure was reduced, followed by heating to 1000° C. and annealing for 20 minutes under 100 sccm H 2 conditions. 30 sccm CH 4 and 30 sccm H 2 were introduced for 40 minutes to promote graphene growth.
  • the furnace was cooled to room temperature.
  • PMMA is coated on the graphene surface and transferred to a desired substrate by etching copper, or after attaching an electrostatic film to the graphene surface and etching the copper to the desired substrate.
  • the method of transcription was used.
  • transfer the graphene coated with PMMA onto the SiO 2 /Si or quartz support layer dry it sufficiently at room temperature to remove water, and then dry it completely at a temperature of 100°C or less to improve adhesion.
  • the PMMA was soaked and removed in acetone to complete the graphene complex.
  • the electrostatic film a graphene layer attached to the electrostatic film was attached to the target substrate, and then the electrostatic film was compressed to transfer and remove the graphene.
  • the graphene composite supported by the copper foil support layer and the SiO 2 /Si or quartz support layer All supported graphene composites correspond to graphene composites supported by a crystalline support layer.
  • Metal crystals were grown through vacuum thermal vapor deposition on the graphene composite surface thus manufactured.
  • the vacuum thermal evaporation chamber was depressurized to 2.0 X 10 -6 mbar, and pure metal pellets (99.999%, iTASCO T) were placed in a molybdenum boat (iTASCO) and then evaporated.
  • the deposition was performed at room temperature (300K) or low temperature (277K ⁇ 100K). The thickness of the thin film was monitored with a quartz crystal microbalance (QCM).
  • FIG. 5 shows an electron microscope image of a gold single crystal formed on a graphene layer supported on a copper foil support layer.
  • gold is deposited on the graphene layer supported on the crystalline copper foil support layer, it can be seen that fractal crystals grow.
  • the connectivity of crystals was significantly reduced on the graphene surface left in the atmosphere for a long time (Fig. 5, 18h, 1-2 weeks exposed).
  • FIGS. 6 and 7 show electron microscope images of gold single crystals formed on a graphene layer supported on a SiO 2 /Si support layer. Again, it can be seen that the crystals in the form of fractals grow as if supported on the copper foil support layer. However, the size of the crystal is smaller than that of the graphene supported on the crystalline support layer.
  • FIG. 8 and 9 show AFM images and thicknesses of gold crystals grown on the graphene of FIG. 5, respectively.
  • FIG. 10 shows XRD analysis results of the gold single crystal film of FIG. 6. It can be seen that the Au ⁇ 111> plane occupies the majority, and it can be seen from the Laue pattern of the Au ⁇ 111> peak of the right enlarged image that the crystal film is composed of 2-3 layers of gold atoms.
  • FIG. 11 shows the UV/VIS spectrum of the grown gold crystal layer. Referring to this, as the deposition thickness increases, the transparency of the film decreases, and it can be seen that the location of the resonance peak shifts slightly to a long wavelength. This means that the crystal size increases with increasing deposition thickness.
  • FIG. 12 and 13 are electron microscope images showing the growth of an indium single crystal formed on a graphene layer supported on a copper foil support layer, which is formed at 277K and 100K, respectively.
  • the crystal of FIG. 13 is formed in a very small size compared to the crystal of FIG. 12 because the metal atoms lose kinetic energy due to the low temperature of the substrate and crystallize as soon as it hits the substrate. On a substrate close to room temperature, metal atoms move relatively freely to form a larger crystal phase.
  • 16 is an electron microscope image showing single crystal growth of tin formed on a graphene layer supported on a copper foil support layer. Referring to this, increasing the deposition thickness increases the crystal size, but there was no significant difference in crystals formed at 277K and 307K. Thus, it can be seen that the temperature of the substrate is preferably 0 degrees Celsius or more in order to maximize the crystal size.
  • 17 to 19 are electron microscopic images showing the growth of Pd, Pt, and Co single crystals formed on the graphene layers supported on the copper foil support layers, respectively.
  • Pd, Pt, and Co small crystals in a fractal form are grown, but in the case of Pd, Pt, and Co, the binding energy with graphene is higher than in the case of Au, In, Sn, and the crystal size is high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

When used in electron microscopic observation, a graphene composite of the present invention can allow an accurate and clear observation of a specimen to be observed. Particularly, in the case of a graphene composite supported by a support layer consisting of crystalline material, a specimen to be observed can be formed to be crystallized, and, in the case of a graphene composite supported by a support layer consisting of a non-crystalline material, an insulating bio specimen or the like can be accurately and clearly observed, and even a specimen that cannot be mounted on a sole graphene layer can be stably mounted on the graphene composite due to the chemical transparency of graphene.

Description

전자 현미경 관찰용 그래핀 복합체 및 시료 기판의 제조방법 Method for manufacturing graphene composite and sample substrate for electron microscope observation
본 발명은 관찰 대상 시료를 선명하고 정밀하게 관찰할 수 있는 전자 현미경 관찰용 그래핀 복합체에 관한 것이다.The present invention relates to a graphene complex for electron microscopy that can observe a sample to be observed clearly and accurately.
특정 물질의 결정 상은 물질의 특성을 보다 자세히 파악할 수 있게 하며 결정상으로 만들어진 물질은 비정질 물질에 비해 매우 우수한 물리적, 화학적 특성을 갖는다. 일반적으로 물질의 결정상을 만드는 데는 매우 높은 온도를 필요로 하거나 용액 상에서 이루어지는데, 이것은 물질의 구성분자를 재조립하는 과정을 거치기 때문이다. 용액 상의 경우에는 비교적 쉽게 용해물질의 단결정을 제작할 수 있는데, 이것은 결정성장이 homogeneous nucleation에 의해 만들어지기 때문이며, 고형기재상에 결정을 형성하는 heterogeneous nucleation의 경우에는 결정의 크기를 크게 만들기 어렵다는 문제점이 존재한다. 특히 단백질, 세포, DNA 등 바이오 분자들의 경우 온도를 올리거나 포화용액을 만드는 것이 불가능하여 단결정 성장이 매우 어려운 특징을 가진다. 단백질, DNA 등의 단결정은 바이오 분자의 구조를 알아내는 데 있어 매우 핵심적인 기술이며 이들 바이오소재를 정밀하게 관측하여 특징을 밝히는 데 있어 어려움을 겪어왔다. The crystalline phase of a specific material allows the characteristics of the material to be grasped in more detail, and the material made of the crystalline phase has superior physical and chemical properties compared to the amorphous material. In general, a very high temperature is required to form a crystalline phase of a material, or it is performed in a solution phase, because it undergoes a process of reassembling the constituent molecules of the material. In the case of a solution phase, it is relatively easy to produce a single crystal of a soluble material, because crystal growth is made by homogeneous nucleation, and in the case of heterogeneous nucleation that forms crystals on a solid substrate, there is a problem that it is difficult to greatly increase the crystal size. do. In particular, in the case of biomolecules such as proteins, cells, and DNA, it is impossible to increase the temperature or make a saturated solution, so single crystal growth is very difficult. Single crystals such as protein and DNA are very important technologies for determining the structure of biomolecules, and have been having difficulty in observing these biomaterials precisely and revealing their characteristics.
한편, 탄소 원자의 혼성(hybridized) SP 2 결합으로 구성된 큰 시트형태를 갖는 그래핀은 완전한 편평(perfectly flat)하며 결함이 없는(defect-free) 물질이다. 따라서, 그래핀을 발견한 이래로, 다양한 2차원 물질의 에피택셜 성장을 위한 최고의 템플릿 소재로서 주목받고 있다. On the other hand, graphene having a large sheet shape composed of hybridized SP 2 bonds of carbon atoms is a perfectly flat and defect-free material. Therefore, since the discovery of graphene, it has attracted attention as the best template material for epitaxial growth of various 2D materials.
본 발명은 관찰 대상 시료를 선명하고 정밀하게 관찰할 수 있는 전자 현미경 관찰용 그래핀 복합체를 제공함에 그 목적이 있다.An object of the present invention is to provide a graphene complex for electron microscope observation that can observe a sample to be observed clearly and accurately.
1. 그래핀층 및 상기 그래핀층의 일면에 위치한 지지층을 포함하는 전자 현미경 관찰용 그래핀 복합체.1. Graphene complex for electron microscopic observation, including a graphene layer and a support layer located on one surface of the graphene layer.
2. 위 1에 있어서, 상기 그래핀 복합체는 관찰 대상 시료가 상기 그래핀층의 타면에 위치하는 것인 그래핀 복합체. 2. In the above 1, the graphene complex is a graphene complex in which the sample to be observed is located on the other surface of the graphene layer.
3. 위 2에 있어서, 상기 관찰 대상 시료는 올리고뉴클레오티드, 단백질, 폴리펩티드, 세포, 세포 내 소기관, 원생생물, 바이러스, 금속, 폴리머 및 반도체로 이루어진 군에서 선택된 적어도 하나인 그래핀 복합체.3. In the above 2, wherein the sample to be observed is at least one graphene complex selected from the group consisting of oligonucleotides, proteins, polypeptides, cells, organelles, protozoa, viruses, metals, polymers and semiconductors.
4. 위 1에 있어서, 상기 지지층은 비결정성 물질로 이루어진 것인 그래핀 복합체.4. In the above 1, the support layer is a graphene composite made of an amorphous material.
5. 위 1에 있어서, 상기 지지층은 결정성 물질로 이루어진 것인 그래핀 복합체.5. In the above 1, the support layer is a graphene composite made of a crystalline material.
6. 위 5에 있어서, 상기 결정성 물질은 금속, 실리카, 쿼츠, 세라믹, 종이, 플라스틱, 폴리머, 천 및 이들의 복합재로 이루어진 군에서 선택된 적어도 하나인 그래핀 복합체.6. In the above 5, wherein the crystalline material is at least one selected from the group consisting of metal, silica, quartz, ceramic, paper, plastic, polymer, cloth and composites thereof Graphene composite.
7. 위 1에 있어서, 상기 그래핀층은 단일층 그래핀층인 그래핀 복합체.7. In the above 1, wherein the graphene layer is a single-layer graphene layer graphene complex.
8. 위 1에 있어서, 상기 그래핀 복합체는 10 내지 50 Å 두께인 그래핀 복합체.8. In the above 1, wherein the graphene complex is 10 to 50 Å thick graphene complex.
9. 위 1에 있어서, 상기 현미경은 투과전자현미경, 주사전자현미경, 주사탐침현미경, 주사터널링현미경, 공초점 현미경, X-ray 현미경, 광학현미경 및 단층현미경으로 이루어진 군에서 선택된 하나인 그래핀 복합체. 9. In the above 1, the microscope is a graphene complex selected from the group consisting of transmission electron microscope, scanning electron microscope, scanning probe microscope, scanning tunneling microscope, confocal microscope, X-ray microscope, optical microscope and tomography microscope. .
10. 위 5의 복합체의 그래핀층의 타면에 결정성 시료를 형성하는 단계를 포함하는 전자 현미경 시료 기판의 제조방법.10. A method of manufacturing an electron microscope sample substrate comprising forming a crystalline sample on the other surface of the graphene layer of the composite of 5 above.
11. 위 10에 있어서, 상기 결정성 시료는 올리고뉴클레오티드, 단백질, 폴리펩티드, 세포, 세포 내 소기관, 원생생물, 바이러스, 금속, 폴리머 및 반도체로 이루어진 군에서 선택된 적어도 하나인 제조방법.11. The method of 10 above, wherein the crystalline sample is at least one selected from the group consisting of oligonucleotides, proteins, polypeptides, cells, organelles in the cell, protozoa, viruses, metals, polymers, and semiconductors.
본 발명의 그래핀 복합체를 전자 현미경 관찰에 사용하는 경우, 관찰 대상 시료를 정밀하고 선명하게 관찰할 수 있다. 특히, 결정성 물질로 이루어진 지지층에 의해 지지된 그래핀 복합체의 경우, 관찰 대상 시료를 결정성 있게 형성할 수 있고, 비결정성 물질로 이루어진 지지층에 의해 지지된 그래핀 복합체의 경우, 절연성 있는 바이오 시료 등을 정밀하고 선명하게 관찰할 수 있고, 단독 그래핀층에는 올려놓을 수 없었던 시료의 경우에도 그래핀의 화학적 투명성으로 인해 안정적으로 올려놓을 수 있는 장점이 있다.When the graphene composite of the present invention is used for electron microscopic observation, a sample to be observed can be accurately and clearly observed. In particular, in the case of a graphene composite supported by a support layer made of a crystalline material, a sample to be observed can be crystallinely formed, and in the case of a graphene composite supported by a support layer made of an amorphous material, an insulating bio sample The back can be accurately and clearly observed, and even in the case of a sample that could not be placed on a single graphene layer, it has the advantage of being stably placed due to the chemical transparency of graphene.
도 1은 탄소 코팅없이 Kapton film에 절편 시료를 올려놓고 SEM 관찰한 결과(A), 시료 표면을 탄소로 코팅하여 SEM 관찰한 결과(B) 및 Kapton film을 지지층으로 하여 위에 그래핀층을 위치시킨 본 발명의 그래핀 복합체에 대상 절편 시료를 올려놓아 SEM 관찰한 결과(C)를 나타낸 것이다.1 is a SEM sample obtained by placing a section sample on a Kapton film without carbon coating (A), a SEM observation by coating the sample surface with carbon (B), and a graphene layer positioned on top using a Kapton film as a support layer. It shows the SEM observation result (C) by placing a target section sample on the graphene composite of the invention.
도 2,3은 본 발명 그래핀 복합체를 사용한 경우(도 2)와 그러하지 않고 kapton film만 사용한 경우(도 3) 각각을 이미징한 결과이다.2 and 3 are the results of imaging each of the cases in which the present invention graphene complex was used (FIG. 2) and the kapton film alone was not used (FIG. 3).
도 4는 본 발명 그래핀 복합체를 사용하여 라이소자임 단백질 결정을 성장시켜 현미경으로 관찰한 결과이다.4 is a result of observing under a microscope by growing a lysozyme protein crystal using the graphene complex of the present invention.
도 5 내지 7은 본 발명 그래핀 복합체를 사용하여 금 결정을 성장시켜 현미경으로 관찰한 결과로서, 지지층(구리포일, SiO 2/Si), PECVD 후 시간의 경과에 따른 금 결정의 성장 형태를 나타낸다. 금 박막의 두께는 1nm, 3nm, 3.4nm, 4.5nm, 5nm, 7nm로 성장되었고, 해당 박막이 나타내는 전류 저항은 3nm의 경우 145Ω, 5nm의 경우 75Ω으로 측정되었다.5 to 7 shows the growth pattern of gold crystals over time after PECVD as a support layer (copper foil, SiO 2 /Si), as a result of observation under a microscope by growing gold crystals using the graphene composite of the present invention. . The thickness of the gold thin film was grown to 1 nm, 3 nm, 3.4 nm, 4.5 nm, 5 nm, and 7 nm, and the current resistance exhibited by the thin film was measured as 145 Ω for 3 nm and 75 Ω for 5 nm.
도 8은 상기 도 6의 그래핀 위에 형성된 금 결정막의 원자력힘현미경 (AFM) 사진을 나타낸다.8 shows an atomic force microscope (AFM) picture of the gold crystal film formed on the graphene of FIG. 6.
도 9는 도 8의 금 결정막의 위치(가로)에 따른 두께를 보여주는 결과로 약 3 nm 두께의 결정막이 형성되었음을 보여준다.FIG. 9 shows that a crystal film having a thickness of about 3 nm was formed as a result of showing the thickness according to the position (horizontal) of the gold crystal film of FIG.
도 10은 도 9의 결정막의 out of plane XRD (X-ray Diffraction) 스펙트럼을 보여주며 Au (111) 결정면이 주로 나타나고 우측의 Laue Peak 에서 볼 수 있듯이 결정층의 두께가 금 원자 2-3 층으로 이루어짐을 볼 수 있다.10 shows the out-of-plane XRD (X-ray Diffraction) spectrum of the crystal film of FIG. 9, and the Au (111) crystal plane mainly appears and the thickness of the crystal layer is 2-3 layers of gold atoms, as seen in the Laue Peak on the right. You can see that it is done.
도 11은 금 결정막의 광학적 성질을 평가하기 위해 쿼츠(quartz) 지지층에 지지된 그래핀층에 형성된 금 단결정층의 UV/VIS 스펙트럼을 나타낸 것이다. 도 11에서 금 결정층 증착 두께가 증가할수록 투과율이 감소한다.11 shows the UV/VIS spectrum of the gold single crystal layer formed on the graphene layer supported on the quartz support layer to evaluate the optical properties of the gold crystal film. 11, the transmittance decreases as the gold crystal layer deposition thickness increases.
도 12,13은 구리포일 지지층에 지지된 그래핀층에 형성된 인듐 단결정의 성장을 보여주는 전자현미경 이미지로서, 각각 277K, 100K에서 형성된 것이다.12 and 13 are electron microscope images showing the growth of an indium single crystal formed on a graphene layer supported on a copper foil support layer, which is formed at 277K and 100K, respectively.
도 14는 도 12의 인듐 단결정층을 PMMA 로 실리콘 기판에 전사한 후 결정의 AFM 이미지를 보여준다.FIG. 14 shows an AFM image of crystals after transferring the indium single crystal layer of FIG. 12 to a silicon substrate with PMMA.
도 15는 도 14의 인듐 단결정층의 위치(가로)에 따른 두께를 나타내는 그래프로 10~30 nm 두께의 결정들이 성장되었음을 알 수 있다.15 is a graph showing the thickness according to the position (horizontal) of the indium single crystal layer of FIG. 14, and it can be seen that 10-30 nm thick crystals were grown.
도 16은 구리포일 지지층에 지지된 그래핀층에 형성된 주석의 단결정 성장을 보여주는 전자현미경 이미지이다.16 is an electron microscope image showing single crystal growth of tin formed on a graphene layer supported on a copper foil support layer.
도 17 내지 19는 각각 구리포일 지지층에 지지된 그래핀층에 형성된 Pd, Pt, Co 단결정 성장을 보여주는 전자현미경 이미지이다.17 to 19 are electron microscopic images showing the growth of Pd, Pt, and Co single crystals formed on the graphene layers supported on the copper foil support layers, respectively.
이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 그래핀층 및 상기 그래핀층의 일면에 위치한 지지층을 포함하는 전자 현미경 관찰용 그래핀 복합체를 제공한다.The present invention provides a graphene complex for electron microscopic observation, including a graphene layer and a support layer located on one surface of the graphene layer.
상기 그래핀 복합체는 전자 현미경 관찰용 시료 지지기판으로서, 탄소로 이루어진 그래핀층의 우수한 전도성과 화학적 투명성으로 인해 관찰 대상 시료를 선명하고 정밀하게 관찰할 수 있고, 절연성 특성을 갖는 바이오 시료 등도 선명하게 관찰이 가능하다는 장점을 갖는다.The graphene composite is a sample supporting substrate for electron microscopy observation, and the sample to be observed can be clearly and precisely observed due to the excellent conductivity and chemical transparency of the graphene layer made of carbon, and the bio sample having insulating properties is also clearly observed. It has the advantage that it is possible.
상기 그래핀 복합체를 이용하여 전자 현미경 관찰 시, 관찰 대상 시료는 전자 현미경 관찰이 가능한 범위에서 그래핀 복합체의 상면, 하면, 양 측면에 특별한 제한없이 위치할 수 있으나, 구체적으로는 상기 그래핀층의 타면, 즉, 그래핀층의 양면 중 지지층으로 지지되지 않는 면에 위치할 수 있다.When observing the electron microscope using the graphene complex, the sample to be observed may be located on the upper surface, the lower surface, and both sides of the graphene complex in a range capable of observing the electron microscope, but specifically, the other surface of the graphene layer That is, it may be located on a surface that is not supported as a support layer among both surfaces of the graphene layer.
상기 그래핀 복합체를 이용하여 전자 현미경 관찰이 가능한 시료의 종류로서 특별한 제한이 없고, 구체적으로는 올리고뉴클레오티드, 단백질, 폴리펩티드, 세포, 세포 내 소기관, 원생생물, 바이러스, 금속, 폴리머, 유기분자 및 반도체로 이루어진 군에서 선택된 적어도 하나일 수 있다.As a kind of a sample that can be observed under an electron microscope using the graphene complex, there is no particular limitation. Specifically, oligonucleotides, proteins, polypeptides, cells, organelles, protozoa, viruses, metals, polymers, organic molecules and semiconductors It may be at least one selected from the group consisting of.
상기 지지층은 종래 전자 현미경용 시료 지지층으로 사용되던 것으로서 그래핀을 지지할 수 있는 것이면 제한없이 사용 가능하고, 전자 현미경의 종류 또는 관찰 대상 시료의 성격에 따라 다양화할 수 있으며, 구체적으로는 결정성 있는 물질로 이루어진 결정성 지지층 또는 결정성 없는 물질로 이루어진 비결정성 지지층일 수 있다.The support layer can be used without limitation as long as it is used as a sample support layer for an electron microscope in the prior art, and can be varied depending on the type of electron microscope or the nature of the sample to be observed. It may be a crystalline support layer made of a material or an amorphous support layer made of a material that is not crystalline.
본 발명의 일 실시예에 있어서, 상기 결정성 지지층을 구성하는 물질로서, 구체적으로 금속, 실리카, 쿼츠, 세라믹, 종이, 플라스틱, 폴리머, 천 및 이들의 복합재로 이루어진 군에서 선택된 적어도 하나일 수 있으나, 이에 특별히 제한되지 아니한다.In one embodiment of the present invention, as a material constituting the crystalline support layer, specifically, may be at least one selected from the group consisting of metal, silica, quartz, ceramic, paper, plastic, polymer, cloth, and composites thereof. , It is not particularly limited.
상기 결정성 지지층으로 그래핀을 지지하는 경우, 이미 준비된 시료를 그래핀층 상에 올릴 수도 있으나, 그래핀층 상에서 결정성 시료를 형성하여 관찰할 수도 있다. 이 경우 결정성 시료의 결정성을 더욱 향상시켜 결정 구조 등 내부 구조를 보다 분명하게 관찰할 수 있다.When the graphene is supported by the crystalline support layer, a sample that has already been prepared may be placed on the graphene layer, but it may be observed by forming a crystalline sample on the graphene layer. In this case, the crystallinity of the crystalline sample can be further improved to more clearly observe the internal structure such as the crystal structure.
본 발명의 일 실시형태로서 결정성 지지층을 사용하는 경우의 시료 기판은 본 발명 그래핀 복합체의 그래핀층 상에 결정성 시료를 형성하는 단계를 포함하여 제조될 수 있다.A sample substrate in the case of using a crystalline support layer as an embodiment of the present invention may be prepared by including a step of forming a crystalline sample on the graphene layer of the present invention graphene composite.
상기 결정성 시료는 올리고뉴클레오티드, 단백질, 폴리펩티드, 세포, 세포 내 소기관, 원생생물, 바이러스, 금속, 폴리머, 유기분자 및 반도체로 이루어진 군에서 선택된 적어도 하나일 수 있으나, 반드시 이에 제한되지 아니하고, 결정성이 있는 관찰 대상 시료라면 자유로이 선택하여 그래핀층 상에 형성시킬 수 있다.The crystalline sample may be at least one selected from the group consisting of oligonucleotides, proteins, polypeptides, cells, intracellular organelles, protozoa, viruses, metals, polymers, organic molecules and semiconductors, but is not limited thereto, and crystallinity Any sample to be observed can be freely selected and formed on the graphene layer.
상기 결정성 시료는 전자 현미경의 관찰 대상으로서 해당 시료를 형성하는 방법이 특별한 제한없이 적용될 수 있다. 예를 들어 화학 증착법, 스퍼터링 등을 들 수 있으나, 소재에 따라 적절한 방법이 적용될 수 있다.The crystalline sample can be applied without any particular limitation on the method of forming the sample as an observation subject of an electron microscope. For example, a chemical vapor deposition method, sputtering, etc. may be mentioned, but an appropriate method may be applied depending on the material.
본 발명의 일 실시예에 있어서, 상기 비결정성 지지층을 구성하는 물질로서, 구체적으로 비결정성 고분자, 비결정성 무기물 및 이들의 복합재로 이루어진 군에서 선택된 적어도 하나일 수 있으나, 이에 특별히 제한되지 아니한다.In one embodiment of the present invention, as a material constituting the amorphous support layer, specifically, it may be at least one selected from the group consisting of amorphous polymers, amorphous inorganic materials and composites thereof, but is not particularly limited thereto.
종래 바이오 분자 등의 절연성 시료들을 단독 그래핀층 상에 로딩하기 어려운 점이 있었으나, 종래 로딩되던 비결정성 물질로 이루어진 지지층에 지지된 그래핀층을 이용하는 경우, 안정적으로 로딩되는 것을 발견하였다. 이는 그래핀이 지지층의 화학적, 물리적 특성을 투과시킴으로써 달성되는 것으로 판단된다. It has been difficult to load insulating samples such as conventional biomolecules on a single graphene layer, but when using a graphene layer supported on a support layer made of a previously loaded amorphous material, it has been found to be stably loaded. It is believed that this is achieved by allowing graphene to penetrate the chemical and physical properties of the support layer.
또한, 이러한 경우 그래핀이 우수한 전기 전도성을 가지므로, 전기 전도성을 위한 별도의 시료 카본 코팅이 필요 없으므로 시료의 오염을 방지할 수 있어, 전자 현미경 관찰 후 시료를 오염되지 않은 상태로 재활용하거나, 추후 실험을 진행할 수 있다는 장점이 있다.In addition, in this case, since graphene has excellent electrical conductivity, there is no need for a separate sample carbon coating for electrical conductivity, and thus the contamination of the sample can be prevented. The advantage is that you can proceed with the experiment.
상기 그래핀 복합체가 포함하는 그래핀층은 단일 그래핀층, 이중 그래핀층 또는 다중 그래핀층일 수 있으나, 현미경 관찰을 위해 얇은 그래핀 복합체를 형성하는 측면에서 단일 그래핀층 또는 얇은 그래핀층임이 바람직하다.The graphene layer included in the graphene composite may be a single graphene layer, a double graphene layer, or multiple graphene layers, but is preferably a single graphene layer or a thin graphene layer in terms of forming a thin graphene composite for microscopic observation.
상기 그래핀층은 상기 지지층의 일면에 위치하는 것으로서, 지지층의 상부, 하부, 양 측면 등 특정 면에 제한되어 위치하는 것은 아니나, 전자 현미경 관찰시 대상 물질을 그래핀층 상에 올려놓는다는 측면을 고려할 때, 지지층의 상부에 위치하는 것이 바람직하다.The graphene layer is located on one surface of the support layer, and is not limited to a specific surface such as upper, lower, or both sides of the support layer, but considering the aspect of placing the target material on the graphene layer during electron microscope observation , It is preferably located on the upper portion of the support layer.
상기 그래핀층은 화학 증착법, 기상축 증착법, 분자선 증착법, 진공 증착법, 활성화 반응 증착법, 기계적 박리법, 유체충돌방식 박리법 및 화학적 박리법으로 이루어진 군에서 적어도 하나의 방법에 의해 지지층의 일면에 위치하는 것일 수 있으나, 이에 제한되지는 아니하고, 지지층 상부에 그래핀층을 효과적으로 위치시킬 수 있는 방법이라면 당업계에 공지된 방법을 자유로이 선택하여 행할 수 있다The graphene layer is located on one surface of the support layer by at least one method from the group consisting of chemical vapor deposition, vapor deposition, molecular beam deposition, vacuum deposition, activation reaction deposition, mechanical separation, fluid collision separation, and chemical separation. It may be, but is not limited thereto, and any method known in the art can be freely selected as long as it can effectively position the graphene layer on the support layer.
상기 그래핀 복합체는 전자 현미경 관찰용 그래핀 복합체로서, 그 두께에 특별한 제한은 없고, 전자 현미경의 종류 및 지지층의 성격 등에 의해 다양한 범위로 설정될 수 있으나, 얇은 두께를 가짐으로서 전자의 투과성 향상 등의 효과를 얻기 위해 예를 들면 5 내지 70, 6 내지 65, 7 내지 60, 8 내지 55, 9 내지 55, 10 내지 50 Å일 수 있고, 바람직하게는 10 내지 50Å 두께일 수 있다.The graphene composite is a graphene composite for electron microscope observation, and has no particular limitation on its thickness, and may be set in various ranges depending on the type of electron microscope and the nature of the support layer, but has a thinner thickness to improve electron permeability, etc. To obtain the effect of, for example, it may be 5 to 70, 6 to 65, 7 to 60, 8 to 55, 9 to 55, 10 to 50 mm 2, preferably 10 to 50 mm thick.
상기 그래핀 복합체는 전자 현미경 관찰 용도의 그래핀 복합체로서, 그래핀의 화학적 투명성과 탄소기반 물질의 전도성을 기반으로 한다. 따라서, 현미경의 종류로서 TEM(투과전자현미경), SEM(주사전자현미경), AFM(주사탐침현미경), STM(주사터널링현미경), confocal microscope(공초점현미경), X-ray 현미경, 광학현미경 및 tomographic microscope(단층현미경)로 이루어진 군에서 선택된 하나일 수 있으나 반드시 이에 제한되지는 아니한다.The graphene composite is a graphene composite for electron microscopic observation, and is based on chemical transparency of graphene and conductivity of a carbon-based material. Therefore, as a kind of microscope, TEM (transmission electron microscope), SEM (scanning electron microscope), AFM (scanning probe microscope), STM (scanning tunneling microscope), confocal microscope (confocal microscope), X-ray microscope, optical microscope and It may be one selected from the group consisting of a tomographic microscope (tomography microscope), but is not limited thereto.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. Hereinafter, examples will be described in detail to specifically describe the present invention.
실시예 1. 유연성 지지층에 지지된 그래핀 복합체를 이용한 바이오 시료의 관찰Example 1 Observation of a bio sample using a graphene complex supported on a flexible support layer
1. 실험방법1. Experimental method
(1) 그래핀 복합체 제조(1) Preparation of graphene complex
그래핀 소재는 hot wall furnace 에서 니켈 에천트로 클리닝된 구리 포일을 촉매로 하여 1000℃ 메탄 및 수소 분위기에서 약 1시간 동안 성장시킨다. 보다 구체적으로, 4.8μm 두께의 구리 박막(Alfa Aesar) 상에 저압 화학기상증착법(chemical vapor deposition; CVD)으로 그래핀을 제조하였다. 합성에 앞서, 구리 박막을 니켈 부식제(nickel etchant, Transene, TFB)에 담궈 세척하였다. 구체적인 성장 조건은 다음과 같다. The graphene material is grown for about 1 hour in a methane and hydrogen atmosphere at 1000° C. using a copper foil cleaned with a nickel etchant in a hot wall furnace as a catalyst. More specifically, graphene was manufactured on a 4.8 μm thick copper thin film (Alfa Aesar) by low pressure chemical vapor deposition (CVD). Prior to synthesis, the copper film was immersed in a nickel etchant (transene, TFB) and washed. The specific growth conditions are as follows.
먼저, 반응기에 구리 박막을 넣고, 감압한 후, 1000℃까지 가열하여 100 sccm H 2 조건하에서, 20분 동안 어닐링하였다. 그래핀 성장을 촉진하기 위하여 30 sccm CH 4 및 30 sccm H 2를 40분 동안 도입하였다. 노(furnace)를 실온까지 냉각시켰다.First, a copper thin film was put in a reactor, and the pressure was reduced, followed by heating to 1000° C. and annealing for 20 minutes under 100 sccm H 2 conditions. 30 sccm CH 4 and 30 sccm H 2 were introduced for 40 minutes to promote graphene growth. The furnace was cooled to room temperature.
이와 같이 구리포일 위에 성장된 그래핀 소재는 별도의 처리없이 결정을 성장시킬 수 있는 전자현미경용 기판으로 사용이 가능하나 광학적 투명성이 요구되는 경우, 구리 포일에 성장된 그래핀을 투명기판에 전사하여 사용한다. 본 발명의 바이오시료의 이미지는 구리포일에 성장된 그래핀 시료를 PMMA 를 매개로 하여 kapton foil 위에 전사하거나 정전필름을 이용하여 그래핀 시료를 kapton foil 에 전사하여 사용하였다.The graphene material grown on the copper foil as described above can be used as an electron microscope substrate capable of growing crystals without additional treatment, but when optical transparency is required, the graphene grown on the copper foil is transferred to a transparent substrate. use. The image of the biosample of the present invention was used by transferring a graphene sample grown on a copper foil onto a kapton foil via PMMA or by transferring a graphene sample onto a kapton foil using an electrostatic film.
(2) 마우스 뇌세포 시료 기판의 제조(2) Preparation of mouse brain cell sample substrate
오스뮴과 우라늄, 납 등으로 세포막 등을 염색하여, 레진에 포매한 생체 조직이나 세포를 초박절편기를 이용하여 표면이 깨끗한 유연성 막 (Kapton film 등)에 수십 nm로 얇은 절편(section)으로 만들어 세포 단면의 미세구조를 관찰하는 실험에 활용하였다.Cell sections are made by staining cell membranes with osmium, uranium, lead, etc., and forming thin sections of tens of nanometers in flexible membranes (Kapton films, etc.) with clean surfaces using ultra-thin sectioning machines using biothin tissue embedded in resin. It was used in experiments to observe the microstructure of.
(3) 라이소자임 단백질 시료 기판의 제조(3) Preparation of lysozyme protein sample substrate
유리 기판에 위의 구리 포일에 성장된 그래핀 소재를 전사하여 라이소자임 단백질을 성장시키는 기판으로 사용하였다.The graphene material grown on the copper foil on the glass substrate was transferred and used as a substrate for growing the lysozyme protein.
2. 실험결과2. Experimental results
(1) 마우스 뇌세포 시료의 관찰(1) Observation of mouse brain cell sample
이러한 실험은 세포의 3차 구조를 분석하기 위해 주사전자현미경을 이용하여 생체 시료의 연속적인 절편의 미세구조를 획득하기 위해 주로 활용된다. 일반적으로 이 실험에 사용하는 유연성 막은 전도성이 부족하여 생체시료의 제대로 된 구조 분석을 위해 시료 section(절편)을 유연성 막에 붙인 채로 탄소(C) 등을 코팅하여 관찰하게 된다(도 1B의 모식도 참조).These experiments are mainly used to obtain microstructures of successive sections of biological samples using a scanning electron microscope to analyze the tertiary structure of cells. In general, the flexible membrane used in this experiment lacks conductivity and is observed by coating carbon (C) or the like while attaching the sample section (section) to the flexible membrane for proper structural analysis of the biological sample (see the schematic diagram of FIG. 1B). ).
도 1A,B를 참조하면, 탄소(C) 코팅없이 Kapton film에 절편 시료를 올려놓은 경우, charging 현상 때문에 절편 시료 부분이 어둡게 관찰되어 제대로 된 구조를 확인할 수 없음을 확인할 수 있다(도 1A, 노란색 화살표). 이는 시료 표면에 남아있는 여분의 전자가 시료 신호처럼 어둡게 관찰되는 현상이다. 상기 charging 현상을 제거하기 위해 연구되어 왔던 방법인 탄소 코팅법을 이용하여 시료 표면을 탄소로 코팅하여 관찰한 경우(도 1B), charging 현상을 감소시켜 대상 시료의 구조를 확인할 수 있으나, 시료 위에 탄소를 덮는 형식의 한계로서 관찰 이미지의 해상도를 다소 감소시키는 결과를 낳고, 시료 코팅의 정도에 따른 시료의 부분별 이미지 해상도의 차이를 낳으며, 이미징 후 면역 염색 등의 부가적 실험을 추가적으로 진행할 수 없는 단점이 존재한다. Referring to Figures 1A, B, when a section sample is placed on a Kapton film without carbon (C) coating, it can be confirmed that the section of the section sample is darkly observed due to the charging phenomenon, so that the proper structure cannot be confirmed (Fig. 1A, yellow). arrow). This is a phenomenon in which extra electrons remaining on the surface of the sample are observed dark as the sample signal. When the sample surface is coated with carbon using the carbon coating method, which has been studied to remove the charging phenomenon (FIG. 1B), the structure of the target sample can be confirmed by reducing the charging phenomenon, but carbon on the sample As a limitation of the type of covering, the result of reducing the resolution of the observed image is somewhat reduced, resulting in a difference in the image resolution of each sample according to the degree of sample coating, and additional experiments such as immunostaining after imaging cannot be additionally performed. This exists.
그러나, 도 1C를 참조하면 Kapton film을 지지층으로 하여 위에 그래핀층을 위치시킨 본 발명의 그래핀 복합체에 대상 절편 시료를 올려놓아 SEM으로 관찰한 결과를 확인할 수 있는데, 상기 도 1A,B 이미징 결과와 비교할 때, charging 현상이 제거되었고, 구조를 선명하게 판별할 수 있을 정도로 이미지의 해상도가 매우 높은 것을 확인할 수 있다. 또한, 시료의 표면도 그대로 노출되어 있어 이미징 후 면역 염색 등의 추가적 실험 프로세스를 진행할 수도 있게 되었다.However, referring to FIG. 1C, a sample of a target fragment is placed on the graphene complex of the present invention in which a graphene layer is positioned on a Kapton film as a support layer, and the results observed by SEM can be confirmed. In comparison, the charging phenomenon has been eliminated, and the resolution of the image is very high enough to clearly identify the structure. In addition, since the surface of the sample is also exposed, it is possible to proceed with additional experimental processes such as immunostaining after imaging.
도 2 및 도 3을 참조하면 보다 구체적인 효과와 예를 확인할 수 있다. 도 2는 본 발명 그래핀 복합체를 사용할 경우에 다양한 두께의 절편시료와 다양한 가속전압에도 세포막 등의 생체 조직의 미세구조를 잘 보여줌으로써, 시료 두께와 가속전압 등과 상관없이 활용할 수 있음을 보여주고 있다. 도 3은 본 발명 그래핀 복합체가 표면에 코팅된 경계에서 그래핀 코팅의 전도도 향상의 효과를 보여주고 있다. 본 발명 그래핀 복합체를 사용한 Kapton film의 경우 그러하지 않은 경우에 비해 전도도가 높아져서 charging 현상이 나타나고 있지 않으며, 이러한 전도도 향상의 효과가 절연성 특징을 띄는 생체 조직 시료에 축적되는 여분의 전자를 제거하여 시료의 charging 현상을 감소시킴으로써, 미세구조의 선명한 관찰을 가능하게 한다.2 and 3, more specific effects and examples can be confirmed. 2 shows that when using the graphene composite of the present invention, the microstructure of biological tissues, such as cell membranes, is well shown in various sample thicknesses and various acceleration voltages, it can be utilized regardless of sample thickness and acceleration voltage. . Figure 3 shows the effect of improving the conductivity of the graphene coating at the boundary coated with the graphene composite of the present invention on the surface. In the case of the Kapton film using the graphene composite of the present invention, the conductivity is increased compared to the case where it is not, so the charging phenomenon does not appear, and the effect of improving the conductivity is to remove the excess electrons accumulated in the biological tissue sample having insulating characteristics, thereby removing the sample. By reducing the charging phenomenon, clear observation of the microstructure is possible.
(2) 라이소자임 단백질 시료의 관찰(2) Observation of lysozyme protein samples
단백질 결정의 관찰은 결정화도 뿐만 아니라 결정의 크기가 매우 중요하다. 단백질 용액으로부터 결정 핵을 형성시켜 결정을 계속적으로 성장시키기 위해서는, 단백질의 농도가 감소하지 않고 계속적으로 결정 안으로의 유입이 필요할 뿐만 아니라, 결정을 용이하게 성장시킬 수 있는 지지층이 필요하다. 그래핀을 지지층위에 위치시키면 단백질 결정을 성장시키면서 투명성을 확보할 수 있어서 결정의 관찰이 용이하고, 플라즈마 처리 및 화학처리 방법을 통하여 표면의 친수성을 조절할 수 있다. In the observation of protein crystals, not only crystallinity but also crystal size is very important. In order to form crystal nuclei from a protein solution to continuously grow crystals, not only does the concentration of the protein decrease but continuously flows into the crystals, but also a supporting layer capable of easily growing crystals is required. When the graphene is placed on the support layer, transparency can be secured while growing the protein crystal, so that the crystal can be easily observed and the hydrophilicity of the surface can be controlled through plasma treatment and chemical treatment.
도 4를 참조하면, 그래핀 복합체를 사용하여 라이소자임 단백질 결정을 성장시키고 현미경으로 관찰한 결과를 확인할 수 있는데, 본 발명 그래핀 복합체를 사용하여 결정을 성장시킨 결과 그렇지 않은 경우보다 핵생성이 용이하고 결정의 성장이 빠르고 크게 진행됨을 알 수 있다. Referring to FIG. 4, the lysozyme protein crystal is grown using a graphene complex and the results observed under a microscope can be confirmed. As a result of growing the crystal using the graphene complex of the present invention, nucleation is easier than in the case where it is not. It can be seen that the crystal growth is fast and large.
실시예 2. 결정성 지지층에 지지된 그래핀 복합체를 이용한 금속 단결정의 성장 및 관찰Example 2. Growth and observation of a metal single crystal using a graphene composite supported on a crystalline support layer
1. 실험방법1. Experimental method
(1) 그래핀 복합체 제조(1) Preparation of graphene complex
1) 구리포일 지지층 사용1) Use of copper foil support layer
4.8μm 두께의 구리 박막(Alfa Aesar) 상에 저압 화학기상증착법(chemical vapor deposition; CVD)으로 그래핀을 제조하였다. 합성에 앞서, 구리 박막을 니켈 부식제(nickel etchant, Transene, TFB)에 담궈 세척하였다. 구체적인 성장 조건은 다음과 같다. Graphene was prepared on a 4.8 μm thick copper thin film (Alfa Aesar) by low pressure chemical vapor deposition (CVD). Prior to synthesis, the copper film was immersed in a nickel etchant (transene, TFB) and washed. The specific growth conditions are as follows.
먼저, 반응기에 구리 박막을 넣고, 감압한 후, 1000℃까지 가열하여 100 sccm H 2 조건하에서, 20분 동안 어닐링하였다. 그래핀 성장을 촉진하기 위하여 30 sccm CH 4 및 30 sccm H 2를 40분 동안 도입하였다. 노(furnace)를 실온까지 냉각시켰다.First, a copper thin film was put in a reactor, and the pressure was reduced, followed by heating to 1000° C. and annealing for 20 minutes under 100 sccm H 2 conditions. 30 sccm CH 4 and 30 sccm H 2 were introduced for 40 minutes to promote graphene growth. The furnace was cooled to room temperature.
2) SiO 2/Si 또는 쿼츠(quartz) 지지층 사용2) SiO 2 /Si or quartz support layer used
구리포일에 성장된 그래핀층을 다른 지지층상에 전사하기 위해 PMMA를 그래핀 표면에 코팅하고 구리를 식각하여 원하는 기판에 전사하거나, 그래핀 표면에 정전필름을 부착한 후 구리를 식각하여 원하는 기판에 전사하는 방법을 사용하였다. 이때 SiO 2/Si 또는 쿼츠 지지층에 PMMA 가 코팅된 그래핀을 전사하고 상온에서 충분히 말려 물기를 제거한 후 100℃ 이하의 온도에서 물기를 완전히 말려 접착성을 향상시킨다. 이후 PMMA 를 아세톤에 담가 제거하여 그래핀 복합체를 완성하였다. 정전필름의 경우에는, 정전필름에 부착된 그래핀 층을 타겟 기판에 부착시킨 후 정전필름을 압착시켜 그래핀을 전사하고 떼어내는 방법을 사용하였다.To transfer the graphene layer grown on the copper foil onto another support layer, PMMA is coated on the graphene surface and transferred to a desired substrate by etching copper, or after attaching an electrostatic film to the graphene surface and etching the copper to the desired substrate. The method of transcription was used. At this time, transfer the graphene coated with PMMA onto the SiO 2 /Si or quartz support layer, dry it sufficiently at room temperature to remove water, and then dry it completely at a temperature of 100℃ or less to improve adhesion. Then, the PMMA was soaked and removed in acetone to complete the graphene complex. In the case of the electrostatic film, a graphene layer attached to the electrostatic film was attached to the target substrate, and then the electrostatic film was compressed to transfer and remove the graphene.
(2) 시료 기판 제조(2) Sample substrate manufacturing
이와 같이 구리 포일 표면에 성장된 그래핀의 경우, 높은 성장온도에 의해 지지층인 구리포일도 우수한 결정상을 보이므로, 구리포일 지지층에 의해 지지된 그래핀 복합체 및 상기 SiO 2/Si 또는 쿼츠 지지층에 의해 지지된 그래핀 복합체 모두 결정상 지지층에 의해 지지된 그래핀 복합체에 해당하게 된다. 이와 같이 제작된 그래핀 복합체 표면에 진공 열증착을 통해 금속 결정을 성장하였다.In the case of graphene grown on the surface of the copper foil as described above, since the copper foil serving as a support layer also shows excellent crystal phase due to high growth temperature, the graphene composite supported by the copper foil support layer and the SiO 2 /Si or quartz support layer All supported graphene composites correspond to graphene composites supported by a crystalline support layer. Metal crystals were grown through vacuum thermal vapor deposition on the graphene composite surface thus manufactured.
초기에 진공 열증착 챔버를 2.0 X 10 -6 mbar까지 감압하고, 순수한 금속 펠렛(99.999%, iTASCO T)을 몰리브데늄 보트(iTASCO)에 위치시킨 후, 증발시켰다. 증착은 실온(300K) 또는 저온 (277K~100K) 에서 수행하였다. 박막의 두께는 수정결정미소저울(quartz crystal microbalance; QCM)로 모니터하였다.Initially the vacuum thermal evaporation chamber was depressurized to 2.0 X 10 -6 mbar, and pure metal pellets (99.999%, iTASCO T) were placed in a molybdenum boat (iTASCO) and then evaporated. The deposition was performed at room temperature (300K) or low temperature (277K~100K). The thickness of the thin film was monitored with a quartz crystal microbalance (QCM).
2. 실험결과2. Experimental results
(1) Au 단결정의 성장 및 관찰(1) Growth and observation of Au single crystal
도 5는 구리포일 지지층에 지지된 그래핀층에 형성된 금 단결정의 전자현미경 이미지를 보여준다. 결정상의 구리포일 지지층에 지지된 그래핀층에 금을 증착하였을 때, 프랙탈 형태의 결정들이 성장하는 것을 볼 수 있다. 또한, 대기 중에 장시간 방치된 그래핀 표면에서 결정들의 연결성이 현저하게 줄어드는 것을 관측하였다(도 5, 18h, 1-2 weeks exposed). 5 shows an electron microscope image of a gold single crystal formed on a graphene layer supported on a copper foil support layer. When gold is deposited on the graphene layer supported on the crystalline copper foil support layer, it can be seen that fractal crystals grow. In addition, it was observed that the connectivity of crystals was significantly reduced on the graphene surface left in the atmosphere for a long time (Fig. 5, 18h, 1-2 weeks exposed).
도 6,7은 SiO 2/Si 지지층에 지지된 그래핀층에 형성된 금 단결정의 전자현미경 이미지를 보여준다. 이 역시, 구리포일 지지층에 지지된 경우와 마찬가지로 프랙탈 형태의 결정들이 성장하는 것을 볼 수 있다. 단, 결정성 지지층에 지지된 그래핀에 비해 결정의 크기는 작아진다.6 and 7 show electron microscope images of gold single crystals formed on a graphene layer supported on a SiO 2 /Si support layer. Again, it can be seen that the crystals in the form of fractals grow as if supported on the copper foil support layer. However, the size of the crystal is smaller than that of the graphene supported on the crystalline support layer.
도 8,9 는 각각 도 5의 그래핀에 성장된 금 결정의 AFM 이미지 및 두께를 보여준다.8 and 9 show AFM images and thicknesses of gold crystals grown on the graphene of FIG. 5, respectively.
도 10은 도 6의 금 단결정막의 XRD 분석결과를 보여준다. Au <111> 면이 대다수를 차지하는 것을 알 수 있으며 오른쪽 확대 이미지의 Au <111> 피크의 Laue 패턴으로부터 결정막이 금원자 2-3 층으로 이루어진 것을 확인할 수 있다. 10 shows XRD analysis results of the gold single crystal film of FIG. 6. It can be seen that the Au <111> plane occupies the majority, and it can be seen from the Laue pattern of the Au <111> peak of the right enlarged image that the crystal film is composed of 2-3 layers of gold atoms.
도 11은 성장된 금 결정층의 UV/VIS 스펙트럼을 나타낸 것인데, 이를 참조하면, 증착두께가 증가하면서 필름의 투명도가 감소하며 미소하게 레조넌스 피크 위치가 장파장으로 이동하는 것을 볼 수 있다. 이것은 증착 두께를 증가시키면서 결정의 크기가 함께 증가하는 것을 의미한다.11 shows the UV/VIS spectrum of the grown gold crystal layer. Referring to this, as the deposition thickness increases, the transparency of the film decreases, and it can be seen that the location of the resonance peak shifts slightly to a long wavelength. This means that the crystal size increases with increasing deposition thickness.
(2) In 단결정의 성장 및 관찰(2) Growth and observation of In single crystal
도 12, 13은 구리포일 지지층에 지지된 그래핀층에 형성된 인듐 단결정의 성장을 보여주는 전자현미경 이미지로서, 각각 277K, 100K에서 형성된 것이다. 이를 참조하면, 도 13의 결정이 도 12의 결정에 비해 매우 작은 크기로 형성되는 것을 확인할 수 있는데, 이것은 기판의 낮은 온도로 인해 금속 원자들이 운동 에너지를 잃고 기판에 닿는 즉시 결정화되기 때문이다. 상온에 가까운 기판에서는 금속 원자들이 비교적 자유롭게 움직이면서 보다 크기가 큰 결정 상을 이루게 된다.12 and 13 are electron microscope images showing the growth of an indium single crystal formed on a graphene layer supported on a copper foil support layer, which is formed at 277K and 100K, respectively. Referring to this, it can be seen that the crystal of FIG. 13 is formed in a very small size compared to the crystal of FIG. 12 because the metal atoms lose kinetic energy due to the low temperature of the substrate and crystallize as soon as it hits the substrate. On a substrate close to room temperature, metal atoms move relatively freely to form a larger crystal phase.
도 14, 15는 각각 구리포일에 성장된 인듐 결정을 PMMA 막을 이용하여 실리콘 기판에 전사한 후 얻은 AFM 이미지 및 결정의 두께를 보여준다.14 and 15 show the thickness of the AFM images and crystals obtained after transferring indium crystals grown on copper foil to a silicon substrate using a PMMA film, respectively.
(3) Sn 단결정의 성장 및 관찰(3) Growth and observation of Sn single crystal
도 16은 구리포일 지지층에 지지된 그래핀층에 형성된 주석의 단결정 성장을 보여주는 전자현미경 이미지이다. 이를 참조하면, 증착 두께를 증가시키면 결정의 크기가 증가하나, 277K 와 307K 에서 형성되는 결정에는 큰 차이가 없었다. 이로써, 결정의 크기를 최대화 하기 위해 기판의 온도는 섭씨 0도 이상인 것이 바람직함을 알 수 있다.16 is an electron microscope image showing single crystal growth of tin formed on a graphene layer supported on a copper foil support layer. Referring to this, increasing the deposition thickness increases the crystal size, but there was no significant difference in crystals formed at 277K and 307K. Thus, it can be seen that the temperature of the substrate is preferably 0 degrees Celsius or more in order to maximize the crystal size.
(4) Pd, Pt, Co 단결정의 성장 및 관찰(4) Growth and observation of Pd, Pt, Co single crystal
도 17 내지 19는 각각 구리포일 지지층에 지지된 그래핀층에 형성된 Pd, Pt, Co 단결정 성장을 보여주는 전자현미경 이미지이다. 이 역시, 상기 Au, In, Sn의 경우와 마찬가지로 프랙탈 형태의 작은 결정들이 성장되기는 하나, Pd, Pt, Co 의 경우 Au, In, Sn 의 경우보다 그래핀과의 결합 에너지가 높아 결정의 크기가 매우 작다.17 to 19 are electron microscopic images showing the growth of Pd, Pt, and Co single crystals formed on the graphene layers supported on the copper foil support layers, respectively. Likewise, in the case of Au, In, and Sn, small crystals in a fractal form are grown, but in the case of Pd, Pt, and Co, the binding energy with graphene is higher than in the case of Au, In, Sn, and the crystal size is high. Very small

Claims (11)

  1. 그래핀층 및 상기 그래핀층의 일면에 위치한 지지층을 포함하는 전자 현미경 관찰용 그래핀 복합체.Graphene complex for electron microscopic observation, including a graphene layer and a support layer located on one surface of the graphene layer.
  2. 청구항 1에 있어서, 상기 그래핀 복합체는 관찰 대상 시료가 상기 그래핀층의 타면에 위치하는 것인 그래핀 복합체. The method according to claim 1, wherein the graphene complex is a graphene complex in which the sample to be observed is located on the other surface of the graphene layer.
  3. 청구항 2에 있어서, 상기 관찰 대상 시료는 올리고뉴클레오티드, 단백질, 폴리펩티드, 세포, 세포 내 소기관, 원생생물, 바이러스, 금속, 폴리머 및 반도체로 이루어진 군에서 선택된 적어도 하나인 그래핀 복합체.The method according to claim 2, The sample to be observed is at least one graphene complex selected from the group consisting of oligonucleotides, proteins, polypeptides, cells, organelles, protozoa, viruses, metals, polymers and semiconductors.
  4. 청구항 1에 있어서, 상기 지지층은 비결정성 물질로 이루어진 것인 그래핀 복합체.The method according to claim 1, The support layer is a graphene composite made of an amorphous material.
  5. 청구항 1에 있어서, 상기 지지층은 결정성 물질로 이루어진 것인 그래핀 복합체.The method according to claim 1, The support layer is a graphene composite made of a crystalline material.
  6. 청구항 5에 있어서, 상기 결정성 물질은 금속, 실리카, 쿼츠, 세라믹, 종이, 플라스틱, 폴리머, 천 및 이들의 복합재로 이루어진 군에서 선택된 적어도 하나인 그래핀 복합체.The method according to claim 5, wherein the crystalline material is a metal, silica, quartz, ceramics, paper, plastics, polymers, fabrics and at least one selected from the group consisting of composites of graphene composite.
  7. 청구항 1에 있어서, 상기 그래핀층은 단일층 그래핀층인 그래핀 복합체.The graphene composite according to claim 1, wherein the graphene layer is a single-layer graphene layer.
  8. 청구항 1에 있어서, 상기 그래핀 복합체는 10 내지 50 Å 두께인 그래핀 복합체.The method according to claim 1, The graphene complex is 10 to 50 mm thick graphene complex.
  9. 청구항 1에 있어서, 상기 현미경은 투과전자현미경, 주사전자현미경, 주사탐침현미경, 주사터널링현미경, 공초점 현미경, X-ray 현미경, 광학현미경 및 단층현미경으로 이루어진 군에서 선택된 하나인 그래핀 복합체. The method according to claim 1, The microscope is a graphene complex selected from the group consisting of a transmission electron microscope, a scanning electron microscope, a scanning probe microscope, a scanning tunneling microscope, a confocal microscope, an X-ray microscope, an optical microscope and a tomography microscope.
  10. 청구항 5의 복합체의 그래핀층의 타면에 결정성 시료를 형성하는 단계를 포함하는 전자 현미경 시료 기판의 제조방법.Method of manufacturing an electron microscope sample substrate comprising the step of forming a crystalline sample on the other surface of the graphene layer of the composite of claim 5.
  11. 청구항 10에 있어서, 상기 결정성 시료는 올리고뉴클레오티드, 단백질, 폴리펩티드, 세포, 세포 내 소기관, 원생생물, 바이러스, 금속, 폴리머 및 반도체로 이루어진 군에서 선택된 적어도 하나인 제조방법.The method according to claim 10, wherein the crystalline sample is at least one selected from the group consisting of oligonucleotides, proteins, polypeptides, cells, organelles, protozoa, viruses, metals, polymers and semiconductors.
PCT/KR2019/017192 2018-12-06 2019-12-06 Graphene composite for electron microscopic observation and method for manufacturing specimen substrate WO2020116990A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180155894A KR102601094B1 (en) 2018-12-06 2018-12-06 Graphene complex for electron microscope observation and method for producing sample substrate
KR10-2018-0155894 2018-12-06

Publications (1)

Publication Number Publication Date
WO2020116990A1 true WO2020116990A1 (en) 2020-06-11

Family

ID=70974787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/017192 WO2020116990A1 (en) 2018-12-06 2019-12-06 Graphene composite for electron microscopic observation and method for manufacturing specimen substrate

Country Status (2)

Country Link
KR (1) KR102601094B1 (en)
WO (1) WO2020116990A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220012822A (en) 2020-07-23 2022-02-04 한국과학기술원 A liquid chip for an electron microscope and method with electron microscope for observing biological materials using the same
KR102484419B1 (en) 2020-11-04 2023-01-03 재단법인대구경북과학기술원 Imaging analysis method and apparatus for analysis biological sample having living cells by using graphene
KR102558793B1 (en) * 2021-11-26 2023-07-25 (주)엠씨케이테크 Manufacturing method of graphene composite structure and graphene composite structure prepared therefrom

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08247969A (en) * 1995-03-09 1996-09-27 Suzuki Motor Corp Sample holder for x-ray diffraction analysis
JP2008027763A (en) * 2006-07-21 2008-02-07 National Univ Corp Shizuoka Univ Test piece carrier for transmission type electron microscope and its manufacturing method, observation and crystal structure analysis methods using the same, and test piece for transmission type electron microscope and its manufacturing method
KR20120046601A (en) * 2010-11-02 2012-05-10 강원대학교산학협력단 Grid for transmission electron microscope and manufacturing method thereof
KR101608681B1 (en) * 2014-11-14 2016-04-04 서울대학교산학협력단 Non-destructive method for obtaining electron microscopy image and non-destructive analyzing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101648895B1 (en) * 2014-10-28 2016-08-17 한국표준과학연구원 Residue free transfer method of graphene/metal samples pasted by limited polymer line

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08247969A (en) * 1995-03-09 1996-09-27 Suzuki Motor Corp Sample holder for x-ray diffraction analysis
JP2008027763A (en) * 2006-07-21 2008-02-07 National Univ Corp Shizuoka Univ Test piece carrier for transmission type electron microscope and its manufacturing method, observation and crystal structure analysis methods using the same, and test piece for transmission type electron microscope and its manufacturing method
KR20120046601A (en) * 2010-11-02 2012-05-10 강원대학교산학협력단 Grid for transmission electron microscope and manufacturing method thereof
KR101608681B1 (en) * 2014-11-14 2016-04-04 서울대학교산학협력단 Non-destructive method for obtaining electron microscopy image and non-destructive analyzing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHAE, SOO SANG ET AL.: "Ultrathin Metal Crystals: Growth on Supported Graphene Surfaces and Applications", SMALL, vol. 14, 1801529, 2 September 2018 (2018-09-02), XP055716484 *

Also Published As

Publication number Publication date
KR20200069414A (en) 2020-06-17
KR102601094B1 (en) 2023-11-10

Similar Documents

Publication Publication Date Title
WO2020116990A1 (en) Graphene composite for electron microscopic observation and method for manufacturing specimen substrate
WO2013042819A1 (en) Production method for a graphene thin film
CA2700862C (en) Carbon nanotube synthesis for nanopore devices
GB2497217B (en) Nanopore sensors comprising thin insulating materials
JP4970619B2 (en) Method for producing graphene film, method for producing electronic device, and method for transferring graphene film to substrate
EP3259382B1 (en) Device comprising an ultrathin membrane composed of an atomically-thin 2d material
WO2012008789A9 (en) Method for producing graphene at a low temperature, method for direct transfer of graphene using same, and graphene sheet
US9147881B2 (en) Graphene paper which reduced graphene oxide layers and coating layers are stacked in sequence and preparation method thereof
US20100140497A1 (en) Membrane supports with reinforcement features
CN109437176B (en) Method for preparing suspended graphene support film by selectively etching growth substrate
WO2017065530A1 (en) Low-temperature graphene transfer method
WO2014126298A1 (en) Method of manufacturing graphene film and graphene film manufactured thereby
WO2010140792A9 (en) Method for manufacturing 3-dimensional structures using thin film with columnar nano pores and manufacture thereof
CN108793145B (en) Atomic-level-thickness graphene/boron nitride composite heterogeneous film and preparation
WO2014189271A1 (en) Large-surface-area single-crystal monolayer graphene and production method therefor
Polli et al. Structural characterization of ZrO2 thin films produced via self-assembled monolayer-mediated deposition from aqueous dispersions
US20140377462A1 (en) Suspended Thin Films on Low-Stress Carbon Nanotube Support Structures
WO2016114501A2 (en) Method for preparing vertical cylindrical or lamellar structure of organic molecules arranged into large-size single domain
Kerber et al. Study of surface cleaning methods and pyrolysis temperatures on nanostructured carbon films using x-ray photoelectron spectroscopy
KR101648895B1 (en) Residue free transfer method of graphene/metal samples pasted by limited polymer line
WO2013094804A1 (en) Method for optically visualizing surface of crystalline graphene
CN112014430A (en) Nanocrystalline graphite nanopore detection chip and preparation method and application thereof
WO2021256886A1 (en) Conductive substrate and method for analyzing analyte using same
US20230407462A1 (en) Infiltrated carbon nanotubes
Wang et al. Ultra-clean assembly of van der Waals heterostructures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19894164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19894164

Country of ref document: EP

Kind code of ref document: A1