WO2020116841A1 - Decontamination agent for radioactive cesium and method of water depth-adjustable decontamination of radioactive cesium - Google Patents

Decontamination agent for radioactive cesium and method of water depth-adjustable decontamination of radioactive cesium Download PDF

Info

Publication number
WO2020116841A1
WO2020116841A1 PCT/KR2019/016285 KR2019016285W WO2020116841A1 WO 2020116841 A1 WO2020116841 A1 WO 2020116841A1 KR 2019016285 W KR2019016285 W KR 2019016285W WO 2020116841 A1 WO2020116841 A1 WO 2020116841A1
Authority
WO
WIPO (PCT)
Prior art keywords
decontamination agent
decontamination
zeolite
weight
agent
Prior art date
Application number
PCT/KR2019/016285
Other languages
French (fr)
Korean (ko)
Inventor
정성욱
황정환
신우식
김영빈
Original Assignee
한국기초과학지원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기초과학지원연구원 filed Critical 한국기초과학지원연구원
Priority to JP2021531766A priority Critical patent/JP7123262B2/en
Priority to CN201980080567.5A priority patent/CN113164911B/en
Publication of WO2020116841A1 publication Critical patent/WO2020116841A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/165Natural alumino-silicates, e.g. zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/006Radioactive compounds

Definitions

  • the present technology relates to a technology for decontamination of pollutants in water, and in particular, a technology for decontamination agents and decontamination methods capable of efficiently decontaminating radioactive cesium present in water for various water depths.
  • Radioactive iodine and radioactive cesium are the main radioactive materials generated in nuclear power plant accidents. Radioactive iodine has a relatively short half-life of about 8 days, whereas radioactive cesium has a very long half-life of 30 years, and cesium has similar chemical properties to potassium, so it is concentrated in the muscles when absorbed and lacks immunity and various cancers (infertility, bone marrow cancer, lung cancer, thyroid cancer) , Breast cancer, etc.).
  • a mineral such as zeolite In order to remove contaminants such as radioactive cesium, a mineral such as zeolite must directly contact the contaminants. If radioactive cesium is introduced into a fixed capacity, such as a water treatment plant, there will be no problem with contact between zeolite and cesium. However, where the capacity is not fixed, such as a lake, there will be a limit of contact by relying on spraying on the water surface. Can be. In addition, since the zeolite has a specific gravity of 2.0-2.4, the sedimentation rate in water may be high, so it may not have a sufficient residence time to react with radioactive cesium. In addition, in relatively large freshwater bodies such as the Paldang Lake, the depth is up to 23m and the depth is 6m on average. In this case, there is a possibility that the pollutants in the water are not homogeneously distributed by depth due to stratification due to changes in water temperature. .
  • the present invention has been devised to solve the problems of the prior art so that the decontamination agent has a sufficient residence time and the dispersion in the horizontal direction can be effectively performed in a situation where contaminants can be unevenly distributed according to depths according to the water system scale. It is an object of the present invention to provide a radioactive cesium decontamination agent capable of decontaminating radioactive cesium at a water depth.
  • an object of the present invention is to provide a method for decontaminating radioactive cesium that can efficiently decontaminate radioactive cesium in water by using the radioactive cesium decontamination agent.
  • radioactive material is a major pollutant generated during a nuclear accident.
  • the radioactive materials mainly contain iodine 131, cesium 134, cesium 137, cerium 144, rhodium 106, cobalt 60, strontium 90, radium 226, uranium 234, uranium 235, uranium 238, and plutonium 239. It may be a nuclear fission product and an active element including a radioactive isotope, but is not limited thereto.
  • contaminated water may mean an aqueous solution in which radioactive materials are dissolved.
  • radioactive materials such as radioactive cesium are dissolved in ionic form. It may contain strong binding to clay and organic matter.
  • zeolite is a group of minerals belonging to the reticular silicate mineral, it is known to have a high removal efficiency for various contaminants because it has a very large number of nanometer pores inside. It can absorb and remove moisture and odors, and can be used as a material for ion exchangers because it can trap heavy metals.
  • natural zeolite is mostly collected in the form of “zeolitic tuff” in which fine-grained tuff is denatured, and hydrous silicate containing a small amount of Na, K, Ca, Mg, Sr or Ba as cations in terms of chemical composition.
  • the types are clinoptilolite, mordenite, heulandite, phillipsite, erionite, chabazite and ferririte ( ferrierite) and the like, but is not limited thereto.
  • sodium hydrogen carbonate generates voids or pores due to HCO3 gas generation in the decomposition process by heat during drying, and Na+ remains in the adsorbent even after firing and may help to form a structural force.
  • natural zeolite, citric acid, and corn starch may serve to adhere or adhere to the adsorbent of the present invention without coating.
  • the corn starch of the present invention may be amylose-containing starch extracted from corn, but is not limited thereto. Alternatively, a mixture of starch, such as a combination of high amylose corn starch and corn starch, can be used.
  • the corn of the present invention may be obtained in a standard mating technique including intact or any other gene or chromosomal manipulation method including breeding breeding, translocation, inversion, transformation or variation thereof, but is not limited to this. .
  • the starch of the present invention is manufactured by a physical treatment process including extrusion molding, voltage axis, cooking of starch slurry, spray drying, and fluidized bed agglomeration, but is not limited thereto.
  • the process can be an extrusion process.
  • the starch is treated to be partially pregelatinized, producing starch particles having gelatinized and non-enriched moieties.
  • the gelatinized starch essentially binds non-enriched particles (ie, granules) together.
  • Corn starch in the present invention may serve to make the formulation of the decontamination agent constant.
  • zeolite as a decontamination agent for removing radioactive substances contained in contaminated water, zeolite; Sodium hydrogen carbonate; And a decontamination agent for radioactive contaminants comprising citric acid.
  • the decontamination agent is 30 to 60% by weight of zeolite; Sodium hydrogen carbonate 20-40% by weight; And 10 to 40% by weight of citric acid, but is not limited thereto.
  • the decontamination agent is 40 to 60% by weight of zeolite; Sodium hydrogen carbonate 20-40% by weight; And it contains 10 to 20% by weight of citric acid, and may be intended to remove the radioactive material contained in the middle layer water system, but is not limited thereto.
  • the decontamination agent is 30 to 40% by weight of zeolite; Sodium hydrogen carbonate 30-40% by weight; And 20 to 40% by weight of citric acid, may be intended to remove the radioactive material contained in the deep water system, but is not limited thereto.
  • the decontamination agent may further include corn starch, preferably, the corn starch may be 5 to 20% by weight, but is not limited thereto.
  • the decontamination agent may include zeolite, sodium hydrogen carbonate, citric acid and corn starch in a weight ratio of 2: 1-2: 0.5-1: 0.25-1, but is not limited thereto.
  • the decontamination agent may include zeolite, sodium hydrogen carbonate, citric acid, and corn starch in a weight ratio of 2:1:0.5:0.5, and the decontamination agent is for removing radioactive substances contained in the middle layer aqueous system.
  • the decontamination agent is for removing radioactive substances contained in the middle layer aqueous system.
  • it is not limited thereto.
  • the decontamination agent includes zeolite, sodium hydrogen carbonate, citric acid and corn starch in a weight ratio of 2:1:0.5:0.25, and the decontamination agent may be for removing radioactive substances contained in the deep water system.
  • the decontamination agent may be for removing radioactive substances contained in the deep water system.
  • it is not limited thereto.
  • the zeolite may be one containing 50-60% by weight of heliumite and 40-50% by weight of mordenite, but is not limited thereto.
  • the zeolite may have a specific surface area of 50 to 70 m 2 /g, an average pore volume of 0.1 to 0.15 ml/g, an average pore size of 5 to 15 nm, or a cation exchange capacity of 60 to 120 meq/100 g.
  • a specific surface area 50 to 70 m 2 /g, an average pore volume of 0.1 to 0.15 ml/g, an average pore size of 5 to 15 nm, or a cation exchange capacity of 60 to 120 meq/100 g.
  • it is not limited thereto.
  • the radioactive cesium decontamination agent according to an embodiment of the present invention includes clay minerals such as zeolite for adsorption of radioactive cesium, and at the same time contains a foaming component.
  • the rate of foaming can be adjusted. Through this, it is possible to adjust the speed or point of expression of the decontamination effect according to various depths or water depths, so that it is possible to tailor decontamination corresponding to various depths of the water system. This means that radioactive cesium contaminants present in all depths can be decontaminated closely, thereby maximizing the decontamination efficiency of radioactive cesium in water.
  • the decontamination agent in the aqueous system contaminated with radioactive cesium, can be applied to various horizontal areas, and at the same time, the decontamination agent of various compositions can exhibit a uniform decontamination effect in horizontal and vertical areas.
  • the unit weight and unit capacity of the decontamination agent may be variously modified in consideration of the capacity, area, and depth of the water system.
  • the present invention proposes a new model in the field of radioactive cesium decontamination in water by including a technical idea of maximizing the horizontal dispersion performance by controlling the sedimentation speed of zeolite, which is a radioactive cesium decontaminant.
  • Figure 1a is a graph showing the results of X-ray diffraction analysis for a zeolite (ZG) sample
  • Figure 1b is a graph showing the results of X-ray diffraction analysis for a Gyeongju zeolite (KGZ) sample
  • Figure 1c is Pohang zeolite (KPZ) It is a graph showing the results of X-ray diffraction analysis of the sample.
  • Figure 2 is a graph showing the results of low concentration cesium (Cw ⁇ 50 ⁇ g/L) adsorption distribution coefficient for various clay minerals.
  • FIG 3 is a schematic view showing a large column tank.
  • FIGS. 5A to 5F are graphs showing changes in turbidity concentration over time by a zeolite powder type decontamination agent.
  • Figure 5a is a graph showing the change in turbidity concentration after 1 minute by the zeolite powder type decontamination agent
  • Figure 5b is a graph showing the change in turbidity concentration after 3 minutes by the zeolite powder type decontamination agent
  • Figure 5c is a zeolite powder type It is a graph showing the change in turbidity concentration after 10 minutes by the decontamination agent
  • FIG. 5D is a graph showing the change in turbidity concentration after 60 minutes by the zeolite powder type decontamination agent
  • FIG. 5D is 120 minutes by the zeolite powder type decontamination agent.
  • It is a graph showing the change in turbidity concentration after
  • FIG. 5F is a graph showing the change in turbidity concentration after 1440 minutes by the zeolite powder type decontamination agent.
  • FIGS. 6A to 6F are graphs showing changes in cesium concentration over time by a zeolite powder-type decontamination agent.
  • Figure 6a is a graph showing the change in cesium concentration after 1 minute by the zeolite powder type decontamination agent
  • Figure 6b is a graph showing the change in cesium concentration after 3 minutes by the zeolite powder type decontamination agent
  • Figure 6c is a zeolite powder type A graph showing the change in cesium concentration after 10 minutes by the decontamination agent
  • FIG. 6D is a graph showing the change in cesium concentration after 60 minutes by the zeolite powder type decontamination agent
  • FIG. 6D is 120 minutes by the zeolite powder type decontamination agent.
  • It is a graph showing a change in cesium concentration afterwards
  • FIG. 6F is a graph showing a change in cesium concentration after 1440 minutes by a zeolite powder type decontamination agent.
  • FIGS. 7A to 7F are graphs showing changes in turbidity concentration over time by the decontamination agent of Example 1;
  • Figure 7a is a graph showing the turbidity concentration change after 1 minute by the decontamination agent of Example 1
  • Figure 7b is a graph showing the turbidity concentration change after 3 minutes by the decontamination agent of Example 1
  • Figure 7c is an implementation
  • Example 1 is a graph showing the turbidity concentration change after 10 minutes by the decontamination agent
  • Figure 7d is a graph showing the turbidity concentration change after 60 minutes by the decontamination agent of Example 1
  • Figure 7d is the decontamination of Example 1
  • It is a graph showing the change in turbidity concentration after 120 minutes by the agent
  • FIG. 7F is a graph showing the change in turbidity concentration after 1440 minutes by the decontamination agent of Example 1.
  • FIGS. 8A to 8F are graphs showing changes in cesium concentration over time by the decontamination agent of Example 1;
  • Figure 8a is a graph showing the change in cesium concentration after 1 minute by the decontamination agent of Example 1
  • Figure 8b is a graph showing the change in cesium concentration after 3 minutes by the decontamination agent of Example 1
  • Figure 8c is carried out Graph showing the change in cesium concentration after 10 minutes by the decontamination agent of Example 1
  • Figure 8d is a graph showing the change in cesium concentration after 60 minutes by the decontamination agent of Example 1
  • Figure 8d is the decontamination of Example 1
  • It is a graph showing the change in cesium concentration after 120 minutes by the agent
  • FIG. 8F is a graph showing the change in cesium concentration after 1440 minutes by the decontamination agent of Example 1.
  • FIGS. 9A to 9F are graphs showing changes in turbidity concentration over time by the decontamination agent of Example 2;
  • Figure 9a is a graph showing the change in turbidity concentration after 1 minute by the decontamination agent of Example 2
  • Figure 9b is a graph showing the change in turbidity concentration after 3 minutes by the decontamination agent of Example 2
  • Figure 9c is an implementation Graph showing the change in turbidity concentration after 10 minutes by the decontamination agent of Example 2
  • Figure 9d is a graph showing the change in turbidity concentration after 60 minutes by the decontamination agent of Example 2
  • Figure 9d is the decontamination of Example 2 It is a graph showing the change in turbidity concentration after 120 minutes by the agent
  • FIG. 9F is a graph showing the change in turbidity concentration after 1440 minutes by the decontamination agent of Example 2.
  • FIGS. 10A to 10F are graphs showing changes in cesium concentration over time by the decontamination agent of Example 2;
  • Figure 10a is a graph showing the change in cesium concentration after 1 minute by the decontamination agent of Example 2
  • Figure 10b is a graph showing the change in cesium concentration after 3 minutes by the decontamination agent of Example 2
  • Figure 10c is an implementation Graph showing the change in cesium concentration after 10 minutes by the decontamination agent of Example 2
  • Figure 10d is a graph showing the change in cesium concentration after 60 minutes by the decontamination agent of Example 2
  • Figure 10d is the decontamination of Example 2 It is a graph showing the change in cesium concentration after 120 minutes by the agent
  • FIG. 10F is a graph showing the change in cesium concentration after 1440 minutes by the decontamination agent of Example 2.
  • Figure 11a shows an embodiment of the formulation of the decontamination agent of Example 1 and Example 2
  • Figure 11b shows an embodiment of the formulation of the decontamination agent of Example 3 and Example 4.
  • FIG. 12A to 12D show the dispersion pattern over time for the decontamination agent of Example 3.
  • FIG. 12A shows the dispersion pattern after 2 seconds after administration of the anti-inflammatory agent of Example 3
  • FIG. 12B shows the dispersion pattern after 8 seconds after administration of the anti-inflammatory agent of Example 3
  • FIG. 12C shows 20 after administration of the anti-inflammatory agent. It shows the dispersion pattern after the lapse of seconds
  • FIG. 12D shows the dispersion pattern after 40 seconds after the administration of the anti-inflammatory agent of Example 3.
  • FIGS 13A to 13D show the dispersion pattern over time for the decontamination agent of Example 4.
  • Figure 13a shows the dispersion pattern after 2 seconds after administration of the anti-inflammatory agent of Example 4
  • Figure 13b shows the dispersion pattern after 5 seconds after administration of the anti-inflammatory agent of Example 4
  • Figure 13c is the decontamination of Example 4
  • the dispersion pattern is shown after 20 seconds after the first administration
  • FIG. 13D shows the dispersion pattern after 40 seconds after the administration of the anti-inflammatory agent of Example 4.
  • 14A to 14C show the dispersion pattern over time for the decontamination agent of Comparative Example 11.
  • 14A shows the dispersion pattern after 4 seconds after administration of the decontamination agent of Comparative Example 11
  • FIG. 14B shows the dispersion pattern after 20 seconds after administration of the decontamination agent of Comparative Example 11
  • FIG. 14C shows the decontamination of Comparative Example 11 It shows the dispersion pattern after 60 seconds after the first administration.
  • 15a to 15c show the dispersion pattern over time for the decontamination agent of Comparative Example 12.
  • 15A shows the dispersion pattern after 2 seconds after administration of the decontamination agent of Comparative Example 12
  • FIG. 15B shows the dispersion pattern after 5 seconds after administration of the decontamination agent of Comparative Example 12
  • FIG. 15C shows the decontamination of Comparative Example 12 It shows the dispersion pattern after 70 seconds after the first administration.
  • FIG. 16A to 16D show the dispersion pattern over time for the decontamination agent of Comparative Example 13.
  • Figure 16a shows the dispersion pattern after 4 seconds after administration of the anti-inflammatory agent
  • Figure 16b shows the dispersion pattern after 8 seconds after administration of the anti-inflammatory agent of Comparative Example 13
  • Figure 16c is dispersed after 20 seconds after the administration of the anti-inflammatory agent It shows the aspect.
  • Figure 17a has the same blending ratio as in Example 3, showing the appearance of 15 seconds after dropping the decontamination agent prepared in a formulation of 10g to 0 °C (left), 20 °C (right) in two different temperature tanks .
  • FIG. 17B shows the appearance of 15 seconds after dropping the decontamination agent produced at 12 g to 0° C. (left) and 20° C. (right) with the same mixing ratio as in Example 4 in two different water tanks.
  • 18A is an embodiment of the present invention, and shows the desorption rate divided into low and high concentrations from 14 days to about 70 days to examine the desorption effect of illite according to temperature and concentration over time.
  • 18B is an embodiment of the present invention, and shows the desorption rate divided into low and high concentrations from 14 to about 70 days to examine the desorption effect of zeolite according to temperature and concentration over time.
  • zeolite as a decontamination agent for removing radioactive substances contained in contaminated water, zeolite; Sodium hydrogen carbonate; And a decontamination agent for radioactive contaminants comprising citric acid.
  • Natural zeolite samples were selected as the base material for radioactive cesium decontaminants.
  • 1A is a graph showing X-ray diffraction analysis results for a zeolite (ZG) sample.
  • the origin of zeolite was selected as a sample produced in Gyeongju, Gyeongbuk.
  • Gyeongju Zeolite (KGZ) products the most widely sold products with a particle diameter of 45 ⁇ m were purchased.
  • Table 1 below is a table showing the composition ratio of the constituent components (minerals) identified according to the diffraction analysis results. Referring to FIG.
  • Pohang preferably Pohang zeolite (KPZ), produced in Yeongil Bay, Pohang, is also composed of heliumite and mordenite, and has similar characteristics to Gyeongju zeolite (KGZ).
  • Figure 1b is a graph showing the results of X-ray diffraction analysis of the Gyeongju zeolite sample
  • Figure 1c is a graph showing the results of X-ray diffraction analysis of the Pohang zeolite sample.
  • the composition ratio of Gyeongju zeolite and Pohang zeolite is slightly different, as shown in Table 1, but the results of X-ray diffraction analysis show generally similar peak shapes (FIGS. 1B and 1C).
  • the specific surface area of the zeolite was found to have a very small particle size of about 60 m 2 /g, and the cation exchange capacity was about 72 to 100 meq/100 g, indicating a very high value compared to the comparative Youngdong Illite (Table 2). .
  • the specific surface area and cation exchange capacity can act as factors affecting the difference in adsorption capacity.
  • Table 2 shows the results of evaluating the mineralogical properties of the prepared zeolite samples.
  • FIG. 2 is a graph showing the result of adsorption distribution coefficient of low concentration cesium (Cw ⁇ 50 ⁇ g/L) for various clay minerals.
  • Table 3 is a table in which the absorption distribution coefficient of each mineral is quantified and displayed. Referring to Table 2, Table 3, and FIG. 2, the specific surface area of ZG was about 65 m 2 per 1 g, and the cation exchange capacity was high at about 100 meq/100 g.
  • the partition coefficient (K d ) for cesium was very high, about 600,000 L/kg, and this value was about 100 to 1000 times higher than other minerals.
  • the main adsorption mechanism in the zeolite is a cation exchange reaction occurring in the pores, and it can be interpreted that the high specific surface area and the cation exchange capacity of the zeolite contributed to increasing the cesium removal rate of the zeolite.
  • 18A is an embodiment of the present invention, and shows the desorption rate divided into low and high concentrations from 14 days to about 70 days to examine the desorption effect of illite according to temperature and concentration over time.
  • 18B is an embodiment of the present invention, and shows the desorption rate divided into low and high concentrations from 14 to about 70 days to examine the desorption effect of zeolite according to temperature and concentration over time.
  • zeolite is illustrated as a clay mineral used as a decontamination agent, but it is natural that the use of other minerals such as illite, bentonite and sericite is also within the scope of the technical idea of the present invention.
  • the minerals may be used as a mixed mineral of a plurality of types depending on the applied water system.
  • a pipe for sampling with acrylic was manufactured and installed.
  • the diameter of the pipe for sampling was 20 mm (inner diameter 14 mm), and the total extension length was 1.7 m. 5 cm apart from the floor so that water samples could be introduced in 30 cm increments, and then installed a total of 4 sections of a 5 cm long screen at 30 cm intervals.
  • the main cations Ca, Mg, Na and K
  • the main anions Cl, SO4, HCO3
  • a water quality sample was collected to confirm the initial water quality using a peristaltic pump, and then a decontamination agent was added and a sample was checked to confirm changes over time.
  • a sample was checked to confirm changes over time.
  • the collected sample was first measured for turbidity, and then put into a centrifuge, centrifuged at 3500 rpm for 30 minutes, and the supernatant was collected. The supernatant was lowered to pH 2 or less using nitric acid and then stored at 4°C or lower, and cesium concentration was measured by ICP-MS.
  • the nuclides of cesium that can be used in this experiment are not limited.
  • One factor in the movement of radionuclides in aquatic environments is the behavior of stable nuclides, so the stable behavior of cesium in aquatic environments may be used as a metaphor to predict the long-term effects of cesium 137 on the environment (Tiwari, Diwakar). & Lalhmunsiama, Lalhmunsiama & Choi, S. & Lee, Seung-Mok. (2014).Activated Sericite: An Efficient and Effective Natural Clay Material for Attenuation of Cesium from Aquatic Environment.Pedosphere. 24. 731-742.).
  • Powder type decontamination agent (powder type zeolite only)
  • 4 is a graph showing the results of a 40L water tank preliminary experiment. Based on this, the amount of zeolite required for a 1-ton tank was 50 g.
  • FIG. 5A to 5F are graphs showing changes in turbidity concentration over time by a zeolite powder type decontamination agent.
  • Figure 5a is a graph showing the change in turbidity concentration after 1 minute by the zeolite powder type decontamination agent
  • Figure 5b is a graph showing the change in turbidity concentration after 3 minutes by the zeolite powder type decontamination agent
  • Figure 5c is a zeolite powder type It is a graph showing the change in turbidity concentration after 10 minutes by the decontamination agent
  • FIG. 5D is a graph showing the change in turbidity concentration after 60 minutes by the zeolite powder type decontamination agent, and FIG. 5D is 120 minutes by the zeolite powder type decontamination agent. It is a graph showing the change in turbidity concentration after, and FIG. 5F is a graph showing the change in turbidity concentration after 1440 minutes by the zeolite powder type decontamination agent.
  • FIGS. 6A to 6F are graphs showing changes in cesium concentration over time by a zeolite powder-type decontamination agent.
  • Figure 6a is a graph showing the change in cesium concentration after 1 minute by the zeolite powder type decontamination agent
  • Figure 6b is a graph showing the change in cesium concentration after 3 minutes by the zeolite powder type decontamination agent
  • Figure 6c is a zeolite powder type A graph showing the change in cesium concentration after 10 minutes by the decontamination agent
  • FIG. 6D is a graph showing the change in cesium concentration after 60 minutes by the zeolite powder type decontamination agent
  • FIG. 6D is 120 minutes by the zeolite powder type decontamination agent.
  • It is a graph showing a change in cesium concentration afterwards
  • FIG. 6F is a graph showing a change in cesium concentration after 1440 minutes by a zeolite powder-type decontamination agent.
  • the concentration of cesium in water also appears to decrease along the point of increasing turbidity, confirming that the decontamination effect is concentrated around the zeolite. This tendency was strongly observed between 1 and 3 minutes in the beginning of the experiment, and after 3 minutes, it was confirmed that the zeolite powder reached all the bottom, and after 10 minutes, the turbidity was first homogenized, and then gradually the homogenization of cesium concentration in water was achieved. . After 24 hours, the zeolite particles had settled on the floor to the extent that it was difficult to recover the water collecting channel through the metering pump. At this time, the final cesium removal rate was about 60%, similar at all points.
  • sodium hydrogen carbonate (NaHCO3) and citric acid (C6H8O7) are components that can control the expression of zeolite, a decontamination component, by increasing the horizontal dispersion to control the foaming rate.
  • the foamed decontamination agent was mixed with a content of the main additives sodium hydrogen carbonate, citric acid and zeolite in an amount as shown in Table 4, and ethanol (C2H5OH) was used to mold them.
  • the amount of zeolite injected based on 1 ton was applied equally to 50 g as the result of the previous preliminary experiment.
  • Ethanol for mixing and molding the zeolite and other ancillary materials was injected at about 20% of the total decontamination agent mass, and put into a production mold to dry for 2 days or more in an oven set to 40°C to prepare a decontamination agent.
  • a mass loss of about 20% occurred during the production and drying process.
  • the final formulation was in the form of pellets or tablets.
  • Decontamination agents were prepared in the same manner as in Example 1, respectively, and the decontamination agents of Comparative Examples 1 to 5 were prepared using the composition ratios shown in Table 4 below.
  • a decontamination agent (Examples 1 and Comparative Examples 1 to 5) prepared by different mixing ratios was placed in a water tank, and sedimentation and dispersion tendencies were observed, and among them, the dispersion tendency was most excellent. Turbidity and cesium concentrations by location and depth of decontamination agent of 1 were measured and illustrated.
  • FIGS. 7A to 7F are graphs showing changes in turbidity concentration over time by the decontamination agent of Example 1;
  • Figure 7a is a graph showing the turbidity concentration change after 1 minute by the decontamination agent of Example 1
  • Figure 7b is a graph showing the turbidity concentration change after 3 minutes by the decontamination agent of Example 1
  • Figure 7c is an implementation
  • Example 1 is a graph showing the turbidity concentration change after 10 minutes by the decontamination agent
  • Figure 7d is a graph showing the turbidity concentration change after 60 minutes by the decontamination agent of Example 1
  • Figure 7d is the decontamination of Example 1
  • It is a graph showing the change in turbidity concentration after 120 minutes by the agent
  • FIG. 7F is a graph showing the change in turbidity concentration after 1440 minutes by the decontamination agent of Example 1.
  • FIGS. 8A to 8F are graphs showing changes in cesium concentration over time by the decontamination agent of Example 1;
  • Figure 8a is a graph showing the change in cesium concentration after 1 minute by the decontamination agent of Example 1
  • Figure 8b is a graph showing the change in cesium concentration after 3 minutes by the decontamination agent of Example 1
  • Figure 8c is carried out Graph showing the change in cesium concentration after 10 minutes by the decontamination agent of Example 1
  • Figure 8d is a graph showing the change in cesium concentration after 60 minutes by the decontamination agent of Example 1
  • Figure 8d is the decontamination of Example 1
  • It is a graph showing the change in cesium concentration after 120 minutes by the agent
  • FIG. 8F is a graph showing the change in cesium concentration after 1440 minutes by the decontamination agent of Example 1.
  • Example 1 the other types of decontamination agents, except for Example 1, did not cause retardation of sedimentation rate or dispersion in the horizontal direction.
  • the decontamination agent of Example 1 settled similarly to the powder decontamination agent in the vertical direction, but the dispersion was much wider than that of the powder decontamination agent after being reprecipitated after being dispersed in the horizontal direction at about 60 cm below the water surface. Appeared to be.
  • concentration of cesium in water was slightly different depending on the measurement location, in contrast to the powdered decontamination agent, where the decrease in cesium concentration occurred near the water surface, the decontamination agent of Example 1 retained cesium near the water surface over time. Appeared to be.
  • the foamed decontamination agent was mixed with the content of the main additives sodium hydrogen carbonate, citric acid and zeolite in an amount as shown in Table 5, and ethanol (C2H5OH) was used to mold them.
  • the amount of zeolite injected on the basis of 1 ton was applied equally to 50 g as the result of the previous preliminary experiment.
  • Ethanol for mixing and molding the zeolite and other ancillary materials was injected at about 20% of the total decontamination agent mass, and put into a production mold to dry for 2 days or more in an oven set to 40°C to prepare a decontamination agent.
  • a mass loss of about 20% occurred during the production and drying process.
  • the final formulation was in the form of pellets or tablets.
  • Decontamination agents were prepared in the same manner as in Example 2, respectively, and the decontamination agents of Comparative Examples 6 to 10 were prepared at the composition ratios shown in Table 5 below.
  • Example 2 In order to remove cesium in water, a decontamination agent (Example 2, Comparative Examples 6 to 10) prepared by different mixing ratios was placed in a water tank, and sedimentation and dispersion tendencies were observed, and among them, the dispersion tendency was most excellent. Turbidity and cesium concentrations by location and depth of decontamination agent of 2 were measured and plotted.
  • FIGS. 9A to 9F are graphs showing changes in turbidity concentration over time by the decontamination agent of Example 2;
  • Figure 9a is a graph showing the change in turbidity concentration after 1 minute by the decontamination agent of Example 2
  • Figure 9b is a graph showing the change in turbidity concentration after 3 minutes by the decontamination agent of Example 2
  • Figure 9c is an implementation Graph showing the change in turbidity concentration after 10 minutes by the decontamination agent of Example 2
  • Figure 9d is a graph showing the change in turbidity concentration after 60 minutes by the decontamination agent of Example 2
  • Figure 9d is the decontamination of Example 2 It is a graph showing the change in turbidity concentration after 120 minutes by the agent
  • FIG. 9F is a graph showing the change in turbidity concentration after 1440 minutes by the decontamination agent of Example 2.
  • FIGS. 10A to 10F are graphs showing changes in cesium concentration over time by the decontamination agent of Example 2;
  • Figure 10a is a graph showing the change in cesium concentration after 1 minute by the decontamination agent of Example 2
  • Figure 10b is a graph showing the change in cesium concentration after 3 minutes by the decontamination agent of Example 2
  • Figure 10c is an implementation Graph showing the change in cesium concentration after 10 minutes by the decontamination agent of Example 2
  • Figure 10d is a graph showing the change in cesium concentration after 60 minutes by the decontamination agent of Example 2
  • Figure 10d is the decontamination of Example 2 It is a graph showing the change in cesium concentration after 120 minutes by the agent
  • FIG. 10F is a graph showing the change in cesium concentration after 1440 minutes by the decontamination agent of Example 2.
  • the decontamination agents of Comparative Examples 6 to 10 which were prepared by different mixing ratios with the decontamination agents of Example 2, did not cause retardation of sedimentation rate or dispersion in the horizontal direction. In some decontamination agents, dispersion did not occur at all until it reached the bottom of the tank, and in some decontamination agents, dispersion occurred, but the degree was weak.
  • Example 2 did not exhibit a delay in sedimentation rate or dispersion in the horizontal direction.
  • the decontamination agent of Example 2 settled similarly to the powdered decontamination agent in the vertical direction, but it was confirmed that the sedimentation was delayed while re-initiating to the water surface around 30 cm below the surface, and dispersion occurred in the horizontal direction in the process.
  • the concentration of cesium in water was slightly different depending on the measurement location, but it was found to decrease rapidly over a wide range, similar to the dispersed area of the particles.
  • radioactive cesium decontamination agent zeolite 40 to 60% by weight; Sodium hydrogen carbonate 20 to 40% by weight; And 10 to 20% by weight of citric acid was determined as a custom decontamination agent for radioactive cesium decontamination in an aqueous medium layer.
  • Corn starch (corn-starch) was further blended in the process of preparing the foamed decontamination agent of Example 3 to enhance the bonding strength.
  • the dosage form of the adsorbent can be constantly controlled, and the intensity is also increased, making it easier to control the depth.
  • the form of the decontamination agent is shown in Fig. 11A
  • the form of the decontamination agent obtained by adding corn starch is shown in Fig. 11B.
  • Example 3 was made for a middle layer. The composition ratio of Example 3 is shown in Table 6.
  • Example 4 is a decontamination agent for an extra-layer use produced by changing the composition ratio in the process of preparing the foamed decontamination agent of Example 3. Table 4 shows the composition ratio of Example 4.
  • Comparative Examples 11 to 13 are decontamination agents prepared by changing the composition ratio in the process of manufacturing a foamed decontamination agent.
  • Table 6 shows the composition ratios of Comparative Examples 11 to 13.
  • FIGS. 12A to 12D show the dispersion pattern over time for the decontamination agent of Example 3.
  • Figure 12a shows the dispersion pattern after 2 seconds after administration of the anti-inflammatory agent of Example 3. Immediately after dropping the decontamination agent of Example 3, it settled down to 10 cm below the surface of the water and floated again to disperse on the surface for 3 seconds.
  • Figure 12b shows the dispersion pattern after 8 seconds after administration of the anti-inflammatory agent of Example 3. The decontamination agent of Example 3 settles to the bottom of the water tank 8 seconds after administration.
  • Figure 12c shows the dispersion pattern after 20 seconds after administration of the decontamination agent.
  • the anti-inflammatory agent of Example 3 which was strongly dispersed only in the vertical direction, rose to the surface again 20 seconds after administration.
  • Figure 12d shows the dispersion pattern after 40 seconds after administration of the anti-inflammatory agent of Example 3. The decontamination agent of Example 3 continues to disperse, and after 40 seconds, it is completely dispersed throughout the water bath.
  • FIGS. 13A to 13D show the dispersion pattern over time for the decontamination agent of Example 4.
  • Figure 13a shows the dispersion pattern after 2 seconds after administration of the decontamination agent of Example 4. Immediately after dropping the decontamination agent of Example 4, it sinks to 5 cm below the surface of the water and then rises again, but immediately sinks.
  • Figure 13b shows the dispersion pattern after 5 seconds after administration of the decontamination agent of Example 4. The decontamination agent of Example 4 reaches the bottom of the tank 5 seconds after administration.
  • Figure 13c shows the dispersion pattern after 20 seconds after administration of the decontamination agent of Example 4.
  • Example 4 The anti-inflammatory agent of Example 4, which was strongly dispersed in the vertical direction and weakly dispersed in the horizontal direction, and exhibited the dispersion behavior in the form of I, rose to the surface again after 30 seconds after administration.
  • Figure 13d shows the dispersion pattern after 40 seconds after administration of the anti-inflammatory agent of Example 4.
  • the decontamination agent of Example 4 continued to disperse, and after 35 seconds, it was completely dispersed throughout the water bath.
  • FIG. 14A to 14C show the dispersion pattern over time for the decontamination agent of Comparative Example 11.
  • Figure 14a shows the dispersion pattern after 4 seconds after administration of the decontamination agent.
  • the decontamination agent of Comparative Example 11 reaches the bottom of the tank after 4 seconds immediately after dropping.
  • Figure 14b shows the dispersion pattern after 20 seconds after administration of the decontamination agent of Comparative Example 11.
  • the decontamination agent of Comparative Example 11 is dispersed in the vertical direction as the decontamination agent is released after reaching the bottom of the water tank.
  • Figure 14c shows the dispersion pattern after 60 seconds after administration of the decontamination agent of Comparative Example 11.
  • FIG. 15a to 15c show the dispersion pattern over time for the decontamination agent of Comparative Example 12.
  • Figure 15a shows the dispersion pattern after 2 seconds after administration of the decontamination agent of Comparative Example 12.
  • the decontamination agent of Comparative Example 12 settled to 10 cm below the surface of the water immediately after being dropped, and then re-emerged and dispersed for 1 second on the surface of the water.
  • 15B shows the dispersion pattern after 5 seconds after administration of the decontamination agent of Comparative Example 12.
  • the decontamination agent of Comparative Example 12 settles to the bottom of the water tank 5 seconds after administration.
  • Figure 15c shows the dispersion pattern after 70 seconds after administration of the decontamination agent of Comparative Example 12.
  • the decontamination agent of Comparative Example 12 was dispersed in the vertical direction and completely dispersed after 70 seconds.
  • FIG. 16A to 16D show the dispersion pattern over time for the decontamination agent of Comparative Example 13.
  • Figure 16a shows the dispersion pattern after 4 seconds after administration of the decontamination agent. Immediately after dropping the decontamination agent of Comparative Example 13, it settled down to 10 cm below the surface of the water and floated again to disperse on the surface for 3 seconds.
  • Figure 16b shows the dispersion pattern after 8 seconds after administration of the decontamination agent of Comparative Example 13. The decontamination agent of Comparative Example 13 sinks to the bottom of the water tank 8 seconds after administration, and then is dispersed only in the vertical direction.
  • Figure 16c shows the dispersion pattern after 20 seconds after administration of the decontamination agent. The anti-inflammatory agent of Comparative Example 13 floats on the surface again 20 seconds after administration.
  • Figure 16d shows the dispersion pattern after 60 seconds after administration of the decontamination agent of Comparative Example 13. The decontamination agent of Comparative Example 13 continued to disperse, and after 60 seconds, it was completely dispersed throughout the
  • Dispersion behaviors of Examples 3 and 4 and Comparative Examples 11 to 13 are evaluated as shown in Table 7 below. Dispersion behavior was evaluated by dividing the tank depth by 45 cm into 3 sections of 15 cm from the top and dividing it into upper, middle, and lower regions, and describing the regions in the order in which the decontamination agents were horizontally dispersed.
  • the dispersing rate was evaluated by recording the time when the adsorbent was completely spread over the entire water tank and dispersion was completed. As a result of the experiment, considering the dispersion behavior and dispersion speed, it was judged to be optimal to perform as in Example 3 as the decontamination agent for the middle layer and in Example 4 as the decontamination agent for the deep layer.
  • 17A and 17B show the dispersion pattern of the decontamination agent according to the temperature and the formulation mass of the adsorbent.
  • Figure 17a has the same blending ratio as in Example 3, showing the appearance of 15 seconds after dropping the decontamination agent prepared in a formulation of 10g to 0 °C (left), 20 °C (right) in two different temperature tanks .
  • the decontamination agent made of 10g stays only at the surface of the water regardless of the mixing ratio, and is dispersed only in the vertical direction without dispersion in the horizontal direction. Significantly slower than the dispersion rate at room temperature.
  • FIG. 17B shows the appearance of 15 seconds after dropping the decontamination agent produced at 12 g to 0° C. (left) and 20° C. (right) with the same mixing ratio as in Example 4 in two different water tanks.
  • the decontamination agent made of 12 g has an increased weight of the decontamination agent formulation, so that when the decontamination agent reaches the bottom in the water, the decontamination agent is dispersed in the low temperature environment. Degradation can be overcome.
  • the dispersion rate of the decontamination agent is slightly slower than that at 20°C, but the decontamination agent made of the 10 g formulation shows a much better dispersion behavior at the same time compared to the dispersion on the water surface.
  • the present technology relates to a technology for decontamination of pollutants in water, and in particular, a technology for decontamination agents and decontamination methods capable of efficiently decontaminating radioactive cesium present in water for various water depths.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Detergent Compositions (AREA)

Abstract

The present invention provides a decontamination agent for radioactive cesium, which is a composition comprising clay minerals and a foaming agent, and adsorbs or removes radioactive cesium, wherein the foaming speed of the decontamination agent can be adjusted depending on the depth of water by adjusting the clay minerals content and the foaming agent content. Consequently, the present invention includes a technical concept of maximizing the horizontal dispersion performance of a decontamination agent for radioactive cesium, such as zeolite, etc., through adjustment of the settling speed thereof, and thus proposes a new model in the field of underwater radioactive cesium decontamination.

Description

방사성 세슘 제염제 및 이를 이용한 수심-맞춤형 방사성 세슘 제염방법Radioactive cesium decontamination agent and depth-customized radioactive cesium decontamination method using the same
본 기술은 수중 오염물질의 제염 기술에 관한 것으로서, 특히 수중에 존재하는 방사성 세슘을 다양한 수심에 대하여 효율적으로 제염할 수 있는 제염제 및 제염방법에 관한 기술이다.The present technology relates to a technology for decontamination of pollutants in water, and in particular, a technology for decontamination agents and decontamination methods capable of efficiently decontaminating radioactive cesium present in water for various water depths.
2011년 3월 일본 후쿠시마 원자력 발전소 사고에 의해 토양이나 동식물, 폐기물 등이 방사선 물질에 오염되어 있어 심각한 환경 문제를 야기하고 있다. 원자력 발전소 사고시 발생되는 주요 방사성 물질로는 방사성 요오드와 방사성 세슘 등을 들 수 있다. 방사성 요오드는 반감기가 약 8일로 비교적 짧은데 반해 방사성 세슘은 반감기가 30년으로 대단히 길며, 세슘은 칼륨과 화학적 성질이 비슷하여 흡수시 근육 등에 농축되어 면역력 결핍 및 각종 암(불임증, 골수암, 폐암, 갑상선암, 유방암 등) 등을 유발하는 원인이 된다.In March 2011, the Fukushima nuclear power plant accident in Japan caused serious environmental problems because soil, animals, plants, and waste were contaminated with radioactive materials. Radioactive iodine and radioactive cesium are the main radioactive materials generated in nuclear power plant accidents. Radioactive iodine has a relatively short half-life of about 8 days, whereas radioactive cesium has a very long half-life of 30 years, and cesium has similar chemical properties to potassium, so it is concentrated in the muscles when absorbed and lacks immunity and various cancers (infertility, bone marrow cancer, lung cancer, thyroid cancer) , Breast cancer, etc.).
제올라이트와 같은 광물이 방사성 세슘 등의 오염물질을 제거하기 위해서는 오염물질과 직접적으로 접촉하여야만 한다. 방사성 세슘이 정수처리장과 같이 용량이 고정된 곳에 유입되는 경우라면 제올라이트와 세슘과의 접촉에 문제가 없겠지만, 호수 등 용량이 고정되어 있지 않은 곳에서는 수표면에서의 살포에 의존해서는 접촉의 한계가 발생할 수 있다. 또한 제올라이트의 비중이 2.0-2.4이므로 수중에서 침강속도가 빨라 방사성세슘과 반응할 수 있는 충분한 체류시간을 갖지 못할 수도 있다. 또한, 팔당호와 같이 비교적 큰 담수체에서는 수심이 최대 23m이고, 평균 6m로 수심이 깊으며, 이럴 경우 수온 변화에 따른 성층현상 등에 의해 수중 오염물질이 심도별로 균질하게 분포하고 있지 않을 가능성도 존재한다.In order to remove contaminants such as radioactive cesium, a mineral such as zeolite must directly contact the contaminants. If radioactive cesium is introduced into a fixed capacity, such as a water treatment plant, there will be no problem with contact between zeolite and cesium. However, where the capacity is not fixed, such as a lake, there will be a limit of contact by relying on spraying on the water surface. Can be. In addition, since the zeolite has a specific gravity of 2.0-2.4, the sedimentation rate in water may be high, so it may not have a sufficient residence time to react with radioactive cesium. In addition, in relatively large freshwater bodies such as the Paldang Lake, the depth is up to 23m and the depth is 6m on average. In this case, there is a possibility that the pollutants in the water are not homogeneously distributed by depth due to stratification due to changes in water temperature. .
본 발명은 이와 같이 수계 규모에 따라 오염물질이 심도별로 불균일하게 분포할 수 있는 상황에서 제염제가 충분한 체류시간을 갖고 수평 방향의 분산이 효과적으로 이루어질 수 있도록 종래 기술의 문제점을 해결하기 위하여 안출된 발명으로서, 방사성 세슘을 수심 맞춤형으로 제염할 수 있는 방사성 세슘 제염제를 제공하는 것을 목적으로 한다. The present invention has been devised to solve the problems of the prior art so that the decontamination agent has a sufficient residence time and the dispersion in the horizontal direction can be effectively performed in a situation where contaminants can be unevenly distributed according to depths according to the water system scale. It is an object of the present invention to provide a radioactive cesium decontamination agent capable of decontaminating radioactive cesium at a water depth.
또한, 본 발명은 상기 방사성 세슘 제염제를 이용하여 수중의 방사성 세슘을 수심에 따라 효율적으로 제염할 수 있는 방사성 세슘의 제염방법을 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a method for decontaminating radioactive cesium that can efficiently decontaminate radioactive cesium in water by using the radioactive cesium decontamination agent.
이하, 본원에 기재된 다양한 구체예가 도면을 참조로 기재된다. 하기 설명에서, 본 발명의 완전한 이해를 위해서, 다양한 특이적 상세 사항, 예컨대, 특이적 형태, 조성물 및 공정 등이 기재되어 있다. 그러나, 특정의 구체예는 이들 특이적 상세 사항 중 하나 이상 없이, 또는 다른 공지된 방법 및 형태와 함께 실행될 수 있다. 다른 예에서, 공지된 공정 및 제조 기술은 본 발명을 불필요하게 모호하게 하지 않게 하기 위해서, 특정의 상세사항으로 기재되지 않는다. "한 가지 구체예" 또는 "구체예"에 대한 본 명세서 전체를 통한 참조는 구체예와 결부되어 기재된 특별한 특징, 형태, 조성 또는 특성이 본 발명의 하나 이상의 구체예에 포함됨을 의미한다. 따라서, 본 명세서 전체에 걸친 다양한 위치에서 표현된 "한 가지 구체예에서" 또는 "구체예"의 상황은 반드시 본 발명의 동일한 구체예를 나타내지는 않는다. 추가로, 특별한 특징, 형태, 조성, 또는 특성은 하나 이상의 구체예에서 어떠한 적합한 방법으로 조합될 수 있다.Hereinafter, various embodiments described herein are described with reference to the drawings. In the following description, for the full understanding of the present invention, various specific details, such as specific forms, compositions and processes, have been described. However, certain embodiments may be practiced without one or more of these specific details, or in combination with other known methods and forms. In other instances, well-known processes and manufacturing techniques are not described in specific details in order not to unnecessarily obscure the present invention. Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, form, composition or characteristic described in connection with the embodiment is included in one or more embodiments of the invention. Thus, the context of “in one embodiment” or “an embodiment” expressed in various places throughout this specification does not necessarily represent the same embodiment of the invention. Additionally, special features, shapes, compositions, or properties can be combined in any suitable way in one or more embodiments.
본 발명 내 특별한 정의가 없으면 본 명세서에 사용된 모든 과학적 및 기술적인 용어는 본 발명이 속하는 기술분야에서 당업자에 의하여 통상적으로 이해되는 것과 동일한 의미를 가진다.Unless otherwise specified in the present invention, all scientific and technical terms used herein have the same meaning as commonly understood by those skilled in the art to which the present invention pertains.
본 발명에서 “방사성 물질”이란 원자력 중대사고 시 발생되는 주요 오염물이다. 현재, 널리 보급되어 있는 원자로 발전 플랜트에 있어서는, 원자로에서의 핵분열에 의해서 상당한 양의 방사성 부산물의 생성을 수반한다. 상기 방사선 물질에는 이들 방사성 물질의 주된 것은, 요오드 131, 세슘 134, 세슘 137, 세륨 144, 로듐 106, 코발트 60, 스트론튬 90, 라듐 226, 우라늄 234, 우라늄 235, 우라늄 238, 플루토늄 239 등의 극히 위험한 방사성 동위 원소를 포함하는 핵분열 생성물 및 활성 원소일 수 있으나, 이에 제한되는 것은 아니다.In the present invention, "radioactive material" is a major pollutant generated during a nuclear accident. Currently, in a widely used nuclear power plant, nuclear fission in a nuclear reactor involves the production of a significant amount of radioactive by-products. The radioactive materials mainly contain iodine 131, cesium 134, cesium 137, cerium 144, rhodium 106, cobalt 60, strontium 90, radium 226, uranium 234, uranium 235, uranium 238, and plutonium 239. It may be a nuclear fission product and an active element including a radioactive isotope, but is not limited thereto.
본 발명에서 오염수란 방사성 물질이 용해된 수용액을 의미할 수 있다. 원자력 중대사고 발생시 휘발성이 높은 방사성 물질이 중대사고 초기에 대기로 기화되어 이동하며, 방사성 낙진 혹은 강우를 통하여 지표 환경에 유입될 수 있다. 상기 오염수에서 방사성 세슘 등 방사성 물질은 이온형태로 용해되어 있거나. 점토와 유기물에 강하게 결합되어 포함되어 있을 수 있다.In the present invention, contaminated water may mean an aqueous solution in which radioactive materials are dissolved. When a nuclear accident occurs, a highly volatile radioactive material vaporizes and moves into the atmosphere at the beginning of a serious accident, and may enter the surface environment through radioactive fallout or rainfall. In the contaminated water, radioactive materials such as radioactive cesium are dissolved in ionic form. It may contain strong binding to clay and organic matter.
본 발명에서 제올라이트(zeolite)란 망상 규산염광물에 속하는 광물군으로 내부에 수 나노미터의 기공을 매우 많이 갖고 있어 다양한 오염 물질에 대한 제거 효율이 높은 것으로 알려져 있다. 수분과 악취를 흡수하여 제거할 수 있으며, 중금속을 포획할 수 있어 이온 교환제의 재료로도 사용 될 수 있다. 특히, 천연제올라이트는 대부분 세립질의 응회암이 변질된 “불석질 응회암 (zeolitic tuff)"의 형태로 채취되며, 화학 조성면에 있어 Na, K, Ca, Mg, Sr 또는 Ba을 양이온으로 소량 함유하는 함수규산염 광물로서, 그 종류는 클리놉틸로라이트(clinoptilolite), 모오데나이트(mordenite), 휼란다이트(heulandite), 필립사이트(phillipsite), 에리오나이트(erionite), 체바자이트(chabazite) 및 페리어라이트 (ferrierite) 등이 있으나 이에 한정되는 것은 아니다. In the present invention, zeolite (zeolite) is a group of minerals belonging to the reticular silicate mineral, it is known to have a high removal efficiency for various contaminants because it has a very large number of nanometer pores inside. It can absorb and remove moisture and odors, and can be used as a material for ion exchangers because it can trap heavy metals. In particular, natural zeolite is mostly collected in the form of “zeolitic tuff” in which fine-grained tuff is denatured, and hydrous silicate containing a small amount of Na, K, Ca, Mg, Sr or Ba as cations in terms of chemical composition. As a mineral, the types are clinoptilolite, mordenite, heulandite, phillipsite, erionite, chabazite and ferririte ( ferrierite) and the like, but is not limited thereto.
본 발명에서 탄산수소나트륨은 건조시 열에 의해 분해과정에서 HCO3 가스 발생으로 인하여 공극 또는 기공을 발생시키고, Na+가 소성 후에도 흡착재 내에 잔류하며 구조력 형성에 도움이 될 수 있다. 또한, 상기 공극 또는 기공이 형성되는 과정에서 피막 없이 천연제올라이트, 시트르산, 옥수수 전분이 본 발명의 흡착재에 점착 또는 고착되게 하는 역할을 할 수 있다.In the present invention, sodium hydrogen carbonate generates voids or pores due to HCO3 gas generation in the decomposition process by heat during drying, and Na+ remains in the adsorbent even after firing and may help to form a structural force. In addition, in the process of forming the pores or pores, natural zeolite, citric acid, and corn starch may serve to adhere or adhere to the adsorbent of the present invention without coating.
본 발명의 옥수수 전분은 옥수수에서 추출한 아밀로스-함유 전분일 수 있으나 이에 제한되지 않는다. 또는, 고아밀로스 옥수수전분 및 옥수수전분의 배합물과 같은 전분의 배합물이 사용될 수 있다. 본 발명의 옥수수는 자연상태 그대로 또는 교배육종, 전좌, 역위, 형질전환 또는 이들의 변이를 포함하는 임의의 다른 유전자 또는 염색체 조작방법을 포함하는 표준 교배기술로 수득된 것일 수 있으나, 이제 제한되지 않는다. The corn starch of the present invention may be amylose-containing starch extracted from corn, but is not limited thereto. Alternatively, a mixture of starch, such as a combination of high amylose corn starch and corn starch, can be used. The corn of the present invention may be obtained in a standard mating technique including intact or any other gene or chromosomal manipulation method including breeding breeding, translocation, inversion, transformation or variation thereof, but is not limited to this. .
본 발명의 전분은 압출성형, 전압축, 전분 슬러리의 조리, 분무건조 및 유동화상응집(Fluidized bed agglomeration)을 포함하는 물리적 처리공정으로 제조되나, 이로 제한하는 것은 아니다. 한 구현예에서, 상기 공정은 압출공정일 수 있다. 전분을 부분적으로 전호화되도록 처리하여, 호화 및 비-호화 부분을 갖는 전분 입자를 생성한다. 한 구현예에서, 상기 호화된 전분은 본질적으로 비-호화된 입자(즉, 과립)를 함께 결합시킨다. 본 발명에서 옥수수전분은 제염제의 제형을 일정하게 하는 역할을 할 수 있다.The starch of the present invention is manufactured by a physical treatment process including extrusion molding, voltage axis, cooking of starch slurry, spray drying, and fluidized bed agglomeration, but is not limited thereto. In one embodiment, the process can be an extrusion process. The starch is treated to be partially pregelatinized, producing starch particles having gelatinized and non-enriched moieties. In one embodiment, the gelatinized starch essentially binds non-enriched particles (ie, granules) together. Corn starch in the present invention may serve to make the formulation of the decontamination agent constant.
본 발명의 일 구현 예에 따르면, 오염수에 포함된 방사성 물질을 제거하기 위한 제염제로서, 제올라이트; 탄산수소나트륨; 및 시트르산을 포함하는 방사성 오염 물질의 제염제에 관한 것이다.According to an embodiment of the present invention, as a decontamination agent for removing radioactive substances contained in contaminated water, zeolite; Sodium hydrogen carbonate; And a decontamination agent for radioactive contaminants comprising citric acid.
본 발명에서 상기 제염제는 제올라이트 30~60중량%; 탄산수소나트륨 20~40중량%; 및 시트르산 10~40중량%를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the decontamination agent is 30 to 60% by weight of zeolite; Sodium hydrogen carbonate 20-40% by weight; And 10 to 40% by weight of citric acid, but is not limited thereto.
본 발명에서 상기 제염제는 제올라이트 40~60중량%; 탄산수소나트륨 20~40중량%; 및 시트르산 10~20중량%를 포함하고, 중층 수계에 포함된 방사성 물질을 제거하기 위한 것일 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the decontamination agent is 40 to 60% by weight of zeolite; Sodium hydrogen carbonate 20-40% by weight; And it contains 10 to 20% by weight of citric acid, and may be intended to remove the radioactive material contained in the middle layer water system, but is not limited thereto.
본 발명에서 상기 제염제는 제올라이트 30~40 중량%; 탄산수소나트륨 30~40중량%; 및 시트르산 20 내지 40중량%를 포함하고, 심층 수계에 포함된 방사성 물질을 제거하기 위한 것일 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the decontamination agent is 30 to 40% by weight of zeolite; Sodium hydrogen carbonate 30-40% by weight; And 20 to 40% by weight of citric acid, may be intended to remove the radioactive material contained in the deep water system, but is not limited thereto.
본 발명에서, 상기 제염제는 옥수수 전분을 더 포함하는 것일 수 있고, 바람직하게는, 상기 옥수수 전분은 5~20중량%일 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the decontamination agent may further include corn starch, preferably, the corn starch may be 5 to 20% by weight, but is not limited thereto.
본 발명에서, 상기 제염제는 제올라이트, 탄산수소나트륨, 시트르산 및 옥수수 전분을 2: 1~2: 0.5~1: 0.25~1의 중량비로 포함할 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the decontamination agent may include zeolite, sodium hydrogen carbonate, citric acid and corn starch in a weight ratio of 2: 1-2: 0.5-1: 0.25-1, but is not limited thereto.
본 발명에서 상기 제염제는 제올라이트, 탄산수소나트륨, 시트르산 및 옥수수 전분을 2:1:0.5:0.5의 중량비로 포함하는 것일 수 있고, 상기 제염제는 중층 수계에 포함된 방사성 물질을 제거하기 위한 것일 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the decontamination agent may include zeolite, sodium hydrogen carbonate, citric acid, and corn starch in a weight ratio of 2:1:0.5:0.5, and the decontamination agent is for removing radioactive substances contained in the middle layer aqueous system. However, it is not limited thereto.
본 발명에서, 상기 제염제는 제올라이트, 탄산수소나트륨, 시트르산 및 옥수수 전분을 2:1:0.5:0.25의 중량비로 포함하는 것이며, 상기 제염제는 심층 수계에 포함된 방사성 물질을 제거하기 위한 것일 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the decontamination agent includes zeolite, sodium hydrogen carbonate, citric acid and corn starch in a weight ratio of 2:1:0.5:0.25, and the decontamination agent may be for removing radioactive substances contained in the deep water system. However, it is not limited thereto.
본 발명에서, 상기 제올라이트는 휼란다이트 50~60중량% 및 모데나이트 40~50중량%를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the zeolite may be one containing 50-60% by weight of heliumite and 40-50% by weight of mordenite, but is not limited thereto.
본 발명에서, 상기 제올라이트는 비표면적이 50~70m2/g이거나, 평균 공극 부피가 0.1~0.15ml/g이거나, 평균 공극 크기가 5~15nm이거나, 양이온 교환능이 60~120meq/100g인 것일 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the zeolite may have a specific surface area of 50 to 70 m 2 /g, an average pore volume of 0.1 to 0.15 ml/g, an average pore size of 5 to 15 nm, or a cation exchange capacity of 60 to 120 meq/100 g. However, it is not limited thereto.
본 발명의 일 실시예에 따른 방사성 세슘 제염제는 방사성 세슘의 흡착을 위한 제올라이트 등의 점토광물을 포함하고 있으며 동시에 발포성분을 포함하고 있어, 상기 점토 광물과 발포성분의 함량 조절을 위하여 상기 제염제의 발포 속도를 조절할 수 있다. 이를 통하여, 다양한 심도 또는 수심에 따라 제염 효과의 발현 속도나 지점을 조절할 수 있어 수계의 다양한 수심에 대응한 맞춤형 제염이 가능하도록 한다. 이는 결국 모든 수심에 존재하는 방사성 세슘 오염원을 촘촘하게 제염할 수 있다는 의미이며, 이를 통하여 수중 방사성 세슘의 제염 효율을 극대화할 수 있다. The radioactive cesium decontamination agent according to an embodiment of the present invention includes clay minerals such as zeolite for adsorption of radioactive cesium, and at the same time contains a foaming component. The rate of foaming can be adjusted. Through this, it is possible to adjust the speed or point of expression of the decontamination effect according to various depths or water depths, so that it is possible to tailor decontamination corresponding to various depths of the water system. This means that radioactive cesium contaminants present in all depths can be decontaminated closely, thereby maximizing the decontamination efficiency of radioactive cesium in water.
따라서 방사성 세슘으로 오염된 수계에서 상기 제염제를 다양한 수평 영역에 살포하고, 동시에 다양한 조성의 제염제를 살포할 경우 수평 및 수직 영역에서 균일한 제염 효과를 발휘할 수 있다. Therefore, in the aqueous system contaminated with radioactive cesium, the decontamination agent can be applied to various horizontal areas, and at the same time, the decontamination agent of various compositions can exhibit a uniform decontamination effect in horizontal and vertical areas.
다만, 제염제의 단위 무게, 단위 용량 등은 수계의 용량, 면적, 수심 등을 고려하여 다양하게 변형될 수 있을 것이다. However, the unit weight and unit capacity of the decontamination agent may be variously modified in consideration of the capacity, area, and depth of the water system.
본 발명은 결국, 방사성 세슘 제염제인 제올라이트 등의 침강 속도를 조절함으로써 수평 분산 성능을 극대화 하고자 하는 기술사상을 포함함으로써, 수중 방사성 세슘 제염 분야의 새로운 모델을 제시한다.In the end, the present invention proposes a new model in the field of radioactive cesium decontamination in water by including a technical idea of maximizing the horizontal dispersion performance by controlling the sedimentation speed of zeolite, which is a radioactive cesium decontaminant.
도 1a는 제올라이트(ZG) 시료에 대한 X-선 회절 분석 결과를 도시한 그래프이고, 도 1b는 경주 제올라이트(KGZ) 시료에 대한 X-선 회절 분석 결과를 도시한 그래프이며, 도 1c는 포항 제올라이트(KPZ) 시료에 대한 X-선 회절 분석 결과를 도시한 그래프이다.Figure 1a is a graph showing the results of X-ray diffraction analysis for a zeolite (ZG) sample, Figure 1b is a graph showing the results of X-ray diffraction analysis for a Gyeongju zeolite (KGZ) sample, Figure 1c is Pohang zeolite (KPZ) It is a graph showing the results of X-ray diffraction analysis of the sample.
도 2는 다양한 점토광물들에 대한 저농도 세슘(Cw ≒50 ㎍/L) 흡착 분배계수 결과를 도시한 그래프이다. Figure 2 is a graph showing the results of low concentration cesium (Cw ≒50 µg/L) adsorption distribution coefficient for various clay minerals.
도 3은 대형 컬럼수조를 도시한 모식도이다.3 is a schematic view showing a large column tank.
도 4는 40L 수조 예비실험 결과를 도시한 그래프이다.4 is a graph showing the results of a 40L water tank preliminary experiment.
도 5a 내지 도 5f는 제올라이트 분말형 제염제에 의한 시간별 탁도 농도변화를 도시한 그래프이다. 도 5a는 제올라이트 분말형 제염제에 의한 1분 후 탁도 농도변화를 도시한 그래프이고, 도 5b는 제올라이트 분말형 제염제에 의한 3분 후 탁도 농도변화를 도시한 그래프이고, 도 5c는 제올라이트 분말형 제염제에 의한 10분 후 탁도 농도변화를 도시한 그래프이고, 도 5d는 제올라이트 분말형 제염제에 의한 60분 후 탁도 농도변화를 도시한 그래프이고, 도 5d는 제올라이트 분말형 제염제에 의한 120분 후 탁도 농도변화를 도시한 그래프이고, 도 5f는 제올라이트 분말형 제염제에 의한 1440분 후 탁도 농도변화를 도시한 그래프이다.5A to 5F are graphs showing changes in turbidity concentration over time by a zeolite powder type decontamination agent. Figure 5a is a graph showing the change in turbidity concentration after 1 minute by the zeolite powder type decontamination agent, Figure 5b is a graph showing the change in turbidity concentration after 3 minutes by the zeolite powder type decontamination agent, Figure 5c is a zeolite powder type It is a graph showing the change in turbidity concentration after 10 minutes by the decontamination agent, and FIG. 5D is a graph showing the change in turbidity concentration after 60 minutes by the zeolite powder type decontamination agent, and FIG. 5D is 120 minutes by the zeolite powder type decontamination agent. It is a graph showing the change in turbidity concentration after, and FIG. 5F is a graph showing the change in turbidity concentration after 1440 minutes by the zeolite powder type decontamination agent.
도 6a 내지 도 6f는 제올라이트 분말형 제염제에 의한 시간별 세슘 농도변화를 도시한 그래프이다. 도 6a는 제올라이트 분말형 제염제에 의한 1분 후 세슘 농도변화를 도시한 그래프이고, 도 6b는 제올라이트 분말형 제염제에 의한 3분 후 세슘 농도변화를 도시한 그래프이고, 도 6c는 제올라이트 분말형 제염제에 의한 10분 후 세슘 농도변화를 도시한 그래프이고, 도 6d는 제올라이트 분말형 제염제에 의한 60분 후 세슘 농도변화를 도시한 그래프이고, 도 6d는 제올라이트 분말형 제염제에 의한 120분 후 세슘 농도변화를 도시한 그래프이고, 도 6f는 제올라이트 분말형 제염제에 의한 1440분 후 세슘 농도변화를 도시한 그래프이다.6A to 6F are graphs showing changes in cesium concentration over time by a zeolite powder-type decontamination agent. Figure 6a is a graph showing the change in cesium concentration after 1 minute by the zeolite powder type decontamination agent, Figure 6b is a graph showing the change in cesium concentration after 3 minutes by the zeolite powder type decontamination agent, Figure 6c is a zeolite powder type A graph showing the change in cesium concentration after 10 minutes by the decontamination agent, and FIG. 6D is a graph showing the change in cesium concentration after 60 minutes by the zeolite powder type decontamination agent, and FIG. 6D is 120 minutes by the zeolite powder type decontamination agent. It is a graph showing a change in cesium concentration afterwards, and FIG. 6F is a graph showing a change in cesium concentration after 1440 minutes by a zeolite powder type decontamination agent.
도 7a 내지 도 7f는 실시예 1의 제염제에 의한 시간별 탁도 농도변화를 도시한 그래프이다. 도 7a는 실시예 1의 제염제에 의한 1분 후 탁도 농도변화를 도시한 그래프이고, 도 7b는 실시예 1의 제염제에 의한 3분 후 탁도 농도변화를 도시한 그래프이고, 도 7c는 실시예 1의 제염제에 의한 10분 후 탁도 농도변화를 도시한 그래프이고, 도 7d는 실시예 1의 제염제에 의한 60분 후 탁도 농도변화를 도시한 그래프이고, 도 7d는 실시예 1의 제염제에 의한 120분 후 탁도 농도변화를 도시한 그래프이고, 도 7f는 실시예 1의 제염제에 의한 1440분 후 탁도 농도변화를 도시한 그래프이다.7A to 7F are graphs showing changes in turbidity concentration over time by the decontamination agent of Example 1; Figure 7a is a graph showing the turbidity concentration change after 1 minute by the decontamination agent of Example 1, Figure 7b is a graph showing the turbidity concentration change after 3 minutes by the decontamination agent of Example 1, Figure 7c is an implementation Example 1 is a graph showing the turbidity concentration change after 10 minutes by the decontamination agent, Figure 7d is a graph showing the turbidity concentration change after 60 minutes by the decontamination agent of Example 1, Figure 7d is the decontamination of Example 1 It is a graph showing the change in turbidity concentration after 120 minutes by the agent, and FIG. 7F is a graph showing the change in turbidity concentration after 1440 minutes by the decontamination agent of Example 1.
도 8a 내지 도 8f는 실시예 1의 제염제에 의한 시간별 세슘 농도변화를 도시한 그래프이다. 도 8a는 실시예 1의 제염제에 의한 1분 후 세슘 농도변화를 도시한 그래프이고, 도 8b는 실시예 1의 제염제에 의한 3분 후 세슘 농도변화를 도시한 그래프이고, 도 8c는 실시예 1의 제염제에 의한 10분 후 세슘 농도변화를 도시한 그래프이고, 도 8d는 실시예 1의 제염제에 의한 60분 후 세슘 농도변화를 도시한 그래프이고, 도 8d는 실시예 1의 제염제에 의한 120분 후 세슘 농도변화를 도시한 그래프이고, 도 8f는 실시예 1의 제염제에 의한 1440분 후 세슘 농도변화를 도시한 그래프이다.8A to 8F are graphs showing changes in cesium concentration over time by the decontamination agent of Example 1; Figure 8a is a graph showing the change in cesium concentration after 1 minute by the decontamination agent of Example 1, Figure 8b is a graph showing the change in cesium concentration after 3 minutes by the decontamination agent of Example 1, Figure 8c is carried out Graph showing the change in cesium concentration after 10 minutes by the decontamination agent of Example 1, Figure 8d is a graph showing the change in cesium concentration after 60 minutes by the decontamination agent of Example 1, Figure 8d is the decontamination of Example 1 It is a graph showing the change in cesium concentration after 120 minutes by the agent, and FIG. 8F is a graph showing the change in cesium concentration after 1440 minutes by the decontamination agent of Example 1.
도 9a 내지 도 9f는 실시예 2의 제염제에 의한 시간별 탁도 농도변화를 도시한 그래프이다. 도 9a는 실시예 2의 제염제에 의한 1분 후 탁도 농도변화를 도시한 그래프이고, 도 9b는 실시예 2의 제염제에 의한 3분 후 탁도 농도변화를 도시한 그래프이고, 도 9c는 실시예 2의 제염제에 의한 10분 후 탁도 농도변화를 도시한 그래프이고, 도 9d는 실시예 2의 제염제에 의한 60분 후 탁도 농도변화를 도시한 그래프이고, 도 9d는 실시예 2의 제염제에 의한 120분 후 탁도 농도변화를 도시한 그래프이고, 도 9f는 실시예 2의 제염제에 의한 1440분 후 탁도 농도변화를 도시한 그래프이다.9A to 9F are graphs showing changes in turbidity concentration over time by the decontamination agent of Example 2; Figure 9a is a graph showing the change in turbidity concentration after 1 minute by the decontamination agent of Example 2, Figure 9b is a graph showing the change in turbidity concentration after 3 minutes by the decontamination agent of Example 2, Figure 9c is an implementation Graph showing the change in turbidity concentration after 10 minutes by the decontamination agent of Example 2, Figure 9d is a graph showing the change in turbidity concentration after 60 minutes by the decontamination agent of Example 2, Figure 9d is the decontamination of Example 2 It is a graph showing the change in turbidity concentration after 120 minutes by the agent, and FIG. 9F is a graph showing the change in turbidity concentration after 1440 minutes by the decontamination agent of Example 2.
도 10a 내지 도 10f는 실시예 2의 제염제에 의한 시간별 세슘 농도변화를 도시한 그래프이다. 도 10a는 실시예 2의 제염제에 의한 1분 후 세슘 농도변화를 도시한 그래프이고, 도 10b는 실시예 2의 제염제에 의한 3분 후 세슘 농도변화를 도시한 그래프이고, 도 10c는 실시예 2의 제염제에 의한 10분 후 세슘 농도변화를 도시한 그래프이고, 도 10d는 실시예 2의 제염제에 의한 60분 후 세슘 농도변화를 도시한 그래프이고, 도 10d는 실시예 2의 제염제에 의한 120분 후 세슘 농도변화를 도시한 그래프이고, 도 10f는 실시예 2의 제염제에 의한 1440분 후 세슘 농도변화를 도시한 그래프이다.10A to 10F are graphs showing changes in cesium concentration over time by the decontamination agent of Example 2; Figure 10a is a graph showing the change in cesium concentration after 1 minute by the decontamination agent of Example 2, Figure 10b is a graph showing the change in cesium concentration after 3 minutes by the decontamination agent of Example 2, Figure 10c is an implementation Graph showing the change in cesium concentration after 10 minutes by the decontamination agent of Example 2, Figure 10d is a graph showing the change in cesium concentration after 60 minutes by the decontamination agent of Example 2, Figure 10d is the decontamination of Example 2 It is a graph showing the change in cesium concentration after 120 minutes by the agent, and FIG. 10F is a graph showing the change in cesium concentration after 1440 minutes by the decontamination agent of Example 2.
도 11a는 실시예 1 및 실시예 2의 제염제의 제형의 일실시예를 나타낸 것이고, 도 11b는 실시예 3 및 실시예 4의 제염제의 제형의 일실시예를 나타낸 것이다.Figure 11a shows an embodiment of the formulation of the decontamination agent of Example 1 and Example 2, Figure 11b shows an embodiment of the formulation of the decontamination agent of Example 3 and Example 4.
도 12a 내지 도 12d는 실시예 3의 제염제에 대한 시간별 분산 양상을 나타낸 것이다. 도 12a는 실시예 3의 제염제 투여 후 2초 경과 후 분산 양상을 나타낸 것이고, 도 12b는 실시예 3의 제염제 투여 후 8초 경과 후 분산 양상을 나타낸 것이고, 도 12c는 제염제 투여 후 20초 경과 후 분산 양상을 나타낸 것이고, 도 12d는 실시예 3의 제염제 투여 후 40초 경과 후 분산 양상을 나타낸 것이다.12A to 12D show the dispersion pattern over time for the decontamination agent of Example 3. FIG. 12A shows the dispersion pattern after 2 seconds after administration of the anti-inflammatory agent of Example 3, FIG. 12B shows the dispersion pattern after 8 seconds after administration of the anti-inflammatory agent of Example 3, and FIG. 12C shows 20 after administration of the anti-inflammatory agent. It shows the dispersion pattern after the lapse of seconds, and FIG. 12D shows the dispersion pattern after 40 seconds after the administration of the anti-inflammatory agent of Example 3.
도 13a 내지 도 13d는 실시예 4의 제염제에 대한 시간별 분산 양상을 나타낸 것이다. 도 13a는 실시예 4의 제염제 투여 후 2초 경과 후 분산 양상을 나타낸 것이고, 도 13b는 실시예 4의 제염제 투여 후 5초 경과 후 분산 양상을 나타낸 것이고, 도 13c는 실시예 4의 제염제 투여 후 20초 경과 후 분산 양상을 나타낸 것이고, 도 13d는 실시예 4의 제염제 투여 후 40초 경과 후 분산 양상을 나타낸 것이다.13A to 13D show the dispersion pattern over time for the decontamination agent of Example 4. Figure 13a shows the dispersion pattern after 2 seconds after administration of the anti-inflammatory agent of Example 4, Figure 13b shows the dispersion pattern after 5 seconds after administration of the anti-inflammatory agent of Example 4, Figure 13c is the decontamination of Example 4 The dispersion pattern is shown after 20 seconds after the first administration, and FIG. 13D shows the dispersion pattern after 40 seconds after the administration of the anti-inflammatory agent of Example 4.
도 14a 내지 도 14c는 비교예 11의 제염제에 대한 시간별 분산 양상을 나타낸 것이다. 도 14a는 비교예 11의 제염제 투여 후 4초 경과 후 분산 양상을 나타낸 것이고, 도 14b는 비교예 11의 제염제 투여 후 20초 경과 후 분산 양상을 나타낸 것이고, 도 14c는 비교예 11의 제염제 투여 후 60초 경과 후 분산 양상을 나타낸 것이다.14A to 14C show the dispersion pattern over time for the decontamination agent of Comparative Example 11. 14A shows the dispersion pattern after 4 seconds after administration of the decontamination agent of Comparative Example 11, FIG. 14B shows the dispersion pattern after 20 seconds after administration of the decontamination agent of Comparative Example 11, and FIG. 14C shows the decontamination of Comparative Example 11 It shows the dispersion pattern after 60 seconds after the first administration.
도 15a 내지 도 15c는 비교예 12의 제염제에 대한 시간별 분산 양상을 나타낸 것이다. 도 15a는 비교예 12의 제염제 투여 후 2초 경과 후 분산 양상을 나타낸 것이고, 도 15b는 비교예 12의 제염제 투여 후 5초 경과 후 분산 양상을 나타낸 것이고, 도 15c는 비교예 12의 제염제 투여 후 70초 경과 후 분산 양상을 나타낸 것이다. 15a to 15c show the dispersion pattern over time for the decontamination agent of Comparative Example 12. 15A shows the dispersion pattern after 2 seconds after administration of the decontamination agent of Comparative Example 12, FIG. 15B shows the dispersion pattern after 5 seconds after administration of the decontamination agent of Comparative Example 12, and FIG. 15C shows the decontamination of Comparative Example 12 It shows the dispersion pattern after 70 seconds after the first administration.
도 16a 내지 도 16d는 비교예 13의 제염제에 대한 시간별 분산 양상을 나타낸 것이다. 도 16a는 제염제 투여 후 4초 경과 후 분산 양상을 나타낸 것이고, 도 16b는 비교예 13의 제염제 투여 후 8초 경과 후 분산 양상을 나타낸 것이고, 도 16c는 제염제 투여 후 20초 경과 후 분산 양상을 나타낸 것이다. 16A to 16D show the dispersion pattern over time for the decontamination agent of Comparative Example 13. Figure 16a shows the dispersion pattern after 4 seconds after administration of the anti-inflammatory agent, Figure 16b shows the dispersion pattern after 8 seconds after administration of the anti-inflammatory agent of Comparative Example 13, Figure 16c is dispersed after 20 seconds after the administration of the anti-inflammatory agent It shows the aspect.
도 17a는 실시예 3과 동일한 배합비율을 가지고, 10g의 제형으로 제작된 제염제를 0℃(왼쪽), 20℃(오른쪽)로 온도가 다른 두 수조에 투하한 후 15초가 지난 모습을 나타낸 것이다. Figure 17a has the same blending ratio as in Example 3, showing the appearance of 15 seconds after dropping the decontamination agent prepared in a formulation of 10g to 0 ℃ (left), 20 ℃ (right) in two different temperature tanks .
도 17b는 실시예 4와 동일한 배합비율을 가지고, 12g으로 제작된 제염제를 0℃(왼쪽), 20℃(오른쪽)로 온도가 다른 두 수조에 투하한 후 15초가 지난 모습을 나타낸 것이다. FIG. 17B shows the appearance of 15 seconds after dropping the decontamination agent produced at 12 g to 0° C. (left) and 20° C. (right) with the same mixing ratio as in Example 4 in two different water tanks.
도 18a는 본 발명의 일실시예로, 온도와 농도에 따른 일라이트의 시간별 탈착 효과를 살펴보기 위해서 14 일부터 약 70일 까지 저농도, 고농도로 나누어 탈착율을 나타낸 것이다.18A is an embodiment of the present invention, and shows the desorption rate divided into low and high concentrations from 14 days to about 70 days to examine the desorption effect of illite according to temperature and concentration over time.
도 18b는 본 발명의 일실시예로, 온도와 농도에 따른 제올라이트의 시간별 탈착 효과를 살펴보기 위해서 14 일부터 약 70일 까지 저농도, 고농도로 나누어 탈착율을 나타낸 것이다.18B is an embodiment of the present invention, and shows the desorption rate divided into low and high concentrations from 14 to about 70 days to examine the desorption effect of zeolite according to temperature and concentration over time.
본 발명의 일 구현 예에 따르면, 오염수에 포함된 방사성 물질을 제거하기 위한 제염제로서, 제올라이트; 탄산수소나트륨; 및 시트르산을 포함하는 방사성 오염 물질의 제염제에 관한 것이다.According to an embodiment of the present invention, as a decontamination agent for removing radioactive substances contained in contaminated water, zeolite; Sodium hydrogen carbonate; And a decontamination agent for radioactive contaminants comprising citric acid.
이하에서는 본 발명의 방사성 세슘 제염제 및 이를 활용한 수심-맞춤형 방사성 세슘의 제염방법에 대하여 첨부된 도면, 실험자료 등을 통하여 자세하게 설명하도록 한다. 그러나 하기 설명들은 본 발명의 이해를 돕기 위한 예시적인 설명들이며, 본 발명의 기술사상은 하기 설명들에 의하여 제한되지 않는다. 본 발명의 기술사상은 오직 후술하는 청구범위에 의하여 해석되거나 제한될 수 있다.Hereinafter, the radioactive cesium decontamination agent of the present invention and the depth-customized radioactive cesium decontamination method using the same will be described in detail through the accompanying drawings and experimental data. However, the following descriptions are exemplary descriptions to help understanding of the present invention, and the technical idea of the present invention is not limited by the following descriptions. The technical spirit of the present invention may be interpreted or limited only by the claims below.
[준비예] 제염제용 시료 제작[Preparation example] Preparation of sample for decontamination agent
방사성 세슘 제염제의 기초 물질로 천연 제올라이트 시료(ZG)를 선정하였다. 도 1a은 제올라이트(ZG) 시료에 대한 X-선 회절 분석 결과를 도시한 그래프이다. 제올라이트의 원산지는 경북 경주 지역에서 산출되는 시료로 선정하였다. 시판되는 경주 제올라이트(KGZ) 제품 중 가장 널리 판매되는 45μm 입경의 제품을 구매하였다. 아울러 하기 표 1은 상기 회절 분석 결과에 따라 확인 된 구성 성분(광물)의 조성비율을 표시한 표이다. 도 1a 및 표 1을 참조하면, X-선 회절 분석을 통해 제올라이트에 속하는 광물인 휼란다이트와 모데나이트로 이루어져있음을 확인하였고, 그 구성비는 휼란다이트(Heulandite) 약 53%, 모데나이트(Mordenite)는 약 47%로 이루어져 있었다.Natural zeolite samples (ZG) were selected as the base material for radioactive cesium decontaminants. 1A is a graph showing X-ray diffraction analysis results for a zeolite (ZG) sample. The origin of zeolite was selected as a sample produced in Gyeongju, Gyeongbuk. Among the commercially available Gyeongju Zeolite (KGZ) products, the most widely sold products with a particle diameter of 45 μm were purchased. In addition, Table 1 below is a table showing the composition ratio of the constituent components (minerals) identified according to the diffraction analysis results. Referring to FIG. 1A and Table 1, X-ray diffraction analysis confirmed that the minerals belonging to zeolite were composed of heliumite and mordenite, and the composition ratio was about 53% of heulandite and mordenite ( Mordenite) consisted of about 47%.
포항, 바람직하게는 포항 영일만에서 산출되는 포항 제올라이트(KPZ) 역시 모두 휼란다이트와 모데나이트로 구성되어 있고, 경주 제올라이트와(KGZ)와 그 특성이 유사하다. 도 1b는 경주 제올라이트 시료에 대한 X-선 회절 분석 결과를 도시한 그래프이고, 도 1c는 포항 제올라이트 시료에 대한 X-선 회절 분석 결과를 도시한 그래프이다. 경주 제올라이트와 포항 제올라이트는, 표 1에서 보여지는 것과 같이 조성비는 다소 다르지만, X-선 회절 분석 결과는 대체로 유사한 피크 형태를 나타내었다(도 1b 및 도 1c). 제올라이트의 비표면적은 약 60m2/g로 매우 작은 입자 크기를 가지고 있는 것으로 나타났으며, 양이온 교환능이 약 72 내지 100meq/100g로 비교 대상인 영동 일라이트에 비해 매우 높은 값을 나타내었다(표 2). 특히 비표면적과 양이온 교환능은 흡착능의 차이에 영향을 미치는 요인으로 작용 할 수 있다.Pohang, preferably Pohang zeolite (KPZ), produced in Yeongil Bay, Pohang, is also composed of heliumite and mordenite, and has similar characteristics to Gyeongju zeolite (KGZ). Figure 1b is a graph showing the results of X-ray diffraction analysis of the Gyeongju zeolite sample, Figure 1c is a graph showing the results of X-ray diffraction analysis of the Pohang zeolite sample. The composition ratio of Gyeongju zeolite and Pohang zeolite is slightly different, as shown in Table 1, but the results of X-ray diffraction analysis show generally similar peak shapes (FIGS. 1B and 1C). The specific surface area of the zeolite was found to have a very small particle size of about 60 m 2 /g, and the cation exchange capacity was about 72 to 100 meq/100 g, indicating a very high value compared to the comparative Youngdong Illite (Table 2). . In particular, the specific surface area and cation exchange capacity can act as factors affecting the difference in adsorption capacity.
시료sample Heulandite 함량(%)Heulandite content (%) Mordenite 함량(%)Mordenite content (%)
경주 제올라이트(KGZ)Gyeongju Zeolite (KGZ) 5353 4747
포항 제올라이트(KPZ)Pohang Zeolite (KPZ) 6464 3636
제올라이트(ZG) 시료의 광물학적 특성Mineralogy properties of zeolite (ZG) samples
표 2에는 준비된 제올라이트 시료에 대한 광물학적 특성을 평가 결과가 표시되어 있다. 도 2는 다양한 점토광물들에 대한 저농도 세슘(Cw ≒50 ㎍/L) 흡착 분배계수 결과를 도시한 그래프이다. 아울러 표 3은 각 광물의 흡착 분배계수를 정량화하여 표시한 표이다. 표 2, 표 3 및 도 2를 참조하면, ZG의 비표면적은 1g당 약 65m2이며, 양이온 교환능은 약 100meq/100g으로 높게 나타났다. 50mL vial을 사용하여 수행한 소규모 흡착 실험 결과 세슘에 대한 분배계수 (Kd)가 약 600,000L/kg으로 매우 높게 나타났으며, 이 값은 다른 광물들에 비해 약 100배 내지 1000배 높았다. 제올라이트에서 이루어지는 주된 흡착 기작은 공극에서 나타나는 양이온 교환 반응이며, 제올라이트의 높은 비표면적과 양이온 교환능이 제올라이트의 세슘 제거율을 높이는데 기여한 것으로 해석할 수 있다.Table 2 shows the results of evaluating the mineralogical properties of the prepared zeolite samples. FIG. 2 is a graph showing the result of adsorption distribution coefficient of low concentration cesium (Cw ≒50 µg/L) for various clay minerals. In addition, Table 3 is a table in which the absorption distribution coefficient of each mineral is quantified and displayed. Referring to Table 2, Table 3, and FIG. 2, the specific surface area of ZG was about 65 m 2 per 1 g, and the cation exchange capacity was high at about 100 meq/100 g. As a result of the small-scale adsorption experiment performed using 50 mL vial, the partition coefficient (K d ) for cesium was very high, about 600,000 L/kg, and this value was about 100 to 1000 times higher than other minerals. The main adsorption mechanism in the zeolite is a cation exchange reaction occurring in the pores, and it can be interpreted that the high specific surface area and the cation exchange capacity of the zeolite contributed to increasing the cesium removal rate of the zeolite.
시료sample 비표면적(m2/g)Specific surface area (m2/g) 평균 공극 부피(mL/g)Average pore volume (mL/g) 평균 공극 크기(nm)Average pore size (nm) 양이온 교환능(meq/100g)Cation exchange capacity (meq/100g)
경주 제올라이트(KGZ)Gyeongju Zeolite (KGZ) 64.664.6 0.130.13 7.97.9 100.6100.6
포항 제올라이트(KPZ)Pohang Zeolite (KPZ) 5959 0.130.13 99 7272
영동 산업용 일라이트(KYI)Yeongdong Industrial Illite (KYI) 44 0.020.02 2222 55
광물명Mineral Average Kd Average K d
경주 제올라이트(KGZ)Gyeongju Zeolite (KGZ) 600,000600,000
포항 제올라이트(KPZ)Pohang Zeolite (KPZ) 150,000150,000
Sericite Sericite 600600
IlliteIllite 4,0004,000
BentoniteBentonite 7,0007,000
도 18a는 본 발명의 일실시예로, 온도와 농도에 따른 일라이트의 시간별 탈착 효과를 살펴보기 위해서 14 일부터 약 70일 까지 저농도, 고농도로 나누어 탈착율을 나타낸 것이다.18A is an embodiment of the present invention, and shows the desorption rate divided into low and high concentrations from 14 days to about 70 days to examine the desorption effect of illite according to temperature and concentration over time.
도 18b는 본 발명의 일실시예로, 온도와 농도에 따른 제올라이트의 시간별 탈착 효과를 살펴보기 위해서 14 일부터 약 70일 까지 저농도, 고농도로 나누어 탈착율을 나타낸 것이다.18B is an embodiment of the present invention, and shows the desorption rate divided into low and high concentrations from 14 to about 70 days to examine the desorption effect of zeolite according to temperature and concentration over time.
농도에 따른 일라이트와 제올라이트의 시간별 탈착 효과를 살펴본 결과 전반적으로 두 광물 모두 탈착 정도가 시간에 따른 크게 변화가 나타나지 않으며, 대부분 반응 초기에 탈착이 발생하는 것을 알 수 있다. 일라이트는 저농도에서 약 20% 고농도에서 약 50% 내외의 탈착률을 나타내었으며 온도에 따른 탈착 특성의 차이는 관찰되지 않았다. 특이할만한 점은 고농도에서 시간에 따라 탈착률이 다소 증가하는 경향을 나타내었다. 제올라이트는 상대적으로 저농도의 탈착률이 높게 나타났으나 모든 경우에서 탈착률이 1% 미만으로 매우 우수한 흡착 안정성을 나타내었다.As a result of examining the desorption effect of illite and zeolite according to concentration over time, it was found that the desorption degree of both minerals did not change significantly with time, and most of the desorption occurred at the beginning of the reaction. Illite exhibited a desorption rate of about 20% at low concentrations and about 50% at high concentrations, and no difference in desorption characteristics with temperature was observed. What is remarkable was that the desorption rate increased with time at a high concentration. The zeolite showed a relatively low concentration of desorption, but in all cases, the desorption rate was less than 1%, showing very good adsorption stability.
본 준비예에서는, 제염제로 사용되는 점토광물로서 제올라이트만을 예시하였으나 일라이트, 벤토나이트, 세리사이트 등의 다른 광물을 사용하는 것 역시 본 발명의 기술사상 범주 내임은 당연하다. 또한, 적용 수계에 따라 상기 광물은 복수종의 혼합 광물로 사용될 수도 있다.In this preparation example, only zeolite is illustrated as a clay mineral used as a decontamination agent, but it is natural that the use of other minerals such as illite, bentonite and sericite is also within the scope of the technical idea of the present invention. In addition, the minerals may be used as a mixed mineral of a plurality of types depending on the applied water system.
현장모사 실험Field simulation experiment
제올라이트와 같은 천연광물을 이용하여 세슘의 흡착효율을 확인하는 기존 실내 실험들은 부피가 작은 50mL vial을 이용해 지속적으로 교반시킴으로써 vial 내 제올라이트와 세슘이 최대한 균질하게 반응하도록 하였다. 이와 같은 방식은 이론적인 최대 세슘 흡착 성능 (Qm, 단일 평면 최대 흡착량, Langmuir model)과 흡착 효율을 구할 수 있다는 장점이 있다. 하지만 제올라이트와 같은 제염제가 살포되는 실제 현장에서는 실험환경과 같이 100% 접촉이 불가능하기에 이처럼 규모에 대한 효율을 확인하기 위해 1 톤 규모의 투명 대형 수조를 제작하여 실험하였다. 도 3은 대형 컬럼수조를 도시한 모식도이다. 도 3을 참조하면, 수조 내에서 살포지역에서의 거리별, 깊이별 제염제의 분산도와 세슘 제거효율을 확인하기 위해 아크릴로 시료 채취용 파이프를 제작하여 설치하였다. 시료채취용 파이프의 직경은 20mm (내경 14mm)였으며, 총 연장길이는 1.7m 이다. 수질 시료가 30cm 단위로 유입될 수 있도록 바닥에서 5cm를 이격한 후 5cm 길이의 스크린을 30cm 간격으로 총 4개 구간을 타공한 후 설치하였다. 수조에 1 톤의 물을 채운 후, 실제 현장에서 발생 가능한 경쟁 이온 효과를 반영하기 위해 주 양이온(Ca, Mg, Na and K)과 주 음이온(Cl, SO4, HCO3)을 추가하여 모사 대상 현장인 팔당호의 수질과 유사하도록 조정하였고, 저농도 세슘 (약 50μg/L)으로 균질하게 맞추어 주었다. 그 후, 제염제를 투입하여 탁도 및 세슘 제거 효율을 확인하였다.Existing indoor experiments confirming the adsorption efficiency of cesium using natural minerals such as zeolite were continuously stirred using a small volume of 50 mL vial so that zeolite and cesium in the vial reacted as homogeneously as possible. This method has the advantage that the theoretical maximum cesium adsorption performance (Qm, single plane maximum adsorption, Langmuir model) and adsorption efficiency can be obtained. However, in the actual site where a decontamination agent such as zeolite is sprayed, 100% contact is not possible as in the experimental environment. 3 is a schematic view showing a large column tank. Referring to Figure 3, in order to check the dispersion of the decontamination agent by distance and depth in the spray area in the water tank and cesium removal efficiency, a pipe for sampling with acrylic was manufactured and installed. The diameter of the pipe for sampling was 20 mm (inner diameter 14 mm), and the total extension length was 1.7 m. 5 cm apart from the floor so that water samples could be introduced in 30 cm increments, and then installed a total of 4 sections of a 5 cm long screen at 30 cm intervals. After filling 1 ton of water in the water tank, the main cations (Ca, Mg, Na and K) and the main anions (Cl, SO4, HCO3) are added to reflect the competitive ion effects that can occur in the actual site. It was adjusted to be similar to the water quality of Paldang Lake, and was homogeneously matched with low concentration of cesium (about 50 μg/L). Then, the turbidity and cesium removal efficiency was confirmed by adding a decontamination agent.
제염제를 살포하기 전 정량 펌프(Peristaltic Pump)를 사용하여 초기 수질을 확인하기 위한 수질 시료를 채취하였고, 이후 제염제를 투입하고 시간에 따른 변화를 확인하기 위한 시료를 채취하였다. 시료 채취 시 15mL/min의 유량으로 한번에 약 25mL를 채취하였다. 채수된 시료는 먼저 탁도를 측정하였고, 이후 원심분리기에 넣어 3500 rpm으로 30분간 원심분리 후 상등액을 채취하였다. 상등액은 질산을 이용하여 pH를 2 이하로 낮춘 후 4℃ 이하에서 보존하였고 ICP-MS로 세슘 농도를 측정하였다.Before spraying the decontamination agent, a water quality sample was collected to confirm the initial water quality using a peristaltic pump, and then a decontamination agent was added and a sample was checked to confirm changes over time. At the time of sampling, about 25 mL was collected at a flow rate of 15 mL/min. The collected sample was first measured for turbidity, and then put into a centrifuge, centrifuged at 3500 rpm for 30 minutes, and the supernatant was collected. The supernatant was lowered to pH 2 or less using nitric acid and then stored at 4°C or lower, and cesium concentration was measured by ICP-MS.
본 실험에서 사용될 수 있는 세슘의 핵종은 제한되지 않는다. 수생 환경에서 방사성 핵종의 움직임 중 한 요인은 안정적인 핵종의 행동에 있으므로, 수생 환경에서 안정적인 세슘의 거동은 아마도 세슘 137이 환경에 미치는 장기적인 영향을 예측하기위한 비유로 사용될 수 있기 때문이다(Tiwari, Diwakar & Lalhmunsiama, Lalhmunsiama & Choi, S. & Lee, Seung-Mok. (2014). Activated Sericite: An Efficient and Effective Natural Clay Material for Attenuation of Cesium from Aquatic Environment. Pedosphere. 24. 731-742.).The nuclides of cesium that can be used in this experiment are not limited. One factor in the movement of radionuclides in aquatic environments is the behavior of stable nuclides, so the stable behavior of cesium in aquatic environments may be used as a metaphor to predict the long-term effects of cesium 137 on the environment (Tiwari, Diwakar). & Lalhmunsiama, Lalhmunsiama & Choi, S. & Lee, Seung-Mok. (2014).Activated Sericite: An Efficient and Effective Natural Clay Material for Attenuation of Cesium from Aquatic Environment.Pedosphere. 24. 731-742.).
분말형 제염제 (분말형 제올라이트 단독)Powder type decontamination agent (powder type zeolite only)
1톤 규모 대형 수조 실험에 앞서 수중 방사성 세슘을 제거하기 위해 필요한 제올라이트의 적정량을 산정하기 위해 40L 규모 수조에서 예비 실험을 수행하였다. 예비 실험 결과, 탁도와 세슘 제거율 모두를 고려하였을 때 40L에서는 2g의 제올라이트를 투입했을 때가 가장 효율적으로 세슘을 제거하는 것으로 나타나 이를 기초 설계 수량으로 선정하였다. 도 4는 40L 수조 예비실험 결과를 도시한 그래프이다. 이를 토대로 산정한 1톤 규모 수조의 제올라이트 소요량은 50g이었다.A preliminary experiment was conducted in a 40L scale water tank to estimate the appropriate amount of zeolite required to remove radioactive cesium in water prior to the large scale 1 ton water tank experiment. As a result of preliminary experiments, considering both turbidity and cesium removal rate, it was found that when 2 g of zeolite was added at 40 L, cesium was most efficiently removed, which was selected as the basic design quantity. 4 is a graph showing the results of a 40L water tank preliminary experiment. Based on this, the amount of zeolite required for a 1-ton tank was 50 g.
예비 실험 결과를 이용하여, 1톤의 세슘 오염수가 담긴 수조에 제올라이트 분말 50g을 넣은 후 시간과 위치, 심도별 탁도와 세슘 농도를 측정하였다. 도 5a 내지 도 5f는 제올라이트 분말형 제염제에 의한 시간별 탁도 농도변화를 도시한 그래프이다. 도 5a는 제올라이트 분말형 제염제에 의한 1분 후 탁도 농도변화를 도시한 그래프이고, 도 5b는 제올라이트 분말형 제염제에 의한 3분 후 탁도 농도변화를 도시한 그래프이고, 도 5c는 제올라이트 분말형 제염제에 의한 10분 후 탁도 농도변화를 도시한 그래프이고, 도 5d는 제올라이트 분말형 제염제에 의한 60분 후 탁도 농도변화를 도시한 그래프이고, 도 5d는 제올라이트 분말형 제염제에 의한 120분 후 탁도 농도변화를 도시한 그래프이고, 도 5f는 제올라이트 분말형 제염제에 의한 1440분 후 탁도 농도변화를 도시한 그래프이다.Using the results of the preliminary experiments, 50 g of zeolite powder was added to a water tank containing 1 ton of cesium-contaminated water, and turbidity and cesium concentrations by time, location and depth were measured. 5A to 5F are graphs showing changes in turbidity concentration over time by a zeolite powder type decontamination agent. Figure 5a is a graph showing the change in turbidity concentration after 1 minute by the zeolite powder type decontamination agent, Figure 5b is a graph showing the change in turbidity concentration after 3 minutes by the zeolite powder type decontamination agent, Figure 5c is a zeolite powder type It is a graph showing the change in turbidity concentration after 10 minutes by the decontamination agent, and FIG. 5D is a graph showing the change in turbidity concentration after 60 minutes by the zeolite powder type decontamination agent, and FIG. 5D is 120 minutes by the zeolite powder type decontamination agent. It is a graph showing the change in turbidity concentration after, and FIG. 5F is a graph showing the change in turbidity concentration after 1440 minutes by the zeolite powder type decontamination agent.
도 5a 내지 도 5f를 참조하면, 제올라이트 분말은 1분 이내 수조 바닥에 도달하고, 수평으로 분산되기보다 수직으로 침강하려는 경향이 더 큰 것으로 나타났다. 5A to 5F, it was found that the zeolite powder reached the bottom of the water bath within 1 minute and tended to settle vertically rather than being horizontally dispersed.
도 6a 내지 도 6f는 제올라이트 분말형 제염제에 의한 시간별 세슘 농도변화를 도시한 그래프이다. 도 6a는 제올라이트 분말형 제염제에 의한 1분 후 세슘 농도변화를 도시한 그래프이고, 도 6b는 제올라이트 분말형 제염제에 의한 3분 후 세슘 농도변화를 도시한 그래프이고, 도 6c는 제올라이트 분말형 제염제에 의한 10분 후 세슘 농도변화를 도시한 그래프이고, 도 6d는 제올라이트 분말형 제염제에 의한 60분 후 세슘 농도변화를 도시한 그래프이고, 도 6d는 제올라이트 분말형 제염제에 의한 120분 후 세슘 농도변화를 도시한 그래프이고, 도 6f는 제올라이트 분말형 제염제에 의한 1440분 후 세슘 농도변화를 도시한 그래프이다.6A to 6F are graphs showing changes in cesium concentration over time by a zeolite powder-type decontamination agent. Figure 6a is a graph showing the change in cesium concentration after 1 minute by the zeolite powder type decontamination agent, Figure 6b is a graph showing the change in cesium concentration after 3 minutes by the zeolite powder type decontamination agent, Figure 6c is a zeolite powder type A graph showing the change in cesium concentration after 10 minutes by the decontamination agent, and FIG. 6D is a graph showing the change in cesium concentration after 60 minutes by the zeolite powder type decontamination agent, and FIG. 6D is 120 minutes by the zeolite powder type decontamination agent. It is a graph showing a change in cesium concentration afterwards, and FIG. 6F is a graph showing a change in cesium concentration after 1440 minutes by a zeolite powder-type decontamination agent.
도 6a 내지 도 6f를 참고하면, 수중 세슘의 농도 역시 탁도가 증가하는 지점을 따라 감소하는 것으로 나타나 제올라이트 주변에서 집중적으로 제염효과가 나타나는 것을 확인하였다. 이러한 경향은 실험 초반 1~3분 사이에서 강하게 나타나며, 3분 이후에는 제올라이트 분말이 바닥에 모두 도달하고 10분을 넘어가면서 탁도의 균질화가 먼저 이루어진 후 점차적으로 수중 세슘 농도의 균질화가 이루어지는 것을 확인하였다. 24시간이 지난 이후에는 정량펌프를 통한 채수로는 회수가 어려울 정도로 제올라이트 입자가 바닥에 가라앉아 있었으며, 이때 최종적인 세슘 제거율은 약 60% 정도로 모든 지점에서 비슷하게 나타났다.Referring to Figures 6a to 6f, the concentration of cesium in water also appears to decrease along the point of increasing turbidity, confirming that the decontamination effect is concentrated around the zeolite. This tendency was strongly observed between 1 and 3 minutes in the beginning of the experiment, and after 3 minutes, it was confirmed that the zeolite powder reached all the bottom, and after 10 minutes, the turbidity was first homogenized, and then gradually the homogenization of cesium concentration in water was achieved. . After 24 hours, the zeolite particles had settled on the floor to the extent that it was difficult to recover the water collecting channel through the metering pump. At this time, the final cesium removal rate was about 60%, similar at all points.
심도 맞춤형 제염제Depth-specific decontamination agent
전술한 분말 형태의 제올라이트를 수조에 투입하였을 때, 투입 초기 침강으로 인하여 수직분산이 우세하고 수평분산이 거의 이뤄지지 않았던 것을 확인하였다. 넓은 지역에 제염제를 살포할 때 제염제의 수평 분산이 낮으면 투입 지점을 보다 많이 가져가야 하는 단점이 발생한다. 발포를 위한 성분으로서, 탄산수소나트륨(NaHCO3)과 시트르산(C6H8O7)은 수평 분산을 증가시켜 발포 속도를 조절함으로써 제염 성분인 제올라이트의 발현을 조절할 수 있는 성분들이다.When the above-described powder type zeolite was introduced into a water tank, it was confirmed that vertical dispersion was predominant and horizontal dispersion was hardly achieved due to the initial settling. When spraying a decontamination agent over a large area, if the horizontal dispersion of the decontamination agent is low, there is a disadvantage that more input points should be taken. As a component for foaming, sodium hydrogen carbonate (NaHCO3) and citric acid (C6H8O7) are components that can control the expression of zeolite, a decontamination component, by increasing the horizontal dispersion to control the foaming rate.
[실시예 1] 방사성 세슘 제염제의 제조(심층용)[Example 1] Preparation of radioactive cesium decontamination agent (for deep)
발포형 제염제는 주요 첨가물인 탄산수소나트륨과 시트르산, 제올라이트의 배합비율을 표 4에서 보는 바와 같은 함량으로 혼합하고 이들을 성형하기 위해서 에탄올(C2H5OH)을 사용하였다. 1톤을 기준으로 투입되는 제올라이트의 양은 앞선 예비 실험의 결과와 같이 50 g으로 동일하게 적용하였다. 제올라이트와 그 외 부수재료들을 혼합하고 성형하기 위한 에탄올은 전체 제염제 질량의 20% 내외를 주입하였으며, 제조 틀에 넣어 40℃로 설정한 오븐에서 2일 이상 건조시켜 제염제를 제조하였다. 최종적으로 제작된 제염제의 무게를 비교한 결과 제작 및 건조 과정에서 약 20% 내외의 질량 손실이 발생하였다. 최종 제형은 펠릿 또는 정제의 형태를 갖도록 하였다.The foamed decontamination agent was mixed with a content of the main additives sodium hydrogen carbonate, citric acid and zeolite in an amount as shown in Table 4, and ethanol (C2H5OH) was used to mold them. The amount of zeolite injected based on 1 ton was applied equally to 50 g as the result of the previous preliminary experiment. Ethanol for mixing and molding the zeolite and other ancillary materials was injected at about 20% of the total decontamination agent mass, and put into a production mold to dry for 2 days or more in an oven set to 40°C to prepare a decontamination agent. As a result of comparing the weight of the finally produced decontamination agent, a mass loss of about 20% occurred during the production and drying process. The final formulation was in the form of pellets or tablets.
[비교예 1 내지 5] 방사성 세슘 제염제의 제조(심층외)[Comparative Examples 1 to 5] Preparation of radioactive cesium decontamination agent (depth outside)
실시예 1과 동일한 방법으로 제염제를 제조하되, 하기 표 4에 표시된 조성비율로 하여 각각 비교예1 내지 5의 제염제를 제조하였다.Decontamination agents were prepared in the same manner as in Example 1, respectively, and the decontamination agents of Comparative Examples 1 to 5 were prepared using the composition ratios shown in Table 4 below.
유형type 탄산수소나트륨Sodium hydrogen carbonate 시트르산Citric acid 제올라이트Zeolite
실시예 1Example 1 4040 2020 4040
비교예 1Comparative Example 1 4949 22 4949
비교예 2Comparative Example 2 4848 55 4848
비교예 3Comparative Example 3 4444 1111 4444
비교예 4Comparative Example 4 66 3131 6363
비교예 5Comparative Example 5 2525 2525 5050
수중 분산 및 제염 경향 분석 Analysis of dispersion and decontamination in water
수중 세슘을 제거하기 위해 앞서 배합비율을 달리하여 제조하였던 제염제(실시예 1, 비교예 1 내지 5)를 수조에 넣은 후 침강 및 분산 경향을 관찰하였고, 그 중 분산 경향이 가장 탁월하였던 실시예 1의 제염제의 위치별, 심도별 탁도와 세슘 농도 등을 측정하여 도시하였다. In order to remove cesium in water, a decontamination agent (Examples 1 and Comparative Examples 1 to 5) prepared by different mixing ratios was placed in a water tank, and sedimentation and dispersion tendencies were observed, and among them, the dispersion tendency was most excellent. Turbidity and cesium concentrations by location and depth of decontamination agent of 1 were measured and illustrated.
도 7a 내지 도 7f는 실시예 1의 제염제에 의한 시간별 탁도 농도변화를 도시한 그래프이다. 도 7a는 실시예 1의 제염제에 의한 1분 후 탁도 농도변화를 도시한 그래프이고, 도 7b는 실시예 1의 제염제에 의한 3분 후 탁도 농도변화를 도시한 그래프이고, 도 7c는 실시예 1의 제염제에 의한 10분 후 탁도 농도변화를 도시한 그래프이고, 도 7d는 실시예 1의 제염제에 의한 60분 후 탁도 농도변화를 도시한 그래프이고, 도 7d는 실시예 1의 제염제에 의한 120분 후 탁도 농도변화를 도시한 그래프이고, 도 7f는 실시예 1의 제염제에 의한 1440분 후 탁도 농도변화를 도시한 그래프이다.7A to 7F are graphs showing changes in turbidity concentration over time by the decontamination agent of Example 1; Figure 7a is a graph showing the turbidity concentration change after 1 minute by the decontamination agent of Example 1, Figure 7b is a graph showing the turbidity concentration change after 3 minutes by the decontamination agent of Example 1, Figure 7c is an implementation Example 1 is a graph showing the turbidity concentration change after 10 minutes by the decontamination agent, Figure 7d is a graph showing the turbidity concentration change after 60 minutes by the decontamination agent of Example 1, Figure 7d is the decontamination of Example 1 It is a graph showing the change in turbidity concentration after 120 minutes by the agent, and FIG. 7F is a graph showing the change in turbidity concentration after 1440 minutes by the decontamination agent of Example 1.
도 7a 내지 도 7f를 참조하면, 수평 방향의 분산없이 수직으로만 침강이 발생하였던 분말형 제염제와 달리, 수면 아래 약 60cm 부근부터 제염제가 녹으면서 수평 분산이 크게 일어나 펼쳐진 후 침강이 이루어지는 것을 확인할 수 있었다. 전체적인 침강은 분말형 제염제와 유사하게 침강이 빠르게 발생하지만, 수평방향으로는 분말형보다 훨씬 더 넓게 분산이 발생하는 것으로 나타났다. 제염제 투입 후 약 60분이 경과한 시점에서도 부유하고 있는 제올라이트 입자를 확인할 수 있었다.7A to 7F, unlike the powder type decontamination agent, where the sedimentation occurred only vertically without dispersion in the horizontal direction, it was confirmed that the sedimentation occurred after the dispersion of the horizontal dispersion occurred largely and spread from about 60 cm below the water surface. Could. The sedimentation of the whole sedimentation occurs rapidly, similar to the powder type decontamination agent, but it appears that the dispersion occurs much wider than the powdery form in the horizontal direction. It was confirmed that the zeolite particles were suspended even at about 60 minutes after the decontamination agent was added.
도 8a 내지 도 8f는 실시예 1의 제염제에 의한 시간별 세슘 농도변화를 도시한 그래프이다. 도 8a는 실시예 1의 제염제에 의한 1분 후 세슘 농도변화를 도시한 그래프이고, 도 8b는 실시예 1의 제염제에 의한 3분 후 세슘 농도변화를 도시한 그래프이고, 도 8c는 실시예 1의 제염제에 의한 10분 후 세슘 농도변화를 도시한 그래프이고, 도 8d는 실시예 1의 제염제에 의한 60분 후 세슘 농도변화를 도시한 그래프이고, 도 8d는 실시예 1의 제염제에 의한 120분 후 세슘 농도변화를 도시한 그래프이고, 도 8f는 실시예 1의 제염제에 의한 1440분 후 세슘 농도변화를 도시한 그래프이다.8A to 8F are graphs showing changes in cesium concentration over time by the decontamination agent of Example 1; Figure 8a is a graph showing the change in cesium concentration after 1 minute by the decontamination agent of Example 1, Figure 8b is a graph showing the change in cesium concentration after 3 minutes by the decontamination agent of Example 1, Figure 8c is carried out Graph showing the change in cesium concentration after 10 minutes by the decontamination agent of Example 1, Figure 8d is a graph showing the change in cesium concentration after 60 minutes by the decontamination agent of Example 1, Figure 8d is the decontamination of Example 1 It is a graph showing the change in cesium concentration after 120 minutes by the agent, and FIG. 8F is a graph showing the change in cesium concentration after 1440 minutes by the decontamination agent of Example 1.
도 8a 내지 도 8f를 참조하면, 수중 세슘 농도의 경우 분말형태의 제염제에 비해 깊은 심도에서의 세슘이 빠르게 제거되는 것이 확인 가능하며, 1일 경과 후 가장 깊은 심도에서의 세슘 제거율이 약 80%에 도달하는 것으로 나타났다. 하지만 상대적으로 수표면 부근의 세슘은 거의 제거되지 않는 특성을 보여주었다.Referring to Figures 8a to 8f, in the case of cesium concentration in water, it can be confirmed that cesium is removed at a deeper depth than the decontamination agent in powder form, and the removal rate of cesium at the deepest depth after about 1 day is about 80%. Appeared to reach. However, relatively, cesium near the surface of the water showed properties that are hardly removed.
실시예 1의 제염제와 배합비를 달리하여 제조되었던 비교예 1 내지 5의 제염제들은 침강속도 지연이나 수평방향의 분산 현상이 확연하게 발생하지 않았다. 일부 제염제의 경우 수조 바닥에 도달할 때까지 분산이 전혀 발생하지 않았고, 일부 제염제에서는 분산이 발생하나 그 정도가 미약하였다.The decontamination agents of Comparative Examples 1 to 5, which were prepared by different mixing ratios with the decontamination agents of Example 1, did not cause retardation of sedimentation rate or dispersion in the horizontal direction. In some decontamination agents, dispersion did not occur at all until it reached the bottom of the tank, and in some decontamination agents, dispersion occurred, but the degree was weak.
이상에서와 같이, 제올라이트 분말을 수중 세슘 제염제 기초물질로 선정한 후 탄산수소나트륨과 시트르산 등의 약품들을 첨가하여 기존의 분말형 제염제를 개량하였다. 개량한 제염제를 수조에 투입하여 탁도와 세슘 농도를 측정한 결과, 침강과 수평분산, 공간적 제거율이 기존의 제올라이트 분말을 투입했을 때와 모두 다른 것으로 나타났다. 분말 형태로 투입한 제올라이트 제염제의 경우 수평 방향의 분산보다는 수직방향의 침강이 우세하였고, 수중 세슘 농도 역시 제올라이트가 침강한 수직 방향에서만 감소하는 것으로 나타났다. 침강이 우세하였기에 제염제 투입 후 3분만에 분말이 바닥에 모두 도달하였고 10분 후에는 바닥과 평행하게 분포하는 것으로 나타났다.As described above, after selecting the zeolite powder as the basic material for the cesium decontamination agent in water, chemicals such as sodium hydrogen carbonate and citric acid were added to improve the existing powder type decontamination agent. As a result of measuring the turbidity and cesium concentration by adding the improved decontamination agent to the water tank, it was found that sedimentation, horizontal dispersion, and spatial removal rate were different from those of the conventional zeolite powder. In the case of the zeolite decontamination agent added in powder form, the precipitation in the vertical direction was superior to the dispersion in the horizontal direction, and the concentration of cesium in water was also decreased only in the vertical direction in which the zeolite precipitated. Precipitation was predominant, so it was found that the powder reached the bottom 3 minutes after the decontamination agent was added, and was distributed parallel to the bottom after 10 minutes.
실시예 1 및 비교예의 개량형 제염제들 중 실시예 1을 제외한 나머지 유형의 제염제들은 침강속도 지연이나 수평방향의 분산이 확연하게 발생하지 않았다. 실시예 1의 제염제는 수직 방향으로는 분말형 제염제와 유사하게 침강하였으나, 수면 아래 약 60cm 부근에서 제염제가 수평 방향으로 분산한 후 재침강되면서 분말형 제염제에 비해 분산이 훨씬 더 넓게 발생하는 것으로 나타났다. 수중 세슘의 농도 감소는 측정 위치에 따라 다소 차이가 있었지만 수표면 가까이에서도 세슘 농도의 감소가 발생하였던 분말형 제염제와 달리 실시예 1의 제염제에서는 시간이 경과하여도 수표면 부근의 세슘이 잔존하는 것으로 나타났다.Among the improved decontamination agents of Example 1 and Comparative Example, the other types of decontamination agents, except for Example 1, did not cause retardation of sedimentation rate or dispersion in the horizontal direction. The decontamination agent of Example 1 settled similarly to the powder decontamination agent in the vertical direction, but the dispersion was much wider than that of the powder decontamination agent after being reprecipitated after being dispersed in the horizontal direction at about 60 cm below the water surface. Appeared to be. Although the concentration of cesium in water was slightly different depending on the measurement location, in contrast to the powdered decontamination agent, where the decrease in cesium concentration occurred near the water surface, the decontamination agent of Example 1 retained cesium near the water surface over time. Appeared to be.
이처럼 제염제 유형별 침강, 분산과 세슘 제거 특성들을 고려할 때, 배합비를 달리하여 개량한 제염제 중 실시예 1의 제염제를 수계 심층부에 분포하는 세슘을 제거하는 용도로 적용하는 것이 타당할 것으로 판단된다.In consideration of the sedimentation, dispersion, and cesium removal characteristics for each type of decontamination agent, it is considered to be appropriate to apply the decontamination agent of Example 1 among the improved decontamination agents by varying the mixing ratio for the purpose of removing cesium distributed in the water-based deep portion. .
실험 결과를 토대로 볼 때, 방사성 세슘 제염제로서, 제올라이트 30~40 중량%; 탄산수소나트륨 30~40 중량%; 및 시트르산 20~40 중량%를 포함하는 제염제를 심층 수계의 방사성 세슘 제염을 위한 맞춤형 제염제로서 결정하였다.Based on the experimental results, as a radioactive cesium decontamination agent, zeolite 30-40% by weight; Sodium hydrogen carbonate 30-40% by weight; And 20-40% by weight of citric acid was determined as a customized decontamination agent for deep-water radioactive cesium decontamination.
[실시예 2] 방사성 세슘 제염제의 제조(충층용)[Example 2] Preparation of radioactive cesium decontamination agent (for layering)
발포형 제염제는 주요 첨가물인 탄산수소나트륨과 시트르산, 제올라이트의 배합비율을 표 5에서 보는 바와 같은 함량으로 혼합하고 이들을 성형하기 위해서 에탄올(C2H5OH)을 사용하였다. 1톤을 기준으로 투입되는 제올라이트의 양은 앞선 예비 실험의 결과와 같이 50g으로 동일하게 적용하였다. 제올라이트와 그 외 부수재료들을 혼합하고 성형하기 위한 에탄올은 전체 제염제 질량의 20% 내외를 주입하였으며, 제조 틀에 넣어 40℃로 설정한 오븐에서 2일 이상 건조시켜 제염제를 제조하였다. 최종적으로 제작된 제염제의 무게를 비교한 결과 제작 및 건조 과정에서 약 20% 내외의 질량 손실이 발생하였다. 최종 제형은 펠릿 또는 정제의 형태를 갖도록 하였다.The foamed decontamination agent was mixed with the content of the main additives sodium hydrogen carbonate, citric acid and zeolite in an amount as shown in Table 5, and ethanol (C2H5OH) was used to mold them. The amount of zeolite injected on the basis of 1 ton was applied equally to 50 g as the result of the previous preliminary experiment. Ethanol for mixing and molding the zeolite and other ancillary materials was injected at about 20% of the total decontamination agent mass, and put into a production mold to dry for 2 days or more in an oven set to 40°C to prepare a decontamination agent. As a result of comparing the weight of the finally produced decontamination agent, a mass loss of about 20% occurred during the production and drying process. The final formulation was in the form of pellets or tablets.
[비교예 6 내지 10] 방사성 세슘 제염제의 제조(중층외)[Comparative Examples 6 to 10] Preparation of radioactive cesium decontamination agent (outside the middle layer)
실시예 2와 동일한 방법으로 제염제를 제조하되, 하기 표 5에 표시된 조성 비율로 하여 각각 비교예 6 내지 10의 제염제를 제조하였다.Decontamination agents were prepared in the same manner as in Example 2, respectively, and the decontamination agents of Comparative Examples 6 to 10 were prepared at the composition ratios shown in Table 5 below.
유형type 탄산수소나트륨Sodium hydrogen carbonate 시트르산Citric acid 제올라이트Zeolite
실시예 2Example 2 2929 1414 5757
비교예 6Comparative Example 6 4949 22 4949
비교예 7Comparative Example 7 4848 55 4848
비교예 8Comparative Example 8 4444 1111 4444
비교예 9Comparative Example 9 66 3131 6363
비교예 10Comparative Example 10 2525 2525 5050
수중 분산 및 제염 경향 분석 Dispersion and decontamination trend analysis in water
수중 세슘을 제거하기 위해 앞서 배합비율을 달리하여 제조하였던 제염제(실시예 2, 비교예 6 내지 10)를 수조에 넣은 후 침강 및 분산 경향을 관찰하였고, 그 중 분산 경향이 가장 탁월하였던 실시예 2의 제염제의 위치별, 심도별 탁도와 세슘 농도 등을 측정하여 도시하였다.In order to remove cesium in water, a decontamination agent (Example 2, Comparative Examples 6 to 10) prepared by different mixing ratios was placed in a water tank, and sedimentation and dispersion tendencies were observed, and among them, the dispersion tendency was most excellent. Turbidity and cesium concentrations by location and depth of decontamination agent of 2 were measured and plotted.
도 9a 내지 도 9f는 실시예 2의 제염제에 의한 시간별 탁도 농도변화를 도시한 그래프이다. 도 9a는 실시예 2의 제염제에 의한 1분 후 탁도 농도변화를 도시한 그래프이고, 도 9b는 실시예 2의 제염제에 의한 3분 후 탁도 농도변화를 도시한 그래프이고, 도 9c는 실시예 2의 제염제에 의한 10분 후 탁도 농도변화를 도시한 그래프이고, 도 9d는 실시예 2의 제염제에 의한 60분 후 탁도 농도변화를 도시한 그래프이고, 도 9d는 실시예 2의 제염제에 의한 120분 후 탁도 농도변화를 도시한 그래프이고, 도 9f는 실시예 2의 제염제에 의한 1440분 후 탁도 농도변화를 도시한 그래프이다.9A to 9F are graphs showing changes in turbidity concentration over time by the decontamination agent of Example 2; Figure 9a is a graph showing the change in turbidity concentration after 1 minute by the decontamination agent of Example 2, Figure 9b is a graph showing the change in turbidity concentration after 3 minutes by the decontamination agent of Example 2, Figure 9c is an implementation Graph showing the change in turbidity concentration after 10 minutes by the decontamination agent of Example 2, Figure 9d is a graph showing the change in turbidity concentration after 60 minutes by the decontamination agent of Example 2, Figure 9d is the decontamination of Example 2 It is a graph showing the change in turbidity concentration after 120 minutes by the agent, and FIG. 9F is a graph showing the change in turbidity concentration after 1440 minutes by the decontamination agent of Example 2.
도 9a 내지 도 9f를 참조하면, 수평 방향의 분산없이 수직으로만 침강이 발생하였던 분말형 제염제와 달리, 수제염제는 수직으로 침강하다가 수면 아래 약 30cm 부근에서 다시 수면으로 올라간 후 아래로 퍼져나가는 모습을 보여주었고, 1시간이 채 되기전에 모두 바닥에 가라앉았던 분말형 제염제와 달라 2시간이 경과한 시점에도 소량의 제염제 입자가 부유하고 있어 침강 지연 효과가 발생하였다는 확인할 수 있었다. 또한 수면으로 재부상 후 침강하는 과정에서 입자들의 수평 분산 효과 역시 발생하는 것을 확인할 수 있었다.9A to 9F, unlike powder-type decontamination agents that only settle vertically without dispersing in the horizontal direction, homemade salts settle vertically and then rise back to the surface at about 30 cm below the surface and then spread downward. It showed the appearance, and it was confirmed that a small amount of decontaminant particles were suspended even after 2 hours, unlike the powdered decontamination agent, which had all settled to the floor before less than 1 hour, causing a delayed sedimentation effect. In addition, it was confirmed that the horizontal dispersion effect of particles also occurred in the process of sedimentation after re-injury to the water surface.
도 10a 내지 도 10f는 실시예 2의 제염제에 의한 시간별 세슘 농도변화를 도시한 그래프이다. 도 10a는 실시예 2의 제염제에 의한 1분 후 세슘 농도변화를 도시한 그래프이고, 도 10b는 실시예 2의 제염제에 의한 3분 후 세슘 농도변화를 도시한 그래프이고, 도 10c는 실시예 2의 제염제에 의한 10분 후 세슘 농도변화를 도시한 그래프이고, 도 10d는 실시예 2의 제염제에 의한 60분 후 세슘 농도변화를 도시한 그래프이고, 도 10d는 실시예 2의 제염제에 의한 120분 후 세슘 농도변화를 도시한 그래프이고, 도 10f는 실시예 2의 제염제에 의한 1440분 후 세슘 농도변화를 도시한 그래프이다.10A to 10F are graphs showing changes in cesium concentration over time by the decontamination agent of Example 2; Figure 10a is a graph showing the change in cesium concentration after 1 minute by the decontamination agent of Example 2, Figure 10b is a graph showing the change in cesium concentration after 3 minutes by the decontamination agent of Example 2, Figure 10c is an implementation Graph showing the change in cesium concentration after 10 minutes by the decontamination agent of Example 2, Figure 10d is a graph showing the change in cesium concentration after 60 minutes by the decontamination agent of Example 2, Figure 10d is the decontamination of Example 2 It is a graph showing the change in cesium concentration after 120 minutes by the agent, and FIG. 10F is a graph showing the change in cesium concentration after 1440 minutes by the decontamination agent of Example 2.
도 10a 내지 도 10f를 참조하면, 수평 분산이 크게 발생한 것과 마찬가지로 세슘의 농도 역시 넓은 범위에서 빠르게 감소하였으며, 세슘 제거율은 깊이에 따라 상이하나 최대 70%까지 확인되었다.10A to 10F, as in the case where horizontal dispersion occurred largely, the concentration of cesium was rapidly decreased in a wide range, and the removal rate of cesium differed depending on the depth, but was confirmed up to 70%.
실시예 2의 제염제와 배합비를 달리하여 제조되었던 비교예 6 내지 10의 제염제들은 침강속도 지연이나 수평방향의 분산 현상이 확연하게 발생하지 않았다. 일부 제염제의 경우 수조 바닥에 도달할 때까지 분산이 전혀 발생하지 않았고, 일부 제염제에서는 분산이 발생하나 그 정도가 미약하였다.The decontamination agents of Comparative Examples 6 to 10, which were prepared by different mixing ratios with the decontamination agents of Example 2, did not cause retardation of sedimentation rate or dispersion in the horizontal direction. In some decontamination agents, dispersion did not occur at all until it reached the bottom of the tank, and in some decontamination agents, dispersion occurred, but the degree was weak.
이상에서와 같이, 제올라이트 분말을 수중 세슘 제염제 기초물질로 선정한 후 탄산수소나트륨과 시트르산 등의 약품들을 첨가하여 기존의 분말형 제염제를 개량하였다. 개량한 제염제를 수조에 투입하여 탁도와 세슘 농도를 측정한 결과, 침강과 수평분산, 공간적 제거율이 기존의 제올라이트 분말을 투입했을 때와 모두 다른 것으로 나타났다. 분말 형태로 투입한 제올라이트 제염제의 경우 수평 방향의 분산보다는 수직방향의 침강이 우세하였고, 수중 세슘 농도 역시 제올라이트가 침강한 수직 방향에서만 감소하는 것으로 나타났다. 침강이 우세하였기에 제염제 투입 후 3분만에 분말이 바닥에 모두 도달하였고 10분 후에는 바닥과 평행하게 분포하는 것으로 나타났다.As described above, after selecting the zeolite powder as the basic material for the cesium decontamination agent in water, chemicals such as sodium hydrogen carbonate and citric acid were added to improve the existing powder type decontamination agent. As a result of measuring the turbidity and cesium concentration by adding the improved decontamination agent to the water tank, it was found that sedimentation, horizontal dispersion, and spatial removal rate were different from those of the conventional zeolite powder. In the case of the zeolite decontamination agent added in powder form, the precipitation in the vertical direction was superior to the dispersion in the horizontal direction, and the concentration of cesium in water was also decreased only in the vertical direction in which the zeolite precipitated. Precipitation was predominant, so it was found that the powder reached the bottom 3 minutes after the decontamination agent was added, and was distributed parallel to the bottom after 10 minutes.
실시예 2 및 비교예의 개량형 제염제들 중 실시예 2를 제외한 나머지 유형의 제염제들은 침강속도 지연이나 수평방향의 분산이 확연하게 발생하지 않았다. 실시예 2의 제염제는 수직 방향으로는 분말형 제염제와 유사하게 침강하였으나, 면 아래 30cm 부근에서 수면으로 재부상하면서 침강이 지연되었고, 그 과정에 수평방향으로도 분산 현상이 발생하는 것을 확인할 수 있었다. 수중 세슘 농도는 측정 위치에 따라 다소 차이가 있었지만 입자의 분산하는 면적과 유사하게 넓은 범위에서 빠르게 감소하는 것으로 나타났다.Among the improved decontamination agents of Example 2 and Comparative Example, the other types of decontamination agents, except for Example 2, did not exhibit a delay in sedimentation rate or dispersion in the horizontal direction. The decontamination agent of Example 2 settled similarly to the powdered decontamination agent in the vertical direction, but it was confirmed that the sedimentation was delayed while re-initiating to the water surface around 30 cm below the surface, and dispersion occurred in the horizontal direction in the process. Could. The concentration of cesium in water was slightly different depending on the measurement location, but it was found to decrease rapidly over a wide range, similar to the dispersed area of the particles.
이처럼 제염제 유형별 침강, 분산과 세슘 제거 특성들을 고려할 때, 배합비를 달리하여 개량한 제염제 중 실시예 2의 제염제를 수계 중층부에 분포하는 세슘을 제거하는 용도로 적용하는 것이 타당할 것으로 판단된다.In consideration of the sedimentation, dispersion, and cesium removal characteristics for each type of decontamination agent, it is considered appropriate to apply the decontamination agent of Example 2 among the improved decontamination agents with different compounding ratios for the purpose of removing cesium distributed in the aqueous middle layer. do.
실험 결과를 토대로 볼 때, 방사성 세슘 제염제로서, 제올라이트 40 내지 60 중량%; 탄산수소나트륨 20 내지 40 중량%; 및 시트르산 10 내지 20 중량%를 포함하는 제염제를 중층 수계의 방사성 세슘 제염을 위한 맞춤형 제염제로서 결정하였다.Based on the experimental results, as radioactive cesium decontamination agent, zeolite 40 to 60% by weight; Sodium hydrogen carbonate 20 to 40% by weight; And 10 to 20% by weight of citric acid was determined as a custom decontamination agent for radioactive cesium decontamination in an aqueous medium layer.
[실시예 3] 옥수수 전분을 추가한 제염제 제형의 제작(중층용)[Example 3] Preparation of anti-inflammatory formulation added corn starch (for middle layer)
실시예 3의 발포형 제염제 제조 과정에서 옥수수 전분(corn-starch)를 추가로 배합하여 결합력 강화를 도모하였다. 제염제에 옥수수 전분을 추가로 포함하면 흡착제의 제형을 일정하게 조절할 수 있고 강도 또한 증가함에 따라 심도 조절에 좀더 용이하다. 옥수수 전분을 추가하지 않은 경우 제염제의 형태는 도 11a와 같고, 옥수수 전분을 추가하여 얻은 제염제의 형태는 도 11b와 같다. 실시예 3은 중층용으로 제작되었다. 실시예 3의 조성비율은 표 6과 같다.Corn starch (corn-starch) was further blended in the process of preparing the foamed decontamination agent of Example 3 to enhance the bonding strength. When the corn starch is additionally included in the decontamination agent, the dosage form of the adsorbent can be constantly controlled, and the intensity is also increased, making it easier to control the depth. When corn starch is not added, the form of the decontamination agent is shown in Fig. 11A, and the form of the decontamination agent obtained by adding corn starch is shown in Fig. 11B. Example 3 was made for a middle layer. The composition ratio of Example 3 is shown in Table 6.
[실시예 4] 옥수수 전분을 추가한 제염제 제형의 제작(중층외)[Example 4] Preparation of anti-inflammatory formulation added corn starch (outside the middle layer)
실시예 4는 실시예 3의 발포형 제염제 제조 과정에서 조성비를 변경하여 제작한 중층외 용도의 제염제이다. 실시예 4의 조성비율은 표 6과 같다.Example 4 is a decontamination agent for an extra-layer use produced by changing the composition ratio in the process of preparing the foamed decontamination agent of Example 3. Table 4 shows the composition ratio of Example 4.
[비교예 11 내지 13] 옥수수 전분을 추가한 제염제 제형의 제작[Comparative Examples 11 to 13] Preparation of anti-inflammatory formulation added corn starch
비교예 11 내지 13은 발포형 제염제 제조 과정에서 조성비를 변경하여 제작한 제염제이다. 비교예 11 내지 13의 조성비율을 표 6과 같다.Comparative Examples 11 to 13 are decontamination agents prepared by changing the composition ratio in the process of manufacturing a foamed decontamination agent. Table 6 shows the composition ratios of Comparative Examples 11 to 13.
유형type 제올라이트Zeolite 탄산수소나트륨Sodium hydrogen carbonate 시트르산Citric acid 옥수수 전분Corn starch
실시예 3Example 3 44 22 1One 1One
실시예 4Example 4 44 44 22 1One
비교예 11Comparative Example 11 44 22 1One 00
비교예 12Comparative Example 12 22 22 1One 1One
비교예 13Comparative Example 13 88 44 22 1One
수중 분산 추가 분석Analysis of additional dispersion in water
수중 세슘을 제거하기 위해 앞서 배합비율을 달리하여 제조하였던 제염제(실시예 3, 실시예 4, 비교예 11 내지 13)를 도 12내지 도 17과 같은 40L(폭 30cm, 너비 30cm, 깊이 50cm)수조에 수온 20℃ 물을 45cm깊이까지 채운 후 수면 위 5cm에서 흡착제를 투하하여 침강 및 분산 경향을 관찰하였다. 흡착제의 제형은 도 11a 및 도 11b와 같이 직경3cm, 높이1cm, 질량 약10g의 원기둥형태로 제작하였다.40L (width 30cm, width 30cm, depth 50cm) of the decontamination agent (Example 3, Example 4, Comparative Examples 11 to 13) prepared by different mixing ratios to remove cesium in water as shown in FIGS. 12 to 17 After filling the water tank with water at a temperature of 20° C. to a depth of 45 cm, an adsorbent was dropped at 5 cm above the water surface to observe the tendency to sedimentation and dispersion. The adsorbent formulation was prepared in a cylindrical shape with a diameter of 3 cm, a height of 1 cm, and a mass of about 10 g, as shown in FIGS. 11A and 11B.
도 12a 내지 도 12d는 실시예 3의 제염제에 대한 시간별 분산 양상을 나타낸 것이다. 도 12a는 실시예 3의 제염제 투여 후 2초 경과 후 분산 양상을 나타낸 것이다. 실시예 3의 제염제를 투하 직후 수면 아래 10cm까지 가라앉았다가 다시 떠올라서 수면에서 3초간 분산된다. 도 12b는 실시예 3의 제염제 투여 후 8초 경과 후 분산 양상을 나타낸 것이다. 실시예 3의 제염제는 투여 후 8초가 경과되면 수조 바닥으로 가라앉는다. 도 12c는 제염제 투여 후 20초 경과 후 분산 양상을 나타낸 것이다. 수직방향으로만 강하게 분산되던 실시예 3의 제염제는 투여 후 20초가 지나면 다시 수면위로 떠오른다. 도 12d는 실시예 3의 제염제 투여 후 40초 경과 후 분산 양상을 나타낸 것이다. 실시예 3의 제염제는 분산이 계속 진행되어 40초가 지나면 수조 전체에 완전히 분산된다.12A to 12D show the dispersion pattern over time for the decontamination agent of Example 3. Figure 12a shows the dispersion pattern after 2 seconds after administration of the anti-inflammatory agent of Example 3. Immediately after dropping the decontamination agent of Example 3, it settled down to 10 cm below the surface of the water and floated again to disperse on the surface for 3 seconds. Figure 12b shows the dispersion pattern after 8 seconds after administration of the anti-inflammatory agent of Example 3. The decontamination agent of Example 3 settles to the bottom of the water tank 8 seconds after administration. Figure 12c shows the dispersion pattern after 20 seconds after administration of the decontamination agent. The anti-inflammatory agent of Example 3, which was strongly dispersed only in the vertical direction, rose to the surface again 20 seconds after administration. Figure 12d shows the dispersion pattern after 40 seconds after administration of the anti-inflammatory agent of Example 3. The decontamination agent of Example 3 continues to disperse, and after 40 seconds, it is completely dispersed throughout the water bath.
도 13a 내지 도 13d는 실시예 4의 제염제에 대한 시간별 분산 양상을 나타낸 것이다. 도 13a는 실시예 4의 제염제 투여 후 2초 경과 후 분산 양상을 나타낸 것이다. 실시예 4의 제염제를 투하 직후 수면 아래 5cm까지 가라앉았다가 다시 떠오르지만 이내 바로 가라앉는다. 도 13b는 실시예 4의 제염제 투여 후 5초 경과 후 분산 양상을 나타낸 것이다. 실시예 4의 제염제는 투여 후 5초가 경과되면 수조 바닥에 도달한다. 도 13c는 실시예 4의 제염제 투여 후 20초 경과 후 분산 양상을 나타낸 것이다. 수직방향으로 강하게, 수평방향으로 약하게 분산되어 I 형태의 분산거동을 보이던 실시예 4의 제염제는 투여 후 30초가 지나면 다시 수면위로 떠오른다. 도 13d는 실시예 4의 제염제 투여 후 40초 경과 후 분산 양상을 나타낸 것이다. 실시예 4의 제염제는 분산이 계속 진행되어 35초가 지나면 수조 전체에 완전히 분산된다.13A to 13D show the dispersion pattern over time for the decontamination agent of Example 4. Figure 13a shows the dispersion pattern after 2 seconds after administration of the decontamination agent of Example 4. Immediately after dropping the decontamination agent of Example 4, it sinks to 5 cm below the surface of the water and then rises again, but immediately sinks. Figure 13b shows the dispersion pattern after 5 seconds after administration of the decontamination agent of Example 4. The decontamination agent of Example 4 reaches the bottom of the tank 5 seconds after administration. Figure 13c shows the dispersion pattern after 20 seconds after administration of the decontamination agent of Example 4. The anti-inflammatory agent of Example 4, which was strongly dispersed in the vertical direction and weakly dispersed in the horizontal direction, and exhibited the dispersion behavior in the form of I, rose to the surface again after 30 seconds after administration. Figure 13d shows the dispersion pattern after 40 seconds after administration of the anti-inflammatory agent of Example 4. The decontamination agent of Example 4 continued to disperse, and after 35 seconds, it was completely dispersed throughout the water bath.
도 14a 내지 도 14c는 비교예 11의 제염제에 대한 시간별 분산 양상을 나타낸 것이다. 도 14a는 제염제 투여 후 4초 경과 후 분산 양상을 나타낸 것이다. 비교예 11의 제염제는 투하 직후 4초가 지나면 수조 바닥에 도달한다. 도 14b는 비교예 11의 제염제 투여 후 20초 경과 후 분산 양상을 나타낸 것이다. 비교예 11의 제염제는 수조 바닥 도달 후 제염제의 결합이 풀어지면서 입자들이 수직 방향으로 분산된다. 도 14c는 비교예 11의 제염제 투여 후 60초 경과 후 분산 양상을 나타낸 것이다. 비교예 11의 제염제에서 분산되어 수면 가까이 상승한 입자들은, 다시 재침강하여, 60초 경과 후 수조 전체로 고르게 분산된다.14A to 14C show the dispersion pattern over time for the decontamination agent of Comparative Example 11. Figure 14a shows the dispersion pattern after 4 seconds after administration of the decontamination agent. The decontamination agent of Comparative Example 11 reaches the bottom of the tank after 4 seconds immediately after dropping. Figure 14b shows the dispersion pattern after 20 seconds after administration of the decontamination agent of Comparative Example 11. The decontamination agent of Comparative Example 11 is dispersed in the vertical direction as the decontamination agent is released after reaching the bottom of the water tank. Figure 14c shows the dispersion pattern after 60 seconds after administration of the decontamination agent of Comparative Example 11. The particles dispersed in the decontamination agent of Comparative Example 11 and raised near the water surface re-sedimented again, and after 60 seconds have elapsed, the particles are evenly dispersed.
도 15a 내지 도 15c는 비교예 12의 제염제에 대한 시간별 분산 양상을 나타낸 것이다. 도 15a는 비교예 12의 제염제 투여 후 2초 경과 후 분산 양상을 나타낸 것이다. 비교예 12의 제염제는 투하 직후 수면 아래 10cm까지 가라앉았다가 다시 떠올라서 수면에서 1초간 분산된다. 도 15b는 비교예 12의 제염제 투여 후 5초 경과 후 분산 양상을 나타낸 것이다. 비교예 12의 제염제는 투여 후 5초 경과 후 수조 바닥으로 가라앉는다. 도 15c는 비교예 12의 제염제 투여 후 70초 경과 후 분산 양상을 나타낸 것이다. 비교예 12의 제염제는 수직방향으로 분산되어 70초가 지나면 완전히 분산된다.15a to 15c show the dispersion pattern over time for the decontamination agent of Comparative Example 12. Figure 15a shows the dispersion pattern after 2 seconds after administration of the decontamination agent of Comparative Example 12. The decontamination agent of Comparative Example 12 settled to 10 cm below the surface of the water immediately after being dropped, and then re-emerged and dispersed for 1 second on the surface of the water. 15B shows the dispersion pattern after 5 seconds after administration of the decontamination agent of Comparative Example 12. The decontamination agent of Comparative Example 12 settles to the bottom of the water tank 5 seconds after administration. Figure 15c shows the dispersion pattern after 70 seconds after administration of the decontamination agent of Comparative Example 12. The decontamination agent of Comparative Example 12 was dispersed in the vertical direction and completely dispersed after 70 seconds.
도 16a 내지 도 16d는 비교예 13의 제염제에 대한 시간별 분산 양상을 나타낸 것이다. 도 16a는 제염제 투여 후 4초 경과 후 분산 양상을 나타낸 것이다. 비교예 13의 제염제를 투하 직후 수면 아래 10cm까지 가라앉았다가 다시 떠올라서 수면에서 3초간 분산된다. 도 16b는 비교예 13의 제염제 투여 후 8초 경과 후 분산 양상을 나타낸 것이다. 비교예 13의 제염제는 투여 후 8초가 경과되면 수조 바닥으로 가라앉은 후 수직방향으로만 분산된다. 도 16c는 제염제 투여 후 20초 경과 후 분산 양상을 나타낸 것이다. 비교예 13의 제염제는 투여 후 20초가 지나면 다시 수면위로 떠오른다. 도 16d는 비교예 13의 제염제 투여 후 60초 경과 후 분산 양상을 나타낸 것이다. 비교예 13의 제염제는 분산이 계속 진행되어 60초가 지나면 수조 전체에 완전히 분산된다.16A to 16D show the dispersion pattern over time for the decontamination agent of Comparative Example 13. Figure 16a shows the dispersion pattern after 4 seconds after administration of the decontamination agent. Immediately after dropping the decontamination agent of Comparative Example 13, it settled down to 10 cm below the surface of the water and floated again to disperse on the surface for 3 seconds. Figure 16b shows the dispersion pattern after 8 seconds after administration of the decontamination agent of Comparative Example 13. The decontamination agent of Comparative Example 13 sinks to the bottom of the water tank 8 seconds after administration, and then is dispersed only in the vertical direction. Figure 16c shows the dispersion pattern after 20 seconds after administration of the decontamination agent. The anti-inflammatory agent of Comparative Example 13 floats on the surface again 20 seconds after administration. Figure 16d shows the dispersion pattern after 60 seconds after administration of the decontamination agent of Comparative Example 13. The decontamination agent of Comparative Example 13 continued to disperse, and after 60 seconds, it was completely dispersed throughout the water tank.
실시예 3, 실시예 4 및 비교예 11 내지 13의 분산거동을 평가하면 하기 표 7과 같다. 수조의 깊이 45cm를 위에서부터 15cm씩 3등분하여 상, 중, 하 영역으로 나누고, 제염제가 수평으로 분산된 순서대로 영역을 기재하여 분산거동을 평가하였다.The dispersion behaviors of Examples 3 and 4 and Comparative Examples 11 to 13 are evaluated as shown in Table 7 below. Dispersion behavior was evaluated by dividing the tank depth by 45 cm into 3 sections of 15 cm from the top and dividing it into upper, middle, and lower regions, and describing the regions in the order in which the decontamination agents were horizontally dispersed.
분산거동Dispersion behavior 분산속도Dispersion rate
실시예 3Example 3 상→중→하Top→Middle→Bottom 40초40 seconds
실시예 4Example 4 상→하→중Top→bottom→middle 35초35 seconds
비교예 11Comparative Example 11 상→하→중Top→bottom→middle 60초60 seconds
비교예 12Comparative Example 12 상→중→하Top→Middle→Bottom 70초70 seconds
비교예 13Comparative Example 13 상→중→하Top→Middle→Bottom 60초60 seconds
분산속도는 흡착제가 수조 전체에 완전히 퍼져나가 분산이 완료될 때의 시간을 기록하여 평가하였다. 실험 결과 분산거동과 분산속도를 고려했을 때 중층용 제염제로는 실시예 3, 심층용 제염제로는 실시예 4와 같이 실시하는 것이 최적으로 판단되었다.The dispersing rate was evaluated by recording the time when the adsorbent was completely spread over the entire water tank and dispersion was completed. As a result of the experiment, considering the dispersion behavior and dispersion speed, it was judged to be optimal to perform as in Example 3 as the decontamination agent for the middle layer and in Example 4 as the decontamination agent for the deep layer.
온도에 따른 수중 분산 추가 분석Additional analysis of dispersion in water according to temperature
온도 및 흡착제의 제형 질량에 따른 분산 성능을 알아보기 위해 추가 실험을 실시하였다. 도 17a 및 도 17b는 온도 및 흡착제의 제형 질량에 따른 제염제의 분산 양상을 나타낸 것이다. Additional experiments were conducted to determine the dispersion performance according to the temperature and the formulation mass of the adsorbent. 17A and 17B show the dispersion pattern of the decontamination agent according to the temperature and the formulation mass of the adsorbent.
도 17a는 실시예 3과 동일한 배합비율을 가지고, 10g의 제형으로 제작된 제염제를 0℃(왼쪽), 20℃(오른쪽)로 온도가 다른 두 수조에 투하한 후 15초가 지난 모습을 나타낸 것이다. 저온 환경인 0℃~3℃에서 제염제의 분산 성능을 평가한 결과, 10g으로 제작된 제염제는 배합비와 관계없이 수면에서만 머문 상태로 수평방향의 분산 없이 수직방향으로만 분산되고, 분산 속도 또한 상온에서의 분산 속도보다 현저하게 느리다.Figure 17a has the same blending ratio as in Example 3, showing the appearance of 15 seconds after dropping the decontamination agent prepared in a formulation of 10g to 0 ℃ (left), 20 ℃ (right) in two different temperature tanks . As a result of evaluating the dispersion performance of the decontamination agent at 0℃~3℃, which is a low-temperature environment, the decontamination agent made of 10g stays only at the surface of the water regardless of the mixing ratio, and is dispersed only in the vertical direction without dispersion in the horizontal direction. Significantly slower than the dispersion rate at room temperature.
도 17b는 실시예 4와 동일한 배합비율을 가지고, 12g으로 제작된 제염제를 0℃(왼쪽), 20℃(오른쪽)로 온도가 다른 두 수조에 투하한 후 15초가 지난 모습을 나타낸 것이다. 저온 환경인 0℃ 내지 3℃에서 제염제의 분산 성능을 평가한 결과, 12g으로 제작된 제염제는 제염제 제형의 무게가 증가하여, 제염제가 수중 바닥에 도달할 경우 저온 환경에서 제염제의 분산 저하를 극복 할 수 있다. 즉, 20℃ 상온에 비해 제염제의 분산 속도는 다소 느리나, 10g의 제형으로 제작된 제염제가 수면에 떠서 분산되는 것에 비하면 동시간대에서 훨씬 뛰어난 분산거동을 보인다.FIG. 17B shows the appearance of 15 seconds after dropping the decontamination agent produced at 12 g to 0° C. (left) and 20° C. (right) with the same mixing ratio as in Example 4 in two different water tanks. As a result of evaluating the dispersion performance of the decontamination agent at 0° C. to 3° C. in a low temperature environment, the decontamination agent made of 12 g has an increased weight of the decontamination agent formulation, so that when the decontamination agent reaches the bottom in the water, the decontamination agent is dispersed in the low temperature environment. Degradation can be overcome. In other words, the dispersion rate of the decontamination agent is slightly slower than that at 20°C, but the decontamination agent made of the 10 g formulation shows a much better dispersion behavior at the same time compared to the dispersion on the water surface.
본 기술은 수중 오염물질의 제염 기술에 관한 것으로서, 특히 수중에 존재하는 방사성 세슘을 다양한 수심에 대하여 효율적으로 제염할 수 있는 제염제 및 제염방법에 관한 기술이다.The present technology relates to a technology for decontamination of pollutants in water, and in particular, a technology for decontamination agents and decontamination methods capable of efficiently decontaminating radioactive cesium present in water for various water depths.

Claims (24)

  1. 오염수에 포함된 방사성 물질을 제거하기 위한 제염제로서, Decontamination agent for removing radioactive substances contained in contaminated water,
    제올라이트; 탄산수소나트륨; 및 시트르산을 포함하는 방사성 오염 물질의 제염제.Zeolite; Sodium hydrogen carbonate; And a decontamination agent for radioactive contaminants comprising citric acid.
  2. 제1항에 있어서, According to claim 1,
    상기 제염제는 제올라이트 30~60 중량%; The decontamination agent is 30 to 60% by weight of zeolite;
    탄산수소나트륨 20~40중량%; 및 Sodium hydrogen carbonate 20-40% by weight; And
    시트르산 10~40중량%인, 제염제.An anti-inflammatory agent which is 10 to 40% by weight of citric acid.
  3. 제1항에 있어서, According to claim 1,
    상기 제염제는 제올라이트 40~60 중량%; 탄산수소나트륨 20~40중량%; 및 The decontamination agent is 40 to 60% by weight of zeolite; Sodium hydrogen carbonate 20-40% by weight; And
    시트르산 10~20중량%이며, 10 to 20% by weight of citric acid,
    상기 제염제는 중층 수계에 포함된 방사성 물질을 제거하기 위한 것인, 제염제.The decontamination agent is to remove the radioactive material contained in the middle layer, the decontamination agent.
  4. 제1항에 있어서, According to claim 1,
    상기 제염제는 제올라이트 30~40 중량%; 탄산수소나트륨 30~40중량%; 및 The decontamination agent is 30 to 40% by weight of zeolite; Sodium hydrogen carbonate 30-40% by weight; And
    시트르산 20~40중량%이며, 20 to 40% by weight of citric acid,
    상기 제염제는 심층 수계에 포함된 방사성 물질을 제거하기 위한 것인, 제염제.The decontamination agent is to remove the radioactive material contained in the deep water system, decontamination agent.
  5. 제1항에 있어서, According to claim 1,
    상기 제염제는 옥수수 전분을 더 포함하는 것인, 제염제. The decontamination agent further comprises corn starch, decontamination agent.
  6. 제2항에 있어서, According to claim 2,
    상기 제염제는 옥수수 전분 5~20중량%인, 제염제. The decontamination agent is 5 to 20% by weight of corn starch, decontamination agent.
  7. 제6항에 있어서, The method of claim 6,
    상기 제염제는 제올라이트, 탄산수소나트륨, 시트르산 및 옥수수 전분이 2: 1~2: 0.5~1: 0.25~1의 중량비인, 제염제.The decontamination agent is a decontamination agent, wherein the weight ratio of zeolite, sodium hydrogen carbonate, citric acid and corn starch is 2: 1-2: 0.5-1: 0.25-1.
  8. 제7항에 있어서, The method of claim 7,
    상기 제염제는 제올라이트, 탄산수소나트륨, 시트르산 및 옥수수 전분이 2: 1: 0.5: 0.5의 중량비이며, 상기 제염제는 중층 수계에 포함된 방사성 물질을 제거하기 위한 것인, 제염제.The decontamination agent is a weight ratio of zeolite, sodium hydrogen carbonate, citric acid and corn starch in a ratio of 2: 1: 0.5: 0.5, and the decontamination agent is for removing radioactive substances contained in the middle layer aqueous system.
  9. 제7항에 있어서, The method of claim 7,
    상기 제염제는 제올라이트, 탄산수소나트륨, 시트르산 및 옥수수 전분이 2: 1: 0.5: 0.25의 중량비이며, 상기 제염제는 심층 수계에 포함된 방사성 물질을 제거하기 위한 것인, 제염제.The decontamination agent is a weight ratio of zeolite, sodium hydrogen carbonate, citric acid and corn starch in a ratio of 2: 1: 0.5: 0.25, and the decontamination agent is for removing radioactive substances contained in the deep water system.
  10. 제1항에 있어서, According to claim 1,
    상기 제올라이트는 휼란다이트 50~60중량% 및 모데나이트 40~50중량%인, 제염제. The zeolite is 50 to 60% by weight of heliumite and 40 to 50% by weight of mordenite.
  11. 제1항에 있어서, According to claim 1,
    상기 제올라이트는 비표면적이 50~70m2/g이거나, 평균 공극 부피가 0.1~0.15ml/g이거나, 평균 공극 크기가 5~15nm이거나, 양이온 교환능이 60~120meq/100g인, 제염제.The zeolite has a specific surface area of 50 to 70 m 2 /g, an average pore volume of 0.1 to 0.15 ml/g, an average pore size of 5 to 15 nm, or a cation exchange capacity of 60 to 120 meq/100 g.
  12. 제1항에 있어서, According to claim 1,
    상기 방사성 물질은 요오드, 세슘, 세륨, 료듐, 코발트, 스트론튬, 라듐, 우라늄, 플루토늄으로 이루어진 군에서 선택되는, 제염제.The radioactive material is selected from the group consisting of iodine, cesium, cerium, rhodium, cobalt, strontium, radium, uranium, and plutonium, decontamination agents.
  13. 오염수에 포함된 방사성 물질을 제거하기 위하여, To remove radioactive substances contained in contaminated water,
    제올라이트; 탄산수소나트륨; 및 시트르산을 혼합하여 방사성 오염 물질에 대한 제염제를 제조하는 방법.Zeolite; Sodium hydrogen carbonate; And mixing citric acid to produce a decontamination agent for radioactive contaminants.
  14. 제13항에 있어서, The method of claim 13,
    상기 제염제는 제올라이트 30~60 중량%; The decontamination agent is 30 to 60% by weight of zeolite;
    탄산수소나트륨 20~40중량%; 및 Sodium hydrogen carbonate 20-40% by weight; And
    시트르산 10~40중량%인, 방사성 오염 물질에 대한 제염제를 제조하는 방법.10 to 40% by weight of citric acid, a method for producing a decontamination agent for radioactive contaminants.
  15. 제13항에 있어서, The method of claim 13,
    상기 제염제는 제올라이트 40~60 중량%; 탄산수소나트륨 20~40중량%; 및 The decontamination agent is 40 to 60% by weight of zeolite; Sodium hydrogen carbonate 20-40% by weight; And
    시트르산 10~20중량%이며, 10 to 20% by weight of citric acid,
    상기 제염제는 중층 수계에 포함된 방사성 물질을 제거하기 위한 것인, 방사성 오염 물질에 대한 제염제를 제조하는 방법.The decontamination agent is to remove the radioactive material contained in the middle layer, a method of manufacturing a decontamination agent for radioactive contaminants.
  16. 제13항에 있어서, The method of claim 13,
    상기 제염제는 제올라이트 30~40 중량%; 탄산수소나트륨 30~40중량%; 및 The decontamination agent is 30 to 40% by weight of zeolite; Sodium hydrogen carbonate 30-40% by weight; And
    시트르산 20~40중량%이며, 20 to 40% by weight of citric acid,
    상기 제염제는 심층 수계에 포함된 방사성 물질을 제거하기 위한 것인, 방사성 오염 물질에 대한 제염제를 제조하는 방법.The decontamination agent is to remove the radioactive material contained in the deep water system, a method of manufacturing a decontamination agent for radioactive contaminants.
  17. 제13항에 있어서, The method of claim 13,
    상기 제염제는 옥수수 전분을 더 포함하는, 방사성 오염 물질에 대한 제염제를 제조하는 방법.The decontamination agent further comprises corn starch, a method for preparing a decontamination agent for radioactive contaminants.
  18. 제14항에 있어서, The method of claim 14,
    상기 제염제는 옥수수 전분 5~20중량%인, 방사성 오염 물질에 대한 제염제를 제조하는 방법.The decontamination agent is 5 to 20% by weight of corn starch, a method for producing a decontamination agent for radioactive contaminants.
  19. 제18항에 있어서, The method of claim 18,
    상기 제염제는 제올라이트, 탄산수소나트륨, 시트르산 및 옥수수 전분을 2: 1~2: 0.5~1: 0.25~1의 중량비인, 방사성 오염 물질에 대한 제염제를 제조하는 방법.The decontamination agent is a method of preparing a decontamination agent for radioactive contaminants in a weight ratio of zeolite, sodium hydrogen carbonate, citric acid and corn starch in a ratio of 2: 1 to 2: 0.5 to 1: 0.25 to 1.
  20. 제19항에 있어서, The method of claim 19,
    상기 제염제는 제올라이트, 탄산수소나트륨, 시트르산 및 옥수수 전분이 2: 1: 0.5: 0.5의 중량비인 것이며, 상기 제염제는 중층 수계에 포함된 방사성 물질을 제거하기 위한 것인, 방사성 오염 물질에 대한 제염제를 제조하는 방법.The decontamination agent is a weight ratio of zeolite, sodium hydrogen carbonate, citric acid and corn starch in a weight ratio of 2: 1: 0.5: 0.5, and the decontamination agent is for removing radioactive substances contained in the middle layer aqueous system. Method of preparing decontamination agents.
  21. 제19항에 있어서, The method of claim 19,
    상기 제염제는 제올라이트, 탄산수소나트륨, 시트르산 및 옥수수 전분이 2: 1: 0.5: 0.25의 중량비인 것이며, 상기 제염제는 심층 수계에 포함된 방사성 물질을 제거하기 위한 것인, 방사성 오염 물질에 대한 제염제를 제조하는 방법.The decontamination agent is a weight ratio of zeolite, sodium hydrogen carbonate, citric acid and corn starch in a weight ratio of 2: 1: 0.5: 0.25, and the decontamination agent is for removing radioactive substances contained in the deep water system. Method of preparing decontamination agents.
  22. 제13항에 있어서, The method of claim 13,
    상기 제올라이트는 휼란다이트 50~60중량% 및 모데나이트 40~50중량%인, 방사성 오염 물질에 대한 제염제를 제조하는 방법.The zeolite is 50 to 60% by weight of heliumite and 40 to 50% by weight of mordenite, a method for preparing a decontamination agent for radioactive contaminants.
  23. 제13항에 있어서, The method of claim 13,
    상기 제올라이트는 비표면적이 50~70m2/g이거나, 평균 공극 부피가 0.1~0.15ml/g이거나, 평균 공극 크기가 5~15nm이거나, 양이온 교환능이 60~120meq/100g인, 제염제.The zeolite has a specific surface area of 50 to 70 m 2 /g, an average pore volume of 0.1 to 0.15 ml/g, an average pore size of 5 to 15 nm, or a cation exchange capacity of 60 to 120 meq/100 g.
  24. 제13항에 있어서, The method of claim 13,
    상기 방사성 물질은 요오드, 세슘, 세륨, 료듐, 코발트, 스트론튬, 라듐, 우라늄, 플루토늄으로 이루어진 군에서 선택되는, 제염제.The radioactive material is selected from the group consisting of iodine, cesium, cerium, rhodium, cobalt, strontium, radium, uranium, and plutonium, decontamination agents.
PCT/KR2019/016285 2018-12-06 2019-11-25 Decontamination agent for radioactive cesium and method of water depth-adjustable decontamination of radioactive cesium WO2020116841A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021531766A JP7123262B2 (en) 2018-12-06 2019-11-25 Radioactive cesium decontamination agent and radioactive cesium decontamination method that can be adjusted according to water depth using the same
CN201980080567.5A CN113164911B (en) 2018-12-06 2019-11-25 Radioactive cesium detergent and method for decontaminating radioactive cesium by utilizing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0156244 2018-12-06
KR1020180156244A KR102183844B1 (en) 2018-12-06 2018-12-06 Reagents for decontamination of radioactive cesium and customized method by depth of water for decontamination of radioactive cesium by using the same

Publications (1)

Publication Number Publication Date
WO2020116841A1 true WO2020116841A1 (en) 2020-06-11

Family

ID=70975507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016285 WO2020116841A1 (en) 2018-12-06 2019-11-25 Decontamination agent for radioactive cesium and method of water depth-adjustable decontamination of radioactive cesium

Country Status (4)

Country Link
JP (1) JP7123262B2 (en)
KR (1) KR102183844B1 (en)
CN (1) CN113164911B (en)
WO (1) WO2020116841A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102485986B1 (en) * 2020-09-04 2023-01-06 연세대학교 산학협력단 Method of decontaminating radioactive substaces in water
KR20220078194A (en) 2020-12-03 2022-06-10 송화춘 Filter cartridge for removing radioactive cesium and manufacturing method of the same that
CN117732423A (en) * 2023-12-27 2024-03-22 中国人民解放军海军工程大学 Preparation method and application of cobalt and strontium selective adsorption reagent material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110066174A (en) * 2008-10-08 2011-06-16 도쿠리츠교세이호진 노교간쿄기쥬츠겐큐쇼 Formed object adsorbing hazardous substance
JP2013001747A (en) * 2011-06-14 2013-01-07 Dainichiseika Color & Chem Mfg Co Ltd Foamable resin composition and contaminant adsorbing agent
JP2013127437A (en) * 2011-12-19 2013-06-27 Toshiba Corp Method and device for treating radioactive cesium-containing substance
KR101754790B1 (en) * 2016-07-04 2017-07-10 한국원자력연구원 Biomineralogical method and apparatus for the removal of aqueous cesium ion
JP2017203681A (en) * 2016-05-11 2017-11-16 日立Geニュークリア・エナジー株式会社 Processing system of radioactive waste liquid and processing method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5484533A (en) * 1994-01-04 1996-01-16 A.C.T. Partnership, Ltd. Method for the stabilization and detoxification of waste material
JPH11239785A (en) * 1998-02-25 1999-09-07 Kawasaki Steel Corp Agent and method for simultaneously removing nitrogen and phosphorus from wastewater
CN101391829A (en) * 2008-07-31 2009-03-25 上海市环境科学研究院 Technique for preparing effervescence type coagulant used in treatment of landscape water pollution
JP2010089005A (en) 2008-10-08 2010-04-22 National Institute For Agro-Environmental Science Multifunctional water-soluble sheet
JP2012247405A (en) * 2011-05-02 2012-12-13 Astec Tokyo:Kk Manufacturing method of radioactive substance treatment agent, radioactive substance treatment agent, processing method and processing apparatus using radioactive substance treatment agent
JP2013050418A (en) * 2011-08-31 2013-03-14 Toyo Eng Works Ltd Method and system for processing radioactive contaminated water
JP6218729B2 (en) * 2012-05-07 2017-10-25 学校法人近畿大学 Adsorbent, method for producing the adsorbent, contaminated water using the adsorbent, and purification method for solid contaminants
CN103341287B (en) * 2013-07-23 2015-10-21 北京海德能水处理设备制造有限公司 For removing the filter medium and preparation method thereof of waterborne radioactivity cobalt, caesium
JP2015116510A (en) * 2013-12-16 2015-06-25 王子ホールディングス株式会社 Method for producing foamed sheet for adsorbing and removing contaminant
JP6138085B2 (en) * 2014-05-22 2017-05-31 黒崎白土工業株式会社 Radioactive cesium-containing wastewater treatment agent
JP3198799U (en) 2015-05-12 2015-07-23 日本富升環保開発 有限会社 Contaminated soil treatment system
CN106310868A (en) * 2016-08-22 2017-01-11 陈永桥 Novel sulfur dioxide adsorbent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110066174A (en) * 2008-10-08 2011-06-16 도쿠리츠교세이호진 노교간쿄기쥬츠겐큐쇼 Formed object adsorbing hazardous substance
JP2013001747A (en) * 2011-06-14 2013-01-07 Dainichiseika Color & Chem Mfg Co Ltd Foamable resin composition and contaminant adsorbing agent
JP2013127437A (en) * 2011-12-19 2013-06-27 Toshiba Corp Method and device for treating radioactive cesium-containing substance
JP2017203681A (en) * 2016-05-11 2017-11-16 日立Geニュークリア・エナジー株式会社 Processing system of radioactive waste liquid and processing method
KR101754790B1 (en) * 2016-07-04 2017-07-10 한국원자력연구원 Biomineralogical method and apparatus for the removal of aqueous cesium ion

Also Published As

Publication number Publication date
CN113164911A (en) 2021-07-23
JP2022511035A (en) 2022-01-28
KR102183844B1 (en) 2020-11-27
JP7123262B2 (en) 2022-08-22
CN113164911B (en) 2023-08-25
KR20200069092A (en) 2020-06-16

Similar Documents

Publication Publication Date Title
WO2020116841A1 (en) Decontamination agent for radioactive cesium and method of water depth-adjustable decontamination of radioactive cesium
KR100560637B1 (en) Encapsulation of hazardous waste material
JP5669120B1 (en) Treatment method of contaminated water
Oyanedel-Craver et al. Simultaneous sorption of benzene and heavy metals onto two organoclays
JP5839459B2 (en) Radioactive material-containing incineration ash and radioactive material-containing soil compression molding and compression molding method thereof
WO2014114283A2 (en) Modified carbonized red mud
EP2347422B1 (en) Matrix material composed of graphite and inorganic binders and suitable for final storage of radioactive waste, method for the manufacture thereof, and processing and use thereof
Shrivastava et al. Cation exchange applications of synthetic tobermorite for the immobilization and solidification of cesium and strontium in cement matrix
KR101720958B1 (en) Soil-conditioner and method of manufacturing the same
Godelitsas et al. Uranium sorption from aqueous solutions on sodium-form of HEU-type zeolite crystals
KR101841822B1 (en) How radon barrier coating agent and a method for producing construction emitted by the cement
JP2013234881A (en) Method for manufacturing cement solidified product of radioactive waste incineration ash, and the solidified product
EP3165276A1 (en) Method for substituting tritium in tritium-containing water, and tritium elimination method
Sansone et al. Adsorption of short-chain organic acids onto nearshore marine sediments
JPS62286545A (en) Production of ion exchange substance
EP2835359B1 (en) Uses of a material for insolubilizing specific toxic substances, method for insolubilizing specific toxic substances, and soil improvement method
JP2013190408A (en) Processing method for reduction in radiation dose of radioactive material-containing incinerated ash or the like
Ejeckam et al. A^ 1^ 3^ 3Cs,^ 2^ 9Si, and^ 2^ 7Al MAS NMR spectroscopic study of Cs adsorption by clay minerals: implications for the disposal of nuclear wastes
CN110563434B (en) Buffer backfill material for high-level radioactive waste disposal warehouse and preparation method thereof
JP2016099264A (en) Radioactive substance adsorption ceramic for disposing of radioactive substance safely
Magrill Influence of fluoride on the rate of dissolution of hydroxyapatite in acidic buffer solution
JP3393916B2 (en) How to fix radioactive iodine
JP2005319396A (en) Insolubilization method for cadmium in soil
Bayoumi Cementation of radioactive liquid scintillator waste simulate
RU2154317C2 (en) Method for recovering liquid radioactive wastes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893842

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021531766

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19893842

Country of ref document: EP

Kind code of ref document: A1