WO2020116644A1 - Filtering device and filter medium outflow suppression unit - Google Patents

Filtering device and filter medium outflow suppression unit Download PDF

Info

Publication number
WO2020116644A1
WO2020116644A1 PCT/JP2019/047932 JP2019047932W WO2020116644A1 WO 2020116644 A1 WO2020116644 A1 WO 2020116644A1 JP 2019047932 W JP2019047932 W JP 2019047932W WO 2020116644 A1 WO2020116644 A1 WO 2020116644A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter medium
backwashing
water
filtration
filter
Prior art date
Application number
PCT/JP2019/047932
Other languages
French (fr)
Japanese (ja)
Inventor
錦陽 胡
卓 毛受
健志 出
高橋 秀昭
健介 中村
昭彦 城田
和高 小城
忍 茂庭
竜朗 内田
雅夫 今
厚 山崎
臣則 深川
Original Assignee
株式会社 東芝
東芝インフラシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝インフラシステムズ株式会社 filed Critical 株式会社 東芝
Publication of WO2020116644A1 publication Critical patent/WO2020116644A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/02Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed stationary during the filtration
    • B01D24/10Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed stationary during the filtration the filtering material being held in a closed container
    • B01D24/14Downward filtration, the container having distribution or collection headers or pervious conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/46Regenerating the filtering material in the filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/62Regenerating the filter material in the filter
    • B01D29/66Regenerating the filter material in the filter by flushing, e.g. counter-current air-bumps

Definitions

  • the embodiment of the present invention relates to a filter device and a filter medium outflow suppression unit.
  • a filter device in which filtration is performed by passing water to be treated through a filter material in a filtration tower, and backwashing is performed using air and wash water. It is desirable that such a filtering device can improve the outflow suppressing performance of the filtering material.
  • the problem to be solved by the present invention is to provide a filtering device and a filter medium outflow suppressing unit that can improve the outflow suppressing performance of the filter medium.
  • the filtration device of the embodiment includes a filtration tank, a backwash unit, and a filter medium outflow suppression mechanism.
  • the filter tank contains a filter medium, and the water to be treated flows in a downward flow to perform filtration.
  • the backwash unit supplies air and wash water to the lower portion of the filtration tank to perform backwash.
  • the filter material outflow suppression mechanism is located above the filter material at least in the state where the filtration is performed, and reduces bubbles discharged from the filter material during backwashing.
  • FIG. 1 is a diagram showing the overall configuration of the filtration system of the first embodiment.
  • FIG. 2 is a plan view showing the dividing mechanism according to the first embodiment.
  • FIG. 3 is a cross-sectional view showing an arrangement height of the filter medium outflow suppression mechanism of the first embodiment.
  • FIG. 4 is a diagram showing the relationship between the bubble size and the bubble rising speed in the first embodiment.
  • FIG. 5 is a figure which shows the experimental result of the filter medium annual outflow rate in the case where the filter medium outflow suppression mechanism of 1st Embodiment is provided, and the case where it is not provided.
  • FIG. 6 is a plan view showing a cutting mechanism according to a first modified example of the first embodiment.
  • FIG. 1 is a diagram showing the overall configuration of the filtration system of the first embodiment.
  • FIG. 2 is a plan view showing the dividing mechanism according to the first embodiment.
  • FIG. 3 is a cross-sectional view showing an arrangement height of the filter medium outflow suppression mechanism of the first embodiment.
  • FIG. 7 is a top view which shows the cutting
  • FIG. 8 is a plan view showing a cutting mechanism of a third modified example of the first embodiment.
  • FIG. 9 is a plan view showing a cutting mechanism according to a fourth modified example of the first embodiment.
  • FIG. 10 is a figure which shows the filtration apparatus of 2nd Embodiment.
  • FIG. 11 is a figure which shows the filtration apparatus of 3rd Embodiment.
  • FIG. 12 is a plan view showing a support mechanism of the filter medium recovery mechanism of the third embodiment.
  • FIG. 13 is sectional drawing which shows the arrangement height of the filter medium outflow suppression mechanism of 4th Embodiment.
  • the water treatment system 1 is, for example, a water treatment system that removes suspended substances contained in water to be treated such as industrial wastewater from the water to be treated.
  • the water treatment system 1 is a diagram showing the overall configuration of the water treatment system 1.
  • the water treatment system 1 includes, for example, one or more pretreatment tanks 10, a filtering device 20, a treated water tank 30, and a backwash drain tank 40.
  • the pretreatment tank 10 is provided on the upstream side of the filtration device 20.
  • the pretreatment tank 10 is an adjustment tank in which the ion concentration (pH adjustment) of the water to be treated is adjusted, a flocculation tank in which solids in the water to be treated are flocculated, and a flocculation floc is precipitated and separated. Such as a tank.
  • the water to be treated that has been subjected to a predetermined treatment in the pretreatment tank 10 is sent to the filtration device 20 by the raw water pump P1.
  • the pretreatment tank 10 may be omitted when targeting the water to be treated that has already undergone the coagulation treatment or the like.
  • the filtering device 20 separates the solid content in the water to be treated from the water to be treated by passing the water to be treated through the filter material M.
  • the water to be treated is supplied to the upper part of the filtration device 20.
  • the water to be treated supplied to the upper portion of the filtering device 20 flows in the filtering device 20 as a downward flow, and is discharged from the lower portion of the filtering device 20 as filtered treated water.
  • the configuration and function of the filtering device 20 will be described later in detail.
  • the treated water tank 30 is connected to the lower part of the filtration device 20, and the treated water filtered by the filtration device 20 flows in.
  • the treated water tank 30 stores a part of the treated water that has flowed into the treated water tank 30 as wash water used for backwashing.
  • the backwash drainage tank 40 is connected to the upper part of the filtration device 20, and the wash water (backwash drainage) that has passed through the filtration device 20 as an upward flow during backwash flows in.
  • the filtration device 20 includes, for example, a filtration tower 100, a backwash unit 200, and a filter material outflow suppression unit UT.
  • the filtration tower 100 is, for example, a tubular member having a bottom, and is provided upright in a substantially vertical direction.
  • the filtration tower 100 is an example of a “filtration tank”.
  • a filter material M for filtering the water to be treated is housed in the filtration tower 100.
  • the water to be treated is supplied to the upper part of the filtration tower 100, and is filtered by passing the filter medium M contained in the filtration tower 100 as a downward flow. That is, the solid content in the water to be treated is captured by the filter medium M, and the water to be treated is purified.
  • the filter medium M includes, for example, a first filter medium M1 and a second filter medium M2 provided above the first filter medium M1.
  • the first filter medium M1 is, for example, filter sand.
  • the second filter medium M2 is a filter medium having a larger particle size than the first filter medium M1, and is, for example, anthracite.
  • the “particle size of the filter medium” in the following description means the particle size of the second filter medium M2 (that is, the larger particle size of the first filter medium M1 and the second filter medium M2) unless otherwise specified.
  • the “particle diameter” means the effective diameter of the particles constituting the filter medium.
  • Effective diameter means the size of particles for which the cumulative passing mass percentage is 10% in the sieving calculation of the filter medium, that is, when the water permeability of the filter medium is assumed to be the same for all particles. It means a particle size that gives water permeability.
  • the particle size of the first filter medium M1 is 0.6 mm
  • the particle size of the second filter medium M2 is 1.2 mm.
  • the particle diameters of the first filter medium M1 and the second filter medium M2 are not limited to the above examples.
  • the filter medium M does not have to have a two-layer structure of the first filter medium M1 and the second filter medium M2, and may be composed of one type of filter medium.
  • the backwash unit (backwash unit) 200 is a device that backwashes the filtration device 20 by supplying air and wash water to the lower portion of the filtration tower 100.
  • the backwash unit 200 includes, for example, an air backwash unit 210 that performs air backwash and a water backwash unit 220 that performs water backwash.
  • the air backwash unit 210 includes, for example, an air diffuser 211 and a blower 212.
  • the air diffuser 211 is provided at the bottom of the filtration tower 100 and is located below the filter medium M.
  • the blower 212 is connected to the air diffusing pipe 211 and sends the air for backwashing the air to the air diffusing pipe 211. By sending air from the blower 212 to the air diffusing pipe 211, air is supplied from the air diffusing pipe 211 to the lower part of the filtration tower 100, and air backwashing is performed.
  • the water backwash unit 220 has a pump P2 that sends wash water for water backwash to the lower part of the filtration tower 100.
  • the pump P2 sends a part of the treated water stored in the treated water tank 30 to the lower portion of the filtration tower 100 as washing water for backwashing with water.
  • the wash water for backwashing the water is not limited to the treated water stored in the treated water tank 30, and may be water supplied from another place.
  • backwashing by the backwashing unit 200 will be described.
  • air backwashing and water backwashing are sequentially performed as backwashing.
  • the air backwash is performed by supplying air to the lower part of the filtration tower 100 from the air diffuser 211 of the air backwash unit 210. This backwashing with air is performed, for example, for about 10 minutes.
  • the air supplied to the lower portion of the filtration tower 100 becomes bubbles, and the bubbles ascend in the filter medium M at a large ascending speed due to the buoyancy of the air.
  • vibration due to friction is generated between the bubbles and the filter medium M, and the solid component attached to the surface of the filter medium M is peeled off by this vibration.
  • backwashing with water is performed after backwashing with air.
  • the backwashing with water is performed by supplying washing water to the lower portion of the filtration tower 100 by the pump P2 of the water backwashing unit 220 and flowing the washing water as an upward flow in the filtration tower 100.
  • This backwashing with water is carried out, for example, for about 10 minutes.
  • the washing water flowing as an upward flow in the filtration tower 100 pushes up the solid content peeled off by the air backwashing, and the solid content is discharged to the outside (for example, the backwash drainage tank 40). It As a result, the filter medium M is washed.
  • the wastewater generated by the backwash may be discharged as it is or returned to the pretreatment tank 10 instead of being sent to the backwash drain tank 40.
  • the filter device 20 of the present embodiment includes the filter medium outflow suppression unit UT described below.
  • the filter material outflow suppression unit UT includes a filter material outflow suppression mechanism 300 for suppressing the filter material M from flowing out of the filtration tower 100 during backwashing.
  • the filter medium outflow suppression mechanism 300 is provided in the filtration tower 100, for example, and is located above the filter medium M in a state in which filtration is performed by the filter device 20.
  • the filter medium outflow suppression mechanism 300 reduces the bubbles discharged from the filter medium M during backwashing.
  • the filter medium outflow suppression mechanism 300 reduces the bubbles that are accumulated in the filter medium M during the air backwash and float up together with a part of the filter medium M from the filter medium M during the water backwash.
  • the filter medium outflow suppressing mechanism 300 includes, for example, a dividing mechanism 310 that divides air bubbles passing through the filter medium outflow suppressing mechanism 300 into small pieces during backwashing.
  • FIG. 2 is a plan view showing the dividing mechanism 310 of this embodiment.
  • the dividing mechanism 310 includes a plurality of first linear members 311, a plurality of second linear members 312, and an outer shell member 313.
  • the plurality of first linear members 311 and the plurality of second linear members 312 are arranged inside the outer shell member 313.
  • the plurality of first linear members 311 are arranged in the first direction with a certain space therebetween.
  • the plurality of first linear members 311 are arranged substantially parallel to each other.
  • the plurality of second linear members 312 are arranged in a second direction that intersects (for example, is substantially orthogonal to) the first direction with a certain space therebetween.
  • the plurality of second linear members 312 are arranged substantially parallel to each other.
  • Each of the first and second linear members 311 and 312 is, for example, a linearly extending member.
  • a net structure is formed by providing a plurality of linear members 311 and 312 that intersect with each other.
  • the 1st linear member 311 and the 2nd linear member 312 are examples of a "linear part", respectively.
  • the “linear portion” and the “linear member” broadly mean a portion or a member that looks linear when viewed from above. That is, the "linear portion” and the “linear member” are not limited to members extending in a rod shape or a prismatic shape, and are arranged along a substantially vertical direction so that they look linear when viewed from above. A plate member or the like may be used.
  • the outer shell member 313 is connected to the plurality of linear members 311 and 312 and supports the plurality of linear members 311 and 312.
  • the outer shell member 313 is formed in, for example, an annular shape (for example, an annular shape) along the shape of the inner peripheral surface of the filtration tower 100.
  • the outer shell member 313 is fixed to the inner peripheral surface of the filtration tower 100 by a fixture (not shown). Thereby, the dividing mechanism 310 is installed in the filtration tower 100.
  • the dividing mechanism 310 has a plurality of gaps (openings, passages) S penetrating the dividing mechanism 310 in the vertical direction. That is, in the present embodiment, the plurality of gaps S are respectively formed between the plurality of first linear members 311. From another viewpoint, the plurality of gaps S are formed between the plurality of second linear members 312, respectively.
  • the size of the gap S is set smaller than that of a relatively large bubble (for example, a bubble having a diameter of about 1 cm to 10 cm) that causes a high-speed flow.
  • the size (width W) of the gap S is set to 1 cm or less.
  • the “width W of the gap S” means the smallest width of the gap S along the horizontal direction.
  • the plurality of gaps S function as gaps through which at least a part of the filter medium M is passed so that a part of the filter medium M can flow upward beyond the dividing mechanism 310 during backwashing.
  • the size (width W) of the gap S is set to be 1.5 times or more the particle diameter (effective diameter) of the filter medium M.
  • the size (width W) of the gap S is set to be larger than the maximum diameter of the particles forming the filter medium M.
  • the "maximum diameter" is about 1.5 times the effective diameter when the uniform coefficient of the filter medium M is 1.1, and is about 1.5 times the effective diameter when the uniform coefficient of the filter medium M is 1.2. It is twice the size, and when the uniformity coefficient of the filter medium M is 1.4, it is about 2.6 times the effective diameter.
  • the size (width W) of the gap S is larger than the width WA of the first linear members 311 in the direction in which the plurality of first linear members 311 are arranged, and the plurality of second linear members 311. It is larger than the width WB of the second linear member 312 in the direction in which the members 312 are arranged.
  • the material forming the dividing mechanism 310 (the material forming the linear members 311 and 312 and the outer shell member 313) is not particularly limited.
  • the dividing mechanism 310 functions in an environment in which it comes into contact with water and air, and therefore, in consideration of durability, it is preferable that the dividing mechanism 310 be formed of a material that is not easily corroded, such as vinyl chloride or stainless steel.
  • the shape of the dividing mechanism 310 does not have to be circular, and can be appropriately changed according to the internal shape of the filtration tower 100.
  • FIG. 3 is a cross-sectional view showing the arrangement height of the filter medium outflow suppression mechanism 300 of this embodiment.
  • the filter medium outflow suppression mechanism 300 (dividing mechanism 310) is located above the upper surface U of the filter medium M, for example, in a state where filtration is performed by the filter device 20 (see (a) in FIG. 3 ).
  • the filter medium outflow suppressing mechanism 300 (dividing mechanism 310) is located, for example, above the upper surface U of the filter medium M during backwashing with air (see (b) in FIG. 3).
  • the filter medium outflow suppressing mechanism 300 of the present embodiment has a plurality of gaps S, and thus allows a part of the filter medium M to move upward beyond the filter medium outflow suppressing mechanism 300 due to backwashing with air.
  • the water level in the filtration tower 100 is lowered before starting the air backwash.
  • air backwashing is performed, a large bubble grown in the filter medium M suddenly rises, and a part of the filter medium M located around the bubble rises along with the bubbles to the water surface. M may exceed the filter medium outflow suppression mechanism 300.
  • the possibility that the filter medium M will flow out is small, and the filter medium M that suddenly exceeds the filter medium outflow suppression mechanism 300 will again pass through the plurality of gaps S provided in the filter medium outflow suppression mechanism 300. It returns to the lower side of the filter medium outflow suppression mechanism 300.
  • the filter medium outflow suppression mechanism 300 (dividing mechanism 310) is located, for example, below the upper surface U of the expanded filter medium M when backwashing with water (see (c) in FIG. 3 ). That is, when the backwashing with water is started, the washing water is supplied to gradually expand the entire filter medium M.
  • the filter material outflow suppression mechanism 300 has a plurality of gaps S, and allows the filter material M to expand during backwashing with water and allow a part of the filter material M to flow upward beyond the filter material outflow suppression mechanism 300.
  • a part of the filter medium M that has flowed to the upper side of the filter medium outflow suppression mechanism 300 returns to the lower side of the filter medium outflow suppression mechanism 300 again through a plurality of gaps S provided in the filter medium outflow suppression mechanism 300 when the backwashing with water is completed. ..
  • FIG. 4 is a diagram showing the relationship between the size of bubbles and the rising speed of the bubbles (relative rising speed with respect to the water backwash speed). It can be seen that the relationship between the bubble rising speed and the bubble size is an exponential relationship, and that the larger the bubble, the significantly higher the rising speed. According to the experiments by the present inventors, when large bubbles are generated at the start of water backwashing, the rising speed of the filter medium M around the bubbles may reach about 60 times the water backwashing speed. It was
  • a comparatively large bubble that floats along with a part of the filter medium M at the start of backwashing with water is divided by the plurality of linear members 311 and 312 in the process of passing through the dividing mechanism 310.
  • By passing through the relatively small gap S it is divided into a plurality of bubbles. This reduces the size of the rising bubbles.
  • the rising speed of the bubble greatly decreases as shown in FIG.
  • the rising speed of the filter medium M which was rising along with the bubbles, is also suppressed, and the filter medium M is likely to settle. Thereby, the outflow of the filter medium M is suppressed.
  • the filtering device 20 in which the outflow suppressing performance of the filter medium M is improved.
  • the filtering device 20 in which the outflow suppressing performance of the filter medium M is improved.
  • a part of the filter medium M may flow out as the bubbles rise.
  • the outflow of the filter medium M due to the rise of bubbles may reach 5% to 10% of the entire filter medium in a year. Therefore, in order to maintain the filtering performance, it is necessary to replenish the filter medium M periodically.
  • the filtration device 20 of the present embodiment has the filter medium outflow suppression mechanism 300 that reduces the bubbles discharged from the filter medium M during backwashing.
  • the filter medium outflow suppression mechanism 300 that reduces the bubbles discharged from the filter medium M during backwashing.
  • FIG. 5 is a diagram showing an experimental result of an annual outflow rate of the filter medium with and without the filter medium outflow suppression mechanism 300.
  • “gap x1” indicates the annual outflow rate of the filter medium when the width W of the gap S is x1 [mm] when the filter medium outflow suppression mechanism 300 is provided
  • “gap x2” is In the case where the filter material outflow suppression mechanism 300 is provided, the annual filter material outflow rate is shown when the width W of the gap S is x2 [mm].
  • “No installation” means that the filter material outflow suppression mechanism 300 is provided.
  • the annual outflow rate of the filter media when not used is shown.
  • x1 [mm] is smaller than x2 [mm]. However, x1 [mm] is 1.5 times or more the particle diameter of the filter medium M.
  • the annual outflow rate of the filter medium is reduced by providing the filter medium outflow suppressing mechanism 300 as compared with the case where the filter medium outflow suppressing mechanism 300 is not provided. Further, when the filter medium outflow suppression mechanism 300 is provided, it is understood that the smaller the gap S is, the lower the annual filter medium outflow rate is.
  • the filter medium M cannot flow upward beyond the filter medium outflow suppressing mechanism 300, and the filter medium M is deposited on the lower portion of the filter medium outflow suppressing mechanism 300, so that the filter medium M Liquidity may be reduced. If the fluidity of the filter medium M decreases during backwashing, the cleaning effect of backwashing decreases.
  • the dividing mechanism 310 has a plurality of gaps S through which at least a part of the filter medium M passes so that a part of the filter medium M can flow upward beyond the dividing mechanism 310.
  • the size of the gap S is 1.5 times or more the particle diameter of the filter medium M.
  • the filter medium M having the uniformity coefficient of 1.1 times many particles including the particles having the maximum diameter can pass through the gap S.
  • many particles can pass through the gap S.
  • a part of the filter medium M easily moves to above the dividing mechanism 310.
  • the filter medium M that has moved to above the dividing mechanism 310 is likely to return to the lower side of the dividing mechanism 310 through the gap S. If the filter medium M that has moved to above the dividing mechanism 310 easily returns to the lower side of the dividing mechanism 310, the accumulation of the filter medium M on the dividing mechanism 310 is suppressed, and the filter medium M can be used more effectively.
  • the filter medium outflow suppressing mechanism 300 (dividing mechanism 310) is arranged at a height below the upper surface U of the filter medium M in a state where the filter medium M expands during backwashing with water. According to such a configuration, the bubbles can be made smaller at a lower position in the filtration tower 100 as compared with the fourth embodiment described later, so that the flow of the filter medium M can be further suppressed in some cases.
  • FIG. 6 is a plan view showing the dividing mechanism 310 of the first modified example.
  • each of the first and second linear members 311 and 312 of the dividing mechanism 310 is not a linearly extending member but a member including one or more curved portions.
  • FIG. 7 is a plan view showing a cutting mechanism 310 of the second modified example.
  • the dividing mechanism 310 has a honeycomb-shaped net structure. That is, in this modification, the dividing mechanism 310 includes a plurality of first linear portions 315, a plurality of second linear portions 316, and a plurality of third linear portions 317.
  • the plurality of first linear portions 315 are arranged in the first direction with a gap S between them.
  • the plurality of first linear portions 315 are arranged substantially parallel to each other.
  • the plurality of second linear portions 316 are arranged in a second direction that intersects the first direction with a gap S therebetween.
  • the plurality of second linear portions 316 are arranged substantially parallel to each other.
  • the plurality of third linear portions 317 are arranged in a third direction that intersects the first direction and the second direction with a gap S therebetween.
  • the plurality of third linear portions 317 are arranged substantially parallel to each other.
  • a honeycomb structure is formed by connecting the first to third linear portions 315, 316, 317 to each other.
  • Each of the first to third linear portions 315, 316, 317 is an example of a “linear portion”.
  • FIG. 8 is a plan view showing a cutting mechanism 310 of the third modified example.
  • the dividing mechanism 310 does not have the second linear member 312, and is configured only by the first linear member 311 that is linearly formed.
  • FIG. 9 is a plan view showing a cutting mechanism 310 of the fourth modified example.
  • the dividing mechanism 310 does not have the second linear member 312 and is composed of only the first linear member 311 as in the third modification.
  • the first linear member 311 is not a member that extends linearly but a member that includes one or more curved portions.
  • the configurations of the first to fourth modifications can also improve the outflow suppressing performance of the filter medium M, as in the first embodiment.
  • the second embodiment is different from the first embodiment in that the filter medium outflow suppressing mechanism 300 has a plurality of dividing mechanisms 310A and 310B provided in multiple stages.
  • the configuration other than that described below is substantially the same as that of the first embodiment.
  • FIG. 10 is a diagram showing a filtering device 20 of the second embodiment.
  • the filter medium outflow suppressing mechanism 300 includes a first dividing mechanism 310A and a second dividing mechanism 310B.
  • the configurations of the first dividing mechanism 310A and the second dividing mechanism 310B are the same as the configurations of the dividing mechanism 310 of the first embodiment.
  • the first dividing mechanism 310A is located above the filter medium M while being filtered by the filter device 20, and reduces air bubbles discharged from the filter medium M during backwashing.
  • the second dividing mechanism 310B is arranged above the first dividing mechanism 310A, and divides the bubbles moving above the first dividing mechanism 310A into small pieces.
  • the gap S of the first dividing mechanism 310A and the gap S of the second dividing mechanism 310B are arranged so as to overlap each other when viewed from above.
  • the outflow suppression performance of the filter medium M can be further improved. That is, when the dividing mechanism 310 has only one stage, bubbles that have been divided into small pieces by the dividing mechanism 310 may be recombined during the ascending. Therefore, in the present embodiment, the second dividing mechanism 310B is provided above the first dividing mechanism 310A. Thereby, the bubbles that have become large by combining after passing through the first dividing mechanism 310A can be divided again by the second dividing mechanism 310B into smaller ones. Further, by providing a plurality of dividing mechanisms 310A and 310B, it is possible to further reduce the bubbles.
  • the dividing mechanism 310 may be provided in three or more stages.
  • the third embodiment is different from the first embodiment in that a filter medium recovery mechanism 320 for dropping the filter medium M deposited on the filter medium outflow suppression mechanism 300 into the filtration tower 100 is provided.
  • the configuration other than that described below is substantially the same as that of the first embodiment.
  • FIG. 11 is a diagram showing a filtering device 20 of the third embodiment.
  • the filtration device 20 includes a filter medium recovery mechanism 320 in addition to the filter medium outflow suppression mechanism 300.
  • the filter medium recovery mechanism 320 drops the filter medium M deposited on the filter medium outflow suppression mechanism 300 (for example, on the dividing mechanism 310) into the filtration tower 100.
  • the filter medium recovery mechanism 320 includes a support mechanism 321 that supports the dividing mechanism 310 and a vibrator 322 that vibrates the dividing mechanism 310.
  • FIG. 12 is a plan view showing the support mechanism 321 of the filter medium recovery mechanism 320 of this embodiment.
  • the support mechanism 321 includes, for example, a frame 321a and a plurality of support members 321b.
  • the frame 321a is fixed to the inner peripheral surface of the filtration tower 100 by a fixture (not shown).
  • the dividing mechanism 310 is arranged inside the frame 321a.
  • the support member 321b is provided between the dividing mechanism 310 and the support member 321b.
  • the support member 321b has rubber or a spring and is elastically deformable, or is slidable by a mechanism (not shown).
  • the dividing mechanism 310 is capable of horizontally reciprocating (oscillating) inside the frame 321a.
  • the vibrator 322 is connected to the dividing mechanism 310 by a connecting member (not shown).
  • the vibrator 322 vibrates the dividing mechanism 310 in the horizontal direction so that the filter medium M deposited on the dividing mechanism 310 is dropped into the filtration tower 100.
  • the maintainability of the filtration device 20 can be further improved. That is, even if the gap S has a certain size or more, a small amount of the filter medium M may be deposited on the dividing mechanism 310 as the number of times of backwashing increases. When the filter medium M is deposited on the dividing mechanism 310, the interval of the substantial gap S may be narrowed, and the filter medium M is likely to be additionally deposited.
  • a filter medium recovery mechanism 320 for dropping the filter medium M deposited on the dividing mechanism 310 into the filtration tower 100 is provided.
  • the filter medium M deposited on the dividing mechanism 310 can be dropped, for example, periodically, and the function of the filter medium outflow suppressing mechanism 300 can be maintained. Therefore, the maintainability of the filtering device 20 can be improved.
  • the configuration of the filter medium outflow suppression mechanism 300 is not limited to the above example, and any specific configuration may be used as long as the filter medium M deposited on the filter medium outflow suppression mechanism 300 can be dropped.
  • the filter medium outflow suppression mechanism 300 may be a cleaning mechanism or the like that automatically cleans the top of the dividing mechanism 310.
  • the fourth embodiment is different from the first embodiment in that the filter medium outflow suppression mechanism 300 is arranged at a position higher than that of the first embodiment.
  • the configuration other than that described below is substantially the same as that of the first embodiment.
  • FIG. 13 is a cross-sectional view showing the filtration device 20 of this embodiment.
  • (A), (b), and (c) in FIG. 13 respectively indicate "when filtration is performed by the filtration device 20", “when air is backwashed”, and "when water is backwashed”.
  • the filter medium outflow suppressing mechanism 300 (dividing mechanism 310) is arranged at a height above the upper surface U of the filter medium M even when the filter medium M is expanded during backwashing with water. That is, in the present embodiment, the height at which the filter medium M expands and reaches during backwashing of the filter device 20 is obtained in advance by calculation or experiment, and the filter medium outflow suppression mechanism 300 (dividing mechanism 310) is located above the height. ) Is installed. For example, when 100 cm of the filter media M having an expansion coefficient of 30% are stacked, the filter media outflow suppression mechanism 300 is installed at a location with a height of 130 cm or more.
  • the fluidity of the filter medium M is less likely to be hindered by the filter medium outflow suppression mechanism 300, and the fluidity of the filter medium M can be largely secured. Therefore, the cleaning effect by backwashing may be improved.
  • the embodiment and the modified examples are not limited to the above examples.
  • the plurality of embodiments and modifications described above may be implemented in combination with each other.
  • the filtering device 20 and the filter medium outflow suppressing unit UT of the above-described embodiments and modifications are not limited to the device in which the water backwash is performed after the air backwash, and are applied to the device in which the air-water mixed backwash is performed. May be.
  • the filter medium outflow suppression mechanism 300 is not limited to the above-described mechanism as long as it is a mechanism that can reduce the bubbles discharged from the filter medium M during backwashing.
  • the filter device has a filter medium outflow suppressing mechanism that reduces bubbles discharged from the filter medium during backwashing, thereby improving the outflow suppressing performance of the filter medium. ..

Abstract

A filtering device according to an embodiment of the present invention is provided with: a filtering tank; a backwashing unit; and a filter medium outflow suppression mechanism. The filtering tank contains a filter medium, and filtration is carried out upon downward flowing of water to be treated. The backwashing unit carries out backwashing by supplying air and washing water to the bottom part of the filtering tank. The filter medium outflow suppression mechanism is positioned above the filter medium at least in a state where filtration is carried out, and reduces bubbles discharged from the filter medium during backwashing.

Description

濾過装置および濾材流出抑制ユニットFiltration device and filter material outflow suppression unit
 本発明の実施形態は、濾過装置および濾材流出抑制ユニットに関する。 The embodiment of the present invention relates to a filter device and a filter medium outflow suppression unit.
 濾過塔内の濾材に被処理水を通すことで濾過が行われ、空気および洗浄水を用いて逆洗が行われる濾過装置が知られている。このような濾過装置は、濾材の流出抑制性能の向上を図ることができると望ましい。 A filter device is known in which filtration is performed by passing water to be treated through a filter material in a filtration tower, and backwashing is performed using air and wash water. It is desirable that such a filtering device can improve the outflow suppressing performance of the filtering material.
日本国特許第4831052号公報Japanese Patent No. 4831052
 本発明が解決しようとする課題は、濾材の流出抑制性能の向上を図ることができる濾過装置および濾材流出抑制ユニットを提供することである。 The problem to be solved by the present invention is to provide a filtering device and a filter medium outflow suppressing unit that can improve the outflow suppressing performance of the filter medium.
 実施形態の濾過装置は、濾過槽と、逆洗部と、濾材流出抑制機構とを備える。濾過槽は、濾材が収容され、被処理水が下降流で流れることで濾過が行われる。逆洗部は、濾過槽の下部に空気および洗浄水を供給して逆洗を行う。濾材流出抑制機構は、少なくとも濾過が行われる状態で濾材よりも上方に位置し、逆洗時に濾材中から排出される気泡を小さくする。 The filtration device of the embodiment includes a filtration tank, a backwash unit, and a filter medium outflow suppression mechanism. The filter tank contains a filter medium, and the water to be treated flows in a downward flow to perform filtration. The backwash unit supplies air and wash water to the lower portion of the filtration tank to perform backwash. The filter material outflow suppression mechanism is located above the filter material at least in the state where the filtration is performed, and reduces bubbles discharged from the filter material during backwashing.
図1は、第1の実施形態の濾過システムの全体構成を示す図である。FIG. 1 is a diagram showing the overall configuration of the filtration system of the first embodiment. 図2は、第1の実施形態の分断機構を示す平面図である。FIG. 2 is a plan view showing the dividing mechanism according to the first embodiment. 図3は、第1の実施形態の濾材流出抑制機構の配置高さを示す断面図である。FIG. 3 is a cross-sectional view showing an arrangement height of the filter medium outflow suppression mechanism of the first embodiment. 図4は、第1の実施形態において気泡の大きさと気泡の上昇速度との関係を示す図である。FIG. 4 is a diagram showing the relationship between the bubble size and the bubble rising speed in the first embodiment. 図5は、第1の実施形態の濾材流出抑制機構が設けられた場合と、設けられていない場合との濾材年間流出率の実験結果を示す図である。FIG. 5: is a figure which shows the experimental result of the filter medium annual outflow rate in the case where the filter medium outflow suppression mechanism of 1st Embodiment is provided, and the case where it is not provided. 図6は、第1の実施形態の第1変形例の分断機構を示す平面図である。FIG. 6 is a plan view showing a cutting mechanism according to a first modified example of the first embodiment. 図7は、第1の実施形態の第2変形例の分断機構を示す平面図である。FIG. 7: is a top view which shows the cutting|disconnection mechanism of the 2nd modification of 1st Embodiment. 図8は、第1の実施形態の第3変形例の分断機構を示す平面図である。FIG. 8 is a plan view showing a cutting mechanism of a third modified example of the first embodiment. 図9は、第1の実施形態の第4変形例の分断機構を示す平面図である。FIG. 9 is a plan view showing a cutting mechanism according to a fourth modified example of the first embodiment. 図10は、第2の実施形態の濾過装置を示す図である。FIG. 10: is a figure which shows the filtration apparatus of 2nd Embodiment. 図11は、第3の実施形態の濾過装置を示す図である。FIG. 11: is a figure which shows the filtration apparatus of 3rd Embodiment. 図12は、第3の実施形態の濾材回収機構の支持機構を示す平面図である。FIG. 12 is a plan view showing a support mechanism of the filter medium recovery mechanism of the third embodiment. 図13は、第4の実施形態の濾材流出抑制機構の配置高さを示す断面図である。FIG. 13: is sectional drawing which shows the arrangement height of the filter medium outflow suppression mechanism of 4th Embodiment.
 以下、実施形態の濾過装置および濾材流出抑制ユニットを、図面を参照して説明する。なお以下の説明では、同一または類似の機能を有する構成に同一の符号を付す。そして、それら構成の重複する説明は省略する場合がある。 Hereinafter, the filtering device and the filtering medium outflow suppressing unit of the embodiment will be described with reference to the drawings. In the following description, the same reference numerals are given to configurations having the same or similar functions. In addition, redundant description of those configurations may be omitted.
 (第1の実施形態)
 図1から図5を参照し、第1の実施形態について説明する。
 まず、濾過装置20を含む水処理システム1の全体構成の一例について説明する。水処理システム1は、例えば、工業廃水などの被処理水に含まれる懸濁物質などを被処理水から除去する水処理システムである。
(First embodiment)
A first embodiment will be described with reference to FIGS. 1 to 5.
First, an example of the overall configuration of the water treatment system 1 including the filtering device 20 will be described. The water treatment system 1 is, for example, a water treatment system that removes suspended substances contained in water to be treated such as industrial wastewater from the water to be treated.
 図1は、水処理システム1の全体構成を示す図である。水処理システム1は、例えば、1つ以上の前処理槽10、濾過装置20、処理水槽30、および逆洗排水槽40を含む。 1 is a diagram showing the overall configuration of the water treatment system 1. The water treatment system 1 includes, for example, one or more pretreatment tanks 10, a filtering device 20, a treated water tank 30, and a backwash drain tank 40.
 前処理槽10は、濾過装置20の上流側に設けられている。前処理槽10は、被処理水のイオン濃度の調整(pH調整)が行われる調整槽や、被処理水中の固形分のフロック化が行われる凝集槽、凝集させたフロックが沈殿分離される沈殿槽などである。前処理槽10により所定の処理が行われた被処理水は、原水ポンプP1により濾過装置20に送られる。なお、凝集処理などが既に済んでいる被処理水を対象とする場合は、前処理槽10は省略されてもよい。 The pretreatment tank 10 is provided on the upstream side of the filtration device 20. The pretreatment tank 10 is an adjustment tank in which the ion concentration (pH adjustment) of the water to be treated is adjusted, a flocculation tank in which solids in the water to be treated are flocculated, and a flocculation floc is precipitated and separated. Such as a tank. The water to be treated that has been subjected to a predetermined treatment in the pretreatment tank 10 is sent to the filtration device 20 by the raw water pump P1. The pretreatment tank 10 may be omitted when targeting the water to be treated that has already undergone the coagulation treatment or the like.
 濾過装置20は、被処理水を濾材Mに通すことで、被処理水中の固形分を被処理水から分離する。本実施形態では、被処理水は、濾過装置20の上部に供給される。濾過装置20の上部に供給された被処理水は、濾過装置20内を下降流として流れ、濾過された処理水として濾過装置20の下部から排出される。なお、濾過装置20の構成および機能については詳しく後述する。 The filtering device 20 separates the solid content in the water to be treated from the water to be treated by passing the water to be treated through the filter material M. In the present embodiment, the water to be treated is supplied to the upper part of the filtration device 20. The water to be treated supplied to the upper portion of the filtering device 20 flows in the filtering device 20 as a downward flow, and is discharged from the lower portion of the filtering device 20 as filtered treated water. The configuration and function of the filtering device 20 will be described later in detail.
 処理水槽30は、濾過装置20の下部に接続されており、濾過装置20により濾過された処理水が流入する。例えば、処理水槽30は、処理水槽30に流入した処理水の一部を逆洗に用いる洗浄水として貯留する。 The treated water tank 30 is connected to the lower part of the filtration device 20, and the treated water filtered by the filtration device 20 flows in. For example, the treated water tank 30 stores a part of the treated water that has flowed into the treated water tank 30 as wash water used for backwashing.
 逆洗排水槽40は、濾過装置20の上部に接続されており、逆洗時に濾過装置20内を上昇流として通過した洗浄水(逆洗排水)が流入する。 The backwash drainage tank 40 is connected to the upper part of the filtration device 20, and the wash water (backwash drainage) that has passed through the filtration device 20 as an upward flow during backwash flows in.
 次に、濾過装置20の構成および機能について説明する。濾過装置20は、例えば、濾過塔100、逆洗部200、および濾材流出抑制ユニットUTを備えている。 Next, the configuration and function of the filtering device 20 will be described. The filtration device 20 includes, for example, a filtration tower 100, a backwash unit 200, and a filter material outflow suppression unit UT.
 濾過塔100は、例えば、有底の筒状部材であり、略鉛直方向に起立して設けられている。濾過塔100は、「濾過槽」の一例である。濾過塔100内には、被処理水を濾過するための濾材Mが収容されている。被処理水は、濾過塔100の上部に供給され、濾過塔100に収容された濾材Mを下降流として通過することで濾過される。すなわち、被処理水中の固形分が濾材Mによって補足され、被処理水が浄化される。 The filtration tower 100 is, for example, a tubular member having a bottom, and is provided upright in a substantially vertical direction. The filtration tower 100 is an example of a “filtration tank”. A filter material M for filtering the water to be treated is housed in the filtration tower 100. The water to be treated is supplied to the upper part of the filtration tower 100, and is filtered by passing the filter medium M contained in the filtration tower 100 as a downward flow. That is, the solid content in the water to be treated is captured by the filter medium M, and the water to be treated is purified.
 濾材Mは、例えば、第1濾材M1と、第1濾材M1の上方に設けられた第2濾材M2とを含む。第1濾材M1は、例えば濾過砂である。第2濾材M2は、第1濾材M1よりも粒子径が大きな濾材であり、例えばアンスラサイトである。 The filter medium M includes, for example, a first filter medium M1 and a second filter medium M2 provided above the first filter medium M1. The first filter medium M1 is, for example, filter sand. The second filter medium M2 is a filter medium having a larger particle size than the first filter medium M1, and is, for example, anthracite.
 ここで、以下の説明における「濾材の粒子径」とは、特に説明がない限り、第2濾材M2の粒子径(すなわち、第1濾材M1と第2濾材M2とのうち大きい方の粒子径)を意味する。また、本明細書において「粒子径」とは、濾材を構成する粒子の有効径を意味する。「有効径」とは、濾材のふるい分け計算において累積通過質量百分率が10%になる粒子の大きさを意味し、すなわち、その濾材の透水度が、全粒子の粒子径が同じと仮定した場合の透水度となるような粒子径を意味する。 Here, the “particle size of the filter medium” in the following description means the particle size of the second filter medium M2 (that is, the larger particle size of the first filter medium M1 and the second filter medium M2) unless otherwise specified. Means Further, in the present specification, the “particle diameter” means the effective diameter of the particles constituting the filter medium. "Effective diameter" means the size of particles for which the cumulative passing mass percentage is 10% in the sieving calculation of the filter medium, that is, when the water permeability of the filter medium is assumed to be the same for all particles. It means a particle size that gives water permeability.
 本実施形態では、第1濾材M1の粒子径は、0.6mmであり、第2濾材M2の粒子径は、1.2mmである。ただし、第1濾材M1および第2濾材M2の粒子径は、上記例に限定されない。また、濾材Mは、第1濾材M1と第2濾材M2の2層構造である必要はなく、1種類の濾材により構成されてもよい。 In the present embodiment, the particle size of the first filter medium M1 is 0.6 mm, and the particle size of the second filter medium M2 is 1.2 mm. However, the particle diameters of the first filter medium M1 and the second filter medium M2 are not limited to the above examples. The filter medium M does not have to have a two-layer structure of the first filter medium M1 and the second filter medium M2, and may be composed of one type of filter medium.
 逆洗部(逆洗ユニット)200は、濾過塔100の下部に空気および洗浄水を供給することで濾過装置20の逆洗を行う装置である。逆洗部200は、例えば、空気逆洗を行う空気逆洗部210と、水逆洗を行う水逆洗部220とを含む。 The backwash unit (backwash unit) 200 is a device that backwashes the filtration device 20 by supplying air and wash water to the lower portion of the filtration tower 100. The backwash unit 200 includes, for example, an air backwash unit 210 that performs air backwash and a water backwash unit 220 that performs water backwash.
 空気逆洗部210は、例えば、散気管211と、ブロワー212とを含む。散気管211は、濾過塔100の底部に設けられ、濾材Mの下方に位置する。ブロワー212は、散気管211に接続され、空気逆洗を行うための空気を散気管211に送る。ブロワー212から散気管211に空気が送られることで、散気管211から濾過塔100の下部に空気が供給され、空気逆洗が行われる。 The air backwash unit 210 includes, for example, an air diffuser 211 and a blower 212. The air diffuser 211 is provided at the bottom of the filtration tower 100 and is located below the filter medium M. The blower 212 is connected to the air diffusing pipe 211 and sends the air for backwashing the air to the air diffusing pipe 211. By sending air from the blower 212 to the air diffusing pipe 211, air is supplied from the air diffusing pipe 211 to the lower part of the filtration tower 100, and air backwashing is performed.
 水逆洗部220は、水逆洗用の洗浄水を濾過塔100の下部に送るポンプP2を有する。本実施形態では、ポンプP2は、水逆洗用の洗浄水として、処理水槽30に貯留された処理水の一部を濾過塔100の下部に送る。なお、水逆洗用の洗浄水は、処理水槽30に貯留された処理水に限定されず、別の場所から供給される水でもよい。 The water backwash unit 220 has a pump P2 that sends wash water for water backwash to the lower part of the filtration tower 100. In the present embodiment, the pump P2 sends a part of the treated water stored in the treated water tank 30 to the lower portion of the filtration tower 100 as washing water for backwashing with water. The wash water for backwashing the water is not limited to the treated water stored in the treated water tank 30, and may be water supplied from another place.
 ここで、逆洗部200による逆洗の一例について説明する。本実施形態では、逆洗として、空気逆洗と、水逆洗とが順番に行われる。 Here, an example of backwashing by the backwashing unit 200 will be described. In the present embodiment, air backwashing and water backwashing are sequentially performed as backwashing.
 空気逆洗は、空気逆洗部210の散気管211から濾過塔100の下部に空気が供給されることで行われる。この空気逆洗は、例えば約10分間実施される。空気逆洗が行われると、濾過塔100の下部に供給された空気が気泡となり、この気泡が空気の浮力により大きな上昇速度で濾材M中を上昇する。このとき、気泡と濾材Mとの間に摩擦による振動が生じ、この振動により濾材Mの表面に付着した固形分が剥がれる。 The air backwash is performed by supplying air to the lower part of the filtration tower 100 from the air diffuser 211 of the air backwash unit 210. This backwashing with air is performed, for example, for about 10 minutes. When the air backwashing is performed, the air supplied to the lower portion of the filtration tower 100 becomes bubbles, and the bubbles ascend in the filter medium M at a large ascending speed due to the buoyancy of the air. At this time, vibration due to friction is generated between the bubbles and the filter medium M, and the solid component attached to the surface of the filter medium M is peeled off by this vibration.
 一方で、水逆洗は、空気逆洗の後に行われる。水逆洗は、水逆洗部220のポンプP2により濾過塔100の下部に洗浄水が供給され、濾過塔100内を洗浄水が上昇流として流れることで行われる。この水逆洗は、例えば約10分間実施される。水逆洗が行われると、濾過塔100内を上昇流として流れる洗浄水によって、空気逆洗で剥がされた固形分が押し上げられ、この固形分が外部(例えば逆洗排水槽40)に排出される。これにより、濾材Mの洗浄が行われる。なお、逆洗で発生する排水は、逆洗排水槽40に送られることに代えて、そのまま放流されてもよく、前処理槽10に戻されてもよい。 On the other hand, backwashing with water is performed after backwashing with air. The backwashing with water is performed by supplying washing water to the lower portion of the filtration tower 100 by the pump P2 of the water backwashing unit 220 and flowing the washing water as an upward flow in the filtration tower 100. This backwashing with water is carried out, for example, for about 10 minutes. When the water backwashing is performed, the washing water flowing as an upward flow in the filtration tower 100 pushes up the solid content peeled off by the air backwashing, and the solid content is discharged to the outside (for example, the backwash drainage tank 40). It As a result, the filter medium M is washed. The wastewater generated by the backwash may be discharged as it is or returned to the pretreatment tank 10 instead of being sent to the backwash drain tank 40.
 ここで、このような濾過装置20に生じるひとつの事象について説明する。空気逆洗を行うために多くの空気を濾過塔100の下部に供給すると、空気逆洗が終了した時点で多くの気泡が濾材M中に蓄積された状態となる。この状態で水逆洗に移行し、濾過塔100の下部に洗浄水を供給すると、濾材M中に蓄積された多くの気泡が洗浄水によって一斉に押し出され、高速流となって上昇することがある。なかには、複数の気泡が合体して成長するなどして比較的大きな気泡(例えば、直径が1cm~10cm程度の気泡)が高速で濾材M中を上昇することがある。このような大きな気泡が濾材M中を高速で上昇すると、気泡の上昇に伴って濾材Mの一部が濾過塔100の外部に流出することがある。そこで本実施形態の濾過装置20は、このような濾材Mの流出を抑制するため、次に説明する濾材流出抑制ユニットUTを備えている。 Here, one phenomenon that occurs in such a filtration device 20 will be described. When a large amount of air is supplied to the lower portion of the filtration tower 100 to perform the air backwash, many bubbles are accumulated in the filter medium M at the time when the air backwash is completed. When the washing water is supplied to the lower portion of the filtration tower 100 in this state and washing water is supplied to the lower portion of the filtration tower 100, many bubbles accumulated in the filter medium M are simultaneously pushed out by the washing water and rise in a high-speed flow. is there. Among them, a relatively large bubble (for example, a bubble having a diameter of about 1 cm to 10 cm) may rise in the filter medium M at high speed due to a plurality of bubbles growing by coalescing. When such large bubbles rise in the filter medium M at high speed, a part of the filter medium M may flow out of the filtration tower 100 as the bubbles rise. Therefore, in order to suppress the outflow of the filter medium M, the filter device 20 of the present embodiment includes the filter medium outflow suppression unit UT described below.
 濾材流出抑制ユニットUTは、逆洗時に濾材Mが濾過塔100から流出することを抑制するための濾材流出抑制機構300を含む。濾材流出抑制機構300は、例えば、濾過塔100内に設けられ、濾過装置20によって濾過が行われる状態で濾材Mよりも上方に位置する。濾材流出抑制機構300は、逆洗時に濾材M中から排出される気泡を小さくする。例えば、濾材流出抑制機構300は、空気逆洗時に濾材M中に蓄積されて水逆洗時に濾材M中から濾材Mの一部を伴い浮上する気泡を小さくする。これを実現するため、濾材流出抑制機構300は、例えば、逆洗時に濾材流出抑制機構300を通過する気泡を小さく分断する分断機構310を含む。 The filter material outflow suppression unit UT includes a filter material outflow suppression mechanism 300 for suppressing the filter material M from flowing out of the filtration tower 100 during backwashing. The filter medium outflow suppression mechanism 300 is provided in the filtration tower 100, for example, and is located above the filter medium M in a state in which filtration is performed by the filter device 20. The filter medium outflow suppression mechanism 300 reduces the bubbles discharged from the filter medium M during backwashing. For example, the filter medium outflow suppression mechanism 300 reduces the bubbles that are accumulated in the filter medium M during the air backwash and float up together with a part of the filter medium M from the filter medium M during the water backwash. In order to realize this, the filter medium outflow suppressing mechanism 300 includes, for example, a dividing mechanism 310 that divides air bubbles passing through the filter medium outflow suppressing mechanism 300 into small pieces during backwashing.
 図2は、本実施形態の分断機構310を示す平面図である。本実施形態では、分断機構310は、複数の第1線状部材311と、複数の第2線状部材312と、外郭部材313とを含む。 FIG. 2 is a plan view showing the dividing mechanism 310 of this embodiment. In the present embodiment, the dividing mechanism 310 includes a plurality of first linear members 311, a plurality of second linear members 312, and an outer shell member 313.
 複数の第1線状部材311および複数の第2線状部材312は、外郭部材313の内側に配置されている。複数の第1線状部材311は、互いの間に一定の間隔を空けて第1方向に並べられている。複数の第1線状部材311は、互いに略平行に配置されている。複数の第2線状部材312は、互いの間に一定の間隔を空けて第1方向とは交差した(例えば略直交した)第2方向に並べられている。複数の第2線状部材312は、互いに略平行に配置されている。第1および第2の線状部材311,312の各々は、例えば、直線状に延びた部材である。 The plurality of first linear members 311 and the plurality of second linear members 312 are arranged inside the outer shell member 313. The plurality of first linear members 311 are arranged in the first direction with a certain space therebetween. The plurality of first linear members 311 are arranged substantially parallel to each other. The plurality of second linear members 312 are arranged in a second direction that intersects (for example, is substantially orthogonal to) the first direction with a certain space therebetween. The plurality of second linear members 312 are arranged substantially parallel to each other. Each of the first and second linear members 311 and 312 is, for example, a linearly extending member.
 本実施形態では、複数の線状部材311,312が互いに交差して設けられることで、網構造が形成されている。第1線状部材311および第2線状部材312は、それぞれ「線状部」の一例である。なお本明細書において「線状部」および「線状部材」とは、上方から見た場合に線状に見える部分または部材を広く意味する。すなわち、「線状部」および「線状部材」とは、棒状や角柱状に延びた部材に限定されず、上方から見た場合に線状に見えるように、略鉛直方向に沿って配置された板部材などでもよい。 In the present embodiment, a net structure is formed by providing a plurality of linear members 311 and 312 that intersect with each other. The 1st linear member 311 and the 2nd linear member 312 are examples of a "linear part", respectively. In the present specification, the “linear portion” and the “linear member” broadly mean a portion or a member that looks linear when viewed from above. That is, the "linear portion" and the "linear member" are not limited to members extending in a rod shape or a prismatic shape, and are arranged along a substantially vertical direction so that they look linear when viewed from above. A plate member or the like may be used.
 外郭部材313は、複数の線状部材311,312に接続され、複数の線状部材311,312を支持している。外郭部材313は、例えば濾過塔100の内周面の形状に沿う環状(例えば円環状)に形成されている。外郭部材313は、不図示の固定具により濾過塔100の内周面に固定される。これにより、分断機構310が濾過塔100内に設置される。 The outer shell member 313 is connected to the plurality of linear members 311 and 312 and supports the plurality of linear members 311 and 312. The outer shell member 313 is formed in, for example, an annular shape (for example, an annular shape) along the shape of the inner peripheral surface of the filtration tower 100. The outer shell member 313 is fixed to the inner peripheral surface of the filtration tower 100 by a fixture (not shown). Thereby, the dividing mechanism 310 is installed in the filtration tower 100.
 以上のような構成により、分断機構310は、分断機構310を鉛直方向に貫通した複数の隙間(開口、通路)Sを有する。すなわち本実施形態では、複数の隙間Sは、それぞれ複数の第1線状部材311の間に形成されている。別の観点で見ると、複数の隙間Sは、それぞれ複数の第2線状部材312の間に形成されている。隙間Sの大きさは、高速流を生じさせる比較的大きな気泡(例えば、直径が1cm~10cm程度の気泡)よりも小さく設定される。例えば、隙間Sの大きさ(幅W)は、1cm以下に設定される。「隙間Sの幅W」とは、隙間Sの水平方向に沿う幅のなかで、最小の幅を意味する。 With the above-described configuration, the dividing mechanism 310 has a plurality of gaps (openings, passages) S penetrating the dividing mechanism 310 in the vertical direction. That is, in the present embodiment, the plurality of gaps S are respectively formed between the plurality of first linear members 311. From another viewpoint, the plurality of gaps S are formed between the plurality of second linear members 312, respectively. The size of the gap S is set smaller than that of a relatively large bubble (for example, a bubble having a diameter of about 1 cm to 10 cm) that causes a high-speed flow. For example, the size (width W) of the gap S is set to 1 cm or less. The “width W of the gap S” means the smallest width of the gap S along the horizontal direction.
 一方で、複数の隙間Sは、逆洗時に濾材Mの一部が分断機構310を超えて上方まで流動可能なように、濾材Mの少なくとも一部を通す隙間として機能する。本実施形態では、隙間Sの大きさ(幅W)は、濾材Mの粒子径(有効径)の1.5倍以上に設定される。別の観点によれば、隙間Sの大きさ(幅W)は、濾材Mを構成する粒子の最大径よりも大きく設定される。例えば、「最大径」は、濾材Mの均等係数が1.1の場合、有効径の約1.5倍の大きさであり、濾材Mの均等係数が1.2の場合、有効径の約2倍の大きさであり、濾材Mの均等係数が1.4の場合、有効径の約2.6倍の大きさである。 On the other hand, the plurality of gaps S function as gaps through which at least a part of the filter medium M is passed so that a part of the filter medium M can flow upward beyond the dividing mechanism 310 during backwashing. In this embodiment, the size (width W) of the gap S is set to be 1.5 times or more the particle diameter (effective diameter) of the filter medium M. According to another aspect, the size (width W) of the gap S is set to be larger than the maximum diameter of the particles forming the filter medium M. For example, the "maximum diameter" is about 1.5 times the effective diameter when the uniform coefficient of the filter medium M is 1.1, and is about 1.5 times the effective diameter when the uniform coefficient of the filter medium M is 1.2. It is twice the size, and when the uniformity coefficient of the filter medium M is 1.4, it is about 2.6 times the effective diameter.
 また別の観点によれば、隙間Sの大きさ(幅W)は、複数の第1線状部材311が並ぶ方向における第1線状部材311の幅WAよりも大きく、複数の第2線状部材312が並ぶ方向における第2線状部材312の幅WBよりも大きい。 According to another aspect, the size (width W) of the gap S is larger than the width WA of the first linear members 311 in the direction in which the plurality of first linear members 311 are arranged, and the plurality of second linear members 311. It is larger than the width WB of the second linear member 312 in the direction in which the members 312 are arranged.
 分断機構310を構成する素材(線状部材311,312や外郭部材313を構成する素材)は、特に限定されない。例えば、分断機構310は、水と空気に触れる環境で機能するため、耐久性を考えると塩化ビニールやステンレスなど、腐食されにくい材質で形成されると好ましい。また、分断機構310の形状は、円形である必要はなく、濾過塔100の内部形状に応じて適宜変更可能である。 The material forming the dividing mechanism 310 (the material forming the linear members 311 and 312 and the outer shell member 313) is not particularly limited. For example, the dividing mechanism 310 functions in an environment in which it comes into contact with water and air, and therefore, in consideration of durability, it is preferable that the dividing mechanism 310 be formed of a material that is not easily corroded, such as vinyl chloride or stainless steel. Further, the shape of the dividing mechanism 310 does not have to be circular, and can be appropriately changed according to the internal shape of the filtration tower 100.
 次に、濾材流出抑制機構300の配置高さの一例について説明する。
 図3は、本実施形態の濾材流出抑制機構300の配置高さを示す断面図である。
 濾材流出抑制機構300(分断機構310)は、例えば濾過装置20によって濾過が行われる状態で濾材Mの上面Uよりも上方に位置する(図3中の(a)参照)。
Next, an example of the arrangement height of the filter medium outflow suppression mechanism 300 will be described.
FIG. 3 is a cross-sectional view showing the arrangement height of the filter medium outflow suppression mechanism 300 of this embodiment.
The filter medium outflow suppression mechanism 300 (dividing mechanism 310) is located above the upper surface U of the filter medium M, for example, in a state where filtration is performed by the filter device 20 (see (a) in FIG. 3 ).
 濾材流出抑制機構300(分断機構310)は、空気逆洗時に、例えば濾材Mの上面Uよりも上方に位置する(図3中の(b)参照)。本実施形態の濾材流出抑制機構300は、複数の隙間Sを有することで、空気逆洗に伴い濾材Mの一部が濾材流出抑制機構300を超えて上方まで移動することを許容する。 The filter medium outflow suppressing mechanism 300 (dividing mechanism 310) is located, for example, above the upper surface U of the filter medium M during backwashing with air (see (b) in FIG. 3). The filter medium outflow suppressing mechanism 300 of the present embodiment has a plurality of gaps S, and thus allows a part of the filter medium M to move upward beyond the filter medium outflow suppressing mechanism 300 due to backwashing with air.
 ここで、空気逆洗が行われる場合、空気逆洗を開始する前に、濾過塔100内の水位が下げられる。空気逆洗が行われる場合、濾材M内で成長した大きな気泡が突発的に上昇し、その気泡周辺に位置する一部の濾材Mが気泡に同伴して水面まで上昇するため、一部の濾材Mが濾材流出抑制機構300を超えることがある。ただし、水位が下げられているため濾材Mが外部に流出する可能性は小さく、突発的に濾材流出抑制機構300を超えた濾材Mも濾材流出抑制機構300に設けられた複数の隙間Sを通じて再び濾材流出抑制機構300の下方に戻る。 If air backwash is performed here, the water level in the filtration tower 100 is lowered before starting the air backwash. When air backwashing is performed, a large bubble grown in the filter medium M suddenly rises, and a part of the filter medium M located around the bubble rises along with the bubbles to the water surface. M may exceed the filter medium outflow suppression mechanism 300. However, since the water level is lowered, the possibility that the filter medium M will flow out is small, and the filter medium M that suddenly exceeds the filter medium outflow suppression mechanism 300 will again pass through the plurality of gaps S provided in the filter medium outflow suppression mechanism 300. It returns to the lower side of the filter medium outflow suppression mechanism 300.
 濾材流出抑制機構300(分断機構310)は、水逆洗時に、例えば、膨張した濾材Mの上面Uよりも下方に位置する(図3中の(c)参照)。すなわち、水逆洗が開始されると、洗浄水が供給されることで濾材M全体が徐々に膨らむ。濾材流出抑制機構300は、複数の隙間Sを有することで、水逆洗時に濾材Mが膨張して濾材Mの一部が濾材流出抑制機構300を超えて上方まで流動することを許容する。濾材流出抑制機構300の上方まで流動した一部の濾材Mは、水逆洗が終了するときに、濾材流出抑制機構300に設けられた複数の隙間Sを通じて再び濾材流出抑制機構300の下方に戻る。 The filter medium outflow suppression mechanism 300 (dividing mechanism 310) is located, for example, below the upper surface U of the expanded filter medium M when backwashing with water (see (c) in FIG. 3 ). That is, when the backwashing with water is started, the washing water is supplied to gradually expand the entire filter medium M. The filter material outflow suppression mechanism 300 has a plurality of gaps S, and allows the filter material M to expand during backwashing with water and allow a part of the filter material M to flow upward beyond the filter material outflow suppression mechanism 300. A part of the filter medium M that has flowed to the upper side of the filter medium outflow suppression mechanism 300 returns to the lower side of the filter medium outflow suppression mechanism 300 again through a plurality of gaps S provided in the filter medium outflow suppression mechanism 300 when the backwashing with water is completed. ..
 次に、濾材流出抑制機構300の作用について説明する。
 図4は、気泡の大きさと気泡の上昇速度(水逆洗速度に対する相対上昇速度)との関係を示す図である。気泡上昇速度と気泡の大きさとの関係は指数関係であり、気泡が大きいほど、上昇速度が顕著に大きくなることが分かる。本発明者らの実験によれば、水逆洗の開始時に大きな気泡が発生すると、その気泡周辺の濾材Mの上昇速度は、水逆洗速度の約60倍に達する場合があることも確認された。
Next, the operation of the filter medium outflow suppression mechanism 300 will be described.
FIG. 4 is a diagram showing the relationship between the size of bubbles and the rising speed of the bubbles (relative rising speed with respect to the water backwash speed). It can be seen that the relationship between the bubble rising speed and the bubble size is an exponential relationship, and that the larger the bubble, the significantly higher the rising speed. According to the experiments by the present inventors, when large bubbles are generated at the start of water backwashing, the rising speed of the filter medium M around the bubbles may reach about 60 times the water backwashing speed. It was
 ここで本実施形態では、水逆洗の開始時に濾材Mの一部を伴い浮上する比較的大きな気泡は、分断機構310を通過する過程で、複数の線状部材311,312により仕切られた比較的小さな隙間Sを通過することで複数の気泡に分断される。これにより、上昇する気泡の大きさが小さくなる。気泡の大きさが小さくなると、図4に示すように、気泡の上昇速度が大きく低下する。その結果、気泡に伴い上昇中だった濾材Mの上昇速度も抑えられ、濾材Mが沈降しやすくなる。これにより、濾材Mの流出が抑制される。 Here, in the present embodiment, a comparatively large bubble that floats along with a part of the filter medium M at the start of backwashing with water is divided by the plurality of linear members 311 and 312 in the process of passing through the dividing mechanism 310. By passing through the relatively small gap S, it is divided into a plurality of bubbles. This reduces the size of the rising bubbles. When the size of the bubble becomes small, the rising speed of the bubble greatly decreases as shown in FIG. As a result, the rising speed of the filter medium M, which was rising along with the bubbles, is also suppressed, and the filter medium M is likely to settle. Thereby, the outflow of the filter medium M is suppressed.
 以上のような構成によれば、濾材Mの流出抑制性能の向上が図られた濾過装置20を提供することができる。ここで、濾過装置20の濾過性能を高く維持するためには、閉塞した懸濁物質を排出する逆洗を頻繁に行う必要がある。しかしながら、上述したような比較的大きな気泡の上昇が逆洗時に生じると、気泡の上昇に伴い濾材Mの一部が流出する場合がある。本発明者らの試算によれば、気泡の上昇に伴う濾材Mの流出は、年間で濾材全体の5%~10%に達する場合もある。このため濾過性能を維持するためには定期的に濾材Mを補充する必要がある。 According to the configuration as described above, it is possible to provide the filtering device 20 in which the outflow suppressing performance of the filter medium M is improved. Here, in order to maintain the filtering performance of the filtering device 20 at a high level, it is necessary to frequently perform backwashing for discharging the suspended solids. However, if a relatively large rise of bubbles as described above occurs during backwashing, a part of the filter medium M may flow out as the bubbles rise. According to the calculation by the present inventors, the outflow of the filter medium M due to the rise of bubbles may reach 5% to 10% of the entire filter medium in a year. Therefore, in order to maintain the filtering performance, it is necessary to replenish the filter medium M periodically.
 そこで、本実施形態の濾過装置20は、逆洗時に濾材M中から排出される気泡を小さくする濾材流出抑制機構300を有する。このような構成によれば、比較的大きな気泡の上昇が生じた場合に、その気泡を小さくすることで濾材Mの流出量を減少させることができる。その結果、濾過装置20の性能が長期間維持可能になるとともに、濾材Mの追加頻度も減少するため、濾過装置20のメンテナンス性を高めることができる。また、濾材Mの追加頻度が減少すると、メンテナンス費用の低減も図ることができる。また、本実施形態の構成によれば、簡単な構造により濾材Mの流出抑制性能の向上を図ることができる。これにより、濾過装置20の低コスト化を図ることもできる。 Therefore, the filtration device 20 of the present embodiment has the filter medium outflow suppression mechanism 300 that reduces the bubbles discharged from the filter medium M during backwashing. With such a configuration, when a relatively large bubble rises, the amount of the filter medium M flowing out can be reduced by making the bubble smaller. As a result, the performance of the filtering device 20 can be maintained for a long period of time, and the frequency of adding the filter medium M is also reduced, so that the maintainability of the filtering device 20 can be improved. Further, if the frequency of adding the filter medium M is reduced, the maintenance cost can be reduced. Further, according to the configuration of the present embodiment, the outflow suppressing performance of the filter medium M can be improved with a simple structure. As a result, the cost of the filtering device 20 can be reduced.
 図5は、濾材流出抑制機構300が設けられた場合と、設けられていない場合との濾材年間流出率の実験結果を示す図である。図5中において、「隙間x1」は、濾材流出抑制機構300が設けられた場合であって、隙間Sの幅Wがx1[mm]の場合の濾材年間流出率を示し、「隙間x2」は、濾材流出抑制機構300が設けられた場合であって、隙間Sの幅Wがx2[mm]の場合の濾材年間流出率を示し、「設置なし」とは、濾材流出抑制機構300が設けられていない場合の濾材年間流出率を示す。x1[mm]は、x2[mm]よりも小さい。ただし、x1[mm]は、濾材Mの粒子径の1.5倍以上の大きさである。 FIG. 5 is a diagram showing an experimental result of an annual outflow rate of the filter medium with and without the filter medium outflow suppression mechanism 300. In FIG. 5, “gap x1” indicates the annual outflow rate of the filter medium when the width W of the gap S is x1 [mm] when the filter medium outflow suppression mechanism 300 is provided, and “gap x2” is In the case where the filter material outflow suppression mechanism 300 is provided, the annual filter material outflow rate is shown when the width W of the gap S is x2 [mm]. “No installation” means that the filter material outflow suppression mechanism 300 is provided. The annual outflow rate of the filter media when not used is shown. x1 [mm] is smaller than x2 [mm]. However, x1 [mm] is 1.5 times or more the particle diameter of the filter medium M.
 図5を見ると、濾材流出抑制機構300が設けられていない場合に比べて、濾材流出抑制機構300が設けられることで、濾材年間流出率が低下することが分かる。また、濾材流出抑制機構300を設ける場合は、隙間Sが小さいほど、濾材年間流出率が低下することが分かる。 From FIG. 5, it can be seen that the annual outflow rate of the filter medium is reduced by providing the filter medium outflow suppressing mechanism 300 as compared with the case where the filter medium outflow suppressing mechanism 300 is not provided. Further, when the filter medium outflow suppression mechanism 300 is provided, it is understood that the smaller the gap S is, the lower the annual filter medium outflow rate is.
 ここで、分断機構310の隙間Sが小さい場合、濾材Mが濾材流出抑制機構300を超えて上方まで流動することができず、濾材Mが濾材流出抑制機構300の下部に堆積し、濾材Mの流動性が低下してしまうことが考えられる。逆洗時に濾材Mの流動性が低下すると、逆洗による洗浄効果が低下する。 Here, when the gap S of the dividing mechanism 310 is small, the filter medium M cannot flow upward beyond the filter medium outflow suppressing mechanism 300, and the filter medium M is deposited on the lower portion of the filter medium outflow suppressing mechanism 300, so that the filter medium M Liquidity may be reduced. If the fluidity of the filter medium M decreases during backwashing, the cleaning effect of backwashing decreases.
 そこで本実施形態では、分断機構310は、濾材Mの一部が分断機構310を超えて上方まで流動可能なように濾材Mの少なくとも一部を通す複数の隙間Sを有する。このような構成によれば、空気逆洗時と水逆洗時とのうち少なくとも一方において濾材Mが大きく流動することを許容することができる。これにより、逆洗による洗浄効果の向上を図ることができる。 Therefore, in the present embodiment, the dividing mechanism 310 has a plurality of gaps S through which at least a part of the filter medium M passes so that a part of the filter medium M can flow upward beyond the dividing mechanism 310. With such a configuration, it is possible to allow the filter medium M to largely flow during at least one of air backwashing and water backwashing. As a result, the cleaning effect by backwashing can be improved.
 本実施形態では、隙間Sの大きさは、濾材Mの粒子径の1.5倍以上である。このような構成によれば、例えば、均等係数が1.1倍の濾材Mが用いられた場合に、最大径の粒子も含め多くの粒子が隙間Sを通過することができる。また、均等係数が1.1倍よりも大きな濾材Mが用いられた場合でも、多くの粒子が隙間Sを通過することができる。これにより、例えば空気逆洗時や水逆洗時において、濾材Mの一部が分断機構310の上方まで移動しやすくなる。また、このような構成によれば、逆洗が終了したときに、分断機構310の上方まで移動していた濾材Mが隙間Sを通じて分断機構310の下方に戻りやすくなる。分断機構310の上方まで移動した濾材Mが分断機構310の下方に戻りやすいと、分断機構310の上に濾材Mが堆積することが抑制され、濾材Mがより有効に使われやすくなる。 In this embodiment, the size of the gap S is 1.5 times or more the particle diameter of the filter medium M. According to such a configuration, for example, when the filter medium M having the uniformity coefficient of 1.1 times is used, many particles including the particles having the maximum diameter can pass through the gap S. Further, even when the filter medium M having a uniformity coefficient larger than 1.1 times is used, many particles can pass through the gap S. As a result, for example, during air backwashing or water backwashing, a part of the filter medium M easily moves to above the dividing mechanism 310. Further, according to such a configuration, when the backwashing is completed, the filter medium M that has moved to above the dividing mechanism 310 is likely to return to the lower side of the dividing mechanism 310 through the gap S. If the filter medium M that has moved to above the dividing mechanism 310 easily returns to the lower side of the dividing mechanism 310, the accumulation of the filter medium M on the dividing mechanism 310 is suppressed, and the filter medium M can be used more effectively.
 本実施形態では、濾材流出抑制機構300(分断機構310)は、水逆洗時に濾材Mが膨張した状態で濾材Mの上面Uよりも下方となる高さに配置されている。このような構成によれば、後述する第4の実施形態と比べて濾過塔100内の低い位置で気泡を小さくすることができるので、濾材Mの流出をさらに抑制することができる場合がある。 In the present embodiment, the filter medium outflow suppressing mechanism 300 (dividing mechanism 310) is arranged at a height below the upper surface U of the filter medium M in a state where the filter medium M expands during backwashing with water. According to such a configuration, the bubbles can be made smaller at a lower position in the filtration tower 100 as compared with the fourth embodiment described later, so that the flow of the filter medium M can be further suppressed in some cases.
 次に、第1の実施形態の4つの変形例について説明する。なお、各変形例において、以下に説明する以外の構成は、第1の実施形態と略同じである。 Next, four modified examples of the first embodiment will be described. In addition, in each modified example, the configuration other than that described below is substantially the same as that of the first embodiment.
 (第1変形例)
 図6は、第1変形例の分断機構310を示す平面図である。本変形例では、分断機構310の第1および第2の線状部材311,312の各々は、直線状に延びた部材ではなく、1つ以上の曲線部を含む部材である。
(First modification)
FIG. 6 is a plan view showing the dividing mechanism 310 of the first modified example. In the present modification, each of the first and second linear members 311 and 312 of the dividing mechanism 310 is not a linearly extending member but a member including one or more curved portions.
 (第2変形例)
 図7は、第2変形例の分断機構310を示す平面図である。本変形例では、分断機構310は、ハニカム状の網構造を有する。すなわち本変形例では、分断機構310は、複数の第1線状部315と、複数の第2線状部316と、複数の第3線状部317とを含む。
(Second modified example)
FIG. 7 is a plan view showing a cutting mechanism 310 of the second modified example. In this modification, the dividing mechanism 310 has a honeycomb-shaped net structure. That is, in this modification, the dividing mechanism 310 includes a plurality of first linear portions 315, a plurality of second linear portions 316, and a plurality of third linear portions 317.
 複数の第1線状部315は、隙間Sを互いの間に空けて第1方向に並べられている。複数の第1線状部315は、互いに略平行に配置されている。複数の第2線状部316は、隙間Sを互いの間に空けて第1方向とは交差した第2方向に並べられている。複数の第2線状部316は、互いに略平行に配置されている。複数の第3線状部317は、隙間Sを互いの間に空けて、第1方向および第2方向とは交差した第3方向に並べられている。複数の第3線状部317は、互いに略平行に配置されている。 The plurality of first linear portions 315 are arranged in the first direction with a gap S between them. The plurality of first linear portions 315 are arranged substantially parallel to each other. The plurality of second linear portions 316 are arranged in a second direction that intersects the first direction with a gap S therebetween. The plurality of second linear portions 316 are arranged substantially parallel to each other. The plurality of third linear portions 317 are arranged in a third direction that intersects the first direction and the second direction with a gap S therebetween. The plurality of third linear portions 317 are arranged substantially parallel to each other.
 これら第1から第3の線状部315,316,317が互いに連結されることでハニカム構造が形成されている。第1から第3の線状部315,316,317の各々は、「線状部」の一例である。 A honeycomb structure is formed by connecting the first to third linear portions 315, 316, 317 to each other. Each of the first to third linear portions 315, 316, 317 is an example of a “linear portion”.
 (第3変形例)
 図8は、第3変形例の分断機構310を示す平面図である。本変形例では、分断機構310は、第2線状部材312を有さず、直線状に形成された第1線状部材311のみで構成されている。
(Third modification)
FIG. 8 is a plan view showing a cutting mechanism 310 of the third modified example. In the present modification, the dividing mechanism 310 does not have the second linear member 312, and is configured only by the first linear member 311 that is linearly formed.
 (第4変形例)
 図9は、第4変形例の分断機構310を示す平面図である。本変形例では、分断機構310は、第3変形例と同様に、第2線状部材312を有さず、第1線状部材311のみで構成されている。本変形例では、第1線状部材311は、直線状に延びた部材ではなく、1つ以上の曲線部を含む部材である。
(Fourth modification)
FIG. 9 is a plan view showing a cutting mechanism 310 of the fourth modified example. In the present modification, the dividing mechanism 310 does not have the second linear member 312 and is composed of only the first linear member 311 as in the third modification. In this modification, the first linear member 311 is not a member that extends linearly but a member that includes one or more curved portions.
 これら第1から第4の変形例の構成によっても、第1の実施形態と同様に、濾材Mの流出抑制性能の向上を図ることができる。 The configurations of the first to fourth modifications can also improve the outflow suppressing performance of the filter medium M, as in the first embodiment.
 (第2の実施形態)
 次に、第2の実施形態について説明する。第2の実施形態は、濾材流出抑制機構300が多段式に設けられた複数の分断機構310A,310Bを有する点で第1の実施形態とは異なる。なお以下に説明する以外の構成は、第1の実施形態と略同じである。
(Second embodiment)
Next, a second embodiment will be described. The second embodiment is different from the first embodiment in that the filter medium outflow suppressing mechanism 300 has a plurality of dividing mechanisms 310A and 310B provided in multiple stages. The configuration other than that described below is substantially the same as that of the first embodiment.
 図10は、第2の実施形態の濾過装置20を示す図である。本実施形態では、濾材流出抑制機構300は、第1分断機構310Aと、第2分断機構310Bとを含む。第1分断機構310Aおよび第2分断機構310Bの各々の構成は、第1の実施形態の分断機構310の構成と同様である。 FIG. 10 is a diagram showing a filtering device 20 of the second embodiment. In the present embodiment, the filter medium outflow suppressing mechanism 300 includes a first dividing mechanism 310A and a second dividing mechanism 310B. The configurations of the first dividing mechanism 310A and the second dividing mechanism 310B are the same as the configurations of the dividing mechanism 310 of the first embodiment.
 本実施形態では、第1分断機構310Aは、濾過装置20によって濾過が行われる状態で濾材Mよりも上方に位置し、逆洗時に濾材M中から排出される気泡を小さくする。第2分断機構310Bは、第1分断機構310Aの上方に配置され、第1分断機構310Aよりも上方に移動する気泡を小さく分断する。例えば、第1分断機構310Aの隙間Sと、第2分断機構310Bの隙間Sとは、上方から見た場合に重なるように配置されている。 In the present embodiment, the first dividing mechanism 310A is located above the filter medium M while being filtered by the filter device 20, and reduces air bubbles discharged from the filter medium M during backwashing. The second dividing mechanism 310B is arranged above the first dividing mechanism 310A, and divides the bubbles moving above the first dividing mechanism 310A into small pieces. For example, the gap S of the first dividing mechanism 310A and the gap S of the second dividing mechanism 310B are arranged so as to overlap each other when viewed from above.
 このような構成によれば、濾材Mの流出抑制性能のさらなる向上を図ることができる。すなわち、分断機構310が1段のみの場合は、分断機構310により小さく分断された気泡同士が上昇の途中で再結合する可能性がある。そこで本実施形態では、第1分断機構310Aの上方に第2分断機構310Bが設けられている。これにより、第1分断機構310Aを通過した後に結合して大きくなった気泡を第2分断機構310Bにより再び小さく分断することができる。また、複数の分断機構310A,310Bが設けられることで、気泡をさらに小さくすることも可能である。気泡をさらに小さくすることができると、気泡の上昇速度をさらに抑えることができるため、同伴される濾材Mの上昇速も抑えられ、その結果、濾材Mの流出をさらに減少させることができる。なお、分断機構310は、3段以上の段数で設けられてもよい。 With such a configuration, the outflow suppression performance of the filter medium M can be further improved. That is, when the dividing mechanism 310 has only one stage, bubbles that have been divided into small pieces by the dividing mechanism 310 may be recombined during the ascending. Therefore, in the present embodiment, the second dividing mechanism 310B is provided above the first dividing mechanism 310A. Thereby, the bubbles that have become large by combining after passing through the first dividing mechanism 310A can be divided again by the second dividing mechanism 310B into smaller ones. Further, by providing a plurality of dividing mechanisms 310A and 310B, it is possible to further reduce the bubbles. If the bubbles can be made smaller, the rising speed of the bubbles can be further suppressed, so that the rising speed of the accompanying filter medium M can also be suppressed, and as a result, the outflow of the filter medium M can be further reduced. The dividing mechanism 310 may be provided in three or more stages.
 (第3の実施形態)
 次に、第3の実施形態について説明する。第3の実施形態は、濾材流出抑制機構300の上に堆積した濾材Mを濾過塔100内に落下させる濾材回収機構320が設けられた点で第1の実施形態とは異なる。なお以下に説明する以外の構成は、第1の実施形態と略同じである。
(Third Embodiment)
Next, a third embodiment will be described. The third embodiment is different from the first embodiment in that a filter medium recovery mechanism 320 for dropping the filter medium M deposited on the filter medium outflow suppression mechanism 300 into the filtration tower 100 is provided. The configuration other than that described below is substantially the same as that of the first embodiment.
 図11は、第3の実施形態の濾過装置20を示す図である。本実施形態では、濾過装置20は、濾材流出抑制機構300に加え、濾材回収機構320を備えている。濾材回収機構320は、濾材流出抑制機構300の上(例えば分断機構310の上)に堆積した濾材Mを濾過塔100内に落下させる。本実施形態では、濾材回収機構320は、分断機構310を支持する支持機構321と、分断機構310を振動させるバイブレータ322とを含む。 FIG. 11 is a diagram showing a filtering device 20 of the third embodiment. In the present embodiment, the filtration device 20 includes a filter medium recovery mechanism 320 in addition to the filter medium outflow suppression mechanism 300. The filter medium recovery mechanism 320 drops the filter medium M deposited on the filter medium outflow suppression mechanism 300 (for example, on the dividing mechanism 310) into the filtration tower 100. In the present embodiment, the filter medium recovery mechanism 320 includes a support mechanism 321 that supports the dividing mechanism 310 and a vibrator 322 that vibrates the dividing mechanism 310.
 図12は、本実施形態の濾材回収機構320の支持機構321を示す平面図である。支持機構321は、例えば、フレーム321aと、複数の支持部材321bとを含む。フレーム321aは、不図示の固定具により濾過塔100の内周面に固定される。分断機構310は、フレーム321aの内側に配置されている。支持部材321bは、分断機構310と支持部材321bとの間に設けられている。これにより、分断機構310は、支持部材321bを介してフレーム321aに支持されている。支持部材321bは、ゴムまたはばねを有して弾性変形可能であるか、不図示の機構によりスライド移動可能である。これにより、分断機構310は、フレーム321aの内側で水平方向に往復移動可能(振動可能)になっている。 FIG. 12 is a plan view showing the support mechanism 321 of the filter medium recovery mechanism 320 of this embodiment. The support mechanism 321 includes, for example, a frame 321a and a plurality of support members 321b. The frame 321a is fixed to the inner peripheral surface of the filtration tower 100 by a fixture (not shown). The dividing mechanism 310 is arranged inside the frame 321a. The support member 321b is provided between the dividing mechanism 310 and the support member 321b. As a result, the dividing mechanism 310 is supported by the frame 321a via the support member 321b. The support member 321b has rubber or a spring and is elastically deformable, or is slidable by a mechanism (not shown). As a result, the dividing mechanism 310 is capable of horizontally reciprocating (oscillating) inside the frame 321a.
 バイブレータ322は、不図示の接続部材により分断機構310に接続されている。バイブレータ322は、分断機構310の上に堆積した濾材Mを濾過塔100内に落下させるように、分断機構310を水平方向に振動させる。 The vibrator 322 is connected to the dividing mechanism 310 by a connecting member (not shown). The vibrator 322 vibrates the dividing mechanism 310 in the horizontal direction so that the filter medium M deposited on the dividing mechanism 310 is dropped into the filtration tower 100.
 このような構成によれば、濾過装置20のメンテナンス性をさらに高めることができる。すなわち、隙間Sが一定以上の大きさを有する場合であっても、例えば逆洗する回数が増えるに従い、少量の濾材Mが分断機構310の上に堆積する場合が生じ得る。分断機構310の上に濾材Mが堆積すると、実質的な隙間Sの間隔が狭くなることもあり、濾材Mが追加的に堆積しやすくなる。 With such a configuration, the maintainability of the filtration device 20 can be further improved. That is, even if the gap S has a certain size or more, a small amount of the filter medium M may be deposited on the dividing mechanism 310 as the number of times of backwashing increases. When the filter medium M is deposited on the dividing mechanism 310, the interval of the substantial gap S may be narrowed, and the filter medium M is likely to be additionally deposited.
 そこで本実施形態では、分断機構310の上に堆積した濾材Mを濾過塔100内に落下させる濾材回収機構320が設けられている。これにより、分断機構310の上に堆積した濾材Mを例えば定期的に落下させることができ、濾材流出抑制機構300の機能を維持することができる。このため、濾過装置20のメンテナンス性を高めることができる。 Therefore, in the present embodiment, a filter medium recovery mechanism 320 for dropping the filter medium M deposited on the dividing mechanism 310 into the filtration tower 100 is provided. Thereby, the filter medium M deposited on the dividing mechanism 310 can be dropped, for example, periodically, and the function of the filter medium outflow suppressing mechanism 300 can be maintained. Therefore, the maintainability of the filtering device 20 can be improved.
 なお、濾材流出抑制機構300の構成は、上記例に限定されず、濾材流出抑制機構300の上に堆積した濾材Mを落下させることができる構成であれば、具体的な構成は問わない。例えば、濾材流出抑制機構300は、分断機構310の上を自動掃除する掃除機構などでもよい。 The configuration of the filter medium outflow suppression mechanism 300 is not limited to the above example, and any specific configuration may be used as long as the filter medium M deposited on the filter medium outflow suppression mechanism 300 can be dropped. For example, the filter medium outflow suppression mechanism 300 may be a cleaning mechanism or the like that automatically cleans the top of the dividing mechanism 310.
 (第4の実施形態)
 次に、第4の実施形態について説明する。第4の実施形態は、濾材流出抑制機構300が第1の実施形態と比べて高い位置に配置された点で第1の実施形態とは異なる。なお以下に説明する以外の構成は、第1の実施形態と略同じである。
(Fourth Embodiment)
Next, a fourth embodiment will be described. The fourth embodiment is different from the first embodiment in that the filter medium outflow suppression mechanism 300 is arranged at a position higher than that of the first embodiment. The configuration other than that described below is substantially the same as that of the first embodiment.
 図13は、本実施形態の濾過装置20を示す断面図である。図13中の(a),(b),(c)は、それぞれ「濾過装置20によって濾過が行われる時」、「空気逆洗時」、および「水逆洗時」を示す。 FIG. 13 is a cross-sectional view showing the filtration device 20 of this embodiment. (A), (b), and (c) in FIG. 13 respectively indicate "when filtration is performed by the filtration device 20", "when air is backwashed", and "when water is backwashed".
 本実施形態では、濾材流出抑制機構300(分断機構310)は、水逆洗時に、濾材Mが膨張した状態でも濾材Mの上面Uよりも上方となる高さに配置されている。すなわち本実施形態では、濾過装置20の水逆洗時に濾材Mが膨張して到達する高さが予め計算または実験により求められており、その高さよりも上方に濾材流出抑制機構300(分断機構310)が設置される。例えば、膨張率が30%の濾材Mが100cm積層される場合、濾材流出抑制機構300は、高さ130cm以上の場所に設置される。 In the present embodiment, the filter medium outflow suppressing mechanism 300 (dividing mechanism 310) is arranged at a height above the upper surface U of the filter medium M even when the filter medium M is expanded during backwashing with water. That is, in the present embodiment, the height at which the filter medium M expands and reaches during backwashing of the filter device 20 is obtained in advance by calculation or experiment, and the filter medium outflow suppression mechanism 300 (dividing mechanism 310) is located above the height. ) Is installed. For example, when 100 cm of the filter media M having an expansion coefficient of 30% are stacked, the filter media outflow suppression mechanism 300 is installed at a location with a height of 130 cm or more.
 このような構成によれば、濾材流出抑制機構300によって濾材Mの流動性が阻害されにくく、濾材Mの流動性を大きく確保することができる。このため、逆洗による洗浄効果をより高めることができる場合がある。 With such a configuration, the fluidity of the filter medium M is less likely to be hindered by the filter medium outflow suppression mechanism 300, and the fluidity of the filter medium M can be largely secured. Therefore, the cleaning effect by backwashing may be improved.
 以上、いくつかの実施形態および変形例について説明した。ただし、実施形態および変形例は、上記例に限定されない。例えば、上述した複数の実施形態および変形例は、互いに組み合わせて実施されてもよい。また、上述した実施形態および変形例の濾過装置20および濾材流出抑制ユニットUTは、空気逆洗の後に水逆洗が行われる装置に限定されず、空気水混合逆洗が行われる装置に適用されてもよい。また、濾材流出抑制機構300は、逆洗時に濾材M中から排出される気泡を小さくすることができる機構であればよく、上述した機構に限定されない。 Above, some embodiments and modifications have been described. However, the embodiment and the modified examples are not limited to the above examples. For example, the plurality of embodiments and modifications described above may be implemented in combination with each other. Further, the filtering device 20 and the filter medium outflow suppressing unit UT of the above-described embodiments and modifications are not limited to the device in which the water backwash is performed after the air backwash, and are applied to the device in which the air-water mixed backwash is performed. May be. Further, the filter medium outflow suppression mechanism 300 is not limited to the above-described mechanism as long as it is a mechanism that can reduce the bubbles discharged from the filter medium M during backwashing.
 以上説明した少なくともひとつの実施形態によれば、濾過装置は、逆洗時に濾材中から排出される気泡を小さくする濾材流出抑制機構を持つことにより、濾材の流出抑制性能の向上を図ることができる。 According to at least one embodiment described above, the filter device has a filter medium outflow suppressing mechanism that reduces bubbles discharged from the filter medium during backwashing, thereby improving the outflow suppressing performance of the filter medium. ..
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. The embodiments and their modifications are included in the scope of the invention and the scope thereof, and are included in the invention described in the claims and the scope of equivalents thereof.

Claims (12)

  1.  濾材が収容され、被処理水が下降流で流れることで濾過が行われる濾過槽と、
     前記濾過槽の下部に空気および洗浄水を供給して逆洗を行う逆洗部と、
     少なくとも前記濾過が行われる状態で前記濾材よりも上方に位置し、逆洗時に前記濾材中から排出される気泡を小さくする濾材流出抑制機構と、
     を備えた濾過装置。
    A filter tank in which a filter medium is housed and the water to be treated flows in a downward flow to perform filtration,
    A backwashing unit for backwashing by supplying air and wash water to the lower portion of the filtration tank,
    A filter medium outflow suppressing mechanism that is located above the filter medium in a state where at least the filtration is performed, and that reduces bubbles discharged from the filter medium during backwashing.
    A filtration device equipped with.
  2.  前記濾材流出抑制機構は、空気逆洗時に前記濾材中に蓄積されて水逆洗時に前記濾材中から前記濾材の一部を伴い浮上する前記気泡を小さくする、
     請求項1に記載の濾過装置。
    The filter medium outflow suppression mechanism reduces the bubbles that are accumulated in the filter medium at the time of backwashing air and float along with a part of the filter medium from the filter medium at the time of water backwashing,
    The filtration device according to claim 1.
  3.  前記濾材流出抑制機構は、前記濾材流出抑制機構を通過する前記気泡を小さく分断する分断機構を含む、
     請求項1に記載の濾過装置。
    The filter medium outflow suppressing mechanism includes a dividing mechanism that divides the bubbles passing through the filter medium outflow suppressing mechanism into small pieces.
    The filtration device according to claim 1.
  4.  前記分断機構は、前記濾材の一部が前記分断機構を超えて上方まで流動可能なように前記濾材の少なくとも一部を通す複数の隙間を有する、
     請求項3に記載の濾過装置。
    The dividing mechanism has a plurality of gaps through which at least a part of the filter medium is passed so that a part of the filter medium can flow upward beyond the dividing mechanism.
    The filtration device according to claim 3.
  5.  前記分断機構は、互いに略平行に配置された複数の線状部を含み、
     前記複数の隙間は、それぞれ前記複数の線状部の間に形成されている、
     請求項4に記載の濾過装置。
    The dividing mechanism includes a plurality of linear portions arranged substantially parallel to each other,
    The plurality of gaps are respectively formed between the plurality of linear portions,
    The filtration device according to claim 4.
  6.  前記分断機構は、前記複数の線状部を含む網構造を有する、
     請求項5に記載の濾過装置。
    The dividing mechanism has a net structure including the plurality of linear portions,
    The filtration device according to claim 5.
  7.  前記隙間の大きさは、前記濾材の粒子径の1.5倍以上である、
     請求項4に記載の濾過装置。
    The size of the gap is 1.5 times or more the particle size of the filter medium,
    The filtration device according to claim 4.
  8.  前記隙間の大きさは、前記濾材を構成する粒子の最大径よりも大きい、
     請求項4に記載の濾過装置。
    The size of the gap is larger than the maximum diameter of particles constituting the filter medium,
    The filtration device according to claim 4.
  9.  前記濾材流出抑制機構は、前記気泡を小さく分断する第1分断機構と、前記第1分断機構の上方に配置され、前記気泡を小さく分断する第2分断機構とを含む、
     請求項1に記載の濾過装置。
    The filter medium outflow suppressing mechanism includes a first dividing mechanism that divides the bubbles into small pieces, and a second dividing mechanism that is disposed above the first dividing mechanism and divides the bubbles into small pieces.
    The filtration device according to claim 1.
  10.  前記濾材流出抑制機構の上に堆積した濾材を前記濾過槽内に落下させる濾材回収機構をさらに備えた、
     請求項1に記載の濾過装置。
    Further provided with a filter medium recovery mechanism for dropping the filter medium deposited on the filter medium outflow suppression mechanism into the filter tank,
    The filtration device according to claim 1.
  11.  前記濾材流出抑制機構は、水逆洗時に前記濾材が膨張した状態でも前記濾材よりも上方となる高さに配置されている、
     請求項1に記載の濾過装置。
    The filter medium outflow suppressing mechanism is arranged at a height above the filter medium even when the filter medium is expanded during backwashing with water.
    The filtration device according to claim 1.
  12.  濾材が収容され、被処理水が下降流で流れることで濾過が行われる濾過槽と、前記濾過槽の下部から空気および洗浄水を供給して逆洗を行う逆洗部とを備える濾過装置に設けられる濾材流出抑制ユニットであって、
     少なくとも前記濾過が行われる状態で前記濾材よりも上方に位置し、逆洗時に前記濾材中から排出される気泡を小さくする濾材流出抑制機構、
     を備えた濾材流出抑制ユニット。
    A filter device that contains a filter medium and is provided with a backwashing unit that performs backwashing by supplying air and wash water from the lower portion of the filtration tank by filtering the water to be treated in a downward flow. A filter medium outflow suppression unit provided,
    A filter medium outflow suppression mechanism that is located above the filter medium in a state where at least the filtration is performed and that reduces bubbles discharged from the filter medium during backwashing,
    A filter medium outflow suppression unit equipped with.
PCT/JP2019/047932 2018-12-06 2019-12-06 Filtering device and filter medium outflow suppression unit WO2020116644A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-229447 2018-12-06
JP2018229447A JP6989482B2 (en) 2018-12-06 2018-12-06 Filtration device and filter media outflow control unit

Publications (1)

Publication Number Publication Date
WO2020116644A1 true WO2020116644A1 (en) 2020-06-11

Family

ID=70973940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047932 WO2020116644A1 (en) 2018-12-06 2019-12-06 Filtering device and filter medium outflow suppression unit

Country Status (2)

Country Link
JP (1) JP6989482B2 (en)
WO (1) WO2020116644A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5013394B1 (en) * 1969-05-19 1975-05-19
JPS5310482U (en) * 1976-07-09 1978-01-28
JPS53115465U (en) * 1977-02-22 1978-09-13
JPH0679108A (en) * 1992-09-02 1994-03-22 Kurita Water Ind Ltd Filter
JPH06246108A (en) * 1993-02-25 1994-09-06 Ebara Infilco Co Ltd Gravity filter
JPH0924212A (en) * 1995-07-13 1997-01-28 Maezawa Ind Inc Filter treatment device
JP2007069065A (en) * 2005-09-05 2007-03-22 Maezawa Ind Inc Filter
JP2015027646A (en) * 2013-07-30 2015-02-12 水道機工株式会社 Filtration apparatus
KR20160041740A (en) * 2015-03-26 2016-04-18 주식회사 에코스타 Multi-stage high rate filtering facilities with upflow and maintenance method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0326897Y2 (en) * 1987-05-29 1991-06-11

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5013394B1 (en) * 1969-05-19 1975-05-19
JPS5310482U (en) * 1976-07-09 1978-01-28
JPS53115465U (en) * 1977-02-22 1978-09-13
JPH0679108A (en) * 1992-09-02 1994-03-22 Kurita Water Ind Ltd Filter
JPH06246108A (en) * 1993-02-25 1994-09-06 Ebara Infilco Co Ltd Gravity filter
JPH0924212A (en) * 1995-07-13 1997-01-28 Maezawa Ind Inc Filter treatment device
JP2007069065A (en) * 2005-09-05 2007-03-22 Maezawa Ind Inc Filter
JP2015027646A (en) * 2013-07-30 2015-02-12 水道機工株式会社 Filtration apparatus
KR20160041740A (en) * 2015-03-26 2016-04-18 주식회사 에코스타 Multi-stage high rate filtering facilities with upflow and maintenance method thereof

Also Published As

Publication number Publication date
JP6989482B2 (en) 2022-01-05
JP2020089848A (en) 2020-06-11

Similar Documents

Publication Publication Date Title
JP5564021B2 (en) Oil-containing wastewater treatment system
EP2690070B1 (en) Dissolved-air flotation-type pretreatment apparatus
JP6437857B2 (en) Sedimentation pond
CN102596374B (en) Membrane module, membrane unit, and membrane separation device
JP6316156B2 (en) Sedimentation pond
KR102348752B1 (en) non-point source contaminant reduction
KR101997861B1 (en) Filtering apparatus for water treatment
CA2795589A1 (en) Nanoflotation
KR20080102340A (en) A fiber filter for industry, using ultrasoni
WO2020116644A1 (en) Filtering device and filter medium outflow suppression unit
JPH05154476A (en) Membrane filter
KR100735149B1 (en) Backwash water uniform supplying apparatus
JP6244444B1 (en) Water treatment equipment
JP2018149485A (en) Spring type foreign matter removal device
WO2005042132A1 (en) Fine filtering apparatus using flexible fiber filter module
KR102423918B1 (en) Liquid vertical screen filter and liquid screen filter device
KR20170030350A (en) Complex filter
JP6651131B2 (en) Water collecting mechanism and gravity filtration pond equipped with the water collecting mechanism
KR102454352B1 (en) Circular filtration device using mesh
JPH05154354A (en) Membrane filtration apparatus
KR101465718B1 (en) Ballast water supply system and ballast water supply method
JP6667188B2 (en) Water treatment equipment, water treatment method
RU2660875C2 (en) Filter
KR101269582B1 (en) Sand filter and fitration method using the liquefaction
JP2013176730A (en) Filter medium cleaning device and filter medium cleaning method for double-layer filter device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19894150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19894150

Country of ref document: EP

Kind code of ref document: A1