WO2020116425A1 - Internal combustion engine system, vehicle, and spark plug ignition timing correction method - Google Patents

Internal combustion engine system, vehicle, and spark plug ignition timing correction method Download PDF

Info

Publication number
WO2020116425A1
WO2020116425A1 PCT/JP2019/047159 JP2019047159W WO2020116425A1 WO 2020116425 A1 WO2020116425 A1 WO 2020116425A1 JP 2019047159 W JP2019047159 W JP 2019047159W WO 2020116425 A1 WO2020116425 A1 WO 2020116425A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
temperature
ignition timing
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2019/047159
Other languages
French (fr)
Japanese (ja)
Inventor
義文 長島
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to CN201980079437.XA priority Critical patent/CN113167170B/en
Publication of WO2020116425A1 publication Critical patent/WO2020116425A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/16Other apparatus for heating fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present disclosure relates to an internal combustion engine system, a vehicle, and an ignition timing correction method for a spark plug.
  • a natural gas engine that uses a natural gas such as compressed natural gas (CNG) or liquefied natural gas (Liquified natural Gas: LNG) as a fuel is known.
  • CNG compressed natural gas
  • LNG liquefied natural Gas
  • CNG is stored in a high-pressure gas tank equipped on the vehicle, guided from this high-pressure gas tank to the fuel supply system, decompressed, and supplied to the engine intake manifold.
  • the CNG thus supplied to the intake manifold is mixed with intake air flowing into the intake manifold, introduced into each cylinder, and ignited and burned by the spark plug.
  • LNG is stored in a LNG tank provided in a vehicle at a low temperature capable of maintaining a liquid state, guided from this LNG tank to a fuel supply system, and vaporized by a carburetor provided in the fuel supply system. Is supplied to the engine intake manifold.
  • the LNG thus supplied to the intake manifold is mixed with intake air flowing into the intake manifold, introduced into each cylinder, and ignited and burned by the spark plug.
  • the pressure in the high pressure gas tank changes according to the amount of CNG stored.
  • the temperature of the fuel after depressurization introduced into the engine changes, and the combustion characteristics of the fuel change, which affects engine performance.
  • LNG when the LNG stored in the LNG tank, when the LNG stored in the liquid is heat-exchanged by the vaporizer and supplied to the engine, the gas in the LNG tank is also supplied to the engine.
  • the amounts and ratios of various components in the tank change, the temperature of vaporized fuel introduced into the engine changes, and the combustion characteristics of the fuel change, which affects engine performance.
  • An object of the present disclosure is to provide an internal combustion engine system, a vehicle, and an ignition timing correction method for a vehicle and an ignition plug capable of suppressing the influence of a change in combustion characteristics of fuel introduced into the engine on engine performance.
  • the internal combustion engine system in the present disclosure In an internal combustion engine system in which natural gas is supplied to a cylinder as fuel and is ignited and burned by an ignition plug A control unit that corrects the ignition timing of the spark plug based on the temperature of the fuel is provided.
  • the vehicle in the present disclosure is The above internal combustion engine system is provided.
  • the ignition timing correction method for the spark plug includes A method for correcting ignition timing of an ignition plug in an internal combustion engine system, which supplies natural gas as fuel to a cylinder, and ignites and burns by an ignition plug, The ignition timing by the spark plug is corrected based on the temperature of the fuel.
  • FIG. 1 is a block diagram schematically showing a configuration of an internal combustion engine system according to the first embodiment of the present disclosure.
  • FIG. 2 is a diagram showing the relationship between the fuel temperature and load, and the ignition timing correction value.
  • FIG. 3 is a timing chart showing an example of valve timing, ignition timing and the like when the fuel temperature is low, and ignition timing and the like when the fuel temperature is high.
  • FIG. 4 is a flowchart showing an example of the ignition timing correction process of the spark plug.
  • FIG. 5 is a block diagram schematically showing the configuration of the internal combustion engine system in the second embodiment of the present disclosure.
  • FIG. 1 is a block diagram schematically showing a configuration of an internal combustion engine system 100 according to the first embodiment of the present disclosure.
  • the internal combustion engine system 100 includes a CNG engine 10 (hereinafter, engine).
  • a cylinder block 11 of the engine 10 is provided with a piston 12 for each cylinder 11c.
  • the piston 12 is connected to the crankshaft 13 via a connecting rod 14.
  • the piston 12 moves up and down according to the rotation of the crankshaft 13.
  • the cylinder head 15 on the cylinder block 11 is provided with an ignition plug 16 for each cylinder 11c.
  • the internal combustion engine system 100 includes a turbocharger 60 (supercharger) that supercharges intake air, and an exhaust gas recirculation device 70 called EGR (Exhaust Gas Recirculation) that takes out a part of exhaust gas from the exhaust side and returns it to the intake side.
  • EGR exhaust Gas Recirculation
  • the exhaust gas returned to the intake side is called EGR gas.
  • the turbocharger 60 includes a turbine 61 that is driven by exhaust gas, and a compressor 62 that is driven by the driving force of the turbine 61 and that compresses intake air.
  • An intercooler 63 that cools intake air is provided in the intake pipe 23 between the compressor 62 and the intake manifold 25.
  • the bypass passage 23a is provided with an intake throttle valve 23b for adjusting the intake amount of the bypass passage 23a.
  • the EGR device 70 is provided in the exhaust gas recirculation passage 71 (hereinafter, EGR passage) that connects the exhaust side and the intake side of the engine 10, and the exhaust gas recirculation cooler 72 (hereinafter, referred to as the EGR gas) that is provided in the EGR passage 71.
  • EGR gas exhaust gas recirculation cooler 72
  • An EGR cooler and an exhaust gas recirculation valve 73 provided in the EGR passage 71 for adjusting an exhaust gas recirculation amount (hereinafter, EGR amount).
  • the intake air to the engine 10 passes from the air cleaner 22 to the intake pipe 23 or the bypass passage 23a.
  • the intake air that has passed through the intake pipe 23 is compressed by the compressor 62 and cooled by the intercooler 63.
  • the intake air that has passed through the intake pipe 23 or the bypass passage 23a flows into the intake manifold 25 together with the EGR gas from the exhaust gas recirculation passage 71 and mixes with the natural gas (CNG) from the fuel injector 26 provided for each cylinder 11c. Then, it is introduced into the cylinder 11c and is ignited and burned by the spark plug 16.
  • CNG natural gas
  • a throttle opening sensor 41 for detecting the opening of the intake throttle valve 24 On the intake side of the engine 10, a throttle opening sensor 41 for detecting the opening of the intake throttle valve 24, intake pressure sensors 42, 43 for detecting intake pressure, and an intake temperature sensor 44 for detecting intake temperature. And 45 are provided.
  • the detection values of these sensors 41, 42, 43, 44, 45 are input to the control unit 50 (engine control unit).
  • the exhaust gas from the cylinder 11c is exhausted to the exhaust manifold 27 via the exhaust valve 18, then a part thereof flows into the EGR passage 71, and the remaining part is supplied to the exhaust pipe 28 via the turbine 61. ..
  • Exhaust gas is supplied from the exhaust pipe 28 to the three-way catalyst 30, where the three-way catalyst 30 removes CO, non-methane hydrocarbon (NMHC), and NOx, and is exhausted to the atmosphere through the silencer 31. ..
  • the exhaust pipe 28 is provided with an air-fuel ratio sensor 46 (random sensor) that detects an air-fuel ratio based on the oxygen concentration of the exhaust gas exhausted from the exhaust manifold 27.
  • the detection value of the air-fuel ratio sensor 46 is input to the control unit 50.
  • the control unit 50 performs the air-fuel ratio control based on the detection value of the air-fuel ratio sensor 46 so that the combustion becomes stable.
  • CNG is stored in the high pressure gas tank 32.
  • CNG is supplied from the high-pressure gas tank 32 to a high-pressure regulator 37 (pressure reducing device), reduced in pressure to a constant pressure by the high-pressure regulator 37, and used as fuel for the engine 10.
  • the fuel is supplied to the intake manifold 25 of the engine 10 by the fuel injector 26.
  • the supplied fuel is mixed with the intake air flowing into the intake manifold 25, introduced into each cylinder 11c, and ignited and burned by the spark plug 16.
  • the control unit 50 controls the primary ignition system 17 so as to correct the ignition timing of the spark plug 16.
  • fuel means CNG after depressurization, and does not mean CNG before depressurization. Therefore, the term "fuel temperature” or “fuel temperature” refers to the temperature of the CNG after being depressurized, not the temperature of the CNG before being depressurized.
  • the high pressure gas tank 32 is provided with a tank pressure sensor 38 (CNG pressure sensor) that detects the pressure inside the tank.
  • a CNG temperature sensor 39 that detects the temperature of CNG is arranged in the CNG supply path that supplies CNG from the high-pressure gas tank 32 to the high-pressure regulator 37.
  • a temperature/pressure sensor 40 (corresponding to the “fuel temperature sensor” of the present disclosure) that detects the temperature and pressure of the fuel is arranged in the fuel supply path 35 that supplies fuel from the high-pressure regulator 37 to the intake manifold 25. It should be noted that the temperature and pressure of the fuel may be detected by a plurality of sensors that detect each, or, for example, the temperature may be calculated (indirectly) from the pressure.
  • the detection values of the respective sensors 38, 39, 40 are input to the control unit 50.
  • the control unit 50 performs various controls such as ignition timing correction of the spark plug 16, and includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an input port, an output port, and the like. ing.
  • the various functions of the control unit 50 are realized by the CPU of the control unit 50 expanding the ignition timing correction program stored in the ROM into the RAM and executing the program.
  • the control unit 50 corrects the ignition timing of the spark plug 16 based on the fuel temperature and the load of the engine 10. In this embodiment, the fuel temperature detected by the temperature/pressure sensor 40 is used as the fuel temperature. Further, the fuel injection time (ms) per stroke is used as the load of the engine 10.
  • the fuel injection time per stroke is obtained based on the intake air amount of the engine 10 and the fuel amount calculated from the injector coefficient.
  • the intake amount of the engine 10 is, for example, the intake pressure detected by the intake pressure sensor 43, the intake temperature detected by the intake temperature sensor 45, the atmospheric pressure detected by an atmospheric pressure sensor (not shown), and the crank angle sensor. It is calculated based on the engine speed detected from (not shown).
  • FIG. 2 is a diagram showing the relationship between the fuel temperature and load, and the ignition timing correction value.
  • the fuel temperature (° C.) is shown in the column direction, and the fuel injection time (ms) per stroke is shown in the row direction.
  • the correction value means the advance value ⁇ (°) with respect to the ignition timing.
  • the relationship shown in FIG. 2 is stored as a map in the ROM of the control unit 50, for example. The map can be created by experimental results or simulation.
  • the control unit 50 Based on the fuel temperature and the fuel injection time per stroke, the control unit 50 refers to the map shown in FIG. 2 to obtain the advance angle value ⁇ , and corrects the ignition timing of the spark plug 16 based on the obtained advance angle value ⁇ .
  • FIG. 2 shows the fuel temperatures T 1 , T 2 , T 3 ,..., T n-1 , T n (T 1 ⁇ T 2 ⁇ T 3 ⁇ ... ⁇ T n-1 ⁇ T n ). Also shows the fuel injection time t a, t b, t c , ..., t z a (t a ⁇ t b ⁇ t c ⁇ ... ⁇ t z).
  • ⁇ 1 , ⁇ 2 , and ⁇ 3 ( ⁇ 1 ⁇ 2 ⁇ 3 ) are shown.
  • the control unit 50 corrects the ignition timing by ⁇ 1 (retards ⁇ 1 ).
  • the control unit 50 corrects the ignition timing by ⁇ 1 (retards ⁇ 1 ) and the fuel temperature is T n.
  • the ignition timing is corrected by ⁇ 2 (retarded by ⁇ 2 ).
  • the control unit 50 corrects the ignition timing by ⁇ 2 (retards ⁇ 2 ) when the fuel injection time is t z and the fuel temperature is T n ⁇ 1 , and when the fuel temperature is T n. , The ignition timing is corrected by ⁇ 3 (retarded by ⁇ 3 ).
  • the control unit 50 corrects the ignition timing to be later than the ignition timing at the predetermined temperature.
  • FIG. 3 is a timing chart showing an example of valve timing, ignition timing and the like when the fuel temperature is low, and ignition timing and the like when the fuel temperature is high.
  • the horizontal axis of FIG. 3 shows the crank angle (°).
  • the exhaust process is performed from a position near 180° (opening operation start position of the exhaust valve 18) to a position near 360° (closing operation end position of the exhaust valve 18).
  • Fuel injection is performed before 360°.
  • the intake process is performed from a position near 360° (a position where the intake valve 19 opens) to a position near 540° (a position where the intake valve 19 closes).
  • the compression process of compressing the air-fuel mixture of fuel and intake air is started at a position near 540°.
  • the spark plug 16 ignites the air-fuel mixture compressed in the compression stroke.
  • the ignition timing when the fuel temperature is high is later (retarded) than the ignition timing when the fuel temperature is low.
  • FIG. 4 is a flowchart showing an example of an ignition timing correction process for the spark plug 16. This flow is started in response to the starting operation of the engine 10.
  • step S100 the control unit 50 acquires the fuel temperature from the temperature/pressure sensor 40.
  • step S110 the control unit 50 acquires the fuel injection time per stroke.
  • step S120 the control unit 50 corrects the ignition timing with reference to the map shown in FIG. 2 based on the fuel temperature and the fuel injection time per stroke.
  • step S130 the control unit 50 determines whether or not the engine 10 has been stopped. If the engine 10 has been stopped (step S130: YES), the process ends. If the engine 10 has not been stopped (step S130: NO), the process returns to the step before step S100.
  • the ignition timing of the ignition plug 16 is set to A control unit 50 that corrects based on the temperature is provided.
  • the ignition timing is corrected according to the fuel temperature. It is possible to prevent the performance from being affected.
  • the ignition timing of the spark plug 16 is corrected based on the fuel temperature detected by the temperature/pressure sensor 40, but the present disclosure is not limited to this.
  • a temperature estimation unit that estimates the fuel temperature based on the CNG pressure detected by the tank pressure sensor 38 and the CNG temperature detected by the CNG temperature sensor 39 is provided, and the control unit 50 is controlled by the temperature estimation unit.
  • the ignition timing of the spark plug 16 may be corrected based on the estimated fuel temperature. Further, the ignition timing may be corrected based on the fuel temperature detected by the temperature/pressure sensor 40 and the fuel temperature estimated by the temperature estimation unit. As a result, the ignition timing can be corrected more accurately.
  • the load of the engine 10 is set as the fuel injection time per stroke, and the ignition timing is corrected based on the fuel injection time per stroke.
  • FIG. 5 is a block diagram schematically showing the configuration of the internal combustion engine system 100 according to the second embodiment of the present disclosure.
  • configurations different from those of the first embodiment will be mainly described, and the same configurations will be denoted by the same reference numerals and the description thereof will be omitted.
  • LNG is stored in the LNG tank 82 provided in the vehicle at a low temperature capable of maintaining a liquid state.
  • LNG is decompressed by the LNG pressure regulator 88, guided from the LNG tank 82 to the LNG supply path 85, vaporized by the LNG vaporizer 86 provided in the LNG supply path 85, and further decompressed and regulated by the LNG regulator 87. And is used as fuel for the engine 10.
  • the fuel that has been vaporized, decompressed, and adjusted is supplied to the intake manifold 25 of the engine 10 by the fuel injector 26.
  • the supplied fuel is mixed with the intake air flowing into the intake manifold 25, introduced into each cylinder 11c, and ignited and burned by the spark plug 16.
  • the control unit 50 controls the primary ignition system 17 so as to correct the ignition timing of the spark plug 16.
  • fuel means LNG after being vaporized, and does not mean LNG before being vaporized. Therefore, the term “fuel temperature” or “fuel temperature” refers to the temperature of LNG after being vaporized, not the temperature of LNG before being vaporized.
  • An LNG temperature sensor 40A that detects the temperature of LNG is arranged in the LNG supply path 85.
  • the detection value of the LNG temperature sensor 40A is input to the control unit 50.
  • the control unit 50 corrects the ignition timing of the spark plug 16 based on the fuel temperature and the load of the engine 10.
  • the fuel temperature detected by the LNG temperature sensor 40A is used as the fuel temperature. Note that the correction of the ignition timing by the control unit 50 is the same as that in the first embodiment, so the description thereof will be omitted.
  • the ignition timing of the ignition plug 16 is set to The control unit 50 to perform correction based on the temperature.
  • the control unit 50 is provided to perform correction based on the temperature.
  • the ignition timing of the spark plug 16 is corrected based on the fuel temperature detected by the LNG temperature sensor 40A, but the present disclosure is not limited to this.
  • the engine cooling water inlet of the LNG vaporizer 86 which is a heat source of LNG vaporization
  • a temperature estimation unit that estimates the fuel temperature from the fuel flow rate calculated from the outlet temperature and the pulse width of the fuel injector 26, and the control unit 50 controls the temperature.
  • the ignition timing of the spark plug 16 may be corrected based on the fuel temperature estimated by the estimation unit. Further, the ignition timing may be corrected based on the fuel temperature detected by the LNG temperature sensor 40A and the fuel temperature estimated by the temperature estimation unit. As a result, the ignition timing can be corrected more accurately.
  • the configuration in which the ignition timing of the ignition plug is corrected based on the fuel temperature is applied to the engine 10 in which the fuel is supplied to the cylinder 11c together with the intake air and the ignition plug 16 ignites and burns the fuel. It may be applied to a direct injection engine that directly injects fuel into the cylinder 11c.
  • the present disclosure is suitably used for a vehicle equipped with an internal combustion engine system that is required not to affect the engine performance even when the combustion characteristics of the fuel introduced into the engine change.

Abstract

Provided are: an internal combustion engine system with which the effects on engine performance caused by changes in the combustion characteristics of fuel introduced into an engine can be suppressed; a vehicle; and a spark plug ignition timing correction method. In the internal combustion engine system, natural gas is supplied as fuel to a cylinder and is ignited and combusted by means of a spark plug, wherein the system comprises a control unit that corrects, on the basis of the temperature of the fuel, the timing for ignition by the spark plug. Further provided, for example, is a fuel temperature sensor that detects the temperature of the fuel. The control unit corrects the ignition timing on the basis of the fuel temperature detected by the fuel temperature sensor.

Description

内燃機関システム、車両および点火プラグの点火時期補正方法Internal combustion engine system, vehicle, and ignition timing correction method for spark plug
 本開示は、内燃機関システム、車両および点火プラグの点火時期補正方法に関する。 The present disclosure relates to an internal combustion engine system, a vehicle, and an ignition timing correction method for a spark plug.
 従来、圧縮天然ガス(Compressed natural Gas:CNG)や液化天然ガス(Liquefied natural Gas:LNG)といった天然ガスを燃料として用いる、天然ガスエンジンが知られている。 Conventionally, a natural gas engine that uses a natural gas such as compressed natural gas (CNG) or liquefied natural gas (Liquified natural Gas: LNG) as a fuel is known.
 CNGは、車両に備えられた高圧ガスタンクに貯蔵され、この高圧ガスタンクから燃料供給系統へ導かれ、減圧されてエンジンのインテークマニホールドへ供給される。このようにインテークマニホールドへ供給されたCNGは、インテークマニホールドに流入した吸気と混合されて各気筒内に導入され、点火プラグにより発火燃焼される。 CNG is stored in a high-pressure gas tank equipped on the vehicle, guided from this high-pressure gas tank to the fuel supply system, decompressed, and supplied to the engine intake manifold. The CNG thus supplied to the intake manifold is mixed with intake air flowing into the intake manifold, introduced into each cylinder, and ignited and burned by the spark plug.
 また、LNGは、車両に備えられたLNGタンク内に、液体状態を維持可能な低温下で貯蔵され、このLNGタンクから燃料供給系統へ導かれ、燃料供給系統に設けられた気化器で気化されてエンジンのインテークマニホールドへ供給される。このようにインテークマニホールドへ供給されたLNGは、インテークマニホールドに流入した吸気と混合されて各気筒内に導入され、点火プラグにより発火燃焼される。 Further, LNG is stored in a LNG tank provided in a vehicle at a low temperature capable of maintaining a liquid state, guided from this LNG tank to a fuel supply system, and vaporized by a carburetor provided in the fuel supply system. Is supplied to the engine intake manifold. The LNG thus supplied to the intake manifold is mixed with intake air flowing into the intake manifold, introduced into each cylinder, and ignited and burned by the spark plug.
 例えば、ガソリンを燃料として用いるガソリンエンジンにおいては、エンジンの回転速度、負荷、または、冷却水の温度に応じて、点火時期を決定する技術が開示されている(例えば、特許文献1を参照)。 For example, in a gasoline engine that uses gasoline as a fuel, a technique of determining the ignition timing according to the engine speed, load, or the temperature of the cooling water is disclosed (for example, see Patent Document 1).
日本国特開2002-257020号公報Japanese Patent Laid-Open No. 2002-257020
 ところで、天然ガスの主成分であるメタンは、温度および圧力に応じて燃焼特性が変化する。これにより、天然ガスを燃料として用いる天然ガスエンジンは、ガソリンエンジンに比べ、メタンの燃焼特性を考慮する必要がある。 By the way, the combustion characteristics of methane, which is the main component of natural gas, changes according to temperature and pressure. Therefore, a natural gas engine that uses natural gas as a fuel needs to consider the combustion characteristics of methane as compared with a gasoline engine.
 例えば、高圧ガスタンクにCNGが貯蔵される場合においては、CNGの貯蔵量に応じて高圧ガスタンク内の圧力が変化する。高圧ガスタンク内の圧力が変化すると、エンジンに導入される減圧後の燃料の温度が変わり、燃料の燃焼特性が変わって、エンジン性能に影響を与えるという問題点があった。
 また、LNGタンクにLNGが貯蔵される場合においても、液体で貯蔵されたLNGを気化器で熱交換してエンジンに供給する際に、LNGタンク内の気体も共にエンジンに供給されるため、LNGタンク内の各種成分の量や比率が変化すると、エンジンに導入される気化後の燃料の温度が変わり、燃料の燃焼特性が変わって、エンジン性能に影響を与えるという問題点があった。
For example, when CNG is stored in the high pressure gas tank, the pressure in the high pressure gas tank changes according to the amount of CNG stored. When the pressure in the high-pressure gas tank changes, the temperature of the fuel after depressurization introduced into the engine changes, and the combustion characteristics of the fuel change, which affects engine performance.
Even when LNG is stored in the LNG tank, when the LNG stored in the liquid is heat-exchanged by the vaporizer and supplied to the engine, the gas in the LNG tank is also supplied to the engine. When the amounts and ratios of various components in the tank change, the temperature of vaporized fuel introduced into the engine changes, and the combustion characteristics of the fuel change, which affects engine performance.
 本開示の目的は、エンジンに導入される燃料の燃焼特性の変化がエンジン性能へ及ぼす影響を抑制することが可能な内燃機関システム、車両および点火プラグの点火時期補正方法を提供することである。 An object of the present disclosure is to provide an internal combustion engine system, a vehicle, and an ignition timing correction method for a vehicle and an ignition plug capable of suppressing the influence of a change in combustion characteristics of fuel introduced into the engine on engine performance.
 上記の目的を達成するため、本開示における内燃機関システムは、
 天然ガスを燃料として気筒に供給し、点火プラグにより発火燃焼させる内燃機関システムにおいて、
 前記点火プラグによる点火時期を、前記燃料の温度に基づいて補正する制御部を備える。
In order to achieve the above object, the internal combustion engine system in the present disclosure,
In an internal combustion engine system in which natural gas is supplied to a cylinder as fuel and is ignited and burned by an ignition plug
A control unit that corrects the ignition timing of the spark plug based on the temperature of the fuel is provided.
 本開示における車両は、
 上記内燃機関システムを備える。
The vehicle in the present disclosure is
The above internal combustion engine system is provided.
 本開示における点火プラグの点火時期補正方法は、
 天然ガスを燃料として気筒に供給し、点火プラグにより発火燃焼させる内燃機関システムにおける点火プラグの点火時期補正方法であって、
 前記点火プラグによる点火時期を、前記燃料の温度に基づいて補正する。
The ignition timing correction method for the spark plug according to the present disclosure includes
A method for correcting ignition timing of an ignition plug in an internal combustion engine system, which supplies natural gas as fuel to a cylinder, and ignites and burns by an ignition plug,
The ignition timing by the spark plug is corrected based on the temperature of the fuel.
 本開示によれば、エンジンに導入される燃料の燃焼特性の変化がエンジン性能へ及ぼす影響を抑制することができる。 According to the present disclosure, it is possible to suppress the influence of changes in the combustion characteristics of the fuel introduced into the engine on the engine performance.
図1は、本開示の第1実施の形態における内燃機関システムの構成を概略的に示すブロック図である。FIG. 1 is a block diagram schematically showing a configuration of an internal combustion engine system according to the first embodiment of the present disclosure. 図2は、燃料温度および負荷と、点火時期の補正値との関係を示す図である。FIG. 2 is a diagram showing the relationship between the fuel temperature and load, and the ignition timing correction value. 図3は、バルブタイミング、燃料温度が低い場合における点火時期等、および、燃料温度が高い場合における点火時期等の一例を示すタイミングチャートである。FIG. 3 is a timing chart showing an example of valve timing, ignition timing and the like when the fuel temperature is low, and ignition timing and the like when the fuel temperature is high. 図4は、点火プラグの点火時期補正処理の一例を示すフローチャートである。FIG. 4 is a flowchart showing an example of the ignition timing correction process of the spark plug. 図5は、本開示の第2実施の形態における内燃機関システムの構成を概略的に示すブロック図である。FIG. 5 is a block diagram schematically showing the configuration of the internal combustion engine system in the second embodiment of the present disclosure.
 以下、本開示の実施の形態について、図面を参照しながら説明する。
 図1は、本開示の第1実施の形態における内燃機関システム100の構成を概略的に示すブロック図である。
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
FIG. 1 is a block diagram schematically showing a configuration of an internal combustion engine system 100 according to the first embodiment of the present disclosure.
 図1に示すように、内燃機関システム100は、CNGエンジン10(以下、エンジン)を備える。エンジン10のシリンダブロック11には、気筒11c毎にピストン12が設けられている。ピストン12は、クランク軸13にコンロッド14を介して連結される。ピストン12は、クランク軸13の回転に応じて上下動する。シリンダブロック11上のシリンダヘッド15には、気筒11c毎に点火プラグ16が設けられている。 As shown in FIG. 1, the internal combustion engine system 100 includes a CNG engine 10 (hereinafter, engine). A cylinder block 11 of the engine 10 is provided with a piston 12 for each cylinder 11c. The piston 12 is connected to the crankshaft 13 via a connecting rod 14. The piston 12 moves up and down according to the rotation of the crankshaft 13. The cylinder head 15 on the cylinder block 11 is provided with an ignition plug 16 for each cylinder 11c.
 また、内燃機関システム100は、吸気を過給するターボチャージャ60(過給器)と、排気側から排ガスの一部を取り出し、吸気側へ戻すEGR(Exhaust Gas Recirculation)と呼ばれる排気再循環装置70(以下、EGR装置)とを備える。なお、吸気側へ戻される排ガスを、EGRガスという。 Further, the internal combustion engine system 100 includes a turbocharger 60 (supercharger) that supercharges intake air, and an exhaust gas recirculation device 70 called EGR (Exhaust Gas Recirculation) that takes out a part of exhaust gas from the exhaust side and returns it to the intake side. (Hereinafter, referred to as an EGR device). The exhaust gas returned to the intake side is called EGR gas.
 ターボチャージャ60は、排気で駆動されるタービン61と、タービン61の駆動力で駆動され吸気を圧縮するコンプレッサ62とを備える。コンプレッサ62とインテークマニホールド25との間の吸気管23には、吸気を冷却するインタークーラ63が設けられる。バイパス通路23aには、バイパス通路23aの吸気量を調整する吸気スロットルバルブ23bが設けられている。 The turbocharger 60 includes a turbine 61 that is driven by exhaust gas, and a compressor 62 that is driven by the driving force of the turbine 61 and that compresses intake air. An intercooler 63 that cools intake air is provided in the intake pipe 23 between the compressor 62 and the intake manifold 25. The bypass passage 23a is provided with an intake throttle valve 23b for adjusting the intake amount of the bypass passage 23a.
 EGR装置70は、エンジン10の排気側と吸気側とを接続する排気再循環通路71(以下、EGR通路)と、EGR通路71に設けられ、EGRガスを冷却する排気再循環クーラ72(以下、EGRクーラ)と、EGR通路71に設けられ、排気再循環量(以下、EGR量)を調整するための排気再循環バルブ73(以下、EGRバルブ)とを備える。 The EGR device 70 is provided in the exhaust gas recirculation passage 71 (hereinafter, EGR passage) that connects the exhaust side and the intake side of the engine 10, and the exhaust gas recirculation cooler 72 (hereinafter, referred to as the EGR gas) that is provided in the EGR passage 71. An EGR cooler) and an exhaust gas recirculation valve 73 (hereinafter, EGR valve) provided in the EGR passage 71 for adjusting an exhaust gas recirculation amount (hereinafter, EGR amount).
 エンジン10への吸気は、エアクリーナ22から吸気管23又はバイパス通路23aを通過する。吸気管23を通過した吸気は、コンプレッサ62で圧縮され、インタークーラ63で冷却される。吸気管23又はバイパス通路23aを通過した吸気は、排気再循環通路71からのEGRガスと共に、インテークマニホールド25に流入し、気筒11c毎に設けられたフューエルインジェクタ26からの天然ガス(CNG)と混合されて気筒11c内に導入され、点火プラグ16により発火燃焼される。 The intake air to the engine 10 passes from the air cleaner 22 to the intake pipe 23 or the bypass passage 23a. The intake air that has passed through the intake pipe 23 is compressed by the compressor 62 and cooled by the intercooler 63. The intake air that has passed through the intake pipe 23 or the bypass passage 23a flows into the intake manifold 25 together with the EGR gas from the exhaust gas recirculation passage 71 and mixes with the natural gas (CNG) from the fuel injector 26 provided for each cylinder 11c. Then, it is introduced into the cylinder 11c and is ignited and burned by the spark plug 16.
 エンジン10の吸気側には、吸気スロットルバルブ24の開度を検出するスロットル開度センサ41と、吸気の圧力を検出する吸気圧力センサ42、43と、吸気の温度を検出する吸気温度センサ44,45とが設けられている。これらセンサ41,42,43、44,45の検出値は、制御部50(エンジンコントロールユニット)に入力される。 On the intake side of the engine 10, a throttle opening sensor 41 for detecting the opening of the intake throttle valve 24, intake pressure sensors 42, 43 for detecting intake pressure, and an intake temperature sensor 44 for detecting intake temperature. And 45 are provided. The detection values of these sensors 41, 42, 43, 44, 45 are input to the control unit 50 (engine control unit).
 気筒11cからの排気は、排気弁18を介してエキゾーストマニホールド27に排気された後、一部がEGR通路71に流入し、残りの一部がタービン61を介して、排気管28に供給される。排気は、排気管28から三元触媒30に供給され、三元触媒30で、CO、非メタン炭化水素(non-methane hydrocarbon:NMHC)、NOxが除去され、消音器31を通して大気に排気される。 The exhaust gas from the cylinder 11c is exhausted to the exhaust manifold 27 via the exhaust valve 18, then a part thereof flows into the EGR passage 71, and the remaining part is supplied to the exhaust pipe 28 via the turbine 61. .. Exhaust gas is supplied from the exhaust pipe 28 to the three-way catalyst 30, where the three-way catalyst 30 removes CO, non-methane hydrocarbon (NMHC), and NOx, and is exhausted to the atmosphere through the silencer 31. ..
 排気管28には、エキゾーストマニホールド27から排気された排ガスの酸素濃度に基づいて空燃比を検出する空燃比センサ46(ランダムセンサ)が配置される。空燃比センサ46の検出値が制御部50に入力される。制御部50は、空燃比センサ46の検出値に基づいて、燃焼が安定するように空燃比制御を行う。 The exhaust pipe 28 is provided with an air-fuel ratio sensor 46 (random sensor) that detects an air-fuel ratio based on the oxygen concentration of the exhaust gas exhausted from the exhaust manifold 27. The detection value of the air-fuel ratio sensor 46 is input to the control unit 50. The control unit 50 performs the air-fuel ratio control based on the detection value of the air-fuel ratio sensor 46 so that the combustion becomes stable.
 CNGは、高圧ガスタンク32に貯蔵される。CNGは、高圧ガスタンク32から高圧レギュレータ37(減圧装置)に供給され、高圧レギュレータ37にて一定の圧力に減圧されてエンジン10の燃料として用いられる。燃料は、フューエルインジェクタ26にてエンジン10のインテークマニホールド25に供給される。供給された燃料は、インテークマニホールド25に流入した吸気と混合されて各気筒11c内に導入され、点火プラグ16により発火燃焼される。制御部50は、点火プラグ16の点火時期を補正するように一次側点火システム17を制御する。以下の説明において、「燃料」という場合は、減圧された後のCNGを言い、減圧される前のCNGを言わない。したがって、燃料の温度又は燃料温度という場合は、減圧された後のCNGの温度を言い、減圧される前のCNGの温度を言わない。 CNG is stored in the high pressure gas tank 32. CNG is supplied from the high-pressure gas tank 32 to a high-pressure regulator 37 (pressure reducing device), reduced in pressure to a constant pressure by the high-pressure regulator 37, and used as fuel for the engine 10. The fuel is supplied to the intake manifold 25 of the engine 10 by the fuel injector 26. The supplied fuel is mixed with the intake air flowing into the intake manifold 25, introduced into each cylinder 11c, and ignited and burned by the spark plug 16. The control unit 50 controls the primary ignition system 17 so as to correct the ignition timing of the spark plug 16. In the following description, the term “fuel” means CNG after depressurization, and does not mean CNG before depressurization. Therefore, the term "fuel temperature" or "fuel temperature" refers to the temperature of the CNG after being depressurized, not the temperature of the CNG before being depressurized.
 高圧ガスタンク32には、タンク内の圧力を検出するタンク圧力センサ38(CNG圧力センサ)が配置されている。高圧ガスタンク32から高圧レギュレータ37にCNGを供給するCNG供給経路には、CNGの温度を検出するCNG温度センサ39が配置されている。高圧レギュレータ37からインテークマニホールド25に燃料を供給する燃料供給経路35には、燃料の温度及び圧力を検出する温度圧力センサ40(本開示の「燃料温度センサ」に対応する)が配置されている。なお、燃料の温度及び圧力は、それぞれ検出する複数のセンサで検出しても、また、例えば、圧力から温度を算出(間接的に算出)するようにしてもよい。それぞれのセンサ38、39,40の検出値は、制御部50に入力される。 The high pressure gas tank 32 is provided with a tank pressure sensor 38 (CNG pressure sensor) that detects the pressure inside the tank. A CNG temperature sensor 39 that detects the temperature of CNG is arranged in the CNG supply path that supplies CNG from the high-pressure gas tank 32 to the high-pressure regulator 37. A temperature/pressure sensor 40 (corresponding to the “fuel temperature sensor” of the present disclosure) that detects the temperature and pressure of the fuel is arranged in the fuel supply path 35 that supplies fuel from the high-pressure regulator 37 to the intake manifold 25. It should be noted that the temperature and pressure of the fuel may be detected by a plurality of sensors that detect each, or, for example, the temperature may be calculated (indirectly) from the pressure. The detection values of the respective sensors 38, 39, 40 are input to the control unit 50.
 制御部50は、点火プラグ16の点火時期補正等の各種制御を行うもので、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、入力ポート、出力ポート等を備えている。制御部50の各種機能は、制御部50のCPUがROMに記憶された点火時期補正プログラムをRAMに展開して、実行することにより実現される。制御部50は、燃料温度およびエンジン10の負荷に基づいて、点火プラグ16の点火時期を補正する。なお、本実施の形態では、燃料温度には、温度圧力センサ40により検出された燃料温度が用いられる。また、エンジン10の負荷には、1ストローク当たりの燃料噴射時間(ms)が用いられる。1ストローク当たりの燃料噴射時間は、エンジン10の吸気量とインジェクター係数から計算された燃料量に基づいて求められる。エンジン10の吸気量は、例えば、吸気圧力センサ43により検出される吸気圧力、吸気温度センサ45により検出される吸気温度、大気圧センサー(図示せず)により検出される気圧、および、クランクアングルセンサー(図示せず)から検出されるエンジン回転数に基づいて求められる。 The control unit 50 performs various controls such as ignition timing correction of the spark plug 16, and includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an input port, an output port, and the like. ing. The various functions of the control unit 50 are realized by the CPU of the control unit 50 expanding the ignition timing correction program stored in the ROM into the RAM and executing the program. The control unit 50 corrects the ignition timing of the spark plug 16 based on the fuel temperature and the load of the engine 10. In this embodiment, the fuel temperature detected by the temperature/pressure sensor 40 is used as the fuel temperature. Further, the fuel injection time (ms) per stroke is used as the load of the engine 10. The fuel injection time per stroke is obtained based on the intake air amount of the engine 10 and the fuel amount calculated from the injector coefficient. The intake amount of the engine 10 is, for example, the intake pressure detected by the intake pressure sensor 43, the intake temperature detected by the intake temperature sensor 45, the atmospheric pressure detected by an atmospheric pressure sensor (not shown), and the crank angle sensor. It is calculated based on the engine speed detected from (not shown).
 図2は、燃料温度および負荷と、点火時期の補正値との関係を示す図である。図2の列方向に燃料温度(℃)を示し、行方向に1ストローク当たりの燃料噴射時間(ms)を示す。ここで、補正値とは、点火時期に対する進角値Δθ(°)をいう。図2に示す関係は、マップとして、例えば、制御部50のROMに記憶される。マップは、実験結果や、シミュレーションにより作成することが可能である。 FIG. 2 is a diagram showing the relationship between the fuel temperature and load, and the ignition timing correction value. 2, the fuel temperature (° C.) is shown in the column direction, and the fuel injection time (ms) per stroke is shown in the row direction. Here, the correction value means the advance value Δθ(°) with respect to the ignition timing. The relationship shown in FIG. 2 is stored as a map in the ROM of the control unit 50, for example. The map can be created by experimental results or simulation.
 制御部50は、燃料温度および1ストローク当たりの燃料噴射時間に基づき、図2に示すマップを参照して進角値Δθを求め、求めた進角値Δθにより点火プラグ16の点火時期を補正する。なお、図2に、燃料温度T,T,T,…、Tn-1,T(T<T<T<…<Tn-1<T)を示す。また、燃料噴射時間t,t,t,…,t(t<t<t<…<t)を示す。また、Δθ,Δθ,Δθ(Δθ<Δθ<Δθ)を示す。 Based on the fuel temperature and the fuel injection time per stroke, the control unit 50 refers to the map shown in FIG. 2 to obtain the advance angle value Δθ, and corrects the ignition timing of the spark plug 16 based on the obtained advance angle value Δθ. . Note that FIG. 2 shows the fuel temperatures T 1 , T 2 , T 3 ,..., T n-1 , T n (T 1 <T 2 <T 3 <... <T n-1 <T n ). Also shows the fuel injection time t a, t b, t c , ..., t z a (t a <t b <t c <... <t z). In addition, Δθ 1 , Δθ 2 , and Δθ 3 (Δθ 1 <Δθ 2 <Δθ 3 ) are shown.
 図2に示すように、燃料噴射時間がtである場合、燃料温度に拘わらず進角値Δθは0である。つまり、制御部50は、燃料噴射時間がtで、燃料温度が高くなった場合でも、点火時期の補正を行わない。 As shown in FIG. 2, when the fuel injection time is t a, the advance value Δθ regardless of the fuel temperature is 0. That is, the control unit 50, the fuel injection time at t a, even when the fuel temperature is high, no correction of the ignition timing.
 これに対して、図2に示すように、燃料噴射時間がtである場合、燃料温度がTn-1では、進角値Δθは0であり、燃料温度がTでは、進角値Δθは-Δθである。つまり、制御部50は、燃料噴射時間がtで、燃料温度がTである場合、点火時期を-Δθ補正する(Δθ遅角する)。 On the other hand, as shown in FIG. 2, when the fuel injection time is t b , the advance value Δθ is 0 when the fuel temperature is T n−1 , and the advance value Δθ is when the fuel temperature is T n . Δθ is −Δθ 1 . That is, when the fuel injection time is t b and the fuel temperature is T n , the control unit 50 corrects the ignition timing by −Δθ 1 (retards Δθ 1 ).
 また、図2に示すように、燃料噴射時間がtである場合、燃料温度がTn-1では、進角値Δθは-Δθであり、燃料温度がTでは、進角値Δθは-Δθである。つまり、制御部50は、燃料噴射時間がtで、燃料温度がTn-1である場合、点火時期を-Δθ補正し(Δθ遅角し)、燃料温度がTである場合、点火時期を-Δθ補正する(Δθ遅角する)。 Further, as shown in FIG. 2, when the fuel injection time is t c , the advance angle value Δθ is −Δθ 1 when the fuel temperature is T n−1 , and the advance angle value Δθ is when the fuel temperature is T n. Is −Δθ 2 . That is, when the fuel injection time is t c and the fuel temperature is T n−1 , the control unit 50 corrects the ignition timing by −Δθ 1 (retards Δθ 1 ) and the fuel temperature is T n. , The ignition timing is corrected by −Δθ 2 (retarded by Δθ 2 ).
 また、図2に示すように、燃料噴射時間がtである場合、燃料温度がTn-1では、進角値Δθは-Δθであり、燃料温度がTでは、進角値Δθは-Δθである。つまり、制御部50は、燃料噴射時間がtで、燃料温度がTn-1である場合、点火時期を-Δθ補正し(Δθ遅角し)、燃料温度がTである場合、点火時期を-Δθ補正する(Δθ遅角する)。 Further, as shown in FIG. 2, when the fuel injection time is t z , the advance value Δθ is −Δθ 2 when the fuel temperature is T n−1 , and the advance value Δθ is when the fuel temperature is T n. Is −Δθ 3 . That is, the control unit 50 corrects the ignition timing by −Δθ 2 (retards Δθ 2 ) when the fuel injection time is t z and the fuel temperature is T n−1 , and when the fuel temperature is T n. , The ignition timing is corrected by −Δθ 3 (retarded by Δθ 3 ).
 以上のように、制御部50は、燃料温度が所定温度より高くなった場合、点火時期を、所定温度時における点火時期より遅くするように補正する。 As described above, when the fuel temperature becomes higher than the predetermined temperature, the control unit 50 corrects the ignition timing to be later than the ignition timing at the predetermined temperature.
 図3は、バルブタイミング、燃料温度が低い場合における点火時期等、および、燃料温度が高い場合における点火時期等の一例を示すタイミングチャートである。図3の横軸にクランク角(°)を示す。図3に示すように、排気工程は、180°近傍位置(排気弁18の開き動作開始位置)から360°近傍位置(排気弁18の閉じ動作終了位置)までの間に行われる。燃料噴射は360°以前に行われる。吸気工程は、360°近傍位置(吸気弁19の開き動作開始位置)から540°近傍位置(吸気弁19の閉じ動作終了位置)までの間に行われる。燃料と吸気との混合気を圧縮する圧縮工程は、540°近傍位置から開始される。点火時期においては、圧縮行程で圧縮した混合気に点火プラグ16が点火する。 FIG. 3 is a timing chart showing an example of valve timing, ignition timing and the like when the fuel temperature is low, and ignition timing and the like when the fuel temperature is high. The horizontal axis of FIG. 3 shows the crank angle (°). As shown in FIG. 3, the exhaust process is performed from a position near 180° (opening operation start position of the exhaust valve 18) to a position near 360° (closing operation end position of the exhaust valve 18). Fuel injection is performed before 360°. The intake process is performed from a position near 360° (a position where the intake valve 19 opens) to a position near 540° (a position where the intake valve 19 closes). The compression process of compressing the air-fuel mixture of fuel and intake air is started at a position near 540°. At the ignition timing, the spark plug 16 ignites the air-fuel mixture compressed in the compression stroke.
 図3に示すように、燃料温度が高い場合における点火時期は、燃料温度が低い場合における点火時期より遅い(遅角化している)。 As shown in Fig. 3, the ignition timing when the fuel temperature is high is later (retarded) than the ignition timing when the fuel temperature is low.
 次に、点火プラグ16の点火時期補正処理について図4を参照して説明する。図4は、点火プラグ16の点火時期補正処理の一例を示すフローチャートである。本フローは、エンジン10の始動操作に応じて開始される。 Next, the ignition timing correction process of the spark plug 16 will be described with reference to FIG. FIG. 4 is a flowchart showing an example of an ignition timing correction process for the spark plug 16. This flow is started in response to the starting operation of the engine 10.
 ステップS100において、制御部50は、温度圧力センサ40から燃料温度を取得する。 In step S100, the control unit 50 acquires the fuel temperature from the temperature/pressure sensor 40.
 次に、ステップS110において、制御部50は、1ストローク当たりの燃料噴射時間を取得する。 Next, in step S110, the control unit 50 acquires the fuel injection time per stroke.
 次に、ステップS120において、制御部50は、燃料温度および1ストローク当たりの燃料噴射時間に基づいて、図2に示すマップを参照して、点火時期を補正する。 Next, in step S120, the control unit 50 corrects the ignition timing with reference to the map shown in FIG. 2 based on the fuel temperature and the fuel injection time per stroke.
 次に、ステップS130において、制御部50は、エンジン10の停止操作があった否かについて判断する。エンジン10の停止操作があった場合(ステップS130:YES)、処理は、終了する。エンジン10の停止操作がない場合(ステップS130:NO)、処理は、ステップS100の前に戻る。 Next, in step S130, the control unit 50 determines whether or not the engine 10 has been stopped. If the engine 10 has been stopped (step S130: YES), the process ends. If the engine 10 has not been stopped (step S130: NO), the process returns to the step before step S100.
 上記実施の形態における内燃機関システム100では、減圧されたCNGを燃料として吸入空気と共に気筒11cに供給し、点火プラグ16により発火燃焼させる内燃機関システム100において、点火プラグ16による点火時期を、燃料の温度に基づいて補正する制御部50を備える。これにより、例えば、CNGが貯蔵される高圧ガスタンク32内の圧力が変化して、エンジン10に導入される燃料の燃焼特性が変化した場合でも、燃料温度に応じて点火時期を補正するため、エンジン性能に影響を与えないようにすることが可能となる。 In the internal combustion engine system 100 in the above-described embodiment, in the internal combustion engine system 100 in which the depressurized CNG is supplied as fuel to the cylinder 11c together with the intake air and is ignited and burned by the ignition plug 16, the ignition timing of the ignition plug 16 is set to A control unit 50 that corrects based on the temperature is provided. As a result, for example, even if the pressure in the high-pressure gas tank 32 storing CNG changes and the combustion characteristics of the fuel introduced into the engine 10 change, the ignition timing is corrected according to the fuel temperature. It is possible to prevent the performance from being affected.
 なお、上記実施の形態においては、温度圧力センサ40により検出された燃料温度に基づいて点火プラグ16の点火時期を補正したが、本開示はこれに限らない。例えば、タンク圧力センサ38により検出されたCNGの圧力、および、CNG温度センサ39により検出されたCNGの温度に基づいて、燃料温度を推定する温度推定部を備え、制御部50が温度推定部により推定された燃料温度に基づいて、点火プラグ16の点火時期を補正するようにしてもよい。さらに、温度圧力センサ40により検出された燃料温度と、温度推定部により推定された燃料温度に基づいて、点火時期を補正するようにしてもよい。これにより、点火時期をより適確に補正することが可能となる。 In the above embodiment, the ignition timing of the spark plug 16 is corrected based on the fuel temperature detected by the temperature/pressure sensor 40, but the present disclosure is not limited to this. For example, a temperature estimation unit that estimates the fuel temperature based on the CNG pressure detected by the tank pressure sensor 38 and the CNG temperature detected by the CNG temperature sensor 39 is provided, and the control unit 50 is controlled by the temperature estimation unit. The ignition timing of the spark plug 16 may be corrected based on the estimated fuel temperature. Further, the ignition timing may be corrected based on the fuel temperature detected by the temperature/pressure sensor 40 and the fuel temperature estimated by the temperature estimation unit. As a result, the ignition timing can be corrected more accurately.
 また、上記実施の形態においては、エンジン10の負荷を1ストローク当たりの燃料噴射時間として、1ストローク当たりの燃料噴射時間に基づいて点火時期を補正する。 In the above embodiment, the load of the engine 10 is set as the fuel injection time per stroke, and the ignition timing is corrected based on the fuel injection time per stroke.
 次に、燃料として気化されたLNGを用いる第2実施の形態について説明する。図5は、本開示の第2実施の形態における内燃機関システム100の構成を概略的に示すブロック図である。なお、第2実施の形態の説明においては、第1実施の形態と異なる構成について主に説明し、同じ構成については、同一の符号を付してその説明を省略する。 Next, a second embodiment using vaporized LNG as fuel will be described. FIG. 5 is a block diagram schematically showing the configuration of the internal combustion engine system 100 according to the second embodiment of the present disclosure. In the description of the second embodiment, configurations different from those of the first embodiment will be mainly described, and the same configurations will be denoted by the same reference numerals and the description thereof will be omitted.
 LNGは、車両に備えられたLNGタンク82内に、液体状態を維持可能な低温下で貯蔵される。LNGは、LNG圧力調整器88で減圧されてLNGタンク82からLNG供給経路85へ導かれ、LNG供給経路85に設けられたLNG気化器86で気化され、さらに、LNGレギュレータ87で減圧・調圧されてエンジン10の燃料として用いられる。気化され、減圧・調整された燃料は、フューエルインジェクタ26にてエンジン10のインテークマニホールド25に供給される。供給された燃料は、インテークマニホールド25に流入した吸気と混合されて各気筒11c内に導入され、点火プラグ16により発火燃焼される。制御部50は、点火プラグ16の点火時期を補正するように一次側点火システム17を制御する。以下の説明において、「燃料」という場合は、気化された後のLNGを言い、気化される前のLNGを言わない。したがって、燃料の温度又は燃料温度という場合は、気化された後のLNGの温度を言い、気化される前のLNGの温度を言わない。 LNG is stored in the LNG tank 82 provided in the vehicle at a low temperature capable of maintaining a liquid state. LNG is decompressed by the LNG pressure regulator 88, guided from the LNG tank 82 to the LNG supply path 85, vaporized by the LNG vaporizer 86 provided in the LNG supply path 85, and further decompressed and regulated by the LNG regulator 87. And is used as fuel for the engine 10. The fuel that has been vaporized, decompressed, and adjusted is supplied to the intake manifold 25 of the engine 10 by the fuel injector 26. The supplied fuel is mixed with the intake air flowing into the intake manifold 25, introduced into each cylinder 11c, and ignited and burned by the spark plug 16. The control unit 50 controls the primary ignition system 17 so as to correct the ignition timing of the spark plug 16. In the following description, the term “fuel” means LNG after being vaporized, and does not mean LNG before being vaporized. Therefore, the term "fuel temperature" or "fuel temperature" refers to the temperature of LNG after being vaporized, not the temperature of LNG before being vaporized.
 LNG供給経路85には、LNGの温度を検出するLNG温度センサ40Aが配置されている。LNG温度センサ40Aの検出値は、制御部50に入力される。制御部50は、燃料温度およびエンジン10の負荷に基づいて、点火プラグ16の点火時期を補正する。燃料温度には、LNG温度センサ40Aにより検出された燃料温度が用いられる。なお、制御部50による点火時期の補正については、第1実施の形態と同様であるため、その説明を省略する。 An LNG temperature sensor 40A that detects the temperature of LNG is arranged in the LNG supply path 85. The detection value of the LNG temperature sensor 40A is input to the control unit 50. The control unit 50 corrects the ignition timing of the spark plug 16 based on the fuel temperature and the load of the engine 10. The fuel temperature detected by the LNG temperature sensor 40A is used as the fuel temperature. Note that the correction of the ignition timing by the control unit 50 is the same as that in the first embodiment, so the description thereof will be omitted.
 第2実施の形態における内燃機関システム100では、気化されたLNGを燃料として吸入空気と共に気筒11cに供給し、点火プラグ16により発火燃焼させる内燃機関システム100において、点火プラグ16による点火時期を、燃料の温度に基づいて補正する制御部50を備える。これにより、例えば、LNGタンク82内の各種成分の量や比率が変化して、エンジン10に導入される気化後の燃料温度が変わる場合でも、気化後の燃料温度に応じて点火時期を補正するため、エンジン性能に影響を与えないようにすることが可能となる。 In the internal combustion engine system 100 according to the second embodiment, in the internal combustion engine system 100 in which vaporized LNG is supplied as fuel to the cylinder 11c together with intake air and is ignited and burned by the ignition plug 16, the ignition timing of the ignition plug 16 is set to The control unit 50 is provided to perform correction based on the temperature. As a result, for example, even if the amounts and ratios of various components in the LNG tank 82 change and the fuel temperature after vaporization introduced into the engine 10 changes, the ignition timing is corrected according to the fuel temperature after vaporization. Therefore, it is possible to prevent the engine performance from being affected.
 なお、第2実施の形態においては、LNG温度センサ40Aにより検出された燃料温度に基づいて点火プラグ16の点火時期を補正したが、本開示はこれに限らない。例えば、LNG気化の熱源となるLNG気化器86のエンジン冷却水入口、出口温度とフューエルインジェクタ26のパルス幅から計算される燃料流量から燃料温度を推定する温度推定部を備え、制御部50が温度推定部により推定された燃料温度に基づいて、点火プラグ16の点火時期を補正するようにしてもよい。さらに、LNG温度センサ40Aにより検出された燃料温度と、温度推定部により推定された燃料温度に基づいて、点火時期を補正するようにしてもよい。これにより、点火時期をより適確に補正することが可能となる。 In the second embodiment, the ignition timing of the spark plug 16 is corrected based on the fuel temperature detected by the LNG temperature sensor 40A, but the present disclosure is not limited to this. For example, the engine cooling water inlet of the LNG vaporizer 86, which is a heat source of LNG vaporization, a temperature estimation unit that estimates the fuel temperature from the fuel flow rate calculated from the outlet temperature and the pulse width of the fuel injector 26, and the control unit 50 controls the temperature. The ignition timing of the spark plug 16 may be corrected based on the fuel temperature estimated by the estimation unit. Further, the ignition timing may be corrected based on the fuel temperature detected by the LNG temperature sensor 40A and the fuel temperature estimated by the temperature estimation unit. As a result, the ignition timing can be corrected more accurately.
 また、上記実施の形態においては、燃料温度に基づいて点火プラグの点火時期を補正する構成を、燃料を吸入空気と共に気筒11cに供給し、点火プラグ16により点火燃焼させるエンジン10に適用したが、燃料を気筒11c内に直接噴射する直噴エンジンに適用してもよい。 Further, in the above embodiment, the configuration in which the ignition timing of the ignition plug is corrected based on the fuel temperature is applied to the engine 10 in which the fuel is supplied to the cylinder 11c together with the intake air and the ignition plug 16 ignites and burns the fuel. It may be applied to a direct injection engine that directly injects fuel into the cylinder 11c.
 その他、上記実施の形態は、何れも本開示の実施するにあたっての具体化の一例を示したものに過ぎず、これらによって本開示の技術的範囲が限定的に解釈されてはならないものである。すなわち、本開示はその要旨、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。 In addition, each of the above-described embodiments is merely an example of an embodiment in carrying out the present disclosure, and the technical scope of the present disclosure should not be limitedly interpreted by these. That is, the present disclosure can be implemented in various forms without departing from the gist or the main features thereof.
 本出願は、2018年12月3日付けで出願された日本国特許出願(特願2018―226653)に基づくものであり、その内容は、ここに参照として取り込まれる。 This application is based on the Japanese patent application (Japanese Patent Application No. 2018-226653) filed on December 3, 2018, the content of which is incorporated herein by reference.
 本開示は、エンジンに導入される燃料の燃焼特性が変化した場合でも、エンジン性能へ影響を与えないようにすることが要求される内燃機関システムを搭載した車両に好適に利用される。 The present disclosure is suitably used for a vehicle equipped with an internal combustion engine system that is required not to affect the engine performance even when the combustion characteristics of the fuel introduced into the engine change.
 10 エンジン
 11c 気筒
 16 点火プラグ
 32 高圧ガスタンク
 37 高圧レギュレータ
 38 タンク圧力センサ
 39 CNG温度センサ
 40 温度圧力センサ
 40A LNG温度センサ
 50 制御部(エンジンコントロールユニット)
 82 LNGタンク
 85 LNG供給経路
 86 LNG気化器
 87 LNGレギュレータ
 88 LNG圧力調整器
 100 内燃機関システム
10 Engine 11c Cylinder 16 Spark Plug 32 High Pressure Gas Tank 37 High Pressure Regulator 38 Tank Pressure Sensor 39 CNG Temperature Sensor 40 Temperature Pressure Sensor 40A LNG Temperature Sensor 50 Control Unit (Engine Control Unit)
82 LNG tank 85 LNG supply path 86 LNG vaporizer 87 LNG regulator 88 LNG pressure regulator 100 Internal combustion engine system

Claims (7)

  1.  天然ガスを燃料として気筒に供給し、点火プラグにより発火燃焼させる内燃機関システムにおいて、
     前記点火プラグによる点火時期を、前記燃料の温度に基づいて補正する制御部を備える、内燃機関システム。
    In an internal combustion engine system in which natural gas is supplied to a cylinder as fuel and is ignited and burned by a spark plug,
    An internal combustion engine system comprising: a control unit that corrects an ignition timing by the spark plug based on a temperature of the fuel.
  2.  前記燃料の温度を検出する燃料温度センサをさらに備え、
     前記制御部は、前記燃料温度センサにより検出された前記燃料の温度に基づいて前記点火時期を補正する、
     請求項1に記載の内燃機関システム。
    Further comprising a fuel temperature sensor for detecting the temperature of the fuel,
    The control unit corrects the ignition timing based on the temperature of the fuel detected by the fuel temperature sensor,
    The internal combustion engine system according to claim 1.
  3.  前記燃料が、減圧された圧縮天然ガスである内燃機関システムであって、
     前記圧縮天然ガスの温度を検出するCNG温度センサと、
     前記圧縮天然ガスの圧力を検出するCNG圧力センサと、
     前記CNG温度センサにより検出された前記圧縮天然ガスの温度、および、前記CNG圧力センサにより検出された前記圧縮天然ガスの圧力から、前記燃料の温度を推定する温度推定部と、をさらに備え、
     前記制御部は、前記温度推定部により推定された前記燃料の温度に基づいて前記点火時期を補正する、
     請求項1または2に記載の内燃機関システム。
    An internal combustion engine system in which the fuel is compressed natural gas,
    A CNG temperature sensor for detecting the temperature of the compressed natural gas;
    A CNG pressure sensor for detecting the pressure of the compressed natural gas;
    A temperature estimation unit that estimates the temperature of the fuel from the temperature of the compressed natural gas detected by the CNG temperature sensor and the pressure of the compressed natural gas detected by the CNG pressure sensor,
    The control unit corrects the ignition timing based on the temperature of the fuel estimated by the temperature estimation unit,
    The internal combustion engine system according to claim 1 or 2.
  4.  前記燃料が、気化された液化天然ガスである内燃機関システムであって、
     前記液化天然ガスを気化の熱源となる気化器のエンジン冷却水入口、出口温度とインジェクターパルス幅から計算される燃料流量から、前記燃料の温度を推定する温度推定部とを、さらに備え、
     前記制御部は、前記温度推定部により推定された前記燃料の温度に基づいて前記点火時期を補正する、
     請求項1または2に記載の内燃機関システム。
    An internal combustion engine system in which the fuel is vaporized liquefied natural gas,
    An engine cooling water inlet of a vaporizer that serves as a heat source for vaporizing the liquefied natural gas, a fuel flow rate calculated from an outlet temperature and an injector pulse width, and a temperature estimation unit for estimating the temperature of the fuel, further comprising:
    The control unit corrects the ignition timing based on the temperature of the fuel estimated by the temperature estimation unit,
    The internal combustion engine system according to claim 1 or 2.
  5.  前記制御部は、さらに、内燃機関の負荷に基づいて、前記点火時期を補正する、
     請求項1から4のいずれか一項に記載の内燃機関システム。
    The control unit further corrects the ignition timing based on the load of the internal combustion engine,
    The internal combustion engine system according to any one of claims 1 to 4.
  6.  請求項1から5のいずれか一項に記載の内燃機関システムを備える、
     車両。
    An internal combustion engine system according to any one of claims 1 to 5,
    vehicle.
  7.  天然ガスを燃料として気筒に供給し、点火プラグにより発火燃焼させる内燃機関システムにおける点火プラグの点火時期補正方法であって、
     前記点火プラグによる点火時期を、前記燃料の温度に基づいて補正する、点火プラグの点火時期補正方法。
    A method for correcting ignition timing of an ignition plug in an internal combustion engine system, which supplies natural gas as fuel to a cylinder, and ignites and burns by an ignition plug,
    An ignition timing correction method for an ignition plug, which corrects the ignition timing of the ignition plug based on the temperature of the fuel.
PCT/JP2019/047159 2018-12-03 2019-12-03 Internal combustion engine system, vehicle, and spark plug ignition timing correction method WO2020116425A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980079437.XA CN113167170B (en) 2018-12-03 2019-12-03 Internal combustion engine system, vehicle, and ignition timing correction method for spark plug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018226653A JP2020090906A (en) 2018-12-03 2018-12-03 Internal combustion engine system, vehicle, and ignition timing correction method of ignition plug
JP2018-226653 2018-12-03

Publications (1)

Publication Number Publication Date
WO2020116425A1 true WO2020116425A1 (en) 2020-06-11

Family

ID=70974603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047159 WO2020116425A1 (en) 2018-12-03 2019-12-03 Internal combustion engine system, vehicle, and spark plug ignition timing correction method

Country Status (3)

Country Link
JP (1) JP2020090906A (en)
CN (1) CN113167170B (en)
WO (1) WO2020116425A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08296797A (en) * 1995-04-24 1996-11-12 Chubu Electric Power Co Inc Temperature control of lng carbureter outlet cooling water in gas turbine intake cooling system
JP2000087771A (en) * 1998-09-09 2000-03-28 Toyota Motor Corp Supply fuel control unit of gas fuel internal combustion engine
JP2011214542A (en) * 2010-04-01 2011-10-27 Toyota Motor Corp Control device for gas fuel engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08296797A (en) * 1995-04-24 1996-11-12 Chubu Electric Power Co Inc Temperature control of lng carbureter outlet cooling water in gas turbine intake cooling system
JP2000087771A (en) * 1998-09-09 2000-03-28 Toyota Motor Corp Supply fuel control unit of gas fuel internal combustion engine
JP2011214542A (en) * 2010-04-01 2011-10-27 Toyota Motor Corp Control device for gas fuel engine

Also Published As

Publication number Publication date
CN113167170B (en) 2023-03-24
JP2020090906A (en) 2020-06-11
CN113167170A (en) 2021-07-23

Similar Documents

Publication Publication Date Title
JP4711233B2 (en) Exhaust gas purification system for hydrogen engine
US20150315986A1 (en) Natural gas engine and operation method for natural gas engine
KR20060051868A (en) Engine
JP2008157044A (en) Control device of internal combustion engine
CN112105808B (en) Internal combustion engine, control method for internal combustion engine, and control system for internal combustion engine
US9677465B2 (en) Natural gas engine and operation method for natural gas engine
US10012164B2 (en) Control apparatus of engine
WO2014108969A1 (en) Fuel injection control device for internal combustion engine
JP2010133287A (en) Control device for internal combustion engine
JP2008088899A (en) Control device and control method for premixed compression self-ignition engine
JP2019183801A (en) Internal combustion engine and method for controlling internal combustion engine
US11492992B2 (en) Techniques for transient estimation and compensation of control parameters for dedicated EGR engines
WO2020116425A1 (en) Internal combustion engine system, vehicle, and spark plug ignition timing correction method
JP5240385B2 (en) Control device for multi-cylinder internal combustion engine
JP5110119B2 (en) Control device for multi-cylinder internal combustion engine
US20160369729A1 (en) Control apparatus and control method for internal combustion engine
JP2006220062A (en) Controller of hydrogen addition internal combustion engine
WO2017017754A1 (en) Power train system
JP4775225B2 (en) Control system for compression ignition internal combustion engine
JP6536195B2 (en) Combustion control method and apparatus for CNG engine
JP2009002232A (en) Torque control system for internal combustion engine
Jakliński et al. The effect of injection start angle of vaporized LPG on SI engine operation parameters
JP7211471B1 (en) Engine control device and vehicle
CN113167171B (en) Internal combustion engine system, vehicle, and fuel supply method
JP5240384B2 (en) Control device for multi-cylinder internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892238

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19892238

Country of ref document: EP

Kind code of ref document: A1