WO2020116696A1 - Ultraviolet light curing apparatus having changeable ultraviolet-ray output according to condition of three-dimensional laminate - Google Patents

Ultraviolet light curing apparatus having changeable ultraviolet-ray output according to condition of three-dimensional laminate Download PDF

Info

Publication number
WO2020116696A1
WO2020116696A1 PCT/KR2018/015513 KR2018015513W WO2020116696A1 WO 2020116696 A1 WO2020116696 A1 WO 2020116696A1 KR 2018015513 W KR2018015513 W KR 2018015513W WO 2020116696 A1 WO2020116696 A1 WO 2020116696A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultraviolet light
dimensional laminate
output
laminate
dimensional
Prior art date
Application number
PCT/KR2018/015513
Other languages
French (fr)
Korean (ko)
Inventor
김정일
신영식
오윤상
윤재민
심명규
홍현기
김정수
박성열
김찬호
조성환
Original Assignee
주식회사 덴티스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 덴티스 filed Critical 주식회사 덴티스
Publication of WO2020116696A1 publication Critical patent/WO2020116696A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation

Definitions

  • the present invention relates to an ultraviolet light curing device capable of varying the UV output depending on the state of the three-dimensional laminate, and prevents thermal deformation or discoloration due to temperature changes when curing the three-dimensional laminate output to a 3D printer. And it relates to an ultraviolet light curing device capable of varying the UV output depending on the state of the three-dimensional laminate can improve the strength and shrinkage.
  • the 3D printing technology which is spotlighted as the next-generation precision processing technology, refers to a technology for producing a three-dimensional object by laminating in a set shape by spraying materials in the X-axis, Y-axis, and Z-axis directions while the material is melted.
  • This 3D printing technique usually reconstructs a two-dimensional cross-section continuously to produce a three-dimensional laminate by laminating while printing the molten material layer by layer, and since the three-dimensional laminate is made of molten material, it is hardened to fix the shape. A curing process is essential.
  • a material curing method using UV (Ultraviolet) capable of obtaining a high-quality output is preferred because the burden on production time and production maintenance cost is relatively less.
  • the UV curing method uses a UV lamp as described above, but there is a problem in that curing is not properly performed due to high heat generated when the UV lamp emits light.
  • Korean Patent Publication No. 10-2015-0066898 for solving such a problem relates to a curing device using a UV-LED module, which is disposed on a transport path for transporting a curing object or an exposure object, and on the transport path of the transport unit, It comprises a body part that hardens the object to be cured to be transported through the transfer part or forms a pattern on the object to be exposed, and an upper surface inside the body part is provided with a UV light source on the surface of the object to be cured or the object to be exposed passing through the body part
  • a first light source main body mounted with a first light source module made of a first UV-LED and a first substrate is arranged to be irradiated, and UV light sources are provided on both side surfaces of the lower end of the main body part to pass through the main body.
  • a second light source main body in which a second light source module made of a second UV-LED and a second substrate is mounted, is arranged to irradiate the first and second UV-lights respectively irradiating a UV light source to the first and second light source bodies.
  • a second light source module made of a second UV-LED and a second substrate is mounted, is arranged to irradiate the first and second UV-lights respectively irradiating a UV light source to the first and second light source bodies.
  • at least one heat dissipation unit made of a heat pipe is arranged to dissipate heat generated from the LEDs.
  • the object of the present invention for solving the above problems is to control the output of the ultraviolet light according to the surface temperature caused by ultraviolet light when the three-dimensional laminated body is cured, depending on the state of the three-dimensional laminated body to prevent thermal deformation and discoloration. It is to provide a UV light curing device capable of variable UV output.
  • another object of the present invention is an ultraviolet light curing device capable of varying the UV output depending on the state of the three-dimensional laminate that can improve the strength and shrinkage of the three-dimensional laminate by evenly irradiating ultraviolet rays on the outer surface of the three-dimensional laminate. Is to provide.
  • another object of the present invention is to irradiate ultraviolet rays made of different wavelengths using a plurality of LEDs to reduce the time to cure the 3D laminate and to increase the curing performance, the UV output variable according to the state of the 3D laminate. It is possible to provide an ultraviolet light curing device.
  • the cradle 300 is characterized in that when the three-dimensional laminate is mounted, the amount of ultraviolet rays emitted from the curing unit 200 is increased by rotating and tilting the three-dimensional laminate.
  • ultraviolet rays irradiated by the curing unit 200 may be prevented from being irradiated to the outside, and when the door 110 is opened during curing, power is cut off and ultraviolet rays are irradiated to the user's skin or eyes. This can be prevented from being irradiated.
  • the door 110 is provided with an internal confirmation window 111 to check the curing state of the three-dimensional laminate, and the internal confirmation window 111 is formed with an ultraviolet blocking filter to prevent exposure of ultraviolet rays to the outside. It is characterized by.
  • the internal confirmation window 111 is for confirming the state of the three-dimensional laminate being cured by the curing unit 200 inside the housing 100, and is formed to penetrate from the front to the rear of the door 110.
  • Figure 3 is an exploded view showing the separation of the curing unit 200 of the ultraviolet light curing device capable of variable UV output according to the state of the three-dimensional laminate according to the present invention.
  • the curing unit 200 of the ultraviolet light curing device capable of varying the UV output according to the state of the three-dimensional laminate according to the present invention so as to irradiate ultraviolet light toward the outer surface of the three-dimensional laminate Characterized in that it consists of a plurality of LED modules formed, and a reflector 210 formed on the upper, lower, left, right, and rear surfaces of the three-dimensional laminate and reflecting the ultraviolet light emitted from the LED module to re-enter the three-dimensional laminate. Is done.
  • the LED modules 220 and 230 are formed in a plurality so as to irradiate ultraviolet rays from the upper, lower, left, right, and rear sides of the three-dimensional stacked body, and each of the LED modules 220 and 230 is attached to the reflector 210. It is attached and fixed.
  • the front surface of the reflector 210 is opened so that a 3D stack can be drawn into the front surface, and LED modules 220 and 230 are formed on the surface except the front surface to irradiate ultraviolet light toward the 3D stack. Is formed to help.
  • the reflector 210 is formed to be spaced from the inner surface of the housing 100 of FIG. 2, the LED modules 220 and 230 are positioned in a space between the housing 100 and the reflector 210, and the reflector 210 The incident holes 211 penetrating each surface are formed, so that the LED modules 220 and 230 can irradiate ultraviolet rays into the reflector 210.
  • the reflector 210 is formed of a stainless steel material, and when the LED modules 220 and 230 irradiate ultraviolet rays inside the reflector 210, the ultraviolet rays that are not absorbed by the 3D laminate are reflected and re-entered toward the 3D laminate. To shorten the curing time.
  • the reflector 210 is formed in a polygonal shape, it is preferable to reflect it at multiple angles when ultraviolet rays are reflected, so that it can be re-entered into the 3D stack, and the LED modules 220 and 230 are each surface of the reflector 210 It has to be formed so that it can be irradiated with ultraviolet rays in various ways.
  • the LED modules 220 and 230 include a first LED module 220 formed on both sides and a rear surface of the reflector 210, and a second LED module 230 formed on the upper and lower portions of the reflector 210, respectively.
  • the first LED module 220 is located on the left, right, and back sides of the reflector 210 to irradiate ultraviolet rays on the side surfaces of the three-dimensional stacked body, and the second LED module 230 is provided on the upper and lower parts of the reflector 210. Each is positioned to irradiate ultraviolet rays on the upper and lower surfaces of the three-dimensional laminate.
  • the first LED module 220, the LED is formed in the vertical direction, when mounted on the reflector 210, it is possible to irradiate ultraviolet light in the vertical direction of the three-dimensional laminate, the front of the first LED module 220, the reflector ( 210) is formed on the front surface of the support member 222 and the support member 222 to be combined with a light-transmitting plate 221 that diffuses irradiated ultraviolet rays.
  • the light-transmitting plate 221 is made to diffuse the light irradiated from the LED so that ultraviolet rays can be incident on the three-dimensional laminate, and the diffusion lenses are disposed in correspondence to the positions where the LEDs are formed.
  • the support 222 has a first LED module 220 is inserted into the back, and a groove is formed in the front and the rear so that the light-transmitting plate 221 can be inserted in the front, and the center is penetrated to allow the LED to pass through. have.
  • the support 222 is coupled to the outer surface of the reflector 210, it is possible to fix the position of the first LED module 220 and the light emitting plate 221.
  • a diffusion plate 231 is formed between the second LED module 230 and the reflector 210, and the diffusion plate 231 has LEDs.
  • a lens for diffusing the ultraviolet light irradiated from is formed.
  • the support 222 and the diffuser plate 231 transfer heat generated from the first LED module 220 and the second LED module 230 to the reflector 210, so that the first LED module is formed by the reflector 210 having a large area.
  • the 220 and the second LED module 230 can be quickly cooled.
  • the first wavelength and the second wavelength consist of a wavelength band with a high absorbance of the photoinitiator mixed with the resin when the 3D laminate is output from the 3D printer, thereby increasing the curing speed of the photoinitiator by two wavelengths and improving the strength when cured. There will be.
  • Figure 4 is a perspective view showing the back and rear of the ultraviolet light curing device capable of variable UV output according to the state of the three-dimensional laminate according to the present invention
  • Figure 5 is the ultraviolet output according to the state of the three-dimensional laminate according to the present invention It is a plan view showing a path through which air is introduced into a variable UV light curing device.
  • 6 is a side view showing a path through which air is introduced into an ultraviolet light curing device capable of varying an ultraviolet output according to a state of a three-dimensional laminate according to the present invention.
  • the ultraviolet light curing device capable of varying the UV output according to the state of the three-dimensional laminate according to the present invention is formed on the rear surface of the housing 100 and sucks outside air to cure the unit 200 )
  • Cooling fan 130 for cooling and further includes an outlet 140 formed on the lower surface of the housing 100 and cooling air of the curing unit 200 to be discharged in a heated state.
  • the air introduced through 130) is heated while cooling the LED modules 220 and 230 of the curing unit 200, and the heated air is moved to the outlet 140 while being in contact with the three-dimensional stack to open the three-dimensional stack. It is characterized by drying.
  • the cooling fan 130 is formed on the rear surface of the housing 100 and sucks external air into the housing 100 to cool the heat generated from the LED of the curing unit 200, thereby reducing the output of the LED by high temperature. It is formed to prevent things.
  • the air is moved in direct contact with the first LED module 220 and the second LED module 230, absorbs heat from the first LED module 220 and the second LED module 230 by convection heat transfer, and heats the first LED module ( 220) and the second LED module 230 are cooled.
  • the reflector 210 in contact with the first LED module 220 and the second LED module 230 also functions as a heat sink so as to absorb heat generated by the first LED module 220 and the second LED module 230.
  • the area in contact with the reflector 210 is widened, so the speed at which heat can be absorbed increases, so that the first LED module 220 and the second LED module 230 can be cooled more efficiently.
  • a plurality of injection holes 212 are formed in the reflector 210, and air introduced between the housing 100 and the reflector 210 by the cooling fan 130 is supplied to the housing 100 through the injection holes 212. After being sprayed in the direction of the cradle 300 formed in the lower center of the is discharged through the lower portion of the reflector 210 to the outlet 140.
  • the air sucked by the cooling fan 130 is moved between the housing 100 and the reflector 210 to be heated while primarily cooling the first LED module 220 and the second LED module 230 and heated. Air is sprayed toward the center of the mounting plate to dry the three-dimensional laminate.
  • the air is discharged to the outside through the outlet 140 formed in the lower portion of the housing 100 through the injection hole 212 formed in the lower portion of the cradle 300.
  • FIG. 7 is a schematic view showing the overall configuration of an ultraviolet light curing device capable of varying the UV output according to the state of the three-dimensional laminate according to the present invention
  • FIG. 8 is an ultraviolet output according to the state of the three-dimensional laminate according to the present invention
  • It is a graph showing a state in which the output of the ultraviolet light of the variable ultraviolet light curing device is controlled
  • FIG. 9 shows the output of the ultraviolet light of the variable ultraviolet light curing device according to the state of the three-dimensional laminate according to the present invention. This graph shows how to control it.
  • the control unit 600 is isolated in an enclosed space of the housing 100 and is connected to the detection sensor 120, the temperature sensor 400, and the illuminance sensor 500 formed in the housing 100, and the interior of the housing 100. It is possible to collect environmental information, thereby controlling the operation of the rotating motor 310 of the cooling fan 130, the curing unit 200, and the cradle 300 so that curing of the three-dimensional laminate can be efficiently performed. Control.
  • the temperature sensor 400 is formed on the reflective plate 210 of the curing unit 200, as shown in FIG. 3, so that it is possible to continuously measure the surface temperature of the three-dimensional stacked body mounted on the cradle 300.
  • the surface temperature of the three-dimensional laminate may be measured from multiple angles.
  • the curing unit 200 is formed such that a plurality of LED modules 220 and 230 are spaced apart at intervals set in the reflector 210 formed inside the housing 100 and irradiated with ultraviolet rays toward the cradle 300, A plurality of LEDs are spaced at a predetermined interval in one LED module (220, 230).
  • the controller 600 can estimate which LED modules 220 and 230 are irradiated with the output of the ultraviolet light measured by the illuminance sensor 500 using the rotation angle of the rotating motor 310.
  • the UV output emitted from the LED modules 220 and 230 is lowered or excessive, the output of the corresponding LED modules 220 and 230 can be adjusted.
  • control unit 600 Since the control unit 600 is irradiated with ultraviolet rays intensively on the surface of the three-dimensional laminate, the surface temperature is increased by heat generated from the ultraviolet rays, and the temperature rise changes the shape of the three-dimensional laminate or changes the color of the surface. Will be.
  • the control unit 600 When the temperature of the three-dimensional laminate is raised to a set temperature by the temperature sensor 400, the control unit 600 gradually decreases the output amount of each LED module 220 and 230 according to a set time so that the output amount is reduced. By doing so, the temperature of the three-dimensional laminate heated by ultraviolet rays is reduced.
  • the controller 600 may increase the flow rate of the air flowing into the housing 100 by increasing the rotational speed of the cooling fan 130, and the introduced air Since it is discharged to the outside while passing through each of the LED modules 220 and 230 and the 3D stack, it is possible to improve the cooling speed of the 3D stack.
  • the control unit 600 increases the output amount of the LED modules 220 and 230 to cure the 3D stack.
  • the control unit 600 may increase and maintain the output amount of the LED modules 220 and 230 within a range in which the 3D stack is not overheated.
  • control unit 600 uses the PWM (Pulse Width Modulation) method of turning on and off the LED modules 220 and 230 of the curing unit 200 for a set time, and then the LED modules 220 and 230. It characterized in that to control the UV output.
  • PWM Pulse Width Modulation
  • the LED modules 220 and 230 can be irradiated with ultraviolet rays to the 3D stacked body while being turned on only for a time set by the control unit 600 and then turned off for a set time, in which case UV light is continuously irradiated to the 3D stacked body. Because it is not, the three-dimensional laminate can be cooled for a short time, thereby preventing heating.
  • FIG. 9 it is formed to be turned on or off in units of 100 ms, but such a cycle may be changed according to the composition of the three-dimensional laminate, and when the temperature increases due to the heating of the three-dimensional laminate, the LED modules 220, 230 ).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

The present invention relates to an ultraviolet light curing apparatus having a changeable ultraviolet-ray output according to condition of a three-dimensional laminate and comprises: a housing having an empty inside and a front surface formed to be openable or closable by a door; a holder formed on a lower portion of the inside of the housing and formed to allow the 3-dimensional laminate to be held on the holder; a curing unit, which is formed on the inner side surface of the housing and emits an ultraviolet-ray onto the outer surface of the three-dimensional laminate to cure the three-dimensional laminate; and a control unit for controlling an output amount or an output pattern of the ultraviolet-ray emitted from the curing unit.

Description

3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치Ultraviolet light curing device capable of variable UV output depending on the state of the 3D laminate
본 발명은 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치에 관한 것으로서, 3D 프린터로 출력된 3차원 적층체를 경화시킬 때 온도 변화에 따른 열변형 또는 변색이 발생되지 않도록 방지하고 강도 및 수축률을 향상시킬 수 있는 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치에 관한 것이다.The present invention relates to an ultraviolet light curing device capable of varying the UV output depending on the state of the three-dimensional laminate, and prevents thermal deformation or discoloration due to temperature changes when curing the three-dimensional laminate output to a 3D printer. And it relates to an ultraviolet light curing device capable of varying the UV output depending on the state of the three-dimensional laminate can improve the strength and shrinkage.
차세대 정밀 가공 기술로 각광받는 3D 프린팅 기술은 재료를 용융시킨 상태에서 X축, Y축, Z축 방향으로 재료를 분사함으로써 설정된 모양대로 적층시켜 3차원 물체를 제작하는 기술을 말한다.The 3D printing technology, which is spotlighted as the next-generation precision processing technology, refers to a technology for producing a three-dimensional object by laminating in a set shape by spraying materials in the X-axis, Y-axis, and Z-axis directions while the material is melted.
이러한 3D 프린팅 기술은 통상 2차원 단면을 연속적으로 재구성하여 용융된 재료를 한 층씩 인쇄하면서 적층하여 3차원 적층체를 생성하며, 3차원 적층체는 용융된 재료로 만들어졌기 때문에 이를 경화시켜 모양이 고정되도록 하는 경화 공정이 반드시 필요하다.This 3D printing technique usually reconstructs a two-dimensional cross-section continuously to produce a three-dimensional laminate by laminating while printing the molten material layer by layer, and since the three-dimensional laminate is made of molten material, it is hardened to fix the shape. A curing process is essential.
일반적으로 경화를 위한 수단으로 열(Fused Deposition Modeling: FDM), 레이저(Selective lasersintering: SLS), UV 광(Stereolithography Apparatus: SLA, Digital Light Processing: DLP)을 이용한 방식이 통상적으로 이용되고 있다.In general, a method using heat (Fused Deposition Modeling: FDM), laser (Selective lasersintering: SLS), UV light (Stereolithography Apparatus: SLA, Digital Light Processing: DLP) is commonly used as a means for curing.
그러나 열을 이용한 재료 경화 방식은 재료 경화 과정에 지지대가 필수적으로 요구되며 생산 과정에서의 소요 시간이 크게 발생하고, 레이저를 이용한 재료 경화 방식은 레이저 발생을 위한 넓은 작업 공간이 요구되며 공정 비용에 대한 부담이 크게 발생한다는 문제점이 있었다.However, in the material curing method using heat, a support is essential in the material curing process, and the time required in the production process is large, and the material curing method using a laser requires a large work space for laser generation and the process cost There was a problem that the burden was large.
이에 따라 생산 소요 시간 및 생산 유지비에 대한 부담이 상대적으로 덜하며 고품질의 출력물 획득이 가능한 UV(Ultraviolet)를 이용한 재료 경화 방식이 선호되고 있다.Accordingly, a material curing method using UV (Ultraviolet) capable of obtaining a high-quality output is preferred because the burden on production time and production maintenance cost is relatively less.
그러나 상기와 같은 자외선 경화방식은 UV램프를 사용하게 되는데, UV램프의 발광시 발생하는 고열로 인해 경화가 제대로 이루어지지 못하는 문제점이 있었다.However, the UV curing method uses a UV lamp as described above, but there is a problem in that curing is not properly performed due to high heat generated when the UV lamp emits light.
이러한 문제점을 해결하기 위한 한국특허 공개번호 제10-2015-0066898호는 UV-LED모듈을 이용한 경화장치에 관한 것으로서, 경화 대상물 또는 노광 대상물을 이송시키는 이송부, 상기 이송부의 이송 경로상에 배치되고, 상기 이송부를 통해 이송되는 경화대상물을 경화시키거나 또는 노광대상물에 패턴을 형성시키는 본체부를 포함하여 구성하고, 상기 본체부내의 상면에는 상기 본체부를 통과하는 경화대상물 또는 노광대상물의 평면상에 UV광원을 조사하도록 제 1 UV-LED와 제 1 기판으로 이루어진 제 1 광원모듈이 탑재된 제 1 광원본체를 배치 구성하며, 상기 본체부내의 하단측 양측면에는 상기 본체부를 통과하는 경화대상물의 에지부에 UV광원을 조사하도록 제 2UV-LED와 제 2 기판으로 이루어진 제 2 광원모듈이 탑재된 제 2 광원본체를 배치 구성하고, 상기 제 1,2 광원본체에는 각각 UV광원을 조사하는 상기 제 1,2 UV-LED에서 발생하는 열을 방열시키도록 히트파이프로 이루어진 방열부를 적어도 하나 이상 배치하여 구성하는 것을 특징으로 한다.Korean Patent Publication No. 10-2015-0066898 for solving such a problem relates to a curing device using a UV-LED module, which is disposed on a transport path for transporting a curing object or an exposure object, and on the transport path of the transport unit, It comprises a body part that hardens the object to be cured to be transported through the transfer part or forms a pattern on the object to be exposed, and an upper surface inside the body part is provided with a UV light source on the surface of the object to be cured or the object to be exposed passing through the body part A first light source main body mounted with a first light source module made of a first UV-LED and a first substrate is arranged to be irradiated, and UV light sources are provided on both side surfaces of the lower end of the main body part to pass through the main body. A second light source main body, in which a second light source module made of a second UV-LED and a second substrate is mounted, is arranged to irradiate the first and second UV-lights respectively irradiating a UV light source to the first and second light source bodies. Characterized in that at least one heat dissipation unit made of a heat pipe is arranged to dissipate heat generated from the LEDs.
그러나 상기와 같은 종래기술의 경우 주로 2차원 평면으로 이루어진 휴대폰, 태블릿, 카메라모듈, 광학시트, 케이스 등에 합착시키기 위해 사용되는 것으로 3차원으로 이루어진 적층체의 외면에 자외선을 고루 조사하지 못한다는 문제점이 있었다.However, in the case of the prior art as described above, it is mainly used for bonding to a mobile phone, a tablet, a camera module, an optical sheet, a case made of a two-dimensional plane, and the problem of not being able to uniformly irradiate ultraviolet rays on the outer surface of a three-dimensional laminate. there was.
또한 상기와 같은 종래기술의 경우 경화 대상물에 지속적으로 자외선이 조사되면서 자외선에 의해 발생되는 열에 의해 외형이 변형되거나 표면의 색상이 변색되는 문제점이 있었다.In addition, in the case of the prior art as described above, there is a problem in that the external appearance is deformed or the color of the surface is discolored by heat generated by ultraviolet rays while the ultraviolet light is continuously irradiated to the object to be cured.
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 3차원 적층체가 경화될 때 자외선에 의한 표면 온도에 따라 자외선의 출력을 제어하여 열변형 및 변색을 방지할 수 있는 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치를 제공하는 것이다.The object of the present invention for solving the above problems is to control the output of the ultraviolet light according to the surface temperature caused by ultraviolet light when the three-dimensional laminated body is cured, depending on the state of the three-dimensional laminated body to prevent thermal deformation and discoloration. It is to provide a UV light curing device capable of variable UV output.
또한 본 발명의 다른 목적은 3차원 적층체의 외면에 자외선을 고루 조사하여 3차원 적층체의 강도 및 수축률을 향상시킬 수 있는 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치를 제공하는 것이다.In addition, another object of the present invention is an ultraviolet light curing device capable of varying the UV output depending on the state of the three-dimensional laminate that can improve the strength and shrinkage of the three-dimensional laminate by evenly irradiating ultraviolet rays on the outer surface of the three-dimensional laminate. Is to provide.
또한 본 발명의 다른 목적은 다수의 LED를 이용하여 이종 파장으로 이루어진 자외선을 조사함으로써 3차원 적층체를 경화시키는 시간을 감소시키고 경화성능을 높일 수 있는 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치를 제공하는 것이다.In addition, another object of the present invention is to irradiate ultraviolet rays made of different wavelengths using a plurality of LEDs to reduce the time to cure the 3D laminate and to increase the curing performance, the UV output variable according to the state of the 3D laminate. It is possible to provide an ultraviolet light curing device.
또한 본 발명의 다른 목적은 LED가 일정한 파장으로 자외선을 조사하도록 냉각시키면서 3차원 적층체의 외면의 알코올을 증발시켜 건조할 수 있는 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치를 제공하는 것이다.In addition, another object of the present invention is an ultraviolet light curing device capable of varying the UV output according to the state of a three-dimensional laminate capable of evaporating and drying the alcohol on the outer surface of the three-dimensional laminate while the LED is cooled to irradiate ultraviolet rays at a constant wavelength. Is to provide
상기 과제를 해결하기 위한 본 발명의 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치는 내부가 비어 있고 전면에는 도어를 통해 개폐될 수 있도록 형성된 하우징과, 상기 하우징의 내측 하부에 형성되며 3차원 적층체가 거치될 수 있도록 형성되는 거치대와, 상기 하우징의 내측면에 형성되며 상기 3차원 적층체의 외면에 자외선을 조사하여 경화시키는 경화유닛과, 상기 경화유닛에서 조사되는 자외선의 출력량 또는 출력패턴을 제어하는 제어부를 포함하는 것을 특징으로 한다.In order to solve the above problems, the ultraviolet light curing device capable of varying the UV output according to the state of the three-dimensional laminate of the present invention has a hollow interior and a housing formed to be opened and closed through a door on the front side, and an inner lower side of the housing. Formed and formed to allow the three-dimensional laminate to be mounted, the curing unit is formed on the inner surface of the housing and irradiated with ultraviolet rays on the outer surface of the three-dimensional laminate, and the amount of UV light emitted from the curing unit Or it characterized in that it comprises a control unit for controlling the output pattern.
또한 본 발명의 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치는 상기 하우징의 내측면에 형성되며 상기 3차원 적층체의 표면 온도를 감지 및 측정하는 온도센서를 더 포함하는 것을 특징으로 한다.In addition, the ultraviolet light curing device capable of varying the UV output according to the state of the three-dimensional laminate of the present invention is formed on the inner surface of the housing and further comprises a temperature sensor for sensing and measuring the surface temperature of the three-dimensional laminate It is characterized by.
또한 본 발명의 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치의 상기 제어부는 상기 온도센서에 의해 측정된 온도가 상기 3차원 적층체의 변형 온도에 도달하면 상기 경화유닛의 출력량을 감소시키거나 설정된 시간 간격으로 상기 경화유닛을 ON, OFF시켜 상기 3차원 적층체의 표면 온도가 감소되도록 하는 것을 특징으로 한다.In addition, the control unit of the ultraviolet light curing device capable of varying the UV output according to the state of the three-dimensional laminate of the present invention, the output amount of the curing unit when the temperature measured by the temperature sensor reaches the deformation temperature of the three-dimensional laminate It is characterized in that the surface temperature of the three-dimensional laminate is reduced by reducing or by turning the curing unit ON and OFF at a set time interval.
또한 본 발명의 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치의 상기 경화유닛은 자외선을 조사하기 위해 다수의 LED가 형성된 LED모듈과, 상기 하우징 내측면에 형성되며 상기 LED모듈을 지지하고, 상기 LED모듈에서 조사된 후 반사되는 자외선을 상기 3차원 적층체로 재입사될 수 있도록 난반사시키는 반사판으로 이루어지며, 상기 반사판은 다각도로 형성되어 있어 자외선의 반사율을 높이는 것을 특징으로 한다.In addition, the curing unit of the ultraviolet light curing device capable of varying the UV output according to the state of the three-dimensional laminate of the present invention is a LED module formed with a plurality of LEDs for irradiating ultraviolet rays, and the LED module formed on the inner surface of the housing It is made of a reflector that reflects the ultraviolet rays reflected after being irradiated from the LED module so that they can be re-entered into the three-dimensional stacked body, and the reflector is formed at multiple angles to increase reflectance of ultraviolet rays.
또한 본 발명의 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치의 상기 경화유닛은 자외선을 조사하기 위한 다수의 LED모듈을 더 포함하며, 상기 LED모듈에는 자외선 파장이 385nm인 LED와, 405nm인 LED가 순차적으로 형성되어 있어 상기 3차원 적층체에 이종 파장을 동시에 조사하는 것을 특징으로 한다.In addition, the curing unit of the ultraviolet light curing device capable of varying the UV output according to the state of the three-dimensional laminate of the present invention further includes a plurality of LED modules for irradiating ultraviolet rays, wherein the LED module has a UV wavelength of 385nm And, it is characterized in that the 405nm LED is sequentially formed to irradiate heterogeneous wavelengths to the three-dimensional laminate at the same time.
또한 본 발명의 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치는 상기 거치대에 형성되며 상기 경화유닛에서 조사되는 자외선의 출력량을 측정하는 조도센서를 더 포함하는 것을 특징으로 한다.In addition, the ultraviolet light curing device capable of varying the UV output depending on the state of the three-dimensional laminate of the present invention is further characterized in that it further comprises an illuminance sensor that is formed on the cradle and measures the amount of UV light emitted from the curing unit.
또한 본 발명의 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치의 상기 경화유닛은 상기 하우징 내측면에 설정된 간격으로 형성되는 다수의 LED모듈을 더 포함하며, 상기 거치대는 상기 3차원 적층체의 외면에 상기 자외선이 고루 조사되도록 동력에 의해 회전되도록 형성되고, 상기 조도센서는 상기 거치대를 따라 회전되면서 각각의 상기 LED모듈에서 조사되는 출력량을 측정하는 것을 특징으로 한다.In addition, the curing unit of the ultraviolet light curing device capable of varying the UV output according to the state of the three-dimensional laminate of the present invention further includes a plurality of LED modules formed at a predetermined interval on the inner surface of the housing, the holder is the 3 The outer surface of the dimensional stacked body is formed to be rotated by power so that the ultraviolet rays are evenly irradiated, and the illuminance sensor is rotated along the cradle to measure the amount of light emitted from each LED module.
상술한 바와 같이, 본 발명에 따른 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치에 의하면 3차원 적층체가 경화될 때 자외선에 의한 표면 온도에 따라 자외선의 출력을 제어하여 열변형 및 변색을 방지할 수 있는 효과가 있다.As described above, according to the state of the three-dimensional laminate according to the present invention, according to the state of the ultraviolet light curing device capable of varying the ultraviolet output, when the three-dimensional laminate is cured, heat is deformed by controlling the output of ultraviolet rays according to the surface temperature caused by ultraviolet rays And it has an effect that can prevent discoloration.
또한 본 발명에 따른 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치에 의하면 3차원 적층체의 외면에 자외선을 고루 조사하여 3차원 적층체의 강도 및 수축률을 향상시킬 수 있는 효과가 있다.In addition, according to the state of the three-dimensional laminate according to the present invention, according to the ultraviolet light curing device capable of varying the UV output, it is possible to uniformly irradiate ultraviolet rays on the outer surface of the three-dimensional laminate to improve the strength and shrinkage of the three-dimensional laminate There is.
또한 본 발명에 따른 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치에 의하면 다수의 LED를 이용하여 이종 파장으로 이루어진 자외선을 조사함으로써 3차원 적층체를 경화시키는 시간을 감소시키고 경화성능을 높일 수 있는 효과가 있다.In addition, according to the state of the three-dimensional laminate according to the present invention, the ultraviolet light curing device capable of varying the UV output can reduce the time for curing the three-dimensional laminate by irradiating ultraviolet rays having different wavelengths using a plurality of LEDs and curing It has the effect of increasing performance.
또한 본 발명에 따른 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치에 의하면 LED가 일정한 파장으로 자외선을 조사하도록 냉각시키면서 3차원 적층체의 외면의 알코올을 증발시켜 건조할 수 있는 효과가 있다.In addition, according to the state of the three-dimensional laminate according to the present invention, according to the ultraviolet light curing device capable of varying the UV output, the LED is cooled to irradiate ultraviolet light at a constant wavelength while evaporating the alcohol on the outer surface of the three-dimensional laminate to dry it. It works.
도 1은 종래 기술인 UV-LED모듈을 이용한 경화장치를 나타낸 사시도.1 is a perspective view showing a curing device using a UV-LED module of the prior art.
도 2는 본 발명에 따른 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치의 전면을 나타낸 사시도.Figure 2 is a perspective view showing the front of the ultraviolet light curing device capable of variable UV output according to the state of the three-dimensional laminate according to the present invention.
도 3은 본 발명에 따른 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치의 경화유닛을 분리시켜 나타낸 분해도.Figure 3 is an exploded view showing the separation of the curing unit of the ultraviolet light curing device capable of variable UV output according to the state of the three-dimensional laminate according to the present invention.
도 4는 본 발명에 따른 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치의 후면 및 배면을 나타낸 사시도.Figure 4 is a perspective view showing the back and rear of the ultraviolet light curing device capable of variable UV output according to the state of the three-dimensional laminate according to the present invention.
도 5는 본 발명에 따른 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치의 내부에 공기가 유입되는 경로를 나타낸 평면도.5 is a plan view showing a path through which air is introduced into an ultraviolet light curing apparatus capable of varying an ultraviolet output according to a state of a three-dimensional laminate according to the present invention.
도 6은 본 발명에 따른 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치의 내부에 공기가 유입되는 경로를 나타낸 측면도.Figure 6 is a side view showing a path through which air flows into the interior of the ultraviolet light curing device capable of variable UV output according to the state of the three-dimensional laminate according to the present invention.
도 7은 본 발명에 따른 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치의 전체적인 구성을 나타낸 구성도.7 is a block diagram showing the overall configuration of an ultraviolet light curing device capable of variable UV output according to the state of the three-dimensional laminate according to the present invention.
도 8은 본 발명에 따른 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치의 자외선의 출력이 제어되는 모습을 나타낸 그래프.8 is a graph showing a state in which the output of ultraviolet light is controlled by the ultraviolet light curing device capable of varying the ultraviolet light output according to the state of the three-dimensional laminate according to the present invention.
도 9는 본 발명에 따른 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치의 자외선의 출력을 PWM제어하는 모습을 나타낸 그래프.9 is a graph showing a state of PWM control of the output of the ultraviolet light of the ultraviolet light curing device capable of varying the ultraviolet output according to the state of the three-dimensional laminate according to the present invention.
100 : 하우징100: housing
110 : 도어110: door
111 : 내부확인창111: internal confirmation window
120 : 감지센서120: detection sensor
130 : 냉각팬130: cooling fan
140 : 배출구140: outlet
200 : 경화유닛200: curing unit
210 : 반사판210: reflector
211 : 입사홀211: entrance hall
212 : 분사홀212: spray hole
220 : 제1LED모듈220: 1st LED module
221 : 투광판221: floodlight
222 : 지지구222: support
230 : 제2LED모듈230: 2nd LED module
231 : 확산판231: diffuser plate
300 : 거치대300: cradle
310 : 회전모터310: rotating motor
400 : 온도센서400: temperature sensor
500 : 조도센서500: Illuminance sensor
600 : 제어부600: control unit
본 발명의 구체적 특징 및 이점들은 이하에서 첨부도면을 참조하여 상세히 설명한다. 이에 앞서 본 발명에 관련된 기능 및 그 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 구체적인 설명을 생략하기로 한다.Specific features and advantages of the present invention will be described in detail below with reference to the accompanying drawings. Prior to this, when it is determined that the detailed description of the functions and configurations related to the present invention may unnecessarily obscure the subject matter of the present invention, the detailed description will be omitted.
본 발명은 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치에 관한 것으로서, 3D 프린터로 출력된 3차원 적층체를 경화시킬 때 온도 변화에 따른 열변색 또는 변색이 발생되지 않도록 방지하고 강도 및 수축률을 향상시킬 수 있는 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치에 관한 것이다.The present invention relates to an ultraviolet light curing device capable of varying the UV output depending on the state of the three-dimensional laminate, and prevents heat discoloration or discoloration due to temperature changes when curing the three-dimensional laminate output to a 3D printer. And it relates to an ultraviolet light curing device capable of varying the UV output depending on the state of the three-dimensional laminate can improve the strength and shrinkage.
이하, 본 발명의 바람직한 실시 예를 첨부한 도면을 참고로 상세하게 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 2는 본 발명에 따른 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치의 전면을 나타낸 사시도이다.Figure 2 is a perspective view showing the front of the ultraviolet light curing device capable of variable UV output according to the state of the three-dimensional laminate according to the present invention.
도 2에 도시된 바와 같이, 본 발명에 따른 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치는 내부가 비어 있고 전면에는 도어(110)를 통해 개폐될 수 있도록 형성된 하우징(100)과, 하우징(100)의 내측 하부에 형성되며 3차원 적층체가 거치될 수 있도록 형성되는 거치대(300)와, 하우징(100)의 내측면에 형성되며 3차원 적층체의 외면에 자외선을 조사하여 경화시키는 경화유닛(200)을 포함하는 것을 특징으로 한다.As shown in FIG. 2, the ultraviolet light curing device capable of varying the UV output according to the state of the three-dimensional laminate according to the present invention has an empty interior and a housing 100 formed to be opened and closed through the door 110 on the front side. ), the housing 300 is formed on the inner lower portion of the housing 100 is formed to be mounted to the three-dimensional laminate, and is formed on the inner surface of the housing 100 by irradiating ultraviolet rays on the outer surface of the three-dimensional laminate Characterized in that it comprises a curing unit 200 for curing.
또한 거치대(300)는 3차원 적층체가 거치되면 3차원 적층체를 회전 및 틸팅시켜 경화유닛(200)으로부터 조사되는 자외선의 입사량을 증가시키는 것을 특징으로 한다.In addition, the cradle 300 is characterized in that when the three-dimensional laminate is mounted, the amount of ultraviolet rays emitted from the curing unit 200 is increased by rotating and tilting the three-dimensional laminate.
하우징(100)은 경화유닛(200)과 거치대(300)를 수용할 수 있도록 내부가 비어 있으며, 전면은 개구된 후 하우징(100) 내부에 3D 프린터로 출력된 3차원 적층체를 하우징(100) 내부에 인입시킬 수 있도록 도어(110)가 형성되어 있다.The housing 100 is empty to accommodate the curing unit 200 and the cradle 300, and the front surface is opened, and then the housing 100 houses the three-dimensional stacked body output to the 3D printer inside the housing 100. The door 110 is formed so as to be introduced therein.
도어(110)는 하우징(100)의 일측에서 회동될 수 있도록 형성되어 있어 하우징(100)의 전면을 개폐할 수 있게 되며, 하우징(100)의 전면 상부에는 전원버튼, 동작버튼, 시간설정버튼과 함께 동작 및 시간을 나타내는 디스플레이가 형성되어 있다. Door 110 is formed so as to be rotated on one side of the housing 100 to open and close the front of the housing 100, the upper portion of the housing 100, the power button, operation button, time setting button and Together, a display showing the operation and time is formed.
경화유닛(200)은 하우징(100)의 내측면에 형성되어 있으며, 거치대(300)에 거치된 3차원 적층체의 상, 하, 좌, 우, 후면 방향에서 자외선을 조사함으로써 3차원 적층체를 경화시키게 된다.Curing unit 200 is formed on the inner surface of the housing 100, the three-dimensional laminate by irradiating ultraviolet rays in the upper, lower, left, right, rear direction of the three-dimensional laminate mounted on the cradle 300 It hardens.
거치대(300)는 하우징(100)의 내측 하부면에 형성되어 있으며 도 6의 회전모터(310)에 의해 회전될 수 있어, 상부에 3차원 적층체가 거치되면 3차원 적층체가 거치대(300)에 의해 회전되면서 경화유닛(200)에 의해 3차원 적층체의 모든 면에 자외선이 조사될 수 있게 한다.The cradle 300 is formed on the inner lower surface of the housing 100 and can be rotated by the rotating motor 310 of FIG. 6, so that the 3D laminate is mounted by the cradle 300 when the 3D laminate is mounted on the top. As it rotates, ultraviolet rays can be irradiated to all surfaces of the three-dimensional laminate by the curing unit 200.
또한 거치대(300)는 회전과 동시에 틸팅이 가능하여 3차원 적층체를 설정된 각도로 기울일 수도 있으며, 틸팅된 상태에서 거치대(300)가 회전되어 복잡한 형상으로 된 3차원 적층체도 사각지대 없이 자외선이 조사될 수 있게 된다.In addition, the cradle 300 can be tilted simultaneously with rotation, so that the three-dimensional stack can be tilted at a set angle, and the cradle 300 is rotated in a tilted state, and the three-dimensional stack of a complex shape is irradiated with ultraviolet rays without blind spots. It becomes possible.
이때 틸팅된 상태에서 3차원 적층체가 거치대(300)의 상부면에서 미끄러지지 않도록 거치대(300)의 상부면에는 다수의 돌기 또는 거치단이 형성되어 있는 것이 바람직하며 거치대(300)는 투명하게 형성되어 있어 하우징(100)의 하부면에서 조사되는 자외선이 거치대(300)를 통과하여 3차원 적층체로 입사될 수 있도록 하는 것이 바람직하다.At this time, in the tilted state, it is preferable that a plurality of protrusions or mounts are formed on the upper surface of the mount 300 so that the 3D stack does not slip on the upper surface of the mount 300, and the mount 300 is transparently formed. It is preferable to allow ultraviolet rays irradiated from the lower surface of the housing 100 to pass through the cradle 300 and enter the 3D laminate.
이를 통해 복잡한 형상으로 된 3차원 적층체를 경화시킬 때 사각지대 없이 모든 면에 자외선이 조사될 수 있게 된다.This makes it possible to irradiate ultraviolet rays on all surfaces without blind spots when curing a three-dimensional laminate having a complicated shape.
또한 하우징(100)의 전면에 형성되며 도어(110)의 개폐상태를 확인하여, 도어(110)의 개폐유무에 따라 경화유닛(200)에 전원을 공급하거나 차단하는 감지센서(120)를 더 포함하는 것을 특징으로 한다.In addition, it is formed on the front of the housing 100 and further includes a detection sensor 120 that checks the opening/closing state of the door 110 to supply or block power to the curing unit 200 depending on whether the door 110 is opened or closed. It is characterized by.
감지센서(120)는 도어(110)의 개폐상태를 확인하기 위한 것으로 마그네틱을 센서로 이루어져 있으며, 도어(110)를 하우징(100) 전면에 밀착되도록 닫으면 도어(110) 내측면에 형성된 자석이 감지센서(120)에 밀착되면서 감지센서(120)가 하우징(100) 내부에 전원을 공급하는 스위칭 역할을 하게 된다.The detection sensor 120 is for checking the opening/closing state of the door 110, and consists of a magnetic sensor. When the door 110 is closed to close to the front of the housing 100, a magnet formed on the inner surface of the door 110 is detected. As it is in close contact with the sensor 120, the detection sensor 120 serves as a switching function that supplies power to the housing 100.
즉, 도어(110)가 닫힌 상태에서만 감지센서(120)에 의해 하우징(100) 내부에 전원이 공급되어 경화유닛(200) 및 거치대(300)가 동작되게 되며, 도어(110)가 열리게 되면 감지센서(120)에 의해 하우징(100) 내부 전원이 차단되어 경화유닛(200)과 거치대(300)의 동작이 정지되게 된다.That is, only when the door 110 is closed, power is supplied inside the housing 100 by the detection sensor 120 to operate the curing unit 200 and the cradle 300, and when the door 110 is opened, detection is performed. The internal power of the housing 100 is cut off by the sensor 120 so that the operation of the curing unit 200 and the cradle 300 is stopped.
따라서 도어(110)가 열린 상태에서 경화유닛(200)에 의해 조사되는 자외선이 외부로 조사되지 않도록 방지할 수 있으며, 경화 중에 도어(110)를 여는 경우 전원이 차단되어 사용자의 피부나 눈에 자외선이 조사되지 않도록 방지할 수 있다.Therefore, when the door 110 is opened, ultraviolet rays irradiated by the curing unit 200 may be prevented from being irradiated to the outside, and when the door 110 is opened during curing, power is cut off and ultraviolet rays are irradiated to the user's skin or eyes. This can be prevented from being irradiated.
또한 도어(110)에는 3차원 적층체의 경화상태를 확인할 수 있도록 내부확인창(111)이 형성되어 있으며, 내부확인창(111)은 자외선이 외부로 노출되지 않도록 자외선차단필터가 형성되어 있는 것을 특징으로 한다.In addition, the door 110 is provided with an internal confirmation window 111 to check the curing state of the three-dimensional laminate, and the internal confirmation window 111 is formed with an ultraviolet blocking filter to prevent exposure of ultraviolet rays to the outside. It is characterized by.
내부확인창(111)은 하우징(100) 내부에서 경화유닛(200)에 의해 경화되고 있는 3차원 적층체의 상태를 확인하기 위한 것으로, 도어(110)의 전면에서 후면으로 관통되도록 형성되어 있다.The internal confirmation window 111 is for confirming the state of the three-dimensional laminate being cured by the curing unit 200 inside the housing 100, and is formed to penetrate from the front to the rear of the door 110.
또한 내부확인창(111)에는 하우징(100) 내부에서 경화유닛(200)에 의해 조사되는 자외선을 차단하기 위한 자외선차단필터가 형성되어 있으며, 자외선차단필터에 의해 사용자는 자외선의 노출 염려 없이 하우징(100) 내부에서 경화되는 3차원 적층체를 확인할 수 있게 된다.In addition, in the interior confirmation window 111, a UV blocking filter is formed inside the housing 100 to block UV rays irradiated by the curing unit 200, and the UV blocking filter allows the user to use the housing without fear of exposure to UV rays. 100) It is possible to confirm the three-dimensional laminate cured from the inside.
도 3은 본 발명에 따른 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치의 경화유닛(200)을 분리시켜 나타낸 분해도이다.Figure 3 is an exploded view showing the separation of the curing unit 200 of the ultraviolet light curing device capable of variable UV output according to the state of the three-dimensional laminate according to the present invention.
도 3에 도시된 바와 같이, 본 발명에 따른 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치의 경화유닛(200)은 3차원 적층체의 외면을 향해 자외선을 조사할 수 있도록 형성된 다수의 LED모듈과, 3차원 적층체의 상부, 하부, 좌측, 우측, 후면에 형성되고 LED모듈에서 조사되는 자외선을 반사시켜 3차원 적층재로 재입사되도록 하는 반사판(210)으로 이루어지는 것을 특징으로 한다.As shown in Figure 3, the curing unit 200 of the ultraviolet light curing device capable of varying the UV output according to the state of the three-dimensional laminate according to the present invention so as to irradiate ultraviolet light toward the outer surface of the three-dimensional laminate Characterized in that it consists of a plurality of LED modules formed, and a reflector 210 formed on the upper, lower, left, right, and rear surfaces of the three-dimensional laminate and reflecting the ultraviolet light emitted from the LED module to re-enter the three-dimensional laminate. Is done.
LED모듈(220, 230)은 3차원 적층체의 상부, 하부, 좌측, 우측, 후면에서 자외선을 조사할 수 있도록 다수 개로 형성되어 있으며, 각각의 LED모듈(220, 230)은 반사판(210)에 부착되어 고정되게 된다.The LED modules 220 and 230 are formed in a plurality so as to irradiate ultraviolet rays from the upper, lower, left, right, and rear sides of the three-dimensional stacked body, and each of the LED modules 220 and 230 is attached to the reflector 210. It is attached and fixed.
이때 반사판(210)은 전면이 개구되어 있어 전면으로 3차원 적층체를 인입시킬 수 있게 되며, 전면을 제외한 면에는 LED모듈(220, 230)이 형성되어 있어 3차원 적층체를 향해 자외선을 조사할 수 있도록 형성된다.At this time, the front surface of the reflector 210 is opened so that a 3D stack can be drawn into the front surface, and LED modules 220 and 230 are formed on the surface except the front surface to irradiate ultraviolet light toward the 3D stack. Is formed to help.
또한 반사판(210)은 도 2의 하우징(100) 내측면으로부터 이격되도록 형성되고, 하우징(100)과 반사판(210) 사이의 공간에 LED모듈(220, 230)이 위치되며, 반사판(210)의 각 면에는 관통되는 입사홀(211)이 형성되어 있어 LED모듈(220, 230)이 반사판(210) 내부로 자외선을 조사할 수 있게 된다.In addition, the reflector 210 is formed to be spaced from the inner surface of the housing 100 of FIG. 2, the LED modules 220 and 230 are positioned in a space between the housing 100 and the reflector 210, and the reflector 210 The incident holes 211 penetrating each surface are formed, so that the LED modules 220 and 230 can irradiate ultraviolet rays into the reflector 210.
반사판(210)은 스테인리스 재질로 형성되어 있어 LED모듈(220, 230)이 반사판(210) 내부에 자외선을 조사할 때 3차원 적층체에 흡수되지 않은 자외선을 반사시켜 3차원 적층체를 향해 재입사시켜 경화시간을 단축시킬 수 있게 된다.The reflector 210 is formed of a stainless steel material, and when the LED modules 220 and 230 irradiate ultraviolet rays inside the reflector 210, the ultraviolet rays that are not absorbed by the 3D laminate are reflected and re-entered toward the 3D laminate. To shorten the curing time.
즉, 반사판(210)은 다각형으로 형성되어 있어 자외선이 반사되면 다각도로 반사되어 3차원 적층체에 재입사될 수 있도록 하는 것이 바람직하며, LED모듈(220, 230)은 반사판(210)의 각 면에 형성되어 있어 다양한 방면에서 자외선을 조사할 수 있도록 하여야 한다.That is, since the reflector 210 is formed in a polygonal shape, it is preferable to reflect it at multiple angles when ultraviolet rays are reflected, so that it can be re-entered into the 3D stack, and the LED modules 220 and 230 are each surface of the reflector 210 It has to be formed so that it can be irradiated with ultraviolet rays in various ways.
LED모듈(220, 230)은 반사판(210)의 양측면과 후면에 각각 형성되는 제1LED모듈(220)과, 반사판(210)의 상부와 하부에 각각 형성되는 제2LED모듈(230)로 이루어져 있다.The LED modules 220 and 230 include a first LED module 220 formed on both sides and a rear surface of the reflector 210, and a second LED module 230 formed on the upper and lower portions of the reflector 210, respectively.
제1LED모듈(220)은 반사판(210)의 좌측, 우측, 후면에 각각 위치되어 3차원 적층체의 측면에 자외선을 조사하게 되고, 제2LED모듈(230)은 반사판(210)의 상부와 하부에 각각 위치되어 3차원 적층체의 상부면과 하부면에 자외선을 조사하게 된다.The first LED module 220 is located on the left, right, and back sides of the reflector 210 to irradiate ultraviolet rays on the side surfaces of the three-dimensional stacked body, and the second LED module 230 is provided on the upper and lower parts of the reflector 210. Each is positioned to irradiate ultraviolet rays on the upper and lower surfaces of the three-dimensional laminate.
이때 제1LED모듈(220)은 LED가 세로 방향으로 형성되어 있어 반사판(210)에 장착되면 3차원 적층체의 세로 방향으로 자외선을 조사할 수 있게 되며, 제1LED모듈(220)의 전면에는 반사판(210)과 결합될 수 있도록 하는 지지구(222)와, 지지구(222)의 전면에 형성되며 조사되는 자외선을 확산시키는 투광판(221)이 형성되게 된다.At this time, the first LED module 220, the LED is formed in the vertical direction, when mounted on the reflector 210, it is possible to irradiate ultraviolet light in the vertical direction of the three-dimensional laminate, the front of the first LED module 220, the reflector ( 210) is formed on the front surface of the support member 222 and the support member 222 to be combined with a light-transmitting plate 221 that diffuses irradiated ultraviolet rays.
투광판(221)은 LED에서 조사되는 빛을 확산시켜 3차원 적층체에 자외선이 입사될 수 있도록 하기 위한 것으로 투명하게 형성되어 있으며 LED가 형성된 위치에 대응되어 확산렌즈가 각각 배치되어 있다.The light-transmitting plate 221 is made to diffuse the light irradiated from the LED so that ultraviolet rays can be incident on the three-dimensional laminate, and the diffusion lenses are disposed in correspondence to the positions where the LEDs are formed.
지지구(222)는 후면에는 제1LED모듈(220)이 삽입되고 전면에는 투광판(221)이 삽입될 수 있도록 전면과 후면에 각각 홈이 형성되어 있으며, LED가 통과될 수 있도록 중앙이 관통되어 있다.The support 222 has a first LED module 220 is inserted into the back, and a groove is formed in the front and the rear so that the light-transmitting plate 221 can be inserted in the front, and the center is penetrated to allow the LED to pass through. have.
또한 지지구(222)는 반사판(210)의 외면에 결합되어 제1LED모듈(220)과 투광판(221)의 위치를 고정시킬 수 있게 된다.In addition, the support 222 is coupled to the outer surface of the reflector 210, it is possible to fix the position of the first LED module 220 and the light emitting plate 221.
제2LED모듈(230)은 반사판(210)의 상부와 하부에서 형성되어 있으며 원형 또는 반원형으로 LED가 형성되어 있으며, 반사판(210)의 입사홀(211)을 통해 자외선을 조사하여 도 2의 거치대(300)에 의해 회전되는 3차원 적층체의 상부면과 하부면을 경화시키게 된다.The second LED module 230 is formed at the top and bottom of the reflector 210, and the LED is formed in a circular or semicircular shape, and irradiates ultraviolet rays through the incident hole 211 of the reflector 210 to mount the holder of FIG. The top and bottom surfaces of the three-dimensional laminate rotated by 300) are cured.
이때 제2LED모듈(230)을 반사판(210)의 상부와 하부에 고정하기 위해 제2LED모듈(230)과 반사판(210) 사이에는 확산판(231)이 형성되게 되며, 확산판(231)에는 LED에서 조사되는 자외선을 확산시키기 위한 렌즈가 형성되어 있다.At this time, in order to secure the second LED module 230 to the upper and lower portions of the reflector 210, a diffusion plate 231 is formed between the second LED module 230 and the reflector 210, and the diffusion plate 231 has LEDs. A lens for diffusing the ultraviolet light irradiated from is formed.
또한 지지구(222) 및 확산판(231)은 열 흡수가 용이한 알루미늄 또는 구리로 형성되어 있어 제1LED모듈(220)에서 발생하는 열을 흡열하여 외부로 방출하는 히트싱크 역할도 할 수 있으며, 이 경우 지지구(222) 및 확산판(231)의 외면은 다수의 홈 및 돌기가 형성되어 있는 것이 바람직하다.In addition, since the support 222 and the diffusion plate 231 are formed of aluminum or copper that is easily absorbed by heat, it can also serve as a heat sink that absorbs heat generated from the first LED module 220 and discharges it to the outside. In this case, it is preferable that a plurality of grooves and protrusions are formed on the outer surfaces of the support 222 and the diffusion plate 231.
또한 지지구(222) 및 확산판(231)은 제1LED모듈(220) 및 제2LED모듈(230)에서 발생한 열을 반사판(210)으로 전달함으로써, 면적이 넓은 반사판(210)에 의해 제1LED모듈(220) 및 제2LED모듈(230)을 빠르게 냉각시킬 수 있게 된다.In addition, the support 222 and the diffuser plate 231 transfer heat generated from the first LED module 220 and the second LED module 230 to the reflector 210, so that the first LED module is formed by the reflector 210 having a large area. The 220 and the second LED module 230 can be quickly cooled.
또한 경화유닛(200)은 자외선을 조사하기 위한 다수의 LED모듈(220, 230)을 더 포함하며, LED모듈(220, 230)은 자외선 파장이 380~390nm인 LED와, 400~410nm인 LED가 교번하여 형성되는 것을 특징으로 한다.In addition, the curing unit 200 further includes a plurality of LED modules (220, 230) for irradiating ultraviolet rays, and the LED modules (220, 230) have UV wavelengths of 380-390 nm and LEDs of 400-410 nm. It is characterized by being formed alternately.
제1LED모듈(220)과 제2LED모듈(230)에 형성된 LED는 UV램프에서 발생하는 경화효과를 유사하게 구현하기 위해 서로 다른 파장을 조사하는 LED가 순차적으로 형성되어 있어 3차원 적층체에 이종의 자외선 파장이 조사하게 되게 된다.The LEDs formed on the first LED module 220 and the second LED module 230 are sequentially formed with LEDs irradiating different wavelengths in order to realize the curing effect generated by the UV lamp similarly. The ultraviolet wavelength will be irradiated.
LED모듈(220, 230)에서 조사되는 제1파장은 380~390nm로 이루어지고, 제2파장은 400~410nm로 이루어져 있으며, 이상적인 파장은 제1파장을 385nm, 제2파장은 405nm의 LED를 교번시켜 LED모듈(220, 230)에 형성시키는 것이 바람직하다.The first wavelength irradiated from the LED modules 220 and 230 consists of 380 to 390 nm, the second wavelength consists of 400 to 410 nm, and the ideal wavelength alternates the LED of 385 nm for the first wavelength and 405 nm for the second wavelength. It is preferable to form the LED module (220, 230).
제1파장과 제2파장은 3D 프린터에서 3차원 적층체를 출력할 때 수지에 혼입된 광개시제의 흡광도가 높은 파장대로 이루어져 있어 두 파장에 의해 광개시제의 경화속도를 높이고 경화되었을 때 강도를 향상시킬 수 있게 된다.The first wavelength and the second wavelength consist of a wavelength band with a high absorbance of the photoinitiator mixed with the resin when the 3D laminate is output from the 3D printer, thereby increasing the curing speed of the photoinitiator by two wavelengths and improving the strength when cured. There will be.
도 4는 본 발명에 따른 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치의 후면 및 배면을 나타낸 사시도이고, 도 5는 본 발명에 따른 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치의 내부에 공기가 유입되는 경로를 나타낸 평면도이며. 도 6은 본 발명에 따른 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치의 내부에 공기가 유입되는 경로를 나타낸 측면도이다.Figure 4 is a perspective view showing the back and rear of the ultraviolet light curing device capable of variable UV output according to the state of the three-dimensional laminate according to the present invention, Figure 5 is the ultraviolet output according to the state of the three-dimensional laminate according to the present invention It is a plan view showing a path through which air is introduced into a variable UV light curing device. 6 is a side view showing a path through which air is introduced into an ultraviolet light curing device capable of varying an ultraviolet output according to a state of a three-dimensional laminate according to the present invention.
도 4 내지 도 6에 도시된 바와 같이, 본 발명에 따른 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치는 하우징(100)의 후면에 형성되며 외기를 흡입하여 경화유닛(200)을 냉각시키는 냉각팬(130)과, 하우징(100)의 하부면에 형성되며 경화유닛(200)을 냉각한 공기가 가열된 상태로 배출되도록 하는 배출구(140)를 더 포함하며, 냉각팬(130)을 통해 유입된 공기는 경화유닛(200)의 LED모듈(220, 230)을 냉각하면서 가열되고, 가열된 공기가 3차원 적층체와 접촉되면서 배출구(140)로 이동되어 3차원 적층체를 건조시키는 것을 특징으로 한다.4 to 6, the ultraviolet light curing device capable of varying the UV output according to the state of the three-dimensional laminate according to the present invention is formed on the rear surface of the housing 100 and sucks outside air to cure the unit 200 ) Cooling fan 130 for cooling, and further includes an outlet 140 formed on the lower surface of the housing 100 and cooling air of the curing unit 200 to be discharged in a heated state. The air introduced through 130) is heated while cooling the LED modules 220 and 230 of the curing unit 200, and the heated air is moved to the outlet 140 while being in contact with the three-dimensional stack to open the three-dimensional stack. It is characterized by drying.
냉각팬(130)은 하우징(100)의 후면에 형성되어 있으며 하우징(100) 내부로 외부 공기를 흡입하여 경화유닛(200)의 LED에서 발생되는 열을 냉각시켜 고온에 의해 LED의 출력이 저하되는 것을 방지하기 위해 형성된다.The cooling fan 130 is formed on the rear surface of the housing 100 and sucks external air into the housing 100 to cool the heat generated from the LED of the curing unit 200, thereby reducing the output of the LED by high temperature. It is formed to prevent things.
이때 냉각팬(130)에 의해 흡입된 공기 중 일부는 도 5와 같이 하우징(100)의 내측면에서 이격되도록 형성된 반사판(210)의 외면을 따라 이동하고, 일부는 도 6과 같이 반사판(210)의 상부로 이동되게 된다.At this time, some of the air sucked by the cooling fan 130 moves along the outer surface of the reflector 210 formed to be spaced apart from the inner surface of the housing 100, as shown in FIG. 5, and partly reflector 210 as shown in FIG. It will be moved to the upper part.
이때 공기는 제1LED모듈(220)과 제2LED모듈(230)과 직접 접촉되면서 이동되어 대류열전달에 의해 제1LED모듈(220)과 제2LED모듈(230)에서 열을 흡열하여 가열되면서 제1LED모듈(220)과 제2LED모듈(230)을 냉각시키게 된다.At this time, the air is moved in direct contact with the first LED module 220 and the second LED module 230, absorbs heat from the first LED module 220 and the second LED module 230 by convection heat transfer, and heats the first LED module ( 220) and the second LED module 230 are cooled.
또한 제1LED모듈(220)과 제2LED모듈(230)과 접촉되는 반사판(210)도 히트싱크와 같은 역할을 하여 제1LED모듈(220)과 제2LED모듈(230)에서 발생되는 열을 흡열하도록 형성되는 경우 공기가 이동되면서 반사판(210)과 접촉되는 면적이 넓어져 흡열할 수 있는 속도가 빨라지므로 제1LED모듈(220)과 제2LED모듈(230)을 보다 효율적으로 냉각시킬 수 있게 된다.In addition, the reflector 210 in contact with the first LED module 220 and the second LED module 230 also functions as a heat sink so as to absorb heat generated by the first LED module 220 and the second LED module 230. When the air is moved, the area in contact with the reflector 210 is widened, so the speed at which heat can be absorbed increases, so that the first LED module 220 and the second LED module 230 can be cooled more efficiently.
또한 반사판(210)에는 다수의 분사홀(212)이 형성되어 있으며, 냉각팬(130)에 의해 하우징(100)과 반사판(210) 사이로 유입된 공기는 분사홀(212)을 통해 하우징(100)의 하부 중앙에 형성된 거치대(300) 방향으로 분사된 후 반사판(210)의 하부를 통해 배출구(140)로 배출되게 된다.In addition, a plurality of injection holes 212 are formed in the reflector 210, and air introduced between the housing 100 and the reflector 210 by the cooling fan 130 is supplied to the housing 100 through the injection holes 212. After being sprayed in the direction of the cradle 300 formed in the lower center of the is discharged through the lower portion of the reflector 210 to the outlet 140.
이때 거치대(300)에 거치된 3차원 적층체는 제1LED모듈(220)과 제2LED모듈(230)을 냉각시키면서 가열된 공기가 직접 접촉되면서 이동하기 때문에 공기가 3차원 적층체의 외면에 묻은 물기나 알코올을 증발시켜 건조시킬 수 있게 된다.At this time, since the 3D stacked body mounted on the cradle 300 moves while the heated air is directly contacted while cooling the first LED module 220 and the second LED module 230, the air is wet on the outer surface of the 3D stacked body. B. Alcohol can be evaporated to dry.
즉, 냉각팬(130)에 의해 흡입된 공기는 하우징(100)과 반사판(210) 사이로 이동되어 제1LED모듈(220)과 제2LED모듈(230)을 1차적으로 냉각시키면서 가열되게 되고, 가열된 공기는 거치판의 중앙을 향해 분사되어 3차원 적층체를 건조시키게 된다.That is, the air sucked by the cooling fan 130 is moved between the housing 100 and the reflector 210 to be heated while primarily cooling the first LED module 220 and the second LED module 230 and heated. Air is sprayed toward the center of the mounting plate to dry the three-dimensional laminate.
이후 공기는 거치대(300) 하부에 형성된 분사홀(212)을 통해 하우징(100) 하부에 형성된 배출구(140)를 통해 외부로 빠져나가게 된다.Thereafter, the air is discharged to the outside through the outlet 140 formed in the lower portion of the housing 100 through the injection hole 212 formed in the lower portion of the cradle 300.
도 7은 본 발명에 따른 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치의 전체적인 구성을 나타낸 구성도이고, 도 8은 본 발명에 따른 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치의 자외선의 출력이 제어되는 모습을 나타낸 그래프이며, 도 9는 본 발명에 따른 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치의 자외선의 출력을 PWM제어하는 모습을 나타낸 그래프이다.7 is a schematic view showing the overall configuration of an ultraviolet light curing device capable of varying the UV output according to the state of the three-dimensional laminate according to the present invention, and FIG. 8 is an ultraviolet output according to the state of the three-dimensional laminate according to the present invention It is a graph showing a state in which the output of the ultraviolet light of the variable ultraviolet light curing device is controlled, and FIG. 9 shows the output of the ultraviolet light of the variable ultraviolet light curing device according to the state of the three-dimensional laminate according to the present invention. This graph shows how to control it.
도 7 내지 도 9에 도시된 바와 같이, 본 발명에 따른 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치는 경화유닛(200)에서 조사되는 자외선의 출력량 또는 출력패턴을 제어하는 제어부(600)와, 하우징(100)의 내측면에 형성되며 3차원 적층체의 표면 온도를 감지 및 측정하는 온도센서(400)와, 거치대(300)에 형성되며 경화유닛(200)에서 조사되는 자외선의 출력량을 측정하는 조도센서(500)를 더 포함하는 것을 특징으로 한다.As shown in Figures 7 to 9, the ultraviolet light curing device capable of variable UV output according to the state of the three-dimensional laminate according to the present invention to control the output amount or output pattern of ultraviolet light irradiated from the curing unit 200 A control unit 600, a temperature sensor 400 formed on the inner surface of the housing 100 and sensing and measuring the surface temperature of the three-dimensional laminate, and formed on the cradle 300 and irradiated by the curing unit 200 Characterized in that it further comprises an illuminance sensor 500 for measuring the output of ultraviolet light.
제어부(600)는 하우징(100)의 밀폐된 공간에 격리되어 있으며 하우징(100)에 형성되는 감지센서(120), 온도센서(400), 조도센서(500)와 연결되어 하우징(100) 내부의 환경정보를 수집할 수 있게 되고, 이를 통해 냉각팬(130), 경화유닛(200), 거치대(300)의 회전모터(310)의 동작을 조절하여 3차원 적층체의 경화가 효율적으로 이루어질 수 있도록 제어하게 된다.The control unit 600 is isolated in an enclosed space of the housing 100 and is connected to the detection sensor 120, the temperature sensor 400, and the illuminance sensor 500 formed in the housing 100, and the interior of the housing 100. It is possible to collect environmental information, thereby controlling the operation of the rotating motor 310 of the cooling fan 130, the curing unit 200, and the cradle 300 so that curing of the three-dimensional laminate can be efficiently performed. Control.
온도센서(400)는 하우징(100)의 내부에 형성되어 거치대(300)에 거치된 3차원 적층체의 온도를 측정하기 위한 것으로서, 적외선 또는 레이저를 이용하여 경화되는 3차원 적층체의 표면온도를 측정하여 제어부(600)로 측정 정보를 전송하게 된다.The temperature sensor 400 is formed inside the housing 100 to measure the temperature of the three-dimensional laminate mounted on the cradle 300, and the surface temperature of the three-dimensional laminate cured using infrared or laser. The measurement information is transmitted to the control unit 600.
이때 온도센서(400)는 도 3과 같이 경화유닛(200)의 반사판(210) 상부에 형성되어 있어 거치대(300)에 거치된 3차원 적층체의 표면 온도를 지속적으로 측정할 수 있게 되며, 필요에 따라 반사판(210)에 다수 개가 형성되어 있어 3차원 적층체의 표면 온도를 다각도에서 측정할 수도 있다.At this time, the temperature sensor 400 is formed on the reflective plate 210 of the curing unit 200, as shown in FIG. 3, so that it is possible to continuously measure the surface temperature of the three-dimensional stacked body mounted on the cradle 300. Depending on the number of the reflector 210 is formed, the surface temperature of the three-dimensional laminate may be measured from multiple angles.
온도센서(400)에 의해 검출된 온도에 따라 제어부(600)는 경화유닛(200)의 출력량을 조절하여 3차원 적층체 표면온도가 감소되도록 점진적으로 감소되도록 하며, 이를 통해 온도 상승에 따라 발생되는 3차원 적층체의 열변형 및 변색을 방지하게 된다.According to the temperature detected by the temperature sensor 400, the control unit 600 adjusts the output amount of the curing unit 200 so that the surface temperature of the three-dimensional laminate is gradually reduced so that it is generated as the temperature rises. This will prevent thermal deformation and discoloration of the three-dimensional laminate.
조도센서(500)는 한 개 또는 다수 개가 거치대(300)의 가장자리에 형성되어 있으며 경화유닛(200)으로부터 조사되는 자외선의 광량을 측정함으로써 3차원 적층체에 도달하는 실질적인 자외선의 출력량을 파악하기 위한 것이다.The illuminance sensor 500 is formed at the edge of the cradle 300, one or a plurality of pieces, by measuring the amount of ultraviolet light emitted from the curing unit 200 to determine the actual amount of ultraviolet light reaching the three-dimensional laminate will be.
조도센서(500)에서 측정된 자외선 출력량은 제어부(600)로 전송되며, 제어부(600)는 조도센서(500)로부터 전송된 측정값을 사전에 설정된 출력량과 비교 판단하여 3차원 적층체에 설정된 출력량만큼 자외선이 조사되도록 경화유닛(200)을 제어하게 된다.The ultraviolet output measured by the illuminance sensor 500 is transmitted to the control unit 600, and the control unit 600 compares the measured value transmitted from the illuminance sensor 500 with a preset output amount and determines the output amount set in the 3D laminate. The curing unit 200 is controlled to be irradiated with ultraviolet rays.
이때 제어부(600)는 하우징(100)의 외부에 형성된 버튼을 이용하여 3차원 적층체의 물리적, 화학적 특성에 따라 자외선 출력량을 조정하거나 설정할 수 있게 되며, 3차원 적층체의 크기 또는 조성물에 따라서 자외선의 출력량을 제어부(600)에 미리 저장한 후 설정값을 선택하여 사용하도록 하는 것이 바람직하다.At this time, the control unit 600 can adjust or set the UV output amount according to the physical and chemical properties of the 3D laminate using a button formed on the outside of the housing 100, and the UV according to the size or composition of the 3D laminate It is preferable to store the output amount in the control unit 600 in advance and then select and use the set value.
경화유닛(200)은 자외선을 조사하기 위해 다수의 LED가 형성된 LED모듈(220, 230)과, 하우징(100) 내측면에 형성되며 LED모듈(220, 230)을 지지하고, LED모듈(220, 230)에서 조사된 후 반사되는 자외선을 3차원 적층체로 재입사될 수 있도록 난반사시키는 반사판(210)로 이루어지며, 반사판(210)은 다각도로 형성되어 있어 자외선의 반사율을 높이는 것을 특징으로 한다.Curing unit 200 is formed on the inner surface of the LED module (220, 230), a plurality of LED is formed to irradiate ultraviolet rays, the housing 100, and supports the LED modules (220, 230), the LED module (220, It is made of a reflector 210 that reflects the ultraviolet rays reflected after being irradiated at 230 so that they can be re-entered into a three-dimensional laminate, and the reflector 210 is formed at multiple angles to increase reflectance of ultraviolet rays.
또한 경화유닛(200)은 자외선을 조사하기 위한 다수의 LED모듈(220, 230)을 더 포함하며, LED모듈(220, 230)에는 자외선 파장이 385nm인 LED와, 405nm인 LED가 순차적으로 형성되어 있어 3차원 적층체에 이종 파장을 동시에 조사하는 것을 특징으로 한다.In addition, the curing unit 200 further includes a plurality of LED modules (220, 230) for irradiating ultraviolet rays, and the LED modules (220, 230) have a UV wavelength of 385 nm and an LED of 405 nm are sequentially formed. It is characterized in that the three-dimensional laminate is irradiated with different wavelengths at the same time.
경화유닛(200)은 다수의 LED모듈(220, 230)이 하우징(100) 내부에 형성된 반사판(210)에 설정된 간격으로 이격된 후 거치대(300)를 향해 자외선을 조사할 수 있도록 형성되어 있으며, 하나의 LED모듈(220, 230)에는 다수의 LED가 일정한 간격으로 이격되어 있다.The curing unit 200 is formed such that a plurality of LED modules 220 and 230 are spaced apart at intervals set in the reflector 210 formed inside the housing 100 and irradiated with ultraviolet rays toward the cradle 300, A plurality of LEDs are spaced at a predetermined interval in one LED module (220, 230).
반사판(210)은 도 3과 같이, 전면이 개구되고 상, 하, 좌, 우, 후면은 자외선을 난반사할 수 있도록 스테인리스로 형성되거나 내측면에 반사층이 형성되어 있으며, 외면에 형성되는 LED모듈(220, 230)이 반사판(210)의 내측면으로 자외선을 조사할 수 있도록 다수의 입사홀(211)이 형성되어 있다.As shown in FIG. 3, the reflector 210 has a front surface that is opened, and upper, lower, left, right, and rear surfaces are formed of stainless steel to reflect UV light, or a reflective layer is formed on the inner surface and an LED module formed on the outer surface ( A plurality of incident holes 211 are formed so that 220 and 230 may irradiate ultraviolet rays to the inner surface of the reflector 210.
입사홀(211)을 통해 LED모듈(220, 230)에 형성된 LED는 반사판(210) 내부로 자외선을 조사할 수 있게 되며, LED모듈(220, 230)의 전면에 형성된 도 3의 투광판에 의해 LED에서 출력되는 자외선이 집광되어 3차원 적층체로 조사되게 된다.The LED formed on the LED modules 220 and 230 through the incident hole 211 is capable of irradiating ultraviolet rays into the reflector 210, and is formed by the light transmitting plate of FIG. 3 formed on the front surfaces of the LED modules 220 and 230. The ultraviolet light output from the LED is condensed and irradiated to the 3D laminate.
도 3의 투광판은 다수의 LED에서 조사되는 빛이 투과되면 빛을 집광시키는 렌즈가 형성되어 있어 각각의 LED에서 출력되는 자외선을 3차원 적층체에 집중적으로 조사될 수 있게 된다.The light-transmitting plate of FIG. 3 is formed with a lens for condensing light when light emitted from a plurality of LEDs is transmitted, so that ultraviolet rays output from each LED can be intensively irradiated to the three-dimensional laminate.
또한 각각의 LED모듈(220, 230)에는 파장이 385nm인 LED와, 405nm인 LED가 순차적으로 배치되어 있어 3차원 적층체에 포함된 광개시제에 따라 두 파장 중 어느 하나만 선택적으로 조사하거나, 이종의 파장을 동시에 조사하여 경화성능을 높일 수 있게 된다.In addition, LEDs having a wavelength of 385nm and LEDs of 405nm are sequentially arranged in each of the LED modules 220 and 230, so that only one of the two wavelengths is selectively irradiated according to the photoinitiator included in the 3D laminate, or different wavelengths. It is possible to increase the curing performance by irradiation at the same time.
일반적으로 광개시제는 종류에 따라 경화되는 자외선 파장의 범위가 상이한데, 서로 다른 범위의 이종의 파장을 동시에 이용함으로써 단일 파장에 비해 특정 광개시제의 경화 파장에 근접한 파장을 조사할 수 있게 된다.In general, the photoinitiator has a different range of UV wavelengths that are cured depending on the type. By using different wavelengths of different ranges at the same time, it is possible to irradiate a wavelength closer to the curing wavelength of a specific photoinitiator than a single wavelength.
또한 상기 경화유닛(200)은 상기 하우징(100) 내측면에 설정된 간격으로 형성되는 다수의 LED모듈(220, 230)을 더 포함하며, 상기 거치대(300)는 상기 3차원 적층체의 외면에 상기 자외선이 고루 조사되도록 동력에 의해 회전되도록 형성되고, 상기 조도센서(500)는 상기 거치대(300)를 따라 회전되면서 각각의 상기 LED모듈(220, 230)에서 조사되는 출력량을 측정하는 것을 특징으로 한다.In addition, the curing unit 200 further includes a plurality of LED modules (220, 230) formed at a predetermined interval on the inner surface of the housing 100, the holder 300 is the outer surface of the three-dimensional laminate It is formed to be rotated by power so that the ultraviolet light is evenly irradiated, and the illuminance sensor 500 is rotated along the cradle 300, and is characterized in that it measures the output amount irradiated from each of the LED modules 220 and 230. .
조도센서(500)는 도 6과 같이 거치대(300)의 가장자리에 형성되어 있으며 거치대(300)가 회전모터(310)에 의해 회전되면 거치대(300)를 따라 조도센서(500)가 회전되면서 반사판(210)에 형성된 각각의 LED모듈(220, 230)에서 조사되는 자외선의 출력량을 측정하게 된다.The illuminance sensor 500 is formed on the edge of the cradle 300 as shown in FIG. 6, and when the cradle 300 is rotated by a rotating motor 310, the illuminance sensor 500 is rotated along the cradle 300 to reflect the plate ( 210, the output of the ultraviolet light emitted from each of the LED modules 220 and 230 is measured.
이때 제어부(600)는 회전모터(310)의 회전각을 이용하여 조도센서(500)에서 측정되는 자외선의 출력량이 어느 LED모듈(220, 230)에서 조사되는 것인지 추정할 수 있게 되며, 이를 통해 특정 LED모듈(220, 230)에서 조사되는 자외선 출력이 저하되거나 과도한 경우 해당 LED모듈(220, 230)의 출력을 조정할 수 있게 된다.At this time, the controller 600 can estimate which LED modules 220 and 230 are irradiated with the output of the ultraviolet light measured by the illuminance sensor 500 using the rotation angle of the rotating motor 310. When the UV output emitted from the LED modules 220 and 230 is lowered or excessive, the output of the corresponding LED modules 220 and 230 can be adjusted.
또한 조도센서(500)는 각 LED모듈(220, 230)에서 조사되는 자외선을 차단하지 않도록 거치대(300)의 하부 가장자리에 형성되는 것이 바람직하며, 조도센서(500)의 케이블은 거치판의 중앙에 형성된 슬립 링 커넥터를 통해 하우징(100)에 형성된 제어부(600)와 연결되는 것이 바람직하다.In addition, the illuminance sensor 500 is preferably formed on the lower edge of the cradle 300 so as not to block the ultraviolet light emitted from each LED module (220, 230), the cable of the illuminance sensor 500 is in the center of the mounting plate It is preferable to be connected to the control unit 600 formed in the housing 100 through the formed slip ring connector.
또한 제어부(600)는 온도센서(400)에 의해 측정된 온도가 3차원 적층체의 변형 온도에 도달하면 경화유닛(200)의 출력량을 감소시키거나 설정된 시간 간격으로 경화유닛(200)을 ON, OFF시켜 3차원 적층체의 표면 온도가 감소되도록 하는 것을 특징으로 한다.In addition, when the temperature measured by the temperature sensor 400 reaches the deformation temperature of the three-dimensional laminate, the control unit 600 reduces the output amount of the curing unit 200 or turns on the curing unit 200 at a set time interval, It is characterized in that the surface temperature of the three-dimensional laminate is reduced by turning it off.
제어부(600)는 3차원 적층체 표면에는 자외선이 집중적으로 조사되게 되므로 자외선에서 발생되는 열에 의해 표면 온도가 상승되게 되고, 이러한 온도 상승은 3차원 적층체의 형태를 변형시키거나 표면의 색상이 변색되게 된다.Since the control unit 600 is irradiated with ultraviolet rays intensively on the surface of the three-dimensional laminate, the surface temperature is increased by heat generated from the ultraviolet rays, and the temperature rise changes the shape of the three-dimensional laminate or changes the color of the surface. Will be.
이를 방지하기 위해 제어부(600)는 온도센서(400)를 통해 3차원 적층체의 온도를 실시간으로 측정하게 되고, 온도센서(400)에 의해 측정된 온도가 제어부(600)에 설정된 온도에 도달한 경우 3차원 적층체의 온도를 낮추기 위해 도 8과 같이 LED모듈(220, 230)의 출력량을 점진적으로 감소시키게 된다.To prevent this, the controller 600 measures the temperature of the 3D laminate in real time through the temperature sensor 400, and the temperature measured by the temperature sensor 400 reaches the temperature set in the controller 600. In this case, in order to lower the temperature of the 3D stack, the output amount of the LED modules 220 and 230 is gradually reduced as shown in FIG. 8.
도 8에서 세로축인 P는 각각의 LED모듈(220, 230)의 자외선 출력량을 나타낸 것으로 0%는 LED모듈(220, 230)에서 자외선이 출력되지 않는 상태이고, 100%는 제어부(600)에 의해 설정된 LED모듈(220, 230)의 자외선 최대 출력 상태를 나타내는 것이며, 가로축의 t는 시간을 나타낸 것이다.In FIG. 8, the vertical axis P represents the amount of ultraviolet light output from each of the LED modules 220 and 230. 0% is a state in which no ultraviolet light is output from the LED modules 220 and 230, and 100% is controlled by the controller 600. It shows the maximum UV output state of the set LED modules 220 and 230, and t on the horizontal axis indicates time.
자외선 최대 출력 상태(100%)는 조도센서(500)에 의해 각각의 LED모듈(220, 230)에서 측정된 출력량에 기초하여 각각의 LED모듈(220, 230)이 일정한 출력량으로 자외선을 수 있도록 제어부(600)가 각각의 LED마다 설정한 출력량을 말하며 이러한 설정값은 조도센서(500)에 의해 주기적으로 변경될 수 있다.The maximum UV light output state (100%) is based on the output amount measured by each LED module 220 and 230 by the illuminance sensor 500 so that each LED module 220 and 230 can control the UV light at a constant output amount. (600) refers to the output amount set for each LED, and these set values may be periodically changed by the illuminance sensor 500.
제어부(600)는 온도센서(400)에 의해 3차원 적층체의 온도가 설정된 온도까지 상승되게 되면, 각각의 LED모듈(220, 230)의 출력량을 설정된 시간을 따라 점진적으로 감소시켜 출력량이 감소되도록 함으로써 자외선에 의해 가열된 3차원 적층체의 온도를 감소시키게 된다.When the temperature of the three-dimensional laminate is raised to a set temperature by the temperature sensor 400, the control unit 600 gradually decreases the output amount of each LED module 220 and 230 according to a set time so that the output amount is reduced. By doing so, the temperature of the three-dimensional laminate heated by ultraviolet rays is reduced.
이때 보다 효과적으로 3차원 적층체의 온도를 감소시키기 위해 제어부(600)는 냉각팬(130)의 회전속도를 상승시켜 하우징(100) 내부로 유입되는 공기의 유량을 증가시킬 수 있으며, 유입된 공기가 각각의 LED모듈(220, 230) 및 3차원 적층체를 통과하면서 외부로 배출되기 때문에 3차원 적층체의 냉각속도를 향상시킬 수 있게 된다.At this time, in order to more effectively reduce the temperature of the three-dimensional laminate, the controller 600 may increase the flow rate of the air flowing into the housing 100 by increasing the rotational speed of the cooling fan 130, and the introduced air Since it is discharged to the outside while passing through each of the LED modules 220 and 230 and the 3D stack, it is possible to improve the cooling speed of the 3D stack.
냉각이 진행되면서 3차원 적층체의 온도가 제어부(600)에 저장된 설정된 냉각온도에 도달하게 되면 제어부(600)는 LED모듈(220, 230)의 출력량을 다시 증가시켜 3차원 적층체를 경화시키게 되며, 제어부(600)는 3차원 적층체가 과열되지 않는 범위 내에서 LED모듈(220, 230)의 출력량을 증가시켜 유지할 수도 있게 된다.As the cooling progresses, the temperature of the 3D stack reaches the set cooling temperature stored in the control unit 600, and the control unit 600 increases the output amount of the LED modules 220 and 230 to cure the 3D stack. , The control unit 600 may increase and maintain the output amount of the LED modules 220 and 230 within a range in which the 3D stack is not overheated.
도 9와 같이 제어부(600)는 설정된 시간동안 경화유닛(200)의 LED모듈(220, 230)을 설정된 시간동안 점등 및 소등시키는 PWM(Pulse Width Modulation) 방식을 이용하여 LED모듈(220, 230)의 자외선 출력을 제어하는 것을 특징으로 한다.As shown in FIG. 9, the control unit 600 uses the PWM (Pulse Width Modulation) method of turning on and off the LED modules 220 and 230 of the curing unit 200 for a set time, and then the LED modules 220 and 230. It characterized in that to control the UV output.
LED모듈(220, 230)은 제어부(600)에 의해 설정된 시간동안만 점등되고 이후 설정된 시간동안 소등되면서 3차원 적층체에 자외선을 조사할 수 있으며, 이 경우 자외선이 지속적으로 3차원 적층체에 조사되지 않기 때문에 3차원 적층체가 짧은 시간동안 냉각될 수 있어 가열을 방지할 수 있게 된다.The LED modules 220 and 230 can be irradiated with ultraviolet rays to the 3D stacked body while being turned on only for a time set by the control unit 600 and then turned off for a set time, in which case UV light is continuously irradiated to the 3D stacked body. Because it is not, the three-dimensional laminate can be cooled for a short time, thereby preventing heating.
이때 도 9에서는 100ms 단위로 점등 또는 소등이 되도록 형성되어 있으나 이러한 주기는 3차원 적층체의 조성물에 따라 변경될 수 있으며, 3차원 적층체가 가열되어 온도가 상승하는 경우 점진적으로 LED모듈(220, 230)의 출력량을 감소시킬 수도 있게 된다.At this time, in FIG. 9, it is formed to be turned on or off in units of 100 ms, but such a cycle may be changed according to the composition of the three-dimensional laminate, and when the temperature increases due to the heating of the three-dimensional laminate, the LED modules 220, 230 ).
상술한 바와 같이, 본 발명에 따른 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치에 의하면 3차원 적층체가 경화될 때 자외선에 의한 표면 온도에 따라 자외선의 출력을 제어하여 열변형 및 변색을 방지할 수 있고, 3차원 적층체의 외면에 자외선을 고루 조사하여 3차원 적층체의 강도 및 수축률을 향상시킬 수 있으며, 다수의 LED를 이용하여 이종 파장으로 이루어진 자외선을 조사함으로써 3차원 적층체를 경화시키는 시간을 감소시키고 경화성능을 높일 수 있고, LED가 일정한 파장으로 자외선을 조사하도록 냉각시키면서 3차원 적층체의 외면의 알코올을 증발시켜 건조할 수 있는 효과가 있다.As described above, according to the state of the three-dimensional laminate according to the present invention, according to the state of the ultraviolet light curing device capable of varying the ultraviolet output, when the three-dimensional laminate is cured, heat is deformed by controlling the output of ultraviolet rays according to the surface temperature caused by ultraviolet rays And it is possible to prevent discoloration, and evenly irradiating ultraviolet rays on the outer surface of the three-dimensional laminate to improve the strength and shrinkage of the three-dimensional laminate, and by using a plurality of LEDs by irradiating ultraviolet rays composed of different wavelengths in three dimensions It is possible to reduce the time for curing the laminate and increase the curing performance, and it is effective to evaporate and dry the alcohol on the outer surface of the three-dimensional laminate while cooling the LED to irradiate with ultraviolet light at a constant wavelength.
이상과 같이 본 발명은, 바람직한 실시 예를 중심으로 설명하였지만 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 특허청구범위에 기재된 기술적 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 또는 변형하여 실시할 수 있다. 따라서 본 발명의 범주는 이러한 많은 변형의 예들을 포함하도록 기술된 청구범위에 의해서 해석되어야 한다.As described above, the present invention has been described with reference to preferred embodiments, but those skilled in the art to which the present invention pertains vary the present invention without departing from the technical spirit and scope described in the claims of the present invention. It can be carried out by modification or modification. Therefore, the scope of the invention should be construed by the claims set forth to cover many examples of such modifications.

Claims (7)

  1. 내부가 비어 있고 전면에는 도어를 통해 개폐될 수 있도록 형성된 하우징과;A housing formed to be opened and opened and opened through a door on the inside;
    상기 하우징의 내측 하부에 형성되며 3차원 적층체가 거치될 수 있도록 형성되는 거치대와;A holder formed on an inner lower portion of the housing and formed to allow a three-dimensional stack to be mounted;
    상기 하우징의 내측면에 형성되며 상기 3차원 적층체의 외면에 자외선을 조사하여 경화시키는 경화유닛과;A curing unit formed on an inner surface of the housing and irradiating ultraviolet rays on an outer surface of the three-dimensional laminate to cure;
    상기 경화유닛에서 조사되는 자외선의 출력량 또는 출력패턴을 제어하는 제어부;를 포함하는 것을 특징으로 하는It characterized in that it comprises; a control unit for controlling the output amount or the output pattern of ultraviolet light irradiated from the curing unit
    3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치.Ultraviolet light curing device capable of variable UV output depending on the state of the three-dimensional laminate.
  2. 제 1항에 있어서,According to claim 1,
    상기 하우징의 내측면에 형성되며 상기 3차원 적층체의 표면 온도를 감지 및 측정하는 온도센서;를 더 포함하는 것을 특징으로 하는It is formed on the inner surface of the housing and the temperature sensor for sensing and measuring the surface temperature of the three-dimensional laminate; characterized in that it further comprises a
    3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치.Ultraviolet light curing device capable of variable UV output depending on the state of the three-dimensional laminate.
  3. 제 2항에 있어서,According to claim 2,
    상기 제어부는The control unit
    상기 온도센서에 의해 측정된 온도가 상기 3차원 적층체의 변형 온도에 도달하면 상기 경화유닛의 출력량을 감소시키거나 설정된 시간 간격으로 상기 경화유닛을 ON, OFF시켜 상기 3차원 적층체의 표면 온도가 감소되도록 하는 것을 특징으로 하는When the temperature measured by the temperature sensor reaches the deformation temperature of the three-dimensional laminate, the output temperature of the curing unit is decreased or the curing unit is turned on and off at a set time interval to increase the surface temperature of the three-dimensional laminate. Characterized by being reduced
    3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치.Ultraviolet light curing device capable of variable UV output depending on the state of the three-dimensional laminate.
  4. 제 1항에 있어서,According to claim 1,
    상기 경화유닛은The curing unit
    자외선을 조사하기 위해 다수의 LED가 형성된 LED모듈과;An LED module in which a plurality of LEDs are formed to irradiate ultraviolet light;
    상기 하우징 내측면에 형성되며 상기 LED모듈을 지지하고, 상기 LED모듈에서 조사된 후 반사되는 자외선을 상기 3차원 적층체로 재입사될 수 있도록 난반사시키는 반사판;으로 이루어지며,It is formed on the inner surface of the housing, and supports the LED module, and reflects ultraviolet rays reflected after being irradiated from the LED module to diffusely re-enter the 3D laminate.
    상기 반사판은 다각도로 형성되어 있어 자외선의 반사율을 높이는 것을 특징으로 하는The reflector is formed at multiple angles to increase the reflectance of ultraviolet rays,
    3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치.Ultraviolet light curing device capable of variable UV output depending on the state of the three-dimensional laminate.
  5. 제 1항에 있어서,According to claim 1,
    상기 경화유닛은 자외선을 조사하기 위한 다수의 LED모듈;을 더 포함하며,The curing unit further includes a plurality of LED modules for irradiating ultraviolet light,
    상기 LED모듈에는 자외선 파장이 385nm인 LED와, 405nm인 LED가 순차적으로 형성되어 있어 상기 3차원 적층체에 이종 파장을 동시에 조사하는 것을 특징으로 하는In the LED module, an LED having a UV wavelength of 385 nm and an LED having a wavelength of 405 nm are sequentially formed, so that the heterogeneous wavelengths are simultaneously irradiated to the 3D laminate.
    3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치.Ultraviolet light curing device capable of variable UV output depending on the state of the three-dimensional laminate.
  6. 제 1항에 있어서,According to claim 1,
    상기 거치대에 형성되며 상기 경화유닛에서 조사되는 자외선의 출력량을 측정하는 조도센서;를 더 포함하는 것을 특징으로 하는It characterized in that it further comprises; an illuminance sensor formed on the cradle and measuring the output amount of ultraviolet light emitted from the curing unit
    3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치.Ultraviolet light curing device capable of variable UV output depending on the state of the three-dimensional laminate.
  7. 제 6항에 있어서,The method of claim 6,
    상기 경화유닛은 상기 하우징 내측면에 설정된 간격으로 형성되는 다수의 LED모듈;을 더 포함하며,The curing unit further includes a plurality of LED modules formed at a predetermined interval on the inner surface of the housing,
    상기 거치대는 상기 3차원 적층체의 외면에 상기 자외선이 고루 조사되도록 동력에 의해 회전되도록 형성되고,The holder is formed to be rotated by power so that the ultraviolet light is evenly irradiated on the outer surface of the three-dimensional laminate,
    상기 조도센서는 상기 거치대를 따라 회전되면서 각각의 상기 LED모듈에서 조사되는 출력량을 측정하는 것을 특징으로 하는The illuminance sensor is characterized by measuring the output amount irradiated from each of the LED modules while rotating along the cradle.
    3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치.Ultraviolet light curing device capable of variable UV output depending on the state of the three-dimensional laminate.
PCT/KR2018/015513 2018-12-06 2018-12-07 Ultraviolet light curing apparatus having changeable ultraviolet-ray output according to condition of three-dimensional laminate WO2020116696A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180155664A KR102196036B1 (en) 2018-12-06 2018-12-06 An ultraviolet light curing device capable of varying the ultraviolet output according to the state of the three-dimensional laminate
KR10-2018-0155664 2018-12-06

Publications (1)

Publication Number Publication Date
WO2020116696A1 true WO2020116696A1 (en) 2020-06-11

Family

ID=70973508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015513 WO2020116696A1 (en) 2018-12-06 2018-12-07 Ultraviolet light curing apparatus having changeable ultraviolet-ray output according to condition of three-dimensional laminate

Country Status (2)

Country Link
KR (1) KR102196036B1 (en)
WO (1) WO2020116696A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289843A (en) * 2005-04-13 2006-10-26 Suzuka Fuji Xerox Co Ltd Led print head
KR20170023977A (en) * 2014-06-23 2017-03-06 카본, 인크. Polyurethane resins having multiple mechanisms of hardening for use in producing three-dimensional objects
KR20170118023A (en) * 2015-03-19 2017-10-24 전진환 Color 3d printer and method for controlling the same
WO2018043869A1 (en) * 2016-08-31 2018-03-08 윈포시스 주식회사 Shaping process monitoring apparatus of three-dimensional printer and three-dimensional printer comprising same
KR20180094257A (en) * 2017-02-15 2018-08-23 한국광기술원 Apparatus and method for large area uv curing using uv led

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238022A (en) * 1991-01-22 1992-08-26 Fujitsu Ltd Post-treating device and method of set resinous body
US7452431B2 (en) 2004-07-30 2008-11-18 Finisar Corporation Optical product cure oven
KR20150066898A (en) 2013-12-09 2015-06-17 한솔라이팅 (주) Curing system that use UV-LED module
KR20180061135A (en) * 2015-06-19 2018-06-07 어플라이드 머티어리얼스, 인코포레이티드 Surface Treatment in Lamination Manufacturing Using Laser and Gas Flow
CN106827513B (en) 2017-04-10 2023-05-09 广州黑格智造信息科技有限公司 Post-hardening device for 3D printing piece
KR101828797B1 (en) * 2017-07-25 2018-02-13 (주)레이 Post Hardening Device of 3D Printing Product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289843A (en) * 2005-04-13 2006-10-26 Suzuka Fuji Xerox Co Ltd Led print head
KR20170023977A (en) * 2014-06-23 2017-03-06 카본, 인크. Polyurethane resins having multiple mechanisms of hardening for use in producing three-dimensional objects
KR20170118023A (en) * 2015-03-19 2017-10-24 전진환 Color 3d printer and method for controlling the same
WO2018043869A1 (en) * 2016-08-31 2018-03-08 윈포시스 주식회사 Shaping process monitoring apparatus of three-dimensional printer and three-dimensional printer comprising same
KR20180094257A (en) * 2017-02-15 2018-08-23 한국광기술원 Apparatus and method for large area uv curing using uv led

Also Published As

Publication number Publication date
KR102196036B1 (en) 2020-12-29
KR20200071872A (en) 2020-06-22

Similar Documents

Publication Publication Date Title
WO2020096129A1 (en) Ultraviolet light curing apparatus for improving curing performance of three-dimensional stack
WO2018044067A1 (en) Oven
WO2021100960A1 (en) Laser reflow device and laser reflow method
WO2011111957A2 (en) Stereolithography apparatus for the rapid production of layer-upon-layer forms
WO2018124599A1 (en) Outdoor display apparatus
WO2016200155A1 (en) Humid air forming device, inspection device comprising same, and inspection method
WO2012124952A2 (en) Durability testing device according to desert climate
WO2017039198A1 (en) Lighting device
WO2021132994A1 (en) Display apparatus
WO2017126812A1 (en) Display device
WO2020116696A1 (en) Ultraviolet light curing apparatus having changeable ultraviolet-ray output according to condition of three-dimensional laminate
WO2022239949A1 (en) Cooking appliance and control method therefor
WO2022015032A1 (en) Inkjet multi-wavelength curing machine
WO2019083261A1 (en) Deposition device
WO2021187859A1 (en) Anti-reflective film
WO2018066912A1 (en) Head up display device
WO2020231113A1 (en) Dimension measurement jig and dimension measurement device including same
WO2021246775A1 (en) Sterilizing module, and sterilizing device comprising sterilizing module
WO2019078412A1 (en) Curing device and display panel curing method
WO2020141630A1 (en) Service module, and mobile robot including same
WO2019059747A1 (en) Device for producing skin care pack using hydrogel, and control method thereof
WO2018080030A1 (en) Panel painting device
WO2021167145A1 (en) Deposition apparatus system
WO2018208095A1 (en) Soldering device, and laser machining apparatus and machining method
WO2019156321A1 (en) Light-reflective-type profile surface for light diffusion and concentration, and surface-emitting lighting and light concentration apparatus using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18942443

Country of ref document: EP

Kind code of ref document: A1